aãšbããäºãã«çŽ ã®ãšãã
an+bã®åœ¢ã®çŽ æ°ã¯ãç¡éã«ååšããã(ãã£ãªã¯ã¬)ã¯ã蚌æãé£ãããšæããŸããã
éšåçã«éå®ãããäŸãã°ã5n+1,5n+2,5n+3,5n+4ã®ãããããã®åœ¢ã®ãçŽ æ°ã¯ãç¡éã«ååšãããã«ã€ããŠã蚌æã¯ã©ãã§ããããïŒ
ããæ¬ã«ã6n+5ã®çŽ æ°ããç¡éã«ãååšããã蚌æããèŒã£ãŠãŸããã
6n+1ã®ãçŽ æ°ããç¡éã«ååšãããäºå®ã¯ãç¥ãããŠããŸããã蚌æã¯ãé£ããã§ããïŒ
6n+1åã®çŽ æ°ãæéå(må)ãšä»®å®ããp[1]ïœp[m]ãšããã
a=6p[1]p[2]âŠp[m], b=a^3+1ãšãããš
bã¯2,3,6n+1åã®çŽ æ°ã§å²ãåããªãã®ã§bã®çŽ å æ°ã¯6n+5åã®ã¿ã
bã®çŽ å æ°ã®äžã€ãq=6k+5ãšãããšbâ¡0(mod q)ãªã®ã§a^3â¡-1 (mod q)
ãã£ãŠa^(6k+3)â¡(a^3)^(2k+1)â¡-1 (mod q)
äžæ¹ããã§ã«ããŒã®å°å®çããa^(q-1)=a^(6k+4)â¡1 (mod q)ãªã®ã§
aâ¡-1 (mod q)
ã€ãŸãa^3+1ã®çŽ å æ°ã¯ãã¹ãŠa+1ã®çŽ å æ°ã§ããããšã«ãªããã
b=a^3+1=(a+1)(a^2-a+1)ã§a^2-a+1ã®çŽ å æ°ãa+1ã®çŽ å æ°ãšãªãççŸã
ïŒâµa+1ãša^2-a+1ã¯äºãã«çŽ ïŒ
åŸã£ãŠ6n+1åã®çŽ æ°ã¯ç¡éåã
# ããäžèšã®èšŒæã«èª€ãããããŸããããææäžããã
ããããããããã€ããæé£ãããããŸãã
蚌æãã詊ã¿ãŸããããåäžè¶³ã§ãã