çŽç·äžã«éãªããªãæ§ã«nåã®ç¹ã眮ããŠãããš
æéã®é·ãã®n-1åã®ç·åãšç¡éã®é·ããæã€2ã€ã®åçŽç·ã«å¥ããã
å¹³é¢äžã«äžç¹ã§3ã€ã®çŽç·ãéãŸããªãæ§ã«nåã®çŽç·ã眮ããŠãããš
(n-1)*(n-2)/2ïŒå)ã®æéã®é¢ç©ãæã€éšåãš
2*nïŒå)ã®ç¡éã®é¢ç©ãšãªãéšåã«å¥ããã
空éå
ã«3ã€ã®å¹³é¢ãäžã€ã®äº€ç·ã§äº€ãããªãæ§ã«nåã®å¹³é¢ã眮ããŠãããš
(n-1)*(n-2)*(n-3)/6ïŒåïŒã®æéã®äœç©ã®éšåãš
n^2-n+2ïŒåïŒã®ç¡éã®äœç©ãæããéšåã«å¥ããã
ããã§åå²ç·æ°ã ãã«çç®ããã°
çŽç·;n-1+2=n+1
å¹³é¢;(n-1)*(n-2)/2+2*n=n^2/2+n/2+1
空é;(n-1)*(n-2)*(n-3)/6+n^2-n+2=n^3/6+5*n/6+1
ãšããã§ãã®3ã€ã®èšç®çµæã¯
nC0ïŒïœïŒ£1=1+n
nC0+nC1+nC2=1+n+n*(n-1)/2=n^2/2+n/2+1
nC0+nC1+nC2+nC3=1+n+n*(n-1)/2+n*(n-1)*(n-2)/6=n^3/6+5*n/6+1
ãšãªãæ£ããäžèšã®çµæãäžããŠããããïŒãã®æäœãã®æ¬ã§ç¥ã£ãŠæåããã)
ãããŸã§é²ããšæ¬¡å
ãäžããããªãã
ããã§å次å
空éã§ã¯ïŒ
æééšã¯n-1C4=(n-1)*(n-2)*(n-3)*(n-4)/24ããšãªãã¯ããªããïŒ
ç¡ééšã¯æ³åãã€ããªãã
ã§ãç·å岿°ã¯nC0+nC1+nC2+nC3+nC4ãã ããã
ããã§å次å
空éã§ã®ç¡éé åã®æ°ã¯
nC0+nC1+nC2+nC3+nC4-n-1C4 ã®ã¯ãïŒ
ãããèšç®ãããš
=n/3*(n^2-3*n+8)
ã«æŽçãããã
ãã®èšç®çµæã®æ°åãOEISã§æ€çŽ¢ããŠã¿ããA046127ããããããŠããŠ
Maximal number of regions into which space can be divided by n spheres.
ãšããã
äœãšçé¢ã©ãããã¶ã€ããåããããæã«æå€§ã«åå²ãããé åæ°ïŒçé¢ã®å€ã«åºããç¡ééšåã1åã«æ°ãã)
ãšç¹ãã£ãã
忬¡å
äžçã§ã®ç¡éé åãçé¢åå¿ã®å岿°ã«å¯æ¥ã«é¢é£ãåã£ãŠãããšã¯æã£ãŠãã¿ãŸããã§ããã
ããã§æ¹ããŠïŒæ¬¡å
ã§ã®ç¡ééšåã®n^2-n+2ããçºçããæ°åã調ã¹ãŠã¿ããš
n=1,2,3,ã§
2,4,8,14,22,32,44,58,
ããã¯æ£ã«nåã®åã亀ãããããšããå¹³é¢ãæå€§ã«åå²ã§ããæå€§æ°ãäžããïŒ
3 次å
ã§ã®ç¡éé åãäžããå岿°ã¯2次å
ã§ã®åã§ã®å岿°
4 次å
ã§ã®ç¡éé åãäžããå岿°ã¯3次å
ã§ã®çã§ã®å岿°
ãšèŠäºã«å¯Ÿå¿ãã€ããŠãããã§ããã
äžå®æ¹çšåŒx^4+y^4+z^4=4418*w^4ã®èªç¶æ°è§£(ãã ããgcd(x,y,z)=1, 0<x<=y<=z)ãããã€ãèŠã€ããŸããã
ããã§ã 4418=2*47^2 ã§ãã
9051^4+142546^4+264089^4=4418*33059^4
24000781^4+25966847^4+116783982^4=4418*14339531^4
33272354409^4+58269337042^4+66621823003^4=4418*9257840411^4
43103330871658442^4+57227097369762201^4+73778630076639421^4=4418*9978790896262367^4
2863644978578959^4+70427731847023901^4+290668002211852398^4=4418*35683246575072683^4
248041367259095991^4+403625188294084558^4+1383244226619101077^4=4418*170015342827525709^4
34382145308152216827^4+58853622177277602031^4+67928342504169980474^4=4418*9413114274806487023^4
520250449616169361593^4+2004269918338039317982^4+2435881926928224453301^4=4418*328450750319584146581^4
7732822990865154381087^4+32871445785888220274198^4+41276705315453785107707^4=4418*5510580601179596151833^4
1261103413416092726720317^4+6400198942855136759600938^4+13966487049130423660785303^4=4418*1731701565584458239798377^4
...
ãã®äžŠã³ã®ãã£ãšå€§ããèªç¶æ°è§£ãèšç®ã§ããŸãã
åãäžå®æ¹çšåŒ x^4+y^4+z^4=4418*w^4 ã®å¥ã®èªç¶æ°è§£ãèŠã€ããŸããã
839990066^4+10754417721^4+25232397949^4=4418*3120163151^4
139725878854678372058371^4+665867942359528116571674^4+1271597488901889913049231^4=4418*158828760986524532820581^4
152225944905867415902156376625783^4+270819182019128571674398824263238^4+876128187714445505030017880090917^4=4418*107732306964835629315765660587467^4
27976976606216771059969867199249783114828840295678863020736113224455472178^4+66935168501509522550508168943393326707191758808523265480393414548117535867^4+112243133090369611154103870833729902480342772885524997500179682338364779503^4=4418*14195620786961928858799910212095048686523439299180433325439012228248461297^4
9451233251494891395594729120327332438777390080635592116901480829211499184868111795647690643^4+16256316640632516748539518110555177665986374835874970545218326698723516928876809336940343918^4+53204232132725472171175713731932661107108471546847593400545707395100057547319048301800992247^4=4418*6541676750724214902274348291755731900597459532178521212691899738140121428088891896741144753^4
...
ããéçãããã³ããçµäºãããããæ¥æ¬äžãæããŠã·ãªãŒãºãå§ãŸã
å£ç¯ã«ãªã£ãŠããŸããã
ããã§ããè³ã«ããéŠäœæè
äºãã«èŠå®æåžãšãããã®ãç»å ŽããŸãã
ããã¯èª¿ã¹ããšè©Šåæ°Ã3.1ã§ç®åºãããã¿ããã§çŸåšã®ããã³ãäºãã«ã¯
åçå£143詊åãè¡ãããŠãã,143*3.1=443.3
å³ã¡444æåžä»¥äžã®æ¡ä»¶ãããããšã«ãªãã
ä»éçéžæã®æçãšã¯0.0001ã®ãšããã§äžžããŠ(åæšäºå
¥)
æç=ãããã®æ°/ææ°
ã«ããç®åºãããããšãšããã
(æ£åŒã«ã¯ç æã ç é£ã åæ»çãèæ
®ãããããã§ã¯ãäºæ¿ã)
ããã§ææ°ã444以äž560以äž(å
šè©Šååºå Žã平忿°3.912çšåºŠã§èŠç©ãã£ãå€)
ã®ãšãæçã0.300 (ã¡ããã©3å²)
ãããŒã¯ã§ããã®ã¯å
šéšã§äœéããããïŒ
ããã€ãã®é£ç¶ãªèªç¶æ°ã®åãNã§ãããšãããã®é£ç¶ãªèªç¶æ°ã¯äœãïŒ
åNã§ã¯ããããã©ããªãïŒ
(1)N=2833
(2)N=2834
(3)N=2835
ã1é£ç¶ãã¯é€å€ããŸãã
(1)
2833ã¯çŽ æ°ãªã®ã§1以å€ã®å¥æ°ã®çŽæ°ã¯2833ã®ã¿
2833÷2833=1, äžå¿ã1ã§2833é
ãšãªãé£ç¶æŽæ°åã¯-1415ïœ1417
-1415ïœ1415ã¯çžæ®ºãããŠ1416ïœ1417
âŽ1416+1417=2833
(2)
2834=2Ã13Ã109ãªã®ã§1以å€ã®å¥æ°ã®çŽæ°ã¯13,109,1417
2834÷13=218, äžå¿ã218ã§13é
ãšãªãé£ç¶æŽæ°åã¯212ïœ224
âŽ212+213+214+âŠ+224=2834
2834÷109=26, äžå¿ã26ã§109é
ãšãªãé£ç¶æŽæ°åã¯-28ïœ80
-28ïœ28ã¯çžæ®ºãããŠ29ïœ80
âŽ29+30+31+âŠ+80=2834
2834÷1417=2, äžå¿ã2ã§1417é
ãšãªãé£ç¶æŽæ°åã¯-706ïœ710
-706ïœ706ã¯çžæ®ºãããŠ707ïœ710
âŽ707+708+709+710=2834
(3)
2835=3^4Ã5Ã7ãªã®ã§1以å€ã®å¥æ°ã®çŽæ°ã¯
3,5,7,9,15,21,27,35,45,63,81,105,135,189,315,405,567,945,2835
2835÷3=945, 945-(3-1)/2ïœ945+(3-1)/2 â 944ïœ946
2835÷5=567, 567-(5-1)/2ïœ567+(5-1)/2 â 565ïœ569
2835÷7=405, 405-(7-1)/2ïœ405+(7-1)/2 â 402ïœ408
2835÷9=315, 315-(9-1)/2ïœ315+(9-1)/2 â 311ïœ319
2835÷15=189, 189-(15-1)/2ïœ189+(15-1)/2 â 182ïœ196
2835÷21=135, 135-(21-1)/2ïœ135+(21-1)/2 â 125ïœ145
2835÷27=105, 105-(27-1)/2ïœ105+(27-1)/2 â 92ïœ118
2835÷35=81, 81-(35-1)/2ïœ81+(35-1)/2 â 64ïœ98
2835÷45=63, 63-(45-1)/2ïœ63+(45-1)/2 â 41ïœ85
2835÷63=45, 45-(63-1)/2ïœ45+(63-1)/2 â 14ïœ76
2835÷81=35, 35-(81-1)/2ïœ35+(81-1)/2 â -5ïœ75 â 6ïœ75
2835÷105=27, 27-(105-1)/2ïœ27+(105-1)/2 â -25ïœ79 â 26ïœ79
2835÷135=21, 21-(135-1)/2ïœ21+(135-1)/2 â -46ïœ88 â 47ïœ88
2835÷189=15, 15-(189-1)/2ïœ15+(189-1)/2 â -79ïœ109 â 80ïœ109
2835÷315=9, 9-(315-1)/2ïœ9+(315-1)/2 â -148ïœ166 â 149ïœ166
2835÷405=7, 7-(405-1)/2ïœ7+(405-1)/2 â -195ïœ209 â 196ïœ209
2835÷567=5, 5-(567-1)/2ïœ5+(567-1)/2 â -278ïœ288 â 279ïœ288
2835÷945=3, 3-(945-1)/2ïœ3+(945-1)/2 â -469ïœ475 â 470ïœ475
2835÷2835=1, 1-(2835-1)/2ïœ1+(2835-1)/2 â -1416ïœ1418 â 1417ïœ1418
âŽ
944+945+946
=565+566+567+âŠ+569
=402+403+404+âŠ+408
=311+312+313+âŠ+319
=182+183+184+âŠ+196
=125+126+127+âŠ+145
=92+93+94+âŠ+118
=64+65+66+âŠ+98
=41+42+43+âŠ+85
=14+15+16+âŠ+76
=6+7+8+âŠ+75
=26+27+28+âŠ+79
=47+48+49+âŠ+88
=80+81+82+âŠ+109
=149+150+151+âŠ+166
=196+197+198+âŠ+209
=279+280+281+âŠ+288
=470+471+472+âŠ+475
=1417+1418
=2835
çå·®æ°åãa1,ãâŠãanããäžã€ã®çµã«åããŠãããããã®çµã®åããçãããªããããªãã®ã¯ãã©ã®ãããªãã®ããããŸããïŒ
äŸãã°ãïŒïŒïŒïŒïŒïŒïŒïŒïŒããïœïŒïŒïŒïœãïœïŒïŒïŒïœãïœïŒïœã¿ãããª
ãã©ã®ãããªãã®ããšã¯ãäŸãæžãã°è¯ãã®ã§ããããããããããªãäŸãã°
n=6: (1,6)(2,5)(3,4)
n=12: (1,2,11,12)(3,4,9,10)(5,6,7,8)
n=18: (1,2,3,16,17,18)(4,5,6,13,14,15)(7,8,9,10,11,12)
n=24: (1,2,3,4,21,22,23,24)(5,6,7,8,17,18,19,20)(9,10,11,12,13,14,15,16)
ã»ã»ã»
n=6m:
(1,2,âŠ,m-1,m,5m+1,5m+2,âŠ,6m)
(m+1,m+2,âŠ,2m-1,2m,4m+1,4m+2,âŠ,5m)
(2m+1,2m+2,âŠ,3m-1,3m,3m+1,3m+2,âŠ,4m)
(远èš)
n=6m+0,2,3,5ã®ããããã®å Žåã«ã€ããŠã®åãæ¹ã®äžè¬åœ¢ã®äŸãäœããŸããã®ã§ãŸãšããŸãã
n=6m+0ã®å Žå(mâ§1): ããããã®åèšã¯ m(6m+1)
(1ïœm, 5m+1ïœ6m) ãš (m+1ïœ2m, 4m+1ïœ5m) ãš (2m+1ïœ4m)
n=6m+2ã®å Žå(mâ§1): ããããã®åèšã¯ (2m+1)(3m+1)
(1ïœm,4m+1ïœ4m+2,5m+3ïœ6m+1) ãš (m+1ïœ2m+1,4m+3ïœ5m+2) ãš (2m+2ïœ4m,6m+2)
n=6m+3ã®å Žå(mâ§1): ããããã®åèšã¯ (2m+1)(3m+2)
(1ïœm+1, 2m+1, 5m+4ïœ6m+3) ãš (m+2ïœ2m, 4m+3ïœ5m+3) ãš (2m+2ïœ4m+2)
n=6m+5ã®å Žå(mâ§0): ããããã®åèšã¯ (m+1)(6m+5)
(1ïœm,5m+5ïœ6m+5) ãš (m+1ïœ2m+1,4m+4ïœ5m+4) ãš (2m+2ïœ4m+3)
â»mã«å
·äœå€ã代å
¥ããŠaïœa-1ã®ããã«çµå€ãå§å€ãã1å°ãããªãå Žåããã®ç¯å²ã¯åé€(n=5,8,9ã®å Žåã«çºç)
â»n=6m+1,4ã®å Žåã¯ç·èšã3ã®åæ°ã§ã¯ãªãã®ã§3åå²ã§ããŸããã
äžè¬ã®çå·®æ°åãé
æ°ïŒïœãåé
ïŒaãå
¬å·®=dã眮ããšã
a,a+d,âŠãa+(n-1)dãæãè¿ããŠãåãåããšå
šãŠçãããªãã®ã§ã
é
æ°ãïŒã®åæ°ã§ããã°ãïŒåå²ããŠãåãçããããããšãå¯èœã§ãã
ïŒn,a,dïŒ=(6k,a,ïœ)
ïŒïŒïŒïŒïŒïŒïŒïŒïŒã¯ãåå²ããŠåãçããããããšãå¯èœã§ããã
aåããŠãa,ïŒaïŒïŒaïŒïŒaïŒïŒa ãå¯èœã§ãã(5,a,a)
åå²å¯èœã§ããã°ãå
¬å·®a ã®çå·®æ°åãåé
aããèªç±ã«äœãããšãå¯èœã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒãã®å Žå
ïœïŒïŒïŒïŒïŒïœãïœïŒïŒïŒïŒïŒïœãïœïŒïŒïŒïŒïŒïœãš
ïœïŒïŒïŒïŒïŒïŒïŒïœãïœïŒïŒïŒïœãïœïŒïŒïŒïŒïŒïœè€æ°è§£ãããããšãåãããŸããã
6m+5 5,11,17,23,âŠ
6m+3 9,15,21,27,âŠ
6m+2 8,14,20,26,âŠ
ã«ã€ããŠã¯ã5,9,8ã¯ãåå²å¯èœãªã®ã§ãæ®ã6ã®åæ°ãè¶³ããæ°ã«ã€ããŠã¯ã6ã®åæ°ãã3ã€ã®çµã«çåå²å¯èœãªã®ã§ãæ¯ãåããŠãå
šäœããåå²å¯èœã«ãªããŸãã
6m,6m+2,6m+3,6m+5
ã®ãšãã3åå²å¯èœã§ãããã
3k-1,3ïœãšãŸãšããããšãã§ããŸããäœãïœã¯ã2以äž
äžè¬ïœåå²ã®å Žå
n=2k-ïŒãŸãã¯ã2kã®ãšããïœåå²å¯èœ
äœããïŒåå²ã®ãšãã¯ã6ïœã6ïœïŒïŒä»¥å€ããããŸãã®ã§ãå
šãŠã§ã¯ãªãã
äžèŸºã5ã®ç«æ¹äœOABCPQRSã座æš
O(0,0,0),A(5,0,0),B(5,5,0),C(0,5,0)
P(0,0,5),Q(5,0,5),R(5,5,5),S(0,5,5)
ã«çœ®ãããŠããã
ç¹Oãåºçºãç«æ¹äœã®è¡šé¢ãx,y,zè»žã®æ£ã®äœããã®
æ¹åãéžãã§1ã ãé²ããã®ãšããã
ãã®ãšããŽãŒã«ç¹Rãžæçè·é¢ã§è¡ããæ¹æ³ã¯äœéãïŒ
çµè·¯äžã§2é ç¹ãéããã®ã¯6éã
ã¡ããã©1é ç¹ãéããã®ã¯6Ã(10C5-2)=1500éã
é ç¹ãéããªããã®ã¯6Ã(15C5-3-2Ã(10C5-2))=15000éã
ãã£ãŠå
šéšã§16506éã
ããã€ãã®æ¡ä»¶ã®ãã¡ãå°ãªããšã1ã€ãæºãããã¿ãŒã³æ°ãæ±ããã®ã«ãå
é€åçãçšããããŸãã
ã€ãŸãã
ïŒæ¡ä»¶ãã1åéžãã§ããããæºãããã¿ãŒã³æ°ãåºãâŠâŠã®Comb[n,1]ãã¿ãŒã³ã®åèšïŒ
-ïŒæ¡ä»¶ãã2åéžãã§ããããæºãããã¿ãŒã³æ°ãåºãâŠâŠã®Comb[n,2]ãã¿ãŒã³ã®åèšïŒ
+ïŒæ¡ä»¶ãã3åéžãã§ããããæºãããã¿ãŒã³æ°ãåºãâŠâŠã®Comb[n,3]ãã¿ãŒã³ã®åèšïŒ
-âŠâŠ
+(-1)^(n-1)*ïŒæ¡ä»¶ããnåéžãã§ããããæºãããã¿ãŒã³æ°ãåºãâŠâŠã®Comb[n,n]ãã¿ãŒã³ã®åèšïŒ
ã§æ±ããããŸãã
ïŒComb[n,r]ã¯äºé
ä¿æ°ïŒ
ããã®å€åœ¢ã§ãã¡ããã©1ã€ã ãæ¡ä»¶ãæºãããã¿ãŒã³æ°ã¯
1*ïŒæ¡ä»¶ãã1åéžãã§ããããæºãããã¿ãŒã³æ°ãåºãâŠâŠã®Comb[n,1]ãã¿ãŒã³ã®åèšïŒ
-2*ïŒæ¡ä»¶ãã2åéžãã§ããããæºãããã¿ãŒã³æ°ãåºãâŠâŠã®Comb[n,2]ãã¿ãŒã³ã®åèšïŒ
+3*ïŒæ¡ä»¶ãã3åéžãã§ããããæºãããã¿ãŒã³æ°ãåºãâŠâŠã®Comb[n,3]ãã¿ãŒã³ã®åèšïŒ
-âŠâŠ
+(-1)^(n-1)*n*ïŒæ¡ä»¶ããnåéžãã§ããããæºãããã¿ãŒã³æ°ãåºãâŠâŠã®Comb[n,n]ãã¿ãŒã³ã®åèšïŒ
ã§æ±ããããŸãã
ãããŸã§ã¯ç¥ã£ãŠããã®ã§ãããæšæ¥ãã¡ããã©måã ãæ¡ä»¶ãæºãããã¿ãŒã³ãæ±ããå¿
èŠã«åºããããŸããã
ãªããšãªãã®çŽæã§
Comb[m,m]*ïŒæ¡ä»¶ããmåéžãã§ããããæºãããã¿ãŒã³æ°ãåºãâŠâŠã®Comb[n,m]ãã¿ãŒã³ã®åèšïŒ
-Comb[m+1,m]*ïŒæ¡ä»¶ããm+1åéžãã§ããããæºãããã¿ãŒã³æ°ãåºãâŠâŠã®Comb[n,m+1]ãã¿ãŒã³ã®åèšïŒ
+ Comb[m+2,m]*ïŒæ¡ä»¶ããm+2åéžãã§ããããæºãããã¿ãŒã³æ°ãåºãâŠâŠã®Comb[n,m+2]ãã¿ãŒã³ã®åèšïŒ
-âŠâŠ
+(-1)^(n-m)*Comb[n,m]*ïŒæ¡ä»¶ããnåéžãã§ããããæºãããã¿ãŒã³æ°ãåºãâŠâŠã®Comb[n,n]ãã¿ãŒã³ã®åèšïŒ
ããªããšæã£ãã®ã§ãäžãå
«ãããã§è§£çãæåºãããåã£ãŠãããããªãã§ããããããæ¹ããŠèšŒæããããšããŠããªããªãé£ããã§ãã
åççãªèšŒæã¯ãªãããã§ããããïŒ
åºäŒã£ãåé¡
AtCoder Beginner Contest 423 F - Loud Cicada
nçš®é¡ã®æ§è³ªã®ãã¡ã®ãã¡ããã©kçš®é¡ã®æ§è³ªã®ã¿ãä¿æãã
ãªããžã§ã¯ãã®æ°ã e_k ãšããŸãã
ãŸããnçš®é¡ã®æ§è³ªã®ãã¡ã®ãç¹å®ã®kçš®é¡ã®æ§è³ªãä¿æãã
(ãã®kçš®é¡ä»¥å€ã®æ§è³ªãä¿æããŠããŠããã)ãªããžã§ã¯ãã®æ°ã
n_kãšãããã¹ãŠã® k-éšåéå(ãããã®éšåéåã¯å
šéšã§comb(n,k)åãã)
ã«å¯ŸããŠn_kãè¶³ãåããããã®ã N_k ãšããŸãã
ãã®ãšããçåŒ
N_k = Σ[j=kïœâ]comb(j,k)*(e_j) --- (â
)
ãæç«ããŠããŸãã
E(x)=Σ[kâ§0](e_k)*x^kïŒ
N(x)=Σ[kâ§0](N_k)*x^k
ãšããŸãããããããšã
N(x)
=Σ[kâ§0](N_k)*x^k
=Σ[kâ§0](Σ[jâ§k]comb(j,k)*e_j)*x^k
=Σ[jâ§0](e_j)Σ[kâ§0]comb(j,k)*x^k
=Σ[jâ§0](e_j)*(1+x)^j
=E(1+x)
ãšãªããŸãã
ãã£ãŠãE(x)=N(x-1).ã
ãã®ããšããe_kã¯æ¬¡ã®ããã«èšç®ã§ããŸãã
e_k
=[x^k]E(x)
=[x^k]N(x-1)
=[x^k]Σ[jâ§0](N_j)*(x-1)^j
=[x^k]Σ[jâ§0](N_j)*Σ[râ§0](comb(j,r)*(x^r)*(-1)^(j-r))
=Σ[jâ§0](N_j)*(comb(j,k)*(-1)^(j-k))
=Σ[jâ§k](N_j)*(comb(j,k)*(-1)^(j-k))
=N_k-comb(k+1,k)*N_(k+1)+comb(k+2,k)*N_(k+2)- ⊠+(-1)^(n-k)*comb(n,k)*N_n
ãšãªããŸãã
çåŒ(â
)ã®å³å¯ãªèšŒæããäžèšãã¡ã€ã«ã«ãããŸãã
https://www2.math.upenn.edu/~wilf/gfology2.pdf
(ãã¡ã€ã«ã®116ããŒãž 4.2 A generatingfunctionological view of the sieve method)
ãŸãæ¬¡ã®æ¬ã«ããE(x)=N(x-1)ã§ããããšã®èšŒæããããŸãã
ã Combinatorial Enumeration ã(Dover)
Ian P.Goulden, David M.Jackson è
46ããŒãžããã³47ããŒãžïŒã(Chap.2 2.2.28.ããã³ 2.2.29)ã
以äžããããŠã³ããŒããå¯èœã§ãã
https://vdoc.pub/documents/combinatorial-enumeration-4vpn3s5kq2c0
ãªãã»ã©ã圢åŒçåªçŽæ°ã£ãŠæããããŸãããã
ããããšãããããŸãã
ãã倧åŠå
¥è©Šåé¡ã«
æ£äžè§åœ¢ã®é ç¹ãšå¯Ÿè§ç·ã®äº€ç¹ã§äœãããäžè§åœ¢ã«ã€ããŠ
å°ãªããšã2ã€ã®é ç¹ãæ£äžè§åœ¢ã®é ç¹ã§ãããããªç°ãªãäžè§åœ¢ã¯
äœåãããã
ãšããåé¡ãåãããã
ãã ããã«äžããããè§£çã¯æ£äžè§åœ¢ã®7ã€ã®é ç¹ãšäžã«çºçãã
亀ç¹ãã3ç¹ãéžãã§äœãããäžè§åœ¢ãšã¿ãŠè§£ãããã®ã§ãã£ãã
ããããã®æç« ããã¯æ£äžè§åœ¢ãšåŒãããå
šå¯Ÿè§ç·ã®ç¶æ
ã«ãããŠã®
äžè§åœ¢ãšããŠèããã¹ãã§ã¯ãªãããšæãããŠããŸããŸãã
ããã§çãããž
äžèšã®è§£éãšãäžèšã§ã®è§£éãããå Žåã®ããããã®åæ°ãæ±ããŠé ãããã®ã§ããã»ã»ã»
èªè§£åã®ãªãç§ã«ã¯
åŸè
ãæ£äžè§åœ¢ãšåŒãããå
šå¯Ÿè§ç·ã®ç¶æ
ã«ãããŠã®äžè§åœ¢ã
ã®æå³ãçè§£ã§ããŸããã
åè
ãæ£äžè§åœ¢ã®7ã€ã®é ç¹ãšäžã«çºçãã亀ç¹ãã3ç¹ãéžãã§äœãããäžè§åœ¢ã
ãšã®éããæããŠäžããã
ïŒåè
ã®ã¿ã«å«ãŸãããã®ããããã¯åŸè
ã®ã¿ã«å«ãŸãããã®ã®äŸããé¡ãããŸããïŒ
ç§ãæ¥æ¬èªã®äœ¿ãæ¹ã«äžå®ãæ±ããæéäžè¶³ã®åãããããŸããã
åŸè
ã®æå³ã¯
ãæ£äžè§åœ¢ãšåŒãããå
šå¯Ÿè§ç·ã®ç¶æ
ã
ã«ãããŠã¯å¯Ÿè§ç·ã«ãã£ãŠäžã«35åã®äº€ç¹ãçºçããäžå¿éšã§ã¯
å°ããæ£äžè§åœ¢ãäœãããŠããå³åœ¢ãçŸããŠããŸãã
åŸã£ãŠèãããäžè§åœ¢ã¯ä»ã®ç¶æ
ã«ãããŠå³ã®äžã«çºèŠã§ãããã®ã«
éã£ãŠã®äžè§åœ¢ãã«ãŠã³ãããããšã«ãªããŸãã
ã§ãããäžå¿éšã®å°ããæ£äžè§åœ¢ã®äº€ç¹ã®7ã€ãã3ã€ãéžãã§åºæ¥ã
äžè§åœ¢ã¯å¯Ÿè±¡å€ã«ããã
ã€ãŸã
åè
ã¯åºæ¥ã亀ç¹ãå
ã«äœãããäžè§åœ¢ã®ç·æ°
åŸè
ã¯åºæ¥ãå³åœ¢ã«å«ãŸããäžè§åœ¢ã®åœ¢ç¶ã®ç·æ°
ã®ãã¥ã¢ã³ã¹ã§ãã
ãããªãã°ããšããããå
ã®å顿ã
ãæ£äžè§åœ¢ã®é ç¹ãšå¯Ÿè§ç·ã®äº€ç¹ã§äœãããäžè§åœ¢ã«ã€ããŠã
ã®ããã«ãç¹ã§äœããããäžè§åœ¢ãšèšã£ãŠããŸãã®ã§ã
å
ã®åé¡ã®è§£éã¯åè
ã§ããã
# 察象ããç¹ãã®ã¿ã®ããã蟺ããã察è§ç·ãã¯é¢ä¿ãªããã€ãŸã
# 蟺ã察è§ç·ããªã42åã®ç¹ãæ£ãã°ã£ãŠããç¶æ
ãã
# ïŒäžçŽç·äžã«ãªãïŒ3ç¹ãéžãã§çµã³ã
# äžè§åœ¢ãæããšããããšã«ãªããšæããŸãã
ããåŸè
ã®è§£éãªãã°ãç¹ãã«èšåããå¿
èŠããããŸããã®ã§
ãæ£äžè§åœ¢ã®èŸºãšå¯Ÿè§ç·ã§äœãããäžè§åœ¢ã
ãšè¡šçŸããããšæããŸãã
åŸè
ã®å Žåãèãéãããªããã°
3ç¹ãæ£äžè§åœ¢ã®é ç¹ â 7C3å
2ç¹ãæ£äžè§åœ¢ã®é ç¹ â 7C4Ã4å
èš175å
ãšãªãæ°ãããŸãã
> 2ç¹ãæ£äžè§åœ¢ã®é ç¹ â 7C4Ã4å
ãã®èšç®åŒã ãã§åŠçå¯èœãªçç±ã解説ããŠäžããã
ã§ãããåè
ã®å Žåã®èšç®æ¹æ³ãæããŠäžããã
2ç¹ãæ£äžè§åœ¢ã®é ç¹ã§æ®ã1ç¹ã察è§ç·ã®äº€ç¹ããã€ãã®å¯Ÿè§ç·ã
æåã®2ç¹ããåºãŠããç·ãªãã°ãããã2æ¬ã®å¯Ÿè§ç·ã®å察åŽã¯
æ£äžè§åœ¢ã®é ç¹ãªããã§ããããããšããã4ã€ã®é ç¹ãšå¯Ÿè§ç·ã®
亀ç¹ãã4ã€ã®äžè§åœ¢ãæ§æãããããšãããããŸãã
ãã®å¯Ÿå¿ã«ã¯éè€ã¯ãããŸããã®ã§ã7C4Ã4ã§èšç®ãããããšã«ãªããŸãã
åè
ã®èšç®ã¯
察è§ç·ã®äº€ç¹ã2é ç¹ãéãçŽç·äžã«ããå Žåãå«ãããšã
å
šéšã§7C2Ã35å
ãã®ãã¡å¯Ÿè§ç·ã®äº€ç¹ã2é ç¹ãéãçŽç·äžã«ãããã®ã¯
亀ç¹1ã€ã«ã€ã2åæ°ããããŠããã®ã§ã
1é ç¹ã察è§ç·ã®äº€ç¹ã§ãããã®ã¯ 7C2Ã35-35Ã2=665å
ãã¹ãŠæ£äžè§åœ¢ã®é ç¹ã§ãããã®ã¯7C3=35åãªã®ã§ã
æ±ããåæ°ã¯665+35=700å
ãa,bãèªç¶æ°ãšãããšãã
ïœ/aãšã(2a+b)/(a+b)ãšã®éã«ãâïŒããååšãããïŒåå€å±åžå€§ïŒ
ããã§ãããâïŒã¯ãã©ã®ãããªåŒã®éã«ããã§ããããïŒ
â3ã¯b/aãš(3a+b)/(a+b)ã®éã«ãããšæããŸãã
ããäžè¬ã«
ânã¯b/aãš(na+b)/(a+b)ã®éã«ãããšæããŸãã
a,b ã¯æ£ã®æ°ã§ aân â b ã§ãããšãã
pân > q ãæºããæ£ã®æ° p,q ã«å¯ŸããŠã
ân 㯠b/a ãš (npa+qb)/(qa+pb) ã®éã«ããã
ãã£ãŠã次ã®ããã«ããããäœãããã§ããã
â3 㯠b/a ãš 3(2a+b)/(3a+2b) ã®éã«ããã
â3 㯠b/a ãš (9a+5b)/(5a+3b) ã®éã«ããã
â3 㯠b/a ãš 3(7a+4b)/(12a+7b) ã®éã«ããã
é£åæ°å±éãšé¢ä¿ããŠããã®ãããããŸããã
pân > q ãæºããæ£ã®æ° p,q ã«å¯ŸããŠã
(n*p*a+q*b)/(q*a+p*b)
ã®åæ°ãã©ã®æ§ãªåœ¢ãæãã®ãã調ã¹ãŠè¡ããš
ïŒäœãn=3ãšããŠèª¿æ»ãããã®)
[p,q]=[2,3]=>(6*a+3*b)/(3*a+2*b)
[3,4]=>(9*a+4*b)/(4*a+3*b)
[3,5]=>(9*a+5*b)/(5*a+3*b)
[4,5]
[4,6]
[5,6]
[5,7]
[5,8]
[6,7]
[6,8]
[6,9]
[6,10]
[7,8]

ã®æ§ã«åpã«å¯ŸããŠåæ°ãæ§æå¯èœãªqã®æå€§å€ã远ã£ãŠãããš
3,5,6,8,10,12,13,15,17,19,20,22,24,25,
ãã®æ°åãã¡ããã©A022838;Beatty sequence forãsqrt(3)
ã«å¯Ÿå¿ããæ°åãšç¹ãã£ãŠããŸããã
sqrt(3)ç¹ããã§ã¡ãã£ãšé¢çœãæããŸããã
a,b ã¯æ£ã®æ°ã§ aân â b ã§ãããšãã
pân > q ãæºããæ£ã®æ° p,q ã«å¯ŸããŠã
ân 㯠b/a ãš (npa+qb)/(qa+pb) ã®éã«ããã
蚌æãæžããŠãããŸãããã
ç°¡åãªã®ã§ã
Y
= (ân - b/a) * (ân - (npa+qb)/(qa+pb))
= (ân - b/a) * (-1) * pa/(qa+pb) * (ân - b/a) * (ân - q/p)
= (-1) * pa/(qa+pb) * (ân - q/p) * (ân - b/a)^2
ãšããã
ããã§ã
pa/(qa+pb) > 0,
ân - q/p > 0,
(ân - b/a)^2 > 0
ãªã®ã§ã
Y < 0
ãšãªãã
ãân > b/a ã〠ân < (npa+qb)/(qa+pb)ã
ãããã¯
ãân < b/a ã〠ân > (npa+qb)/(qa+pb)ã
ã®ãããããæãç«ã¡ã
ân ã b/a ãš (npa+qb)/(qa+pb) ã®éã«ããããšããããã
b/aãš(2a+b)/(a+b)ã«éã«âïŒãããã
(2a+b)/(a+b)ã«è¿ãããšããèžãŸããŠããããç¹°ãè¿ããŠ
a=b=1ã§ãå
·äœçã«ãåæ°ã®è¿äŒŒãèšç®ããŸããã
1/1,3/2,7/5,17/12,41/29,99/70.239/169,577/408
1393/985, 3363/2378, 8119/5741, 19601/13860
47321/33461=ïŒ.ïŒïŒïŒïŒïŒïŒïŒïŒïŒâŠ
b/aãš(ma+b)/(a+b)ã«éã«âmãããã
(ma+b)/(a+b)ãæ¥µéå€ãαããã€ãªãã°ããããç¹°ãè¿ããŠ
x(n)=b(n)/a(n)âα ãšçœ®ããšã
x(n+1)=(m+x(n))/(1+x(n)) ãã
αïŒïŒïœïŒÎ±ïŒ/(1ïŒÎ±ïŒ
α^2=m ãšãªãαïŒâïœãåŸãã
3乿 ¹ã®å Žåã¯ãã©ããªããŸããïŒ
äŸãã°ãïŒã®ïŒä¹æ ¹
2^(1/3)㯠b/a ãš (2a^2+ab+b^2)/(a^2+ab+b^2) ã®éã«ãããŸãã
n^(1/3)㯠b/a ãš (na^2+ab+b^2)/(a^2+ab+b^2) ã®éã§ãã
䌌ããããªåŒã§ããã
ïŒ2a^2+a*bïŒ/(a^2+b^2)ããïŒã®äžä¹æ ¹ã«åæãããšæããŸããã
å¹ççã§ãªããŠãçŽãã«ããªãŒããŒãããŒããŸãã
çŽ æ°ã®ãŠã£ã«ãœã³ã®å
¬åŒã¿ããã«ãå¹ççã§ãªãããšããããŸããã
f(x)=(x+2)*(x-10)^2
g(x)=(x+2)*(x-5)
ã®2ã€ã§å²ãŸããç¯å²å
éšïŒå¢çäžã®ç¹ãå«ãŸããïŒã«ããæŽæ°(x,y)ã®çµã¯äœåãããïŒ
å¹çããããšã¯èšããªããããäžè¬çãªè§£ãæ¹ã§ãã
h(x)=f(x)-g(x)=(x+2)(x^2-21x+105)=x^3-19x^2+63x+210
ãšãããšh(x)=0ã®è§£ã¯x=-2,(21±â21)/2â(21±4.6)/2={8.2,12.8}
ãŸã
i(n)=Σ[x=1ïœn]h(x)=(n(n+1)/2)^2-19n(n+1)(2n+1)/6+63n(n+1)/2+210n
=(3n^3-70n^2+267n+2860)n/12
ãã£ãŠå²ãŸããå
éšã®æ Œåç¹ã®æ°ã¯
Σ[x=-1ïœ12](|h(x)|-1)
=Σ[x=-1ïœ8](h(x)-1)+Σ[x=9ïœ12](-h(x)-1)
=(h(-1)-1)+(h(0)-1)+Σ[x=1ïœ8](h(x)-1)+Σ[x=1ïœ12](-h(x)-1)-Σ[x=1ïœ8](-h(x)-1)
=(-1-19-63+210-1)+(210-1)+Σ[x=1ïœ8](2h(x))-Σ[x=1ïœ12](h(x)+1)
=126+209+2Σ[x=1ïœ8]h(x)-Σ[x=1ïœ12]h(x)-12
=323+2Σ[x=1ïœ8]h(x)-Σ[x=1ïœ12]h(x)
=323+2i(8)-i(12)
=323+16(1536-4480+2136+2860)/12-(5184-10080+3204+2860)
=323+4(2052)/3-(1168)
=323+2736-1168
=1891