å€åèšç®ãé¢åãªã®ã§æ°ãåãããã©ãã
åé¡
xyå¹³é¢äžã®æ£äžè§åœ¢ã§ãå
éšïŒèŸºäžãå«ãŸãªãïŒã«ã¡ããã©äžã€æ Œåç¹ïŒåº§æšãæŽæ°ã®ç¹ïŒãå«ããã®ã®æ倧é¢ç©ã¯ïŒ
èããããè²ã
ãªãã¿ãŒã³ã§
(12+13*â3)/15=2.3011106998930
ãæ倧ããªãšæããŸããã絶察ã§ããïŒ
ãšèšãããã°èªä¿¡ã¯ãããŸããã
æ®å¿µãªããããã¯æ倧ã§ã¯ãããŸããã
äŸãã°äžã€ã®é ç¹ã(0,2)ãšããŠæ®ãã®2é ç¹ãx軞äžã«çœ®ãã ãã§
ãã®å€ãã倧ãããªããŸããã
ããïœ
åºæ¬çãªåœ¢ç¶ãããã®å€ã軜ãè¶
ããŠããŸããšã¯ïœ¥ïœ¥ïœ¥
ã§ã¯æ¬¡ã®èšé²ãšããŠ
3*â3/2(=2.5980762113533)
ã¯åºæ¥ãŸããããæ倧å€ãšèšããã®ãïŒ
ãããã倧ãããã®ããããŸãã
ãã®äžè§åœ¢ã¯ã¡ãã£ãšã¹ã©ã€ããããã°å€§ããã§ããŸããã
åææŠ
(15+14*â3)/12(=3.270725942163690)
æèšç®ãªã®ã§èšç®ãã¹ãèµ·ãã£ãŠãããã
倧äžå€«ã§ããèšç®ã«ãã¹ã¯ãããŸããã
ç§ã¯æåããã®å€ãæ倧ã ãšæã£ãŠããŸããã
ãããããã«èšç®ããŠãããšãããã¯æ倧ã§ã¯ãªãããšãããããŸããã
ããããå
ã®èšç®ã倧å€ã§ããã
# äœãããŸãæ¹æ³ãããã°ã²ãã£ãšãããšç°¡åã«ãªãã®ããç¥ããŸãããã
# å°ãªããšãåçŽã«èããŠèšç®ããŠãããšçµæ§é¢åã§ãã
ãã以äžã®äžè§åœ¢ãååšã§ããã®ãïŒ
ä¿¡ããããªãã§ããïœ
倧ããã§ã¯å°æ°ç¹ä»¥äžã®å€åäœãªãã®ã§ããïŒããããšãæŽæ°éšã®ãªãŒããŒãå€åããŠããŸãäœãªã®ã§ããïŒ
å°æ°ç¹ä»¥äžã§ããæ倧ã¯3.3ã¡ããã
3.30020486367181
äœã§ããïŒ
ããå°ã倧ããã§ãã3.309âŠ
ã³ã³ãã¥ãŒã¿ã®æ°å€èšç®ã®ç¹°ãè¿ãã§æ倧å€ã«ãªããã®ãçµãåºãæ¹æ³ãªã®ã§ãæéããããå²ã«ã¯ãã®çšåºŠã®ç²ŸåºŠã§ãã
3.30940107
蟺ãã§ããããïŒ
蚌æã¯ããŠããŸãããã3.3ã¡ããã®å€ã¯åºãŸããã
çµæã ãèŠããšã·ã³ãã«ã«æžããŸããã
ãã®çããæ£ãããã°ãæ®éã®é»åã§ããŒã7åå©ãã°æ°å€ãåºãŸãã
æ倧ã®èšŒæã¯ã©ãããã°ãããã ããã
> 3.30940107蟺ã
æ£è§£ã§ããå³å¯å€ã¯(4â3+3)/3=3.3094010767585âŠã§ãã
å³ã§æ£äžè§åœ¢ã®å
éšã®ç¹ãåç¹ãšãããš
çŽç·AB: y=(2+â3)x/3+1
çŽç·BC: y=(3-2â3)(x-1)/3-1
çŽç·CA: y=-(6+â3)(x-1)/3
ç¹A: ((9+â3)/26,11(9+â3)/78)
ç¹B: ((9-25â3)/26,(21-41â3)/78)
ç¹C: ((35+â3)/26,-(19+5â3)/26)
äžèŸºã®é·ã: (2/3)â(12+3â3)=2.764549âŠ
é¢ç©: (4â3+3)/3=3.309401âŠ
ã®ããã«ãªããŸãã
æ®éã®å³åœ¢åé¡ã®ãã¿ãŒã³ã ãšäžè§åœ¢ããã£ãšå®å®ããåãã§
æ倧ã«ãªããããªæ°ãããŸããããã®åé¡ã§ã¯ãªããšãäžéå端ãª
åãã§æ倧ã«ãªããŸãã®ã§ãçããã§ããã
ãã®è§åºŠã§æ倧ã«ãªãããšã®èšŒæã¯ã以äžã®ããã«ã§ããŸãã
ãŸãåç¹ã ããå«ãããã«æ£äžè§åœ¢ãå転ããããšãèããŸãã
察称æ§ãããåãè§åºŠã¯15°ã ãã§ååã§ããããšãããããŸãã
å³ã§ãçŽç·ABãy=x+1ã§ããåãããçŽç·BCãy=-1ã§ããåããŸã§ã®
15°ãèããŸãã
ïŒABäžã«(0,1)ãBCäžã«(1,-1)ãCAäžã«(1,0)ãããããã«åããŸãïŒ
確ãçŽç·ABãy=x+1ã®ãšãã®å€ãGAIãããNo.411ã§æžãããå€ã®
(15+14â3)/12=3.27âŠã§ãããã
ãããŠçŽç·BCãy=-1ã§ããåãã®ãšã㯠(3+2â3)/2=3.23âŠã§
äžã®äžéå端ãªè§åºŠã§3.30âŠã§ããããå°ãªããšããã®15°ã®éäžã«
æ倧å€ãããããšãããããŸããã
次ã«äžèšã®è§åºŠã§æ倧å€ããšãããšã®èšŒæã®èã®éšåã§ããã
ãŸã(1,0)ã»Aã»(0,1)ã®ãªãè§ã60°ã§ããããšãã
Aã¯å¿
ãç¹((3+â3)/6,(3+â3/6))ãéãååŸãâ6/3ã§ããåäžã«ããããšã
ããããŸãïŒãã®åã¯(1,0)ãš(0,1)ãéããŸãïŒã
åæ§ã«ãCã¯å¿
ãç¹((6+â3)/6,-1/2)ãéãååŸãâ3/3ã§ããåäžã«ããããšã
ããããŸãïŒãã®åã¯(1,0)ãš(1,-1)ãéããŸãïŒã
ïŒãããã®åããå³ã®9ç¹ã®æ Œåç¹ã䜿ã£ãŠå®¹æã«äœå³ã§ããŸããäœå³æ¹æ³ã¯â»1â»2ïŒ
ãããŠ(1,0)ãéãçŽç·ãš2åãšã®(1,0)ã§ãªãæ¹ã®äº€ç¹ãçµãã ç·åã®é·ãã
æ倧ã«ãªãåããçãã«ãªãããã§ãããå®ã¯ããã¯2åã®äžå¿ãçµãã çŽç·ãš
å¹³è¡ã«ãªããšããæ倧ã§ããããšãããããŸã(â»3)ã
ããã«ãããäžèšã®(4â3+3)/3ãæ倧ãšãªããŸãã
â»1
ç¹Aã®è»è·¡ãšãªãåã®äœå³
ã(-1,0)ãäžå¿ãšããŠ(0,1)ãéãåãš(0,1)ãäžå¿ãšããŠ(-1,0)ãéãåã®
亀ç¹ã®ãã¡yã倧ããæ¹(-(1+â3)/2,(1+â3)/2)ãš(0,1)ãçµãã çŽç·ããš
ã(0,-1)ãäžå¿ãšããŠ(1,0)ãéãåãš(1,0)ãäžå¿ãšããŠ(0,-1)ãéãåã®
亀ç¹ã®ãã¡yãå°ããæ¹((1+â3)/2,-(1+â3)/2)ãš(1,0)ãçµãã çŽç·ããšã®
亀ç¹ãäžå¿ãšãã(1,0)ãéãåãæãã°ããã
â»2
ç¹Cã®è»è·¡ãšãªãåã®äœå³
ã(0,0)ãäžå¿ãšããŠ(1,0)ãéãåãš(1,0)ãäžå¿ãšããŠ(0,0)ãéãåã®
亀ç¹ã®ãã¡yã倧ããæ¹(1/2,â3/2)ãš(1,0)ãçµãã çŽç·ããš
ã(0,-1)ãäžå¿ãšããŠ(1,-1)ãéãåãš(1,-1)ãäžå¿ãšããŠ(0,-1)ãéãåã®
亀ç¹ã®ãã¡yãå°ããæ¹(1/2,-1-â3/2)ãš(1,-1)ãçµãã çŽç·ããšã®
亀ç¹ãäžå¿ãšãã(1,0)ãéãåãæãã°ããã
â»3
ãåPãšåQã2ç¹A,Bã§äº€ãããç¹AãéãçŽç·ãšåP,Qãšã®A以å€ã®äº€ç¹ã
B,Cãšãããšããç·åBCãæé·ã«ãªãã®ã¯BC//PQã®ãšãã§ããã
ãšããåœé¡ã¯ãäžè§é¢æ°ã䜿ã£ãŠåŒ·åŒã«èšŒæããããšã¯ã§ããŸãããã
ãããã幟äœåŠçãªèšŒæãã§ããã°ãããªã«é·ãã¯ãªããªãæ°ãããŸãã
ã©ãªãã蚌æã§ããã°ãé¡ãããŸãã
ïŒæ¢ç¥ã®å®çã®å Žåã¯ååã ãã§ãçµæ§ã§ãïŒ
ãããããã
> ïŒABäžã«(0,1)ãBCäžã«(1,-1)ãCAäžã«(1,0)ãããããã«åããŸãïŒ
ãããã®ç¹ïŒãããã¯ãã®å¯Ÿç§°ç§»åïŒãéããªãæ£äžè§åœ¢ãæ倧ã«ãªãããšããªãã®ã¯ã©ã®ããã«èšãã°ããã®ã§ãããã
ãããã蚌æããŠããªããšãã£ãã®ã¯ããã®é
眮以å€ã®æ£äžè§åœ¢ãæ€èšããŠããªãããã§ãã
å³ãçºããŠããã°æèŠçã«ã¯ãããã®ã§ãããèšèã«ããã®ãé£ãããªãšæã£ãŠã
ã§ã¯ãã¡ããšæŽçããŸãã
åæã¯ãåç¹ã®ã¿ãå
éšã«å«ãæ£äžè§åœ¢ãã§ãã
ã»å蟺äžïŒç«¯ç¹ãé€ãïŒã«å°ãªããšã1ç¹ãªããšæ倧ã«ãªããªã
ïŒæ Œåç¹ãéããªã蟺ã®æ¹åã«æ¡å€§ã§ããããïŒ
ã»å蟺äžã«ããæ Œåç¹ã¯åç¹ã®ãŸããã®8ç¹ã«éããã
ïŒããããå€åŽã®ç¹ãéããšåç¹ä»¥å€ã®æ Œåç¹ãå
éšã«å«ãã§ããŸãïŒ
4ç¹(±1,±1)ã«ã€ããŠ
ã»å¯Ÿè§ã®2ç¹ãéããšåç¹ä»¥å€ã®ç¹ãå«ãã§ããŸãã®ã§äžé©
ã»é£æ¥2ç¹ãéãå Žåã®é¢ç©ã®æ倧å€ã¯(3+2â3)/2=3.23âŠãªã®ã§æ倧ã§ã¯ãªã
ïŒé£æ¥2ç¹ãç°ãªã蟺äžã«ãããšåç¹ä»¥å€ãå«ãã§ããŸãã®ã§åäžèŸºäžã®å¿
èŠãããïŒ
ã»åŸã£ãŠé¢ç©ãæ倧ãšãªããšããè§ã®4ç¹ã¯éã£ãŠãæ倧1ã€
ã»è§ã®4ç¹ãäžã€ãéãããæ®ãã®4ç¹äž3ç¹ã(1蟺ã«1ç¹ãšããŠ)éãå Žåã¯ã
äžå¿ãã®ãããªæ£äžè§åœ¢ã¯ååšããããé¢ç©ã3(17889+10694â3)/34810=3.138âŠ
æªæºã«ãªãã®ã§æ倧ã«ã¯ãªããªã
ïŒABã(0,1)ãéãBCã(0,-1)ãéãCAã(1,0)ãéããšããŠèšç®ããŸããïŒ
åŸã£ãŠé¢ç©ãæ倧ãšãªããšããè§ã®4ç¹ã®ãã¡ã¡ããã©1ç¹ãéã
ããã(1,-1)ãšããŠããããŸãBCããã®ç¹ãéããšããŠããã
ãã®ãšãèãããããã¿ãŒã³ã¯
(1)ABã(-1,0)ãéãCAã(0,1)ãéã
(2)ABã(-1,0)ãéãCAã(1,0)ãéã
(3)ABã(0,1)ãéãCAã(1,0)ãéãBãy=x+1ããäž
(4)ABã(0,1)ãéãCAã(1,0)ãéãBãy=x+1ããäž
ã®4éã
(1)ã®å Žå
çŽç·BCãy=-1ã«äžèŽãABã(-1,0)ãéãCAã(0,1)ãéã圢ïŒãã®ãšãé¢ç©ã¯
(3+2â3)/2=3.23âŠïŒãã(-1,0)ãš(0,1)ãš(1,-1)ãéãããšãå€ããã«
äžè§åœ¢ãå³å転ããŠããïŒCã(1,-1)ã«äžèŽãããŸã§ïŒãšãBãš(1,-1)ã®è·é¢ãš
Cãš(1,-1)ã®è·é¢ã¯ã©ã¡ããçããªã£ãŠããã®ã§ãé¢ç©ã¯æ倧ã«ãªããªãã
ïŒBCãçããªã£ãŠããã®ã¯ãBãšCã®è»è·¡ã®åãæãã°èªæã§ãïŒ
(2)ã®å Žå
ABã(-1,0)ãš(0,1)ãéããCAã(1,0)ãéããBCã(1,-1)ãéã圢
ïŒãã®ãšãé¢ç©ã¯(15+14â3)/12=3.27âŠïŒãã
(-1,0)ãš(1,0)ãš(1,-1)ãéãããšãå€ããã«äžè§åœ¢ãå³å転ããŠãã
ïŒCã(1,-1)ã«äžèŽãããŸã§ïŒãšãAãš(1,0)ã®è·é¢åã³Cãš(1,0)ã®è·é¢ã¯ã©ã¡ãã
çããªã£ãŠããã®ã§ãé¢ç©ã¯æ倧ã«ãªããªãã
ïŒCAãçããªã£ãŠããã®ã¯ãAãšCã®è»è·¡ã®åãæãã°èªæã§ãïŒ
(3)ã®å Žå
BCã(-1,0)ãš(1,-1)ãéããCAã(1,0)ãéããABã(0,1)ãéã圢
ïŒãã®ãšãé¢ç©ã¯äžã«æžãã3(17889+10694â3)/34810=3.138âŠïŒãã
(0,1)ãš(1,0)ãš(1,-1)ãéãããšãå€ããã«äžè§åœ¢ãå³å転ããŠãã
ïŒCã(1,-1)ã«äžèŽãããŸã§ïŒãšãäžãšåæ§ã«CAã¯çããªã£ãŠããã®ã§ã
é¢ç©ã¯æ倧ã«ãªããªãã
(4)ã®å Žå
åã¬ã¹ã«æžãããšããã§ããã®å Žåã«æ倧å€ããšããŸãã
åŸã£ãŠ(4â3+3)/3ãæ倧å€ã§ãã
ææ¢ãã§æ倧é¢ç©ã埮åŠã«æ°å€ãå€åãããªããããšãŠãæ¢ããŠããã®ã«
æéãæãã£ãŠããã®ã§äœãšãäžçºã§èŸ¿ãçããªããã®ããšææŠããŠã¿ãŸããã
æ£äžè§åœ¢ã®å
éšã«å¯äžå«ãŸããæ Œåç¹ã®åšãã®8åã®æ Œåç¹ã®
ã©ããéãããïŒã€ã®çŽç·ãæå¹ã§ãããã決å®ãããŸã§ã®
å段éãé·ãéã®ãããããããããå
éšã®æ Œåç¹ã(1,0)
ãšæå®ããŠããã°ïŒããããããã¯(0,0)ãšãããŠãããïŒ
å²ãïŒã€ã®çŽç·ãæ Œåç¹
P(0,0),Q(0,-1),R(1,1)ã§æå®ããŠããã°è¯ããããããã®
ç¹ãéãçŽç·ã®åŸããm1,m2,m3ã§è¡šãã°
PãéãçŽç·ã¯y=m1*xâ
QãéãçŽç·ã¯y=m2*x-1â¡
RãéãçŽç·ã¯y=m3*x+1-m3â·
â ,â¡ã®äº€ç¹ãA
â¡,â¢ã®äº€ç¹ãB
â¢,â ã®äº€ç¹ãC
ã§è¡šããš
A(1/(m2-m1),m1/(m2-m1))
B((2-m3)/(m2-m3),(m2+m3-m2*m3)/(m2-m3))
C((1-m3)/(m1-m3),m1*(1-m3)/(m1-m3))
ãšãªãã(1,0)ãåãå²ãäžè§åœ¢ã®åé ç¹ã«çžåœããã
ããã«â³ABCãæ£äžè§åœ¢ããªãããšãã
m1,m2ã«ã¯
(m1-m2)/(1+m1*m2)=tan(Pi/3)=â3
ãã£ãŠ
m2=(m1-â3)/(â3*m1+1)
åãã
m1,m3ã«ã¯
(m3-m1)/(1+m3*m1)=â3
ãã£ãŠ
m3=(â3+m1)/(1-â3*m1)
ã®é¢ä¿åŒãæç«ããã
ããã䜿ãã°ãç¹A,Cã®åº§æšã¯
A(-(â3*m1+1)/(â3*(m1^2+1)),-m1*(â3*m1+1)/(â3*(m1^2+1)))
C((â3-1+(â3+1)*m1)/(â3*(m1^2+1)),m1*(â3-1+(â3+1)*m1)/(â3*(m1^2+1)))
ãšm1ã®ãã©ã¡ãŒã¿ã®ã¿ã§è¡šã,
ïŒç¹A,Cã®è·é¢Lã¯
L^2=AC^2=((2*â3+1)*m1+â3)^2/(3*(m1^2+1))
ããã§m1ã®éšåãå€æ°xã«ããŠ
f(x)=((2*â3+1)*x+â3)^2/(3*(x^2+1))
ãªãåæ°é¢æ°ã®å¢æžã調ã¹ãã
äŸã«ãã埮åãããš(èšç®ãçµæ§å€§å€ïŒ
f'(x)=-2*(6+â3)*(x^2-2/33*(24+7*â3)*x-1)/(3*(x^2+1)^2)
=-2*(6+â3)*(x-(6+â3)/3)*(x+(6-â3)/11)/(3*(x^2+1)^2)
f'(x)=0ããã
x=(6+â3)/3,-(6-â3)/11
å¢æžã調ã¹ãŠx=(6+â3)/3ã§f(x)ã¯æ¥µå€§ã§æ倧å€ãäžããã
ãããã£ãŠæ±ããæ倧ã®äžè§åœ¢ã®é¢èSã¯
S=1/2*L^2*sin(Pi/3)=1/2*f((6+â3)/3)*â3/2=(3+4*â3)/3(=3.309401076758503)
ãšæ±ããããŸããã
ã¡ãªã¿ã«A,B,Cã®å亀ç¹ãè€çŽ å¹³é¢äžã§ãZ1,Z2,Z3
Z1 = 1/(m2 - m1) + m1/(m2 - m1)*I
Z2 = ((-m3 + 2)/(m2 - m3)) + (((-m3 + 1)*m2 + m3)/(m2 - m3))*I
Z3 = ((-m3 + 1)/(m1 - m3)) + (-m3 + 1)*m1/(m1 - m3)*I
ã«çœ®ãæã
æ£äžè§åœ¢ããªãã§ããã
m1=(6+sqrt(3))/3
%946 = 2.5773502691896257645091487805019574557
m2=(m1-sqrt(3))/(sqrt(3)*m1+1)
%947 = 0.15470053837925152901829756100391491130
m3=(sqrt(3)+m1)/(1-sqrt(3)*m1)
%948 = -1.2440169358562924311758154471686241223
ã®æ°å€ã
FR(m1,m2,m3)=real(Z1^2+Z2^2+Z3^2-Z1*Z2-Z2*Z3-Z3*Z1)
FI(m1,m2,m3)=imag(Z1^2+Z2^2+Z3^2-Z1*Z2-Z2*Z3-Z3*Z1)
ãžä»£å
¥ãããš
gp > FR(m1,m2,m3)
%949 = 6.281303159995074080 E-38
gp > FI(m1,m2,m3)
%950 = -3.589316091425756617 E-38
ã€ãŸã管ç人ãããä»æŽçãããŠããè€çŽ æ°ã®åºåã«ããèšäº
ã¬ãŠã¹å¹³é¢äžã®ç°ãªãïŒç¹ αãβãγ ã«ã€ããŠãâ³Î±Î²Î³ ãæ£äžè§åœ¢ã§ããããã®
å¿
èŠååæ¡ä»¶ã¯ã
ããããããããα^2ïŒÎ²^2ïŒÎ³^2ïŒÎ±Î²ïŒÎ²Î³ïŒÎ³Î±ïŒïŒ
ã«åèŽããŸããã
å®ã¯ãã®ããšãå©çšããŠæ°å€çã«æ倧å€ã®é¢ç©ãæ¢ãã«ãã£ãŠããŸããã
ããããããã詳ãã説æãããããšãããããŸãã
ãŸã ãã£ãšèªãã ã ããªã®ã§ãåŸã§ãã£ããèªã¿èŸŒãããšæããŸãã
æã£ãéãããšãããããæã£ã以äžã«å€§å€ããã§ãã
No.421 ã® â»3 ã®èšŒæ
äºã€ã®åã®äžå¿P,QããçŽç·BCã«äžãããåç·ã®è¶³ãããããD,EãšãããšãBC=AB+AC=2*AD+2*AE=2*DEã
ç¹PããçŽç·QEã«äžãããåç·ã®è¶³ãFãšãããšåè§åœ¢PDEFã¯é·æ¹åœ¢ãªã®ã§ãDE=PFã
çŽè§äžè§åœ¢PQFã§äžå¹³æ¹ã®å®çãããPF=â(PQ^2-QF^2)ã
以äžãããBCãæ倧ãšãªãã®ã¯QãšFãäžèŽãããšãã§ããã®ãšãBC//PQã
æãã€ããŠã¿ãã°åçŽã§ããã
> No.421 ã® â»3 ã®èšŒæ
ããïŒãããªã«åçŽã ã£ããã§ããã
ããããšãããããŸãããšãŠããã£ããããŸããã
æé·ã®ãšãBC=2PQãšããã®ãç¥ããŠããã£ãã§ãã
> æã£ãéãããšãããããæã£ã以äžã«å€§å€ããã§ãã
ããã§ãããããã§ã现éšã¯èª¬æã倧å€ã§çç¥ããŠããŸã£ãŠããŸãã®ã§ã
ãã¹ãŠã®è©³çŽ°ãæžãããããã«æ°å倧ãããªãããã§ãã
ãã£ãšããç§ã®èšŒæãäžæã§ãã£ãšç°¡æœã«ç€ºãæ¹æ³ãããæ°ãããŸããã
ãã£ãããªã®ã§ãç§ã
ãABäžã«(0,1)ãBCäžã«(1,-1)ãCAäžã«(1,0)ã
ãšç䟡ãªé
眮ã«ãããæ倧é¢ç©ãæ±ããæã®èšç®éçšãèŒããŠãããŸãã
ãšãã£ãŠãã座æšã§äžèŸºã®é·ããåºããŠåŸ®åã§åçç¹ãæ±ãããšããé¢çœã¿ã®ãªãæ¹æ³ã§ããã
ããã§ãéãã(?)äºéæ ¹å·ãå€ãããçŽåãã§ãããããŠæ¥œããã£ãã®ã§ã
å³ã®ããã«æ£äžè§åœ¢ã®äžèŸºABãx軞äžã«ãšããæ Œåç¹ãå転ãããã
ABäžã®æ Œåç¹ã(0,0)ãšããã
x軞æ£ã®åããã枬ã£ãæ£äžè§åœ¢å
éšã®æ Œåç¹æ¹åã®è§åºŠãΞãšããã
Ξã®ç¯å²ã¯ 30°âŠÎžâŠ45°ã«ãªãã
蟺BCäžã®æ Œåç¹ã®åº§æšã¯ (â5*cos(Ξ+α),â5*sin(Ξ+α)) ã
蟺CAäžã®æ Œåç¹ã®åº§æšã¯ (â2*cos(Ξ+β),â2*sin(Ξ+β)) ãšãªãã
ããã§ãcosα=2/â5ãsinα=1/â5ãcosβ=1/â2ãsinβ=1/â2 ã§ããã
蟺BCã®åŸãã¯-â3ãªã®ã§ãçŽç·BC㯠y-â5*sin(Ξ+α)=-â3*(x-â5*cos(Ξ+α)) ã
蟺CAã®åŸãã¯â3ãªã®ã§ãçŽç·CA㯠y-â2*sin(Ξ+β)=â3*(x-â2*cos(Ξ+β)) ãšãªãã
ç¹B,Aã¯ããããã®çŽç·ã®xåçãªã®ã§ãy=0ã代å
¥ããã°ã
B(â5*cos(Ξ+α)+â5/â3*sin(Ξ+α),0)ãA(â2*cos(Ξ+β)-â2/â3*sin(Ξ+β),0) ãšãªãã
ãã£ãŠæ£äžè§åœ¢ã®äžèŸºã®é·ãf(Ξ)ã¯ã
f(Ξ)
=(ç¹Bã®x座æš)-(ç¹Aã®x座æš)
=â5*cos(Ξ+α)+â5/â3*sin(Ξ+α)-â2*cos(Ξ+β)+â2/â3*sin(Ξ+β)
=â5*(cosΞ*cosα-sinΞ*sinα)+â5/â3*(sinΞ*cosα+cosΞ*sinα)-â2*(cosΞ*cosβ-sinΞ*sinβ)+â2/â3*(sinΞ*cosβ+cosΞ*sinβ)
=â5*(cosΞ*2/â5-sinΞ*1/â5)+â5/â3*(sinΞ*2/â5+cosΞ*1/â5)-â2*(cosΞ*1/â2-sinΞ*1/â2)+â2/â3*(sinΞ*1/â2+cosΞ*1/â2)
=(2*cosΞ-sinΞ)+1/â3*(2*sinΞ+cosΞ)-(cosΞ-sinΞ)+1/â3*(sinΞ+cosΞ)
=(1+2/â3)*cosΞ+â3*sinΞ
埮å f'(Ξ)=-(1+2/â3)*sinΞ+â3*cosΞ ã0ã«ãªãã®ã¯ã
tanΞ=â3/(1+2/â3)=3*(2-â3) ã®ãšãã§ããããã㯠30°âŠÎžâŠ45°ã®ç¯å²ã«ããã
f'(30°)=1-1/â3>0 ãf'(45°)=-1/â2*(1-1/â3)<0 ãªã®ã§ããã®éã¯äžã«åžã§æ¥µå€§ç¹ãšãªãã
â» f''(arctan(3*(2-â3))=-f(arctan(3*(2-â3))<0 (âµfã¯é·ãã§æ£ã ãã) ãªã®ã§æ¥µå€§ãšããæ¹ããã£ãããã£ãããã
Ξm=arctan(3*(2-â3)) ãšãããšã
cos(Ξm)^2=1/(1+tan(Ξm)^2)=(16+9*â3)/52
sin(Ξm)^2=1-cos(Ξm)^2=(36-9*â3)/52=9*(4-â3)/52
cos(Ξm)>0, sin(Ξm)>0 ããã
cos(Ξm)*sin(Ξm)=3/52*â((16+9*â3)*(4-â3))=3/52*â(37+20*â3)=3*(5+2*â3)/52
ãã£ãŠããã®ã¿ã€ãã®é¢ç©æ倧ã®æ£äžè§åœ¢ã®é¢ç©ã¯ã
â3/4*f(Ξm)^2
=â3/4*((1+2/â3)*cos(Ξm)+â3*sin(Ξm))^2
=â3/4*((1+2/â3)^2*cos(Ξm)^2+2*(1+2/â3)*â3*cos(Ξm)*sin(Ξm)+(â3)^2*sin(Ξm)^2)
=â3/4*((7+4*â3)/3*(16+9*â3)/52+(4+2*â3)*3*(5+2*â3)/52+3*9*(4-â3)/52)
=â3/(4*52*3)*((7+4*â3)*(16+9*â3)+9*(4+2*â3)*(5+2*â3)+81*(4-â3))
=â3/(4*52*3)*(832+208*â3)
=â3*/3*(4+â3)
=(3+4*â3)/3