ããååšçã®è¿äŒŒå€ãæ±ããã®ã«åã«å
æ¥ããæ£å€è§åœ¢ãå©çšããŠããæ¹æ³ãç®ã«ããã
ãã¶ãÏ=3.141592ãŸã§ã®æ°å€ãæã«å
¥ãããŸã§ã«ã¯æ£2812è§åœ¢ã®å³åœ¢ãå¿
èŠãšããã®ããªïŒ
äžæ¹åäœåã§ååŸãx軞ãšÎž(ã©ãžã¢ã³)ã§ããæ
Ξâ3*sin(Ξ)/(2+cos(Ξ))
ãªãé¢ä¿æ§ãå©çšããã°
Ξ=Ï/60(=3°)ã®ã©ãžã¢ã³è§ãå©çšããããšã§
Ï/60â3*sin(Ï/60)/(2+cos(Ï/60))
ãã
Ïâ180*sin(Ï/60)/(2+cos(Ï/60)
ããã§ããããããã®HPã«èŒããŠãã£ãäžè§é¢æ°è¡šãå©çšãããŠããããš
=180*(-2*sqrt(15-3*sqrt(5))+2*sqrt(5+sqrt(5))+sqrt(30)+sqrt(10)-sqrt(6)-sqrt(2))/
(32+2*sqrt(15+3*sqrt(5))+2*sqrt(5+sqrt(5))+sqrt(30)-sqrt(10)-sqrt(6)+sqrt(2))
ãããèšç®ããããš
=3.141592252236561
ã®æ°å€ãäžããŠãããã
ä»å¹Žã®æ°åŠIIBCã®ããåé¡ãããæå³ã§ããªãã®æªåãªã®ã§ã¯ãªãããšæã£ãã®ã§ãããçããã¯ã©ãæããŸãããïŒ
倧å5ã®ã¹ã»ãœã¿ã®ãšããã§ãã
æ£ãã解çã¯ãã¡ããããã§ããã
P(WããŒâŠ108.2) = P(ZâŠ-1.8) = 0.5-0.4661 = 0.0359
ãšãããããããçµ±èšãããããããªã人ãã
ãäŸå¹Žãã1.8g軜ãã£ãŠããšã¯ãÏ=20ã®0.09åãããããããããããããªããã©è¡šã®0.09ã®ãšãçããšãã
ã£ãŠãããšãäœãšå¶ç¶ã«ã0.0359ãšæ£è§£ãçããããšãã§ããŠããŸããšããâŠâŠã
ãªããããã«ãã£ãŠãããªçŸè±¡ãèµ·ããæ°å€èšå®ã«ããŠããŸã£ããã§ããããã
åéšçãåœãŠãã£ãœãã§æžããããªæ°å€ã®ç¢ºