管ç人ããã«ããèšäºãåºæ¬ã®äœå³ã( http://shochandas.xsrv.jp/figure/construction.htm ) ãããäžèšãåŒçšããããŸããæ·»ä»ã®å³ã¯åãããŒãžããã®ã¹ã¯ãªãŒã³ã·ã§ããã§ãã
ãåŒçšã
宿šãšã³ã³ãã¹ãçšããŠãçŽç·å€ã®1ç¹ããçŽç·ã«å¹³è¡ãªçŽç·ãäœå³ããããšã¯æããã
ããã§ã¯ã宿šã®ã¿ã䜿ã£ãŠãå¹³è¡ç· l ãšmãäžãããããšããçŽç·å€ã®1ç¹PããçŽç·ã«å¹³è¡ãªçŽç·ãäœå³ããæ¹æ³ãèããã
ãåŒçšçµããã
P ãå¹³è¡ç·ã«æãŸããŠããªãé åã«çœ®ãããŠããå Žåã®äœå³æ¹æ³ãåèšäºã«è©³ãã説æããŠãããŸãããã§ã¯ãå¹³è¡ç·ã«ã¯ããŸããŠããé åã®ãšãã«ã¯ã©ããããããã®ã§ããããïŒ
ãã®ä»¶ã«ã€ããŠäžå®ã®è§£æ±ºæ¹æ³ãèŠããã€ããã«ãªããŸããã®ã§ä»¥äžã«ç®é¡ãšããŠãæ¡å
ããããŸãã
ãç®é¡ã
å¹³è¡ç· j ãš k ãšããäžããããŠããŸãã
ãŸãããããã«ã¯ããŸããé åå
ã«ãç¹ O ãäžããããŠããŸãã
ã³ã³ãã¹ã䜿ããã«å®æšã®ã¿ã§ãç¹ O ãéã çŽç· j ã«å¹³è¡ãªçŽç· h ãäœå³ããŠãã ããã
â»ç§ã®ã¢ã€ãã¢ã§ã¯ãO ãš j ãšã®éã®è·é¢ãšãO ãš k ãšã®éã®è·é¢ãšãçãããšãäœå³ã«ã²ãšæéäœèšã«ããã£ãŠããŸããŸãããã£ãšè¯ãã¢ã€ãã¢ãããã®ã§ã¯ãšæåŸ
ããŠããŸããŸãããŸããäœå³ãããŸãããããšã瀺ãããã®è£é¡ã®èšŒæãããã¯ãã«è§£æã䜿ã£ããŽãªãŽãªèšç®ã«ãããã®ã§ããŠããšã¬ã¬ã³ãã§ã¯ãããŸããã§ãããããããããæ¬è³ªãã€ããŠããªãå¯èœæ§ããããŸãã
çæ§ããå¯ããããçŽ æŽãããäœå³ãæåŸ
ããŠãããŸãã
âââ æ·»ä»ã¯ãå¹³è¡ç·ã®å€ã«æäžã®ç¹ãããåé¡ã®ã¹ã¯ãªãŒã³ã·ã§ããã§ãã
![]()
No.2728Dengan kesaktian Indukmu6æ11æ¥ 22:46
å€ã«ããå Žåãšå
šãåãæ¹æ³ã䜿ããããã«æãã®ã§ãããäœããã¡ãªçç±ããããã§ããã£ãïŒ
No.2729DD++6æ12æ¥ 09:57
ããã DD++ ããã
ç§ã®ããŒã³ãããã§ãããâŠâŠ
å€ã«ããå Žåã«ã¯ãã»ãŒïŒåã®ææ°ãããããšã°ããæã蟌ãã§ããŸããã
ä»ã¯åºå
ã§ãã®ã§ãããšã§ç¢ºèªããŸãã
No.2730Dengan kesaktian Indukmu6æ12æ¥ 12:15
DD++ãããããææé ããä»¶ã¯ãåäžè¶³ã®ããç§ã«ã¯ãŸã ãŸã çžåœã«æéããããããã§ããããããã¡ãã®æ¹ãæ¬ç·ã§æ¬è³ªãã€ããŠããããšã¯ééããªãããšãšæããŸãã
ãŸãã¯æ©ãã«çæªãªææ¡ããäœå³æ¹æ³ã®ã¿ããæ«é²ããããšãšããããŸããæ·»ä»ã®å³ãã芧ãã ããã
â å¹³è¡ç· j, k ã«ã¯ããŸããç¹ O ãäžããããŸããO ã¯ãj ã®æ¹ã«ããè¿ããã®ãšããŸãã
â¡ O ãéãç·å AT, BS ãäœå³ããŸãã
⢠çŽç· AS, BT ã®äº€ç¹ã Q ãšããŸãã
⣠Q ããçŽç· CU ãåŒããŸãã C 㯠j ãšã®äº€ç¹ãU 㯠k ãšã®äº€ç¹ãšããŸããj äžã§ A,B,C ã¯ãã®é ã«äžŠã¶ãã®ãšããŸãã
†ç·å BU ãšç·å CT ãšã®äº€ç¹ã P ãšããŸãã
⥠çŽç· OP ã«ååãã€ã㊠h ãšããŸããh ã¯ãJ ãšå¹³è¡ãšãªããŸãã
( ä»åã¯äœå³ã®ã¿ã®ãæ¡å
ã§ã )
â» O ã j, k ã®ã©çãäžã«ããå Žåã«ã¯ãQ ã®äœå³ããã§ããŸãããç¡éé ã«ãªããŸããããããã®äœå³ã®æ¬ ç¹ã§ããåé¿çãšããŠãO ãšã¯å¥ã® O' ã j, k ã®éã®é åãããããã©çãäžã§ãªãããã«ãããŒã§é
眮ããO' ãééãã j ã«å¹³è¡ãªçŽç· j' ããã£ããäœå³ããŸãã
j' ãš k ãšã®çµã¿ãªãã°ãO ãééããå¹³è¡ç·ãåŒããŸãããïŒåã®æé ãããããŸãã
仿¥ã¯ãããŸã§ãšãããŠãã ããã
![]()
No.2731Dengan kesaktian Indukmu6æ12æ¥ 22:00
ã©ãã§ãè¯ãæ
å ±ã§ãããããã»ã©ã®æ·»ä»ã®å³ã¯ãçæAI ã«äœããã HTLMã«è¡šç€ºããããã®ã§ããcanvasèŠçŽ ãš JavaScript ããã³ã«ãåããŠèŠãæç»ã®ããã®ã©ã€ãã©ãªã䜿ã£ãŠããããã§ãã
Gemini ã«ããããªã®ã®å³ãäœãããšæç€ºãåºããŸãããããããªã®ãã¯ä»¥äžã®è±æã§ããçæAIã«çè§£ã§ããããã«è±æãæžãã»ãããæ®éã«ããŒã«ã§äœå³
ãããããæéããããããšè«ãåãã§ãã
Let two parallel lines j and k be given. Consider a point Q located on the same side of both lines, such that line j is closer to Q than line k.
From point Q, draw three distinct lines a, b, and c, each intersecting both j and k, in such a way that each line intersects j before it intersects k as we move away from Q.
Specifically, let line a intersect j at point A and k at point S; line b intersect j at point B and k at point T; and line c intersect j at point C and k at point U.
Assume that the points A, B, and C appear in this order along line j, as we move along j in a fixed direction.
Let O be the point of intersection of segments AT and BS, and let P be the point of intersection of segments BU and CT.
Define line h as the line passing through points and P.
No.2732Dengan kesaktian Indukmu6æ12æ¥ 22:09
> DD++ãããããããããŠããã®ã¯ãã®è§£æ±ºã«åèã«ãªãããšã¯äžå衚ã«ã¯åºããŠã¯ãããªããã®ã ãšãã
ãèãããæã¡ã ãããªã®ã§ããïŒ
ãããã£ãŠãªã©ããŸããã
ãããããŸã§ããªãããã®å Žã§ã¯çµ¶å¯Ÿã«æãããªã倿ãããŸããã®ã§ã
åé¡çªå·ãšçããã»ããã§èŒããã®ã¯ããã¹ããªå°èª¬ã®ç¯äººããã¿ãã¬ããã®ãšåãã§ãã
ãã¡ãªã®ã¯åœããåã§ãããã
ãŸããŠProject Eulerã¯ãæè²ã®ãããªãè§£æ³ïŒçŽæ¥ã®çãã§ã¯ãªãïŒããã¿ãã¬ããŠããåé¡ãããã¿ãã¬å³çŠãªåé¡ããå³å¯ã«åºåããŠãå©çšäžã®æ³šæãšããŠæèšããŠããŸãã
éå¶ã®ãã®æåãå°éã§ããªããªãGAIããã¯Project Eulerãå©çšãã¹ãã§ã¯ãªããšæããŸãã
No.2724DD++6æ7æ¥ 23:17
æ¹ããŠProject Euler.netã®aboutéšåã®é·ãè±æã§æžããããã®ãæ¥æ¬èªã«ç¿»èš³ãããäžã§èªãã§ã¿ãŸããã
ïŒéåžžé»å補åçã®åæ±ãèª¬ææžãªã©æ¥æ¬èªã§æžãããŠããå Žåã§ããé
ã
ãŸã§èªãããšãªã©ã»ãšãã©ãªã
ãŸããŠãè±æã§æžãããŠããã°å°æŽã®ç¿æ
£ããå
šãç®ã«ãçããŸããã§ããã)
確ãã«æåã®100é¡ã¯ãããã®åé¡ãšãã®è§£æ±ºçãä»ã®å Žæã§è°è«ããããšãèš±å¯ããŸãã
ã®å
容ã瀺ããŠãããŸããã
ãšèšãããšã¯101ããã¯ä»ã§ã¯è°è«ãããªãšãªããããªã®ãã
ãã®ç®çãDD++ããã¯æšçå°èª¬ã«ãªã©ãããŠè§£èª¬ãããŠããã®ã§ãç§ããã®çã§èª¬æããŸããš
ç¯äººã¯èª°ãªã®ãïŒ
å®ã¯å°èª¬ãæåŸãŸã§èªãã°ãèªããšå€æããããŸããããæåŸãŸã§èªãã§ã¿ãã匷ãåæ©ãšããªããŸãã
ãšãããæ°åŠçåé¡ïŒç¹ã«101çªä»¥éãªã©ïŒã§ã¯ãéäžãŸã§ã¯ãã®ãã®è¶³ãäžæ©ãã€åã«èžã¿åºããŠè¡ãã°
ããå°ç¹ãŸã§ã¯èŸ¿ãçããã®ã§ãããåŠäœããäžæ©ãåã«é²ããªããªãããšããã°ãã°çºçããã®ã§ãã
ãããšãµã€ããããããæ€çŽ¢ãã ãããããããã¯AIãé Œãã«è³ªåãããã峿žé€šã«æ¬ãåãã«è¡ã£ãã
ä»äººæ§ã®ãç¥æµãå©çšã§ããªãããšããããŸãã
èããŠã¿ããšèªåç¬èªã§äœãçºèŠã§ããŠããããšæããšæ®ãã©ã®äºé
ãå
人ã®ç¥æµãéå
·ã«é Œã£ãŠãã
ããšã«æ¹ããŠæ°ä»ããããŸãã
äžé±éèãäœæ¥ãåé¡ã®Answeræ¬ã«èªåãªãã®çããå
¥åããŠãÃã®å€å®ãäœåºŠãåãããããªããšå¿ãæã
ãã©ã¹ãã¬ãŒã·ã§ã³ãæºãŸãã°ããã®ç¶æ
ãç¶ããŸãã
éã«æ£è§£ãåŸããšãããã解決ããäžçäžã®äººãã¡ããã®ã¢ã€ãã¢ãæ¹æ³è«ãåèã«èŠããä»çµã¿ããããŠããŠ
èŠåŽããåŸã«ã¯ãªããŠçŽ æŽãããæ¹æ³ãé ããŠãããã ãšããããã°ã©ã ã®ä»æ¹ãèšèªã«ãããããéãããã ãšã
ã»ããšã«å¿ã«æã¿ããããŸãã
ãšãããæã
ãã®åé¡ã«éåžžã«é¢é£ããæ
å ±ãå€ãå«ãŸãããµã€ãã«åºäŒãããšãèµ·ããã®ã§ãã
äŸã®OEISã«ããããç»å ŽããŠããããšããã°ãã°ãªã®ã§ãã
ãããã¯DD++ããã«ã¯ä¿¡ããããªãããç¥ããŸããããååé¡ã®æ£è§£ã ããèŒããŠãã人ãããã®ã§ãã
Euler é²è¡è»ã®æ¹ã«ã¯ãç®ããããã®ã§ããããäœåŠã«ãããã解決ããæ
å ±ããªããæãè¶³ãã§ãªããŸãŸã§ã¯
è£ã«æœãã§ãããã€ã¢ã¢ã³ãã®èŒããèŠãããšãå¶ããŸããã
ãããªæã人ã®å£ã«ã¯æžãç«ãŠããã¬ãšã¯ããèšã£ããã®ã§ãç§ã®ãããªè
ã«ã¯ãããªæ
å ±ã¯ãšãŠãæé£ãã®ã§ãã
ç§ãç¬åã§äœæ¥ããããŠèãç¶ãèªåã®åã§ããéãããã®ã§ããã§ãéçããããŸãã
ãããšã¯ç¥ããããã®å Žã§è²ã
質åããŠããããšããè©«ã³ããŸãã
No.2725GAI6æ10æ¥ 08:45
ãŸããããããæåããPEã®è§£çãæ±ããŠãã人ããæ¥ãªããããªå Žæã§è©±ãã®ã§ããã°ãããçšåºŠãããåŸãªã話ãªã®ããªãšãæããŸãã
ãã¹ããªã®ç¯äººã«ã€ããŠã®è©±ã§ãããã¹ããªã®ãã¿ãã¬ãããã§æ¥œããå Žæããšåæã§ãã€ããã»ã©æããå
¥ããäžã§ãªãããŸãèš±ãããã ãããªãšã
ã§ããããã¯æ°åŠå
šè¬ãæ±ãå Žæã§ãã
ãã ãéä¹ã®æ°ã®äžŠã³ã«æ³åæ§ã£ãŠããã®ããªïŒããšæ°ã«ãªã£ãã ãã®äººãæ¥ãå Žæã§ãã
ããã«è§£çãæžãã®ã¯ãæ¬å±ããã§ãäœãé¢çœãæ¬ãªãããªããšæã£ãŠãã ãã®äººã«ãããªããã¿ãã¬ãããããªãã®ã§ã¯ãªãã§ããïŒ
ãšããããå®éã«ç§ã¯160ã¯æªææŠãšãããåé¡èªãã§ãããŸããã§ããã
ããŸããŸ160ã®ãã¿ãã¬ã ãšèšãããåã«èªåã§è§£ããã®ã§ç§ã¯ããããã»ãŒãã§ããããç§ä»¥å€ã®äººïŒäŸãã°ãèšäºãèªã¿ã«æ¥ãã ãã®äººãšãïŒã«ã¯ãã¿ãã¬è¢«å®³ãåããæ¹ããããããããŸããã
ããã«éããŠã159ã«é¢ããŠã¯ãç§ã¯çªç¶ãã¿ãã¬ã®URLã ãæŒãã€ããããŸããã
ããç§ãæ¬æãå
ãŸã§èªãŸãã«OEISã®URLãéããŠããã100%èªåæ£è§£ã®æš©å©ãGAIããã«ãã£ãŠåæã«å¥å¥ªããããšããã§ããã
ãŸã åé¡ããèªãã§ããªã段éã§ã§ããã
ããã¯èš±ããŸãããã¯ã£ãããšæããèŠããŸãã
ã¢ã¯ã»ã¹ããããã°å¯èœã§ããããšãšãã¢ã¯ã»ã¹ããããšæã£ãŠããªã人ã®ç®ã«ãŸã§å
¥ããããããšã¯å
šãéããšããã®ãçè§£ããŠãã ããã
ãããããé¡ãããŸãã
âŠâŠèªæã蟌ããŠã
No.2726DD++6æ10æ¥ 12:00
èšæ£ã
æŒãä»ããããã®ã¯URLãããªããŠOEISã®çªå·ã ãã§ãããã倱瀌ããŸããã
ææã¯éãããšæããŸãã®ã§âŠâŠã
No.2727DD++6æ10æ¥ 12:05
æ¥éã«å€§ãããªãæ°ã®ä»£è¡šãšããŠéä¹ã®æ°ãããç»å Žããã
8! = 40320
9! = 362880
10! = 3628800
11! = 39916800
12! = 479001600
13! = 6227020800
14! = 87178291200
15! = 1307674368000
16! = 20922789888000
17! = 355687428096000
18! = 6402373705728000
19! = 121645100408832000
20! = 2432902008176640000
ã®æ§ã«5!以éã¯æåŸã«ã¯0ãããã€ã䞊ãã§ããŸããã®ãšãªã£ãŠããã
ããã§æåŸã«äžŠã¶0ãåãé€ãã°
14!->871782912 ã®9åã®æ°åã䞊ã³
15!->1307674368ã®10åã®æ°ã䞊ã¶
ããã§ãã®å
äžè¬ã«n!ã«ãããŠæåŸã«äžŠã¶0ã¯çããŠãã®æåã«äžŠã¶ããšã«æã10åã®äžŠã³ãF(n)ã§è¡šãããšã«ãããš
F(16)=0922789888=>922789888
F(17)=5687428096
F(18)=2373705728
F(19)=5100408832
F(20)=200817664
ãªããã®ãšèšå·ãå®çŸ©ããŠããã
ãããäŸãæå
ã«ã³ã³ãã¥ãŒã¿ãããã«ããŠã
F(100000000)
F(10^9)
F(10^10)
蟺ãããéåžžã®ã¡ã¢ãªãŒã®æèŒã§ã¯ããåãä»ããªããªã£ãŠæ¥ããããã®èšç®ãæ³å以äžã«æéããããã
æã§n!ã®å€ã¯ãã®å
ããã£ãšç¶ããå®çŸ©ã¯ã¡ãããšãããŠããã®ã§ããã®åŸæ¥ã®æ¢ãæ¹ã«é Œããªãæ¹æ³ã
ç·šã¿åºããæ¬¡ã®éä¹ã§ã®æåŸã«äžŠã¶ã§ããã10åã®æ°åãèŠã€ããŠã»ããã
(1)F(100)
(2)F(10^12)
(3)F(10^100)
No.2703GAI6æ4æ¥ 17:30
ãšãããã10åãŸã§ã
åã£ãŠãŸãããïŒ
f(20) = 200817664
f(30) = 5863630848
f(40) = 6115894272
f(50) = 1568960512
f(60) = 2776964096
f(70) = 8984531968
f(80) = 6728081408
f(90) = 4469978112
f(100) = 5210916864
f(200) = 389737472
f(300) = 8808170496
f(400) = 5032491008
f(500) = 5547812864
f(600) = 3891178496
f(700) = 2517264384
f(800) = 8969450496
f(900) = 2530962432
f(1000) = 27753472
f(2000) = 807339008
f(3000) = 4872042496
f(4000) = 5802602496
f(5000) = 937833472
f(6000) = 8127287296
f(7000) = 993752064
f(8000) = 4026732544
f(9000) = 9915703296
f(10000) = 8001579008
f(100000) = 4957162496
f(1000000) = 5058412544
f(10000000) = 2574194688
f(100000000) = 2840754176
f(1000000000) = 933638144
ããããå
ã®æŠç¥ãé ã®äžã«ã¯ãããŸããããããŸã§ã確èªããåŸã«ãããã®ã§ã
No.2704DD++6æ5æ¥ 10:59
å®å
šã«åãã«ãªã£ãŠããŸãã
ããã£ããåèã«ãããã®ã§ã³ãŒããæ²èŒããŠãããŠãããŸãããïŒ
No.2705GAI6æ5æ¥ 13:42
ããã£ãã§ãã
ã³ãŒããããã¢ã«ãŽãªãºã ãæ¥æ¬èªã§æžããšããæ¹ããããšæããŸãã®ã§ããã£ã¡çœ®ããšããŸããã
16âŠnâŠæ°åã®å Žåãæ³å®ããŸãã
æŽæ°nãçŽ å æ°ã«5ãmåãã€ãšããŠãg(n) = n*(4882813/5)^mãšããŸãã
éä¹ã®ä»£ããã«g(1)ããg(n)ãŸã§ã®ãã¹ãŠã®ç©ããšã£ãŠ5^10ã§å²ã£ãäœããæ±ãããšãf(n)ã5^10ã§å²ã£ãäœããåŸãããŸãã
ããã¯ãç©ãèšç®ãããã³ã«äœããæ±ããããšã§éãããæ¡æ°å
ã§ã§èšç®ã§ããŸãã
ïŒå®éã¯4882813ã®çޝä¹ãåŸãããŸãšããŠèšç®ããŠããŸãïŒ
æ±ããå€ã«1787109376ãæããŠ10^10ã§å²ã£ãäœããåããšãf(n)ã®å€ãããããŸãã
ïŒnâ§16ã ãšf(n)ãå¿
ã2^10ã®åæ°ã§ããããšãå©çšããŠããã®ã§ãnâŠ15ã§ã¯èª€ã£ãå€ãåºãŸãïŒ
No.2706DD++6æ5æ¥ 15:34
DD++æ°ã®ã¢ã€ãã¢ãããã°ã©ã ããŠã¿ãã
gp > f(n)={r1=4882813;r2=1787109376;}lift(Mod(lift(Mod(prod(i=1,n,i*(r1/5)^valuation(i,5)),5^10))*r2,10^10))
gp > for(n=1,9,print("10^"n";"f(10^n)))
10^1;625036288
10^2;5210916864
10^3;27753472
10^4;8001579008
10^5;4957162496
10^6;5058412544
ããããå
ã¯ãšãŠãæéãå¿
èŠãšãªã£ãŠãããŸããã
確ãã«æ£ç¢ºã«0ãããªã ãããåŸã®äž10åã®æ°ã䞊ã¶ããšãã§ããŸããã
ãšããã§äžæè°ãªã®ã¯r1,r2ã®å€ã¯äœåŠããçŸããã®ã§ããããïŒ
r1,r2以å€ã«ããã®ãããªæ§è³ªãæãã(r1,r2)ã®çµã¯åããã®ã§ããããïŒ
No.2707GAI6æ6æ¥ 07:59
C++ã ãš10^9ã§ãã¡ãã£ãšäžæãããã®æéã§åºãŠããŸããããèšèªã«ããé床差ã£ãŠæå€ãšå€§ããã®ã§ããã
ãããã¯ã(r1/5)ã®çޝä¹ã®ãšããã§mod5^10ã®çµæã ããããã°ããã®ã«åŸåã«çޝä¹ã®çµæãåºããŠããmodåã£ãŠãããã§äžéšæ°å€ã§æ¡æ°ãççºããŠãã圱é¿ããªïŒ
r1ãšr2ã¯ã
r1 = (5^10+1)/2
r2 = 183*5^10+1 = 1745224*2^10
ã§ãã
ã€ãŸãã
mod5^10ã«ãããŠr1ãæããè¡çºã¯å®è³ª2ã§å²ãæäœã«çžåœããŸãã
ãŸããr2ã¯
xâ¡k (mod5^10)
xâ¡0 (mod2^10)
ãé£ç«ããçµæã
xâ¡r2*k (mod10^10)
ã§ããããšã«ç±æ¥ããŸãã
No.2708DD++6æ6æ¥ 08:51
ããŸãèªä¿¡ããããŸãããã
F(10^100)=3738735616
ã§ããïŒ
No.2709ãããã6æ6æ¥ 16:56
åãïŒ
ããã¿ãªåãå€ã§ãã
ã©ãã»ã©ã®æéãããããŸãããïŒ
ããã°ã©ã ã®æŠèŠã解説ãé¡ãããŸãã
No.2710GAI6æ6æ¥ 17:23
çŽ2åã§ããâåŸã«é«éåããŠçŽ16ç§ã«ãªããŸãã
(10^100)!ããçŽ å æ°2ãš5ãé€ãããã®ãmod10^10ã§èšç®ãã
2^(75*10^98-87)ãmod10^10ã§èšç®ããŠæãåãããäžäœ10æ¡ã§ãã
åŸè
ã¯ç°¡åã§ããã
åè
ã¯
1ïœ10^100ã2^mÃ5^nÃNïŒNã¯2ã§ã5ã§ãå²ãåããªãæ°ïŒã®
m,nã§24002éãã«åé¡ãããããããmod10^10ã§èšç®ããŠmod10^10ã§æããŸãã
ãšãããã10^10ãŸã§ãèšç®ããã
1Ã3Ã7Ã9Ã11Ã13ÃâŠÃ9999999999â¡1 (mod10^10)
ãšããããšãããããŸããã®ã§ãäŸãã°
1Ã3Ã7Ã9ÃâŠÃ3141592653589793238462643383279 (mod10^10)
ãèšç®ããããšãã¯çµå€ã¯äžäœ10æ¡ã ããšã£ãŠ
1Ã3Ã7Ã9ÃâŠÃ2643383279 (mod10^10)
ãèšç®ããã°ååã§ããããã䜿ã£ãŠ
(m,n)=(0,0): 1Ã3Ã7Ã9ÃâŠÃ(10^100-1) â¡ 1Ã3Ã7Ã9ÃâŠÃ9999999999 â¡ 1
(m,n)=(1,0): 1Ã3Ã7Ã9ÃâŠÃ(10^50-1) â¡ åæ§ã«1
ã»ã»ã»
(m,n)=(191,44): çµå€(10^100/2^191/5^44äœãåãæšãŠ)ã®äžäœ10æ¡ããšã£ãŠ 1Ã3ÃâŠÃ519385729 â¡ 9917681069
âããã¯åãªãäŸã§ã
ã»ã»ã»
ãããŠããã24002åã®æ°ãmod10^10ã§æãåããããš5385817123ã§ã
2^(75*10^98-87)â¡6813576192ãæããŠ3738735616ãç®åºããŸããã
1Ã3Ã7Ã9ÃâŠÃ9999999999 ã®mod10^10ã§ã®èšç®ã2å匱ã§ã
24002éãã®èšç®ãé«éåããããã«éäžèšç®ã§åŸããã
1Ã3Ã7Ã9ÃâŠÃ9999
1Ã3Ã7Ã9ÃâŠÃ19999
1Ã3Ã7Ã9ÃâŠÃ29999
ã»ã»ã»
1Ã3Ã7Ã9ÃâŠÃ9999999999
ïŒå
šãŠmod10^10ïŒãèŠçŽ æ°1000000ã®é
åã«ä¿æãã
24002éããããããæå€§çŽ4000åã®ä¹ç®ã§æžãããã«ããçµæã
1Ã3Ã7Ã9ÃâŠÃ9999999999ã®èšç®ä»¥å€ã¯èª€å·®çšåºŠã®æéã«ãªããŸããã
(22:28远èš)
1Ã3Ã7Ã9Ã11ÃâŠ(mod 10^10)ã®èšç®ã§10^10æªæºã®æ°ã®ç©ãæ±ããã®ã«
64ãããã§ã¯è¶³ãã128ãããæŒç®ããŠããã®ã§ããã
128ãããã®modæŒç®ããããé
ãã£ãã®ã§mod 2^10ãšmod 5^10ãå¥ã
ã«æ±ããŠ
nâ¡a (mod 2^10), nâ¡b (mod 5^10) ã®ãšã
nâ¡8212890625a+1787109376b (mod 10^10)
ã§æ±ããããã«ãããšãããå®è¡æéã¯çŽ2åâçŽ16ç§ã«ãªããŸããã
No.2711ãããã6æ6æ¥ 18:04
é«éåã«ãããO(n)ã ã£ãã®ãO(logn)ã«æ¹åã
10^18ã«å¯ŸããŠpaiza.ioç°å¢ã§0.08sã§æ±ãŸãããã«ãªããŸããã
ïŒçµæèªäœã¯ããããããã«å£ããã®ã§ãããä»åŸã®èªåã®ãããã°çšãå
ŒããŠïŒ
f(10^2) = 5210916864
f(10^3) = 27753472
f(10^4) = 8001579008
f(10^5) = 4957162496
f(10^6) = 5058412544
f(10^7) = 2574194688
f(10^8) = 2840754176
f(10^9) = 933638144
f(10^10) = 6441946112
f(10^11) = 1378167808
f(10^12) = 283416576
f(10^13) = 9067109376
f(10^14) = 4534834176
f(10^15) = 2576510976
f(10^16) = 9755143168
f(10^17) = 3894653952
f(10^18) = 5407435776
ããšã¯å€å鷿޿°ã䜿ãã°10^100ã§ãäžç¬ã ãšæããŸããã
ããããçŸãããªãã®ã§2^63以å
ã®èšç®ã ãã§ãªããšããªããªãã詊è¡é¯èª€äžã
No.2712DD++6æ7æ¥ 01:41
ãã£ããããã°ã©ã ãäœã£ãã®ã§å€§ããæ¹ãã
F(10^100) = 3738735616
F(10^200) = 6923037696
F(10^300) = 9519908864
F(10^400) = 2065393664
F(10^500) = 6678018048
F(10^600) = 9989215232
F(10^700) = 6221698048
F(10^800) = 3924201472
F(10^900) = 1886432256
F(10^1000) = 1896479744
F(10^2000) = 4883249152
F(10^3000) = 6688616448
F(10^4000) = 8291796992
ã§ãåã£ãŠãããã©ããã¯ããããŸããã
(10^4000)!ãšãã巚倧ãããŠæ³åãã«ããã§ããã
(10^100)!ã§ãåå倧ããã§ããã
No.2713ãããã6æ7æ¥ 05:37
ã©ãããäžèŽããŠããã§ãã
f(10^10) = 6441946112
f(10^20) = 8474436608
f(10^30) = 6117305344
f(10^40) = 6605049856
f(10^50) = 5791409152
f(10^60) = 1279752192
f(10^70) = 8388129792
f(10^80) = 2060969984
f(10^90) = 6590068736
f(10^100) = 3738735616
f(10^200) = 6923037696
f(10^300) = 9519908864
f(10^400) = 2065393664
f(10^500) = 6678018048
f(10^600) = 9989215232
f(10^700) = 6221698048
f(10^800) = 3924201472
f(10^900) = 1886432256
f(10^1000) = 1896479744
f(10^2000) = 4883249152
f(10^3000) = 6688616448
f(10^4000) = 8291796992
f(10^5000) = 5123908608
f(10^6000) = 2555037696
f(10^7000) = 5540568064
f(10^8000) = 9098052608
f(10^9000) = 4882372608
f(10^10000) = 4592166912
f(10^20000) = 310350848
f(10^30000) = 8320806912
f(10^40000) = 1363283968
f(10^50000) = 7217645568
f(10^60000) = 5054093312
f(10^70000) = 7207071744
f(10^80000) = 6996748288
f(10^90000) = 3016684544
f(10^100000) = 9734950912 (0.46sec)
f(10^150000) = 4346172416 (0.83sec)
f(10^200000) = 9418829824 (1.32sec)
f(10^250000) = 7569364992 (1.94sec)
ãã®èŸºãpaiza.ioç°å¢ïŒå®è¡æé2ç§å¶éïŒã§ã®éçã§ããã
以äžãèªåç°å¢
f(10^300000) = 5518877696
f(10^400000) = 6031537152
f(10^500000) = 7823699968
f(10^600000) = 4702614528
f(10^700000) = 5214944256
f(10^800000) = 6104402944
f(10^900000) = 7742903296
f(10^1000000) = 8226093056
10^nã«å¯ŸããŠãäž»èŠéšåã®èšç®ã¯O(n)ã§æžãã§ãã®ã«ã
åèšç®ã®ã2^nãäºé²æ°ã§æ±ããããšããéšåã§O(n^2)ããã£ãŠãæ®å¿µãã
巚倧ãªçޝ乿°ã®åºæ°å€æãO(n*logn)ãããã§ããå®è£
ãç°¡åãªã¢ã«ãŽãªãºã ãªãã§ãããïŒ
ã«ã©ããæ³ã䜿ãã°O(n^1.59)ããããŸã§ã¯æ¹åãããã©æžãã®ãé¢åâŠâŠã
No.2714DD++6æ7æ¥ 05:42
f(10^100) = 3738735616
ãšåãå€3738735616
ãåãä»ã®
f(s) ïœ<10^100ã®å€ã¯ååšããã®ã§ãã?
No.2715GAI6æ7æ¥ 09:21
ã³ãŒãæžããŠãéäžã§æ°ã¥ãããã§ããã
f(4*5^20*n) = f(4*5^19*n)
ãæãç«ã€ã®ã§ã
2*10^99ã4*10^98ã以äž2^81*10^19ãŸã§ã®81åã¯åãå€ã«ãªããŸããã
2^82*10^18ãäžèŽãããã©ããã¯âŠâŠ9*10^18以äžã¯10ã®çޝä¹ç¹åã®ãã€ããæå
ã«ãªãã®ã§ããããŸããã
No.2716DD++6æ7æ¥ 09:44
f(s)=3738735616 ãšãªãsã¯
16257603, 19004367, 20867632, 21217365, 33069263,
42564599, 42631627, 45460609, 52492698, 53300341, âŠ
ã®ããã«ããããããããã§ãã
æå°ã®s㯠16257603 ã§ãã
No.2717ãããã6æ7æ¥ 10:09
f(n)ã10âŠnâŠ10000
ã®äžã§åãå€ãžè³ãçµåããæ¢ããŠã¿ãã
[484,8121]==>395157504
[600,3734]==>3891178496
[724,3900]==>8483543424
[1091,7460]==>608149504
[1260,5976]==>3417107456
[1899,2110]==>4827099136
[1928,2625]==>9962140672
[4152,7094]==>9036347392
[4177,9681]==>7609266176
[5051,5145]==>8307800064
[5763,8822]==>5245555712
[6674,9771]==>6639161344
ã®12çµãããŸããã
[99,100],[999,1000],[9999,10000]ã¯é€ããŠããŸãã
äœãæ³åãèŠããŠããªãããªïœ
åãã£ãŠ
f(10^100)=f(16257603)
ã倿ã§ããã°ãã£ãšçæéã§æã«å
¥ãã®ã«ïœ¥ïœ¥ïœ¥
ãªããã®çåã¯Euler Projectã§ã®problem 160ããçºçããŠããŠ
ããã§ã¯10æ¡ã§ã¯ãªã5æ¡ã§ã®åé¡ã§ãã(5æ¡ã®æ°åãæ¢ã颿°ãf5ãšããŠããŸããïŒ
解決ã®äžã€ã®æ¹æ³ãšããŠ
if n%2500==0ãªãä»»æã®æ£æŽæ°xã«å¯Ÿã
f5(n)=f5(n*5^x)ãæç«ããããšãå©çšã
f5(10^12)=f5(256000*5^8)
ã§256000%2500==0ãæºããã®ã§
ãããã=f5(256000)
ã調æ»ããããšã§
ãããã=16576
ã§è§£æ±ºã§ããããæ¹ããããšãããïŒéåæ¡æ°ãç¯çŽã§ãã)
ãã®æ¹æ³ã¯5æ¡ã«éã£ãŠæç«ããããã§10æ¡ã§ã¯ãºã¬ãŠããŸããŸãã
ããã«ä»£ããæ¹æ³ïŒæ³åïŒã¯ç¡ããã®ãïŒ
No.2718GAI6æ7æ¥ 12:38
ãŸãã«ç§ãèšã£ã
f(4*5^20*n) = f(4*5^19*n)ãããªãã§ãããã
5æ¡ã ãš
f(4*5^5*n) = f(4*5^4*n)
ã§æç«ãããã§ããã
ãšããããšã¯ã10æ¡ã ãš
f(4*5^10*n) = f(4*5^9*n)
ã§æãç«ã€ã®ããªïŒ
No.2719DD++6æ7æ¥ 13:30
ããšãProject Eulerã¯åé¡101以éã¯è§£æ³èšåçŠæ¢ãªã®ã§ã
å°ãªããšã衚åãã¯ãProject Eulerãšã¯ç¡é¢ä¿ã«æãã€ããåé¡ã§ããã«ããšããªããšãŸããæ°ãã
No.2720DD++6æ7æ¥ 13:36
f(4*5^20*n) = f(4*5^19*n)ã®çåŒã¯
f(4*5^19*n) = f(4*5^18*n) = f(4*5^17*n)== f(4*5^9*n)
ãŸã§äŒžã°ããŸããããïŒ(äžæ¹ãžã¯5^xã®éšåã¯ã©ããŸã§ãOK)
åŸã£ãŠ
f(10^100)=f(4*5^100*2^98)=f(4*2^98*5^9)=f(2^100*5^9)=f(2475880078570760549798248448000000000)
ãŸã§æ¡ãäžããŠèª¿æ»ã§ã(101æ¡ã37æ¡ã«çž®å°å)
ãããèšç®ãããŠ
%=3738735616
ãæã«å
¥ãã
No.2721GAI6æ7æ¥ 17:09
ãããã©ããªãã§ããããã
æãã€ãããšã¯ãããŸãããProject Eulerã®101以éã®åé¡ã§ãããšåèšãããŠããŸã£ã以äžãè§£æ³ã«ã€ãªããããšãè¿éã«èšããªããªã£ãŠããŸããŸããã®ã§ã
No.2722DD++6æ7æ¥ 18:17
Project Eulerã®101以éã®åé¡ã§ãããšåèšãããŠããŸã£ã以äžãè§£æ³ã«ã€ãªããããšãè¿éã«èšããªãã»ã»ã»
ãããªèŠåããã£ããšã¯æã£ãŠãããŸããã§ããã
ã§ãOEISã§ã¯
A347105ãªã©ã§ã¯
Project Euler, Digital root sums of factorisations, Problem 159.
ã®æ§ã«ãªã³ã¯ãšå
±ã«è§£æ±ºã«çŽæ¥çµã³ã€ãçµæããããããªã³ãŒãã§ã®ããã°ã©ã ãšãšãã«
æ°å€ã䞊ã³å
¬éãããŠããŸãã
ãã®æ§ã«è§£æ±ºããã®ã«å€§ãã«åèã«ãªãæ
å ±ã¯ãããããªæã«ã¢ã¯ã»ã¹å¯èœã®ç¶æ
ã«ãããŸãã
ãŸããã®ããã¯AIïŒChatGTPãGemminiãCopilotãªã©ãªã©)ã«ããã°ã©ã ã奜ããªã³ãŒãã§äœã£ãŠãããããã«
é Œãã°é£ãªã瀺ããŠãããŸãã
ãã ãããäœãé Œãã«ã¯ãªããŸãããã»ã»ã»
ã§ãèããæ¹åæ§ãªã©ã¯çªºãç¥ãããšã¯ã§ããŸãã
DD++ãããããããããŠããã®ã¯ãã®è§£æ±ºã«åèã«ãªãããšã¯äžå衚ã«ã¯åºããŠã¯ãããªããã®ã ãšãã
ãèãããæã¡ã ãããªã®ã§ããïŒ
No.2723GAI6æ7æ¥ 19:41
ãã£ãªãã¡ã³ãã¹æ¹çšåŒ
(1) 1/a+1/b=p/10
(2) 1/a+1/b=p/100
(3) 1/a+1/b=p/1000
(a,b,pã¯æ£ã®æŽæ°ã§ãaâŠb)
ã«ã€ããŠ
åæ¹çšåŒã§(a,b,p)ã®è§£ãååšã§ããªãæå°ã®pãåå Žåã«ã€ããŠæ±ããŠäžããã
No.2697GAI5æ31æ¥ 10:48
(1)
åŒãå€åœ¢ã㊠(ap-10)(bp-10)=100
p=1ã®ãšãã®è§£ã®äŸã¯ (a,b)=(20,20)
p=2ã®ãšãã®è§£ã®äŸã¯ (a,b)=(10,10)
p=3ã®ãšãã®è§£ã®äŸã¯ (a,b)=(5,10)
p=4ã®ãšãã®è§£ã®äŸã¯ (a,b)=(5,5)
p=5ã®ãšãã®è§£ã®äŸã¯ (a,b)=(4,4)
p=6ã®ãšãã®è§£ã®äŸã¯ (a,b)=(2,10)
p=7ã®ãšãã®è§£ã®äŸã¯ (a,b)=(2,5)
p=8ã®ãšã(4a-5)(4b-5)=25ãšãªã
(4a-5)â¡(4b-5)â¡3 (mod 4)ã ã
25ã¯3 (mod 4)ã®ç©ã«åè§£ã§ããªãã®ã§ãçãã¯p=8
(2)
åŒãå€åœ¢ã㊠(ap-100)(bp-100)=10000
p=1ïœ7ã¯(1)ã®(a,b)ã10åããã°ããã
p=8ã®ãšãã®è§£ã®äŸã¯ (a,b)=(25,25)
p=9ã®ãšãã®è§£ã®äŸã¯ (a,b)=(20,25)
p=10ã®ãšãã®è§£ã®äŸã¯ (a,b)=(20,20)
p=11ã®ãšãã®è§£ã®äŸã¯ (a,b)=(10,100)
p=12ã®ãšãã®è§£ã®äŸã¯ (a,b)=(10,50)
p=13ã®ãšãã®è§£ã®äŸã¯ (a,b)=(8,200)
p=14ã®ãšãã®è§£ã®äŸã¯ (a,b)=(10,25)
p=15ã®ãšãã®è§£ã®äŸã¯ (a,b)=(12,15)
p=16ã®ãšã(4a-25)(4b-25)=625ãšãªã
(4a-25)â¡(4b-25)â¡3 (mod 4)ã ã
625ã¯3 (mod 4)ã®ç©ã«åè§£ã§ããªãã®ã§ãçãã¯p=16
(3)
åŒãå€åœ¢ã㊠(ap-1000)(bp-1000)=1000000
p=1ïœ7ã¯(1)ã®(a,b)ã100åãp=8ïœ15ã¯(2)ã®(a,b)ã10åããã°ããã
p=16ã®ãšãã®è§£ã®äŸã¯ (a,b)=(125,125)
p=17ã®ãšãã®è§£ã®äŸã¯ (a,b)=(60,3000)
p=18ã®ãšãã®è§£ã®äŸã¯ (a,b)=(100,125)
p=19ã®ãšãã®è§£ã®äŸã¯ (a,b)=(56,875)
p=20ã®ãšãã®è§£ã®äŸã¯ (a,b)=(100,100)
p=21ã®ãšãã®è§£ã®äŸã¯ (a,b)=(50,1000)
p=22ã®ãšãã®è§£ã®äŸã¯ (a,b)=(50,500)
p=23ã®ãšã(23a-1000)(23b-1000)=1000000ãšãªã
(23a-1000)â¡(23b-1000)â¡12 (mod 23)ã ã
1000000ã¯12 (mod 23)ã®ç©ã«åè§£ã§ããªãã®ã§ãçãã¯p=23
# æèšç®ãªã®ã§ééããããããç¥ããŸãã
No.2698ãããã5æ31æ¥ 12:57
å
šãŠæ£è§£ã§ãã
æèšç®ã§ããããã§ããïŒ
ã§ã¯
1/a+1/b=p/10^9
ãæºããç°ãªãè§£ã¯äœéããããã¯brute force ã§ã¯ãšãŠãæéããããç¡çãšæãããŸããã»ã»ã»
No.2699GAI5æ31æ¥ 14:37
ããå³èŸºã®åæ¯ã10^9ã®ãšã23058éãã§æ£ãããã°ã
10^1: 20éã
10^2: 102éã
10^3: 356éã
10^4: 958éã
10^5: 2192éã
10^6: 4456éã
10^7: 8260éã
10^8: 14088éã
10^9: 23058éã
10^10: 35896éã
10^11: 53932éã
10^12: 79174éã
10^13: 112824éã
10^14: 156434éã
10^15: 215984éã
10^16: 290394éã
10^17: 384320éã
10^18: 502942éã
10^19: 646852éã
10^20: 820292éã
ã®ããã«ãªãããšæããŸãã
No.2700ãããã6æ1æ¥ 00:49
äžèšãæ±ããã®ã«èšç®æ¹æ³ã®å·¥å€«ãéããæçµçã«ã¯
(Pari/GP圢åŒã§)
f(n)=sum(k=0,n+n,sum(m=0,floor(log(10^n/2^k)/log(5)),numdiv(gcd(2^k*5^m+10^n,2^(n+n-k)*5^(n+n-m)+10^n))))
ãšããåŒã§æ±ããããããšãããããŸããã
No.2701ãããã6æ1æ¥ 21:22
ããããããã®çŽ å æ°åè§£åŒãåèã«ãèªåæµã§ããã°ã©ã ãçµãã§ã¿ãŸããã
f(n)={Div=divisors(10^(2*n));X=select(i->i<=10^n,Div);Y=apply(i->10^(2*n)/i,X);
A=apply(i->i+10^n,X);B=apply(i->i+10^n,Y);}
M=[];for(n=1,#A,M=concat(M,[gcd(A[n],B[n])]));vecsum(apply(i->#divisors(i),M))
n;
20;820292(éã)
21;1038320
22;1292462
23;1590916
24;1946888
25;2359396
26;2830798
27;3393902
28;4039842
29;4775820
30;5636084

ãšäžç¬ã§æ±ãŸã£ãŠããã®ã§ãããïŒå¿«é©ïŒïŒ
No.2702GAI6æ2æ¥ 15:02
äžè§åœ¢ã®äžå¿ã«ã€ããŠã調ã¹ããšæè¿äžäžè¿ãããèšäºãã¿ãŠããã¯ãããŸãã
ãã®åç¥ã£ããšãã¯ãïŒïŒïŒãããã§ãããã確ãã«ãæåãªãã§ã«ããŒç¹ããããã¬ãªã³ç¹ãªã©ãããŸãããã§ãã®å®çã§ãæ¯ãé©åœã«å€ããã°ãããã§ãäœãããã§ããäžã§ãæåãªãå€å¿Oãå
å¿Iãéå¿Gãåå¿Hã«ã€ããŠãèå¯ããŸããã
䟿å®äžãéè§äžè§åœ¢ã«éå®ããŸããïŒå
éšã«ããããïŒ
å
ããç°¡æãªãâ³ABCã«ã€ããŠããã®èŸºã®äžç¹ãDEFãšããå Žåãâ³ABCãšâ³DEFã®éå¿ã¯äžèŽããŸããããã§ãâ³ABCïŒGïŒïŒâ³DEFïŒGïŒãšè¡šèšããŸãã
次ã«ãâ³ABCã®å€å¿ããšããŸããå蟺ã®äžç¹ã§äœãäžè§åœ¢ã®åå¿ãèãããšOã«äžèŽããŸãããããã£ãŠãâ³ABCïŒOïŒïŒâ³DEFïŒHïŒ
ãããã«ãã䌌ãå
容ãæçš¿ããŸãããã
ãâ³ABCïŒâ¡ïŒïŒâ³ïŒ€ïŒ¥ïŒŠïŒâïŒãäœããã¯ãã«ç±æ¥ããèå¯ããŸãã
No.2679ks5æ20æ¥ 10:16
â³ABCã®åå¿ãHãšãããå蟺ã®åå¿ã®è¶³ãDEFãšãããšã
Hã¯ãâ³DEFã®å
å¿ã«ãªãããããã£ãŠã
â³ABCïŒHïŒïŒâ³DEFïŒIïŒ
â³ABCã®å
å¿ãIãšãããå
æ¥åã®å蟺ãšã®æ¥ç¹ãDEFãšãããšã
Iã¯ãâ³DEFã®å€å¿ã«ãªãããããã£ãŠã
â³ABCïŒIïŒïŒâ³DEFïŒOïŒ
ããã§ãHâIâOâHãšãªããŸãããã
éã®ãIâHâOâIã®å ŽåãèŠã€ããŠããã ããªãã§ããããïŒ
No.2684ks5æ21æ¥ 13:21
管ç人æ§ãžãåã®èšäºã远å ç·šéããŠãŸãã
â³ABCã®ãå€å¿ãOã
ãã¯ãã«ãOAïŒa,ãOB=b,ãOC=cããšãããšãã
éå¿ãOGïŒïŒa+b+cïŒ/3
åå¿ãOHïŒa+b+c ãªã®ã§
ãããOHïŒïŒOGãïŒãªã€ã©ãŒç·ïŒ
No.2688ks5æ23æ¥ 09:32
â³ABCã®ãå€å¿ïŒOïŒåå¿ïŒHïŒå
å¿ïŒIïŒéå¿ïŒGïŒ
ã®4åã®ãã¡ãããããã®äºã€ããäžèŽãããšãã
â³ABCãæ£äžè§åœ¢ã§ããããã®
å¿
èŠå忡件ã«ãªããŸãã
No.2689ks5æ24æ¥ 12:14
â³ABCã®åå¿ãHãšãããHã®å蟺ã«ããã察称ç¹ãDEFãšãããâ³DEFã®å
å¿ããHã«äžèŽããã®ã§ãâ³ABCïŒHïŒïŒâ³DEFïŒIïŒ
No.2690ks5æ26æ¥ 10:58
â³ABCã®å
å¿ããšãããã®ããããã®èŸºå¯Ÿç§°ãªç¹ããšããã
â³ïŒ€ïŒ¥ïŒŠã®å€å¿ã¯ãã«äžèŽããã®ã§ã
â³ïŒ¡ïŒ¢ïŒ£ïŒïŒ©ïŒïŒâ³ïŒ€ïŒ¥ïŒŠïŒïŒ¯ïŒ
No.2691ks5æ27æ¥ 13:48
â³ABCã®å€å¿ãOãšãããå蟺ã«ãããç¹Oã®å¯Ÿç§°ç¹ãDEFãšãããšã
â³DEFã®åå¿ã¯ãOã«äžèŽããã
â³ABCïŒOïŒïŒâ³DEFïŒHïŒ
HâIâOâHãéé ã®äŸã¯ãªãã§ããããïŒ
No.2692ks5æ28æ¥ 18:44
â³ABCã®åå¿ãHãšãããHããå蟺ãžã®åç·ã®è¶³ã®å»¶é·ããç·ãã倿¥åãšäº€ããç¹ãDEFãšãããšãâ³DEFã®å
å¿ã¯ãHã«äžèŽããã
ãããã£ãŠãâ³ABCïŒHïŒïŒâ³DEFïŒIïŒ
No.2695ks5æ29æ¥ 21:10
éã«ãâ³ABCã®å
å¿ãIãšãããšããé ç¹ãšå
å¿ãéãçŽç·ãã倿¥åãšã®äº€ç¹ã
ããããDEFãšãããšãâ³DEFã®åå¿ã¯ãIãšäžèŽããã®ã§ã
â³ABCïŒIïŒïŒâ³DEFïŒHïŒ
ãŸããâ³ABCã®å€æ¥åãOãšãããšããååšäžã®ã©ã®äžç¹DEFããšã£ãŠã
â³ABCïŒOïŒïŒâ³DEFïŒOïŒ
蚌æã¯ãç°¡åã§ãããâŠ
No.2696ïœïœ5æ30æ¥ 11:19
ãæ¢æ€ïŒ æ°ã®å¯æã»æ°è«ã®è¿·å®®ãïŒæ©æ¬åäžæ èïŒæ¥æ¬è©è«ç€ŸïŒã®ã第8ç« ãè¿·å®®(ïŒ)ãã¹ã«ã«ã®äžè§åœ¢ãã§ãp.159ã«ãã¹ã«ã«ã®äžè§åœ¢ã2é²ä»å€ã§è¡šããå³ãåºãŠããŸããå³ã§ã¯nCrã®n=11ãŸã§ã4ã€ããšã«åºåã£ããã®ã«ãªã£ãŠããŸããããã¹ã«ã«ã®äžè§åœ¢ã2é²ä»å€ã§è¡šãããã®ãnCrã®n=31ãŸã§ã4ã€ããš(å®ç·)ãš2ã€ããš(ç Žç·)ã«åºåã£ããã®ãæããŠã¿ãŸããã
http://kuiperbelt.la.coocan.jp/p-adic/2adic-pascal_page-0001.jpg
No.2693kuiperbelt5æ29æ¥ 07:12
ãã¹ã«ã«ã®äžè§åœ¢ã3é²ä»å€ã§è¡šãããã®ãnCrã®n=26ãŸã§ã9ã€ããš(å®ç·)ãš3ã€ããš(ç Žç·)ã«åºåã£ããã®ãæããŠã¿ãŸããã
http://kuiperbelt.la.coocan.jp/p-adic/3adic-pascal_page-0001.jpg
No.2694kuiperbelt5æ29æ¥ 07:14
[1]
a^2+b^2=c^2
ã®é¢ä¿åŒãæºããæŽæ°(a,b,c)ã¯ããç¥ãããŠããçµåãã§ããã
1/a^2+1/b^2=1/c^2
ãæºãã(a,b,c)ãæ¢ããš
1/65^2+1/156^2=1/60^2
ãªã©ååšã¯ãããæ¢ãããšãããšãªããªãèŠåŽããã
ããã§
1/a^2+1/b^2=1/c^2
ã®ä»ã®å®äŸãããã€ãçºèŠé¡ãã
äžæ¹
[2]a^2+b^2+c^2=d^2
ãæºããæŽæ°çµïŒa,b,c,d)ã¯
1^2+4^2+8^2=9^2
2^2+3^2+6^2=7^2
3^2+6^2+22^2=23^2
4^2+7^2+32^2=33^2
çã®æ§ã«
(a<b<cã§ãd=c+1ïŒ
ã§ã®ãã¿ãŒã³ãç䌌ãŠ
1/a^2+1/b^2+1/c^2=1/d^2
ãªã
1/7^2+1/14^2+1/21^2=1/6^2
1/9^2+1/18^2+1/72^2=1/8^2
1/13^2+1/39^2+1/52^2=1/12^2
1/19^2+1/57^2+1/342^2=1/18^2
1/31^2+1/155^2+1/186^2=1/30^2
ãªã©ã®æ§ã«
(ãã ãã0<a<b<c ã§d=a-1ïŒ
ã®æ¡ä»¶äžã§ã®ä»ã®å®äŸãæ¢ãåºããŠã»ããã
ããã«
[3]1/a^2+1/b^2+1/c^2+1/d^2=1/e^2
(ãã ãã0<a<b<c<d ã§e=a-1)
ã®äŸãäžã€ã¯èŠã€ããŠäžããã
No.2680GAI5æ20æ¥ 12:17
p^2+q^2=r^2 ãæãç«ã€ãšã
a=pr, b=qr, c=pq ãšããã°
1/a^2+1/b^2=1/c^2 ãæãç«ã¡ãŸããã
p^2+q^2=r^2ãæãç«ã€p,q,rã®äžè¬åŒã¯
p=m^2-n^2, q=2mn, r=m^2+n^2
ãšè¡šããŸãã®ã§ã
1/a^2+1/b^2=1/c^2ãæãç«ã€a,b,cã®äžè¬åŒã¯
a=(m^2-n^2)(m^2+n^2)=m^4-n^4
b=2mn(m^2+n^2)
c=2mn(m^2-n^2)
ãšè¡šããããšã«ãªããŸãã
åæ§ã«
p^2+q^2+r^2=s^2 ãæãç«ã€ãšã
a=pqs, b=prs, c=qrs, d=pqr ãšããã°
1/a^2+1/b^2+1/c^2=1/d^2 ãæãç«ã¡ã
p^2+q^2+r^2=s^2ã®äžè¬åŒã¯
p=|k^2+m^2-n^2|, q=2kn, r=2mn, s=k^2+m^2+n^2
ãšè¡šããŸãã
# ãã®åŒã®å€ãå
±éå æ°ã§å²ãã°äºãã«çŽ ãªå
šè§£ãåŸããããšæã£ãŠããŸããã
# 蚌æããŠããŸããã®ã§ãããããããå
šè§£ã¯åŸãããªãããç¥ããŸããã
ãã£ãŠ
1/a^2+1/b^2+1/c^2=1/d^2ã®äžè¬åŒã¯
a=2kn|k^2+m^2-n^2|(k^2+m^2+n^2)
b=2mn|k^2+m^2-n^2|(k^2+m^2+n^2)
c=4kmn^2(k^2+m^2+n^2)
d=4kmn^2|k^2+m^2-n^2|
ãå
±éå æ°ã§å²ã£ãŠ
a=k|k^2+m^2-n^2|(k^2+m^2+n^2)
b=m|k^2+m^2-n^2|(k^2+m^2+n^2)
c=2kmn(k^2+m^2+n^2)
d=2kmn|k^2+m^2-n^2|
ãšããã°ãïŒå
šè§£ãã©ããã¯ããããŸãããïŒè§£ã¯ãããã§ãçæã§ããŸããã
5é
ã®å Žåãã
(k^2+l^2+m^2-n^2)^2+(2kn)^2+(2ln)^2+(2mn)^2=(k^2+l^2+m^2-n^2)^2
ã䜿ãã°åæ§ã«ã§ãããšæããŸãã
No.2681ãããã5æ20æ¥ 22:01
äžè¬åŒãäœãããšã¯æã£ãŠãã¿ãŸããã§ããã
ãã¿ãŽã©ã¹æ°ããã®ã¢ã¯ãããã£ãã¯ãªå€åœ¢ã®åŠæãæåããŸããã
èªåãªãã«å¹³æ¹æ°ã®éæ°ã§ã®é¢ä¿åŒãããããäœã£ãŠããäžã§ç¹ã«çŸããæãããã®ã«
1/333^2+1/444^2+1/555^2+1/740^2+1/888^2+1/999^2=1/216^2(=1/6^6)
ãçºèŠããæã¯å°èºãããŠåã³ãŸããã
ãŸãä»å¹Žã«å ã¿
1/62^2+1/93^2+1/155^2+1/186^2+1/217^2+1/279^2+1/434^2+1/465^2+1/651^2+1/930^2=1/45^2(=1/2025)
ãæç«å¯èœ
å¹³æ¹æ°ã®éæ°åã§ã¯æ§ã
ãªçåŒãèµ·ããããã§ãã
ïŒåã®å¹³æ¹åã®å Žåã䜿ãããšæã£ãŠ
ãã
p^2+q^2+r^2+s^2=t^2
ãæºããèªç¶æ°(p,q,r,s,t)
ãèŠã€ããŠããã°
a=p*q*r*t
b=q*r*s*t
c=r*s*p*t
d=s*p*q*t
ãšçœ®ãã°
1/a^2+1/b^2;1/c^2+1/d^2
=(1/(p*q*r)^2+1/(q*r*s)^2+1/(r*s*p)^2+1/(s*p*q)^2)/t^2
=(s^2+p^2+q^2+r^2)/(p*q*r*s)^2/t^2
=1/(p*q*r*s)^2
ãªã®ã§
e=p*q*r*sãšçœ®ãã°
1/a^2+1/b^2+1/c^2+1/d^2=1/e^2
ãæç«ããã
ããã«äžè¬çã«
(k^2+l^2+m^2-n^2)^2+(2*k*n)^2+(2*l*n)^2+(2*m*n)^2=(k^2+l^2+m^2+n^2)^2
ãæç«ããã®ã§
p=k^2+l^2+m^2-n^2
q=2*k*n
r=2*l*n
s=2*m*n
t=k^2+l^2+m^2+n^2
ãšçœ®ããŠããããäžã®a,b,c,d,eãžãããã代å
¥ããŠå
±éå å4*k*n^2ãæããš
a(k.l.m,n)=l*((k^2+l^2+m^2)^2-n^4)
b(k,l,m,n)=2*l*m*n*(k^2+l^2+m^2+n^2)
c(k,l,m,n)=l*m*((k^2+l^2+m^2)^2-n^4)
d(k,l,m,n)=m*((k^2+l^2+m^2)^2-n^4)
e(k,l,m,n)=2*l*m*n*(k^2+l^2+m^2-n^2)
ã«ãªããšæãã
ããã§
a(2,2,3,4)=66
b(2,2,3,4)=1584
c(2,2,3,4)=198
d(2,2,3,4)=99
e(2,2,3,4)=48
ãšããã
1/66^2+1/1584^2+1/198^2+1/99^2=299/836352
ãšãªã
1/48^2=1/2304
ãšäžèŽããªãïŒ
ãããäœæ
çºçããã®ãïŒ
ãŸã
1/4^2=1/5^2+1/7^2+1/28^2+1/35^2
ãèµ·ããã®ã§ããããã®åŒã¯äžã®å
¬åŒã§æ±ãŸãã®ã§ããããïŒ
No.2682GAI5æ21æ¥ 08:05
æåŸã®3è¡ãé€ãåç
> å
±éå å4*k*n^2ãæããš
c=r*s*p*tã¯kã§å²ãåããªããšæããŸãã
ãã£ãŠå
±éå åã¯4*n^2ã§ãããæ£ããã¯
a(k,l,m,n)=l*k*((k^2+l^2+m^2)^2-n^4)
b(k,l,m,n)=2*k*l*m*n*(k^2+l^2+m^2+n^2)
c(k,l,m,n)=l*m*((k^2+l^2+m^2)^2-n^4)
d(k,l,m,n)=k*m*((k^2+l^2+m^2)^2-n^4)
e(k,l,m,n)=2*k*l*m*n*(k^2+l^2+m^2-n^2)
ãšãªããããã«ãã£ãŠèšç®ããã
a(2,2,3,4)=132
b(2,2,3,4)=3168
c(2,2,3,4)=198
d(2,2,3,4)=198
e(2,2,3,4)=96
ãã
1/132^2+1/3168^2+1/198^2+1/198^2=1/96^2
ãæãç«ã€ããšãããããŸãã
No.2683ãããã5æ21æ¥ 12:38
æåŸã®3è¡ã®åç
> ãŸã
> 1/4^2=1/5^2+1/7^2+1/28^2+1/35^2
> ãèµ·ããã®ã§ããããã®åŒã¯äžã®å
¬åŒã§æ±ãŸãã®ã§ããããïŒ
a(k,l,m,n)=l*k*|(k^2+l^2+m^2)^2-n^4|
b(k,l,m,n)=2*k*l*m*n*(k^2+l^2+m^2+n^2)
c(k,l,m,n)=l*m*|(k^2+l^2+m^2)^2-n^4|
d(k,l,m,n)=k*m*|(k^2+l^2+m^2)^2-n^4|
e(k,l,m,n)=2*k*l*m*n*|k^2+l^2+m^2-n^2|
ã®ããã«è² ã«ãªããªãããã«çµ¶å¯Ÿå€ãä»ããŠããã°ã
a(2,10,14,20)=1400000
b(2,10,14,20)=7840000
c(2,10,14,20)=9800000
d(2,10,14,20)=1960000
e(2,10,14,20)=1120000
ãšãªãããããæå€§å
¬çŽæ°ã®280000ã§å²ãã°
(a,b,c,d,e)=(5,28,35,7,4)ãåŸãããŸããã
No.2685ãããã5æ21æ¥ 13:54
ãïœïœïœ
æã蟌ãã§ããšééãã«æ°ä»ããªãïŒ
ä¿®æ£ããŠããããæ±ãŸã(a,b,c,d,e)ã®5çµãç¹æ€ããŠããããå€ãã®å Žåå
±éã®æ°ãå«ãããšãèµ·ããããã
ç°ãªã5åã«éå®ããŠãããe=1~1000ã®éã«ã¯å
ãã«20ãã¿ãŒã³ã»ã©ãããªããç¹ã«e=960ã§ã¯
1/1008^2+1/3360^2+1/10080^2+1/20160^2=1/960^2
1/1296^2+1/1728^2+1/2592^2+1/12960^2=1/960^2
1/1260^2+1/1680^2+1/4032^2+1/5040^2=1/960^2
1/1290^2+1/1548^2+1/3870^2+1/123840^2=1/960^2
1/1206^2+1/1608^2+1/9648^2+1/192960^2=1/960^2
ã®æ§ã«5éããäœãæ¹ãçºçããã
ããå°ãå°ãªãæ°ã§ã¯
1/23^2+1/46^2+1/92^2+1/230^2=1/20^2
1/46^2+1/92^2+1/184^2=1/460^2=1/40^2
1/62^2+1/310^2+1/465^2+1/620^2=1/60^2
1/74^2+1/148^2+1/185^2+1/222^2=1/60^2
1/148^2+1/296^2+1/370^2+1/444^2=1/120^2
1/155^2+1/248^2+1/310^2+1/930^2=1/120^2
1/185^2+1/370^2+1/740^2+1/1184^2=1/160^2
1/222^2+1/444^2+1/555^2+1/666^2=1/180^2
ãªã©ãèµ·ããŸããã
ããããããã®æçš¿åŸã«ãªã£ãã®ã§ãããããå
¬åŒããçºçå¯èœãªã®ã§ããã
No.2686GAI5æ21æ¥ 14:23
1/23^2+1/46^2+1/92^2+1/230^2=1/20^2 㯠(k,l,m,n)=(1,2,4,5)
1/46^2+1/92^2+1/184^2=1/460^2=1/40^2 㯠å¯çŽ(äžã®2å)
1/62^2+1/310^2+1/465^2+1/620^2=1/60^2 㯠(k,l,m,n)=(2,3,15,14)
1/74^2+1/148^2+1/185^2+1/222^2=1/60^2 㯠(k,l,m,n)=(2,3,6,5)
1/148^2+1/296^2+1/370^2+1/444^2=1/120^2 㯠å¯çŽ(äžã®2å)
1/155^2+1/248^2+1/310^2+1/930^2=1/120^2 㯠(k,l,m,n)=(1,3,6,4)
1/185^2+1/370^2+1/740^2+1/1184^2=1/160^2 㯠(k,l,m,n)=(1,2,4,4)
1/222^2+1/444^2+1/555^2+1/666^2=1/180^2 㯠å¯çŽ(4ã€äžã®3å)
ã§ããã
ãããã1/4^2=1/5^2+1/7^2+1/28^2+1/35^2 㯠(k,l,m,n)=(1,5,7,10) ã§ååã§ããã
(çµæã4375ã§å²ã)
No.2687ãããã5æ21æ¥ 15:54
ïœãïœããçŽ æ°ã®æ
ïœïŒïœïŒïœïŒïœã¯ãçŽ æ°ã«ãªããããã§ããã
No.2675çŽ æ°çæ5æ19æ¥ 12:03
ããã¯pãšqãå°ãããšãã ãã§ã¯ïŒ
以äžã§p以äžq以äžã®çŽ æ°ã¯ãã¹ãŠ8åãªã®ã§pãšqã®ç°ãªãçµã¿åããã¯28éãã§ãã
2âŠpïŒqâŠ19 ã®ãšã 28åäž 17åãçŽ æ°
11âŠpïŒqâŠ37 ã®ãšã 28åäž 11åãçŽ æ°
101âŠpïŒqâŠ137 ã®ãšã 28åäž 4åãçŽ æ°
1009âŠpïŒqâŠ1049 ã®ãšã 28åäž 2åãçŽ æ°
10007âŠpïŒqâŠ10079 ã®ãšã 28åäž 4åãçŽ æ°
100003âŠpïŒqâŠ100109 ã®ãšã 28åäž 1åãçŽ æ°
1000003âŠpïŒqâŠ1000121 ã®ãšã 28åäž 4åãçŽ æ°
10000019âŠpïŒqâŠ10000189 ã®ãšã 28åäž 2åãçŽ æ°
100000007âŠpïŒqâŠ100000127 ã®ãšã 28åäž 0åãçŽ æ°
1000000007âŠpïŒqâŠ1000000103 ã®ãšã 28åäž 4åãçŽ æ°
10000000019âŠpïŒqâŠ10000000141 ã®ãšã 28åäž 0åãçŽ æ°
2âŠpïŒqâŠn ã§ nââ ã®ãšã çŽ æ°ç¢ºçâ0 ã«ãªãããã§ãã
# å€åååãšã¿ã€ãã«ãéã§ããã
No.2676ãããã5æ19æ¥ 12:51
倱瀌ããŸããããã¹ã¯ãŒãã®é¢ä¿ã§æ²»ããŸããã
管ç人ããŸèšæ£ãé¡ãããŸãã
ïœïŒïœïŒïœïŒïœã§ããåãçµæã§ããããïŒ
ïœãïŒãïŒã®çޝä¹ã«çœ®ãæãããã®ããå°ããæ°ã®æã ãã§ããããïŒ
ãªã€ã©ãŒã®äºæ¬¡åŒïœïŒŸïŒïŒïœïŒïœ
ã§ïœãçŽ æ°ã®ãšããçŽ æ°ã«ãªãããããç¹ã«ïŒïŒã®ãšãã¯ç¹å¥ã®æ§ã«ãããããããŸãããïŒâã«ãããŠã¯ãïŒã¿ãããªïŒ
No.2677ks5æ19æ¥ 13:51
p*q+p+qãªãã°
2âŠpïŒqâŠ19 ã®ãšã 28åäž 19åãçŽ æ°
11âŠpïŒqâŠ37 ã®ãšã 28åäž 13åãçŽ æ°
101âŠpïŒqâŠ137 ã®ãšã 28åäž 6åãçŽ æ°
1009âŠpïŒqâŠ1049 ã®ãšã 28åäž 7åãçŽ æ°
10007âŠpïŒqâŠ10079 ã®ãšã 28åäž 5åãçŽ æ°
100003âŠpïŒqâŠ100109 ã®ãšã 28åäž 5åãçŽ æ°
1000003âŠpïŒqâŠ1000121 ã®ãšã 28åäž 0åãçŽ æ°
10000019âŠpïŒqâŠ10000189 ã®ãšã 28åäž 0åãçŽ æ°
100000007âŠpïŒqâŠ100000127 ã®ãšã 28åäž 4åãçŽ æ°
1000000007âŠpïŒqâŠ1000000103 ã®ãšã 28åäž 0åãçŽ æ°
10000000019âŠpïŒqâŠ10000000141 ã®ãšã 28åäž 2åãçŽ æ°
ãšãªããŸããå€ã¯éããŸãããåŸåã¯äžç·ã§ããã
No.2678ãããã5æ19æ¥ 20:03
æçš¿ïŒïŒïŒ
http://shochandas.xsrv.jp/mathbun/mathbun561.html
ã®è¿å€§æ°åŠã³ã³ãã¹ãã®åé¡ã®èšŒæãç¥ã£ãã®ã§åèã«å
±æããŸã
https://mathlog.info/articles/UTZiGs2BePRWRKzhADWm
No.2673空è5æ14æ¥ 22:42
空èãããæ
å ±æäŸããããšãããããŸããïŒïŒå¹Žã¶ãã«å¿ãæŽããŸããïŒ
No.2674HP管çè
5æ15æ¥ 06:17 æ¥ããããªããæè¿ã«ãªã£ãŠç¥ã£ãŠé©ããã®ã§ãã以äžã«ã
éå A ã åºé [0, 1] ãšããŸãã(éåºé)
éå B ã åºé [0, 1) ãšããŸãã(åéåºé)
éååã®æ¥µéãããŠã¹ãã«ãè·é¢ã§èããŸãã
n ãéè² æŽæ°ãšããŸãã
An = [0, 1â1/(n+2)]
ã®å Žåãnââ ã®ãšãã
1â1/(n+2) â 1
ãªã®ã§ã
An 㯠A ã«åæããŸãã
ä»»æã® n ã«ã€ããŠ
An â B
ã§ããäžæ¹ã
A â B
ãšãªããŸãã
ãäžã«èšããèšå·ã«ã€ããŠã®è£èšã
An â B ã¯
An â B and An â B
ãæå³ããŠããŸããçéšåéåã§ããã
â»æ°æã¡ã®äžã§ã¯å³å¯ãªæå³ã§ã®å
å«é¢ä¿ãé転ããŠããŸãããããªããšããããã ãªããšé©ããŸãããéååã®åæãå¥ãªå®çŸ©ã«ããã°ãäžã®ãããªé転ããããªããªãããšãåœç¶ãããŸãã
ãEDITããŒãé€ç®ãªã©ã®äžéœåã®çºçãèŠèœãšããŠããŸããã®ã§ç·šéããŸããã
No.2672Dengan kesaktian Indukmu5æ14æ¥ 17:53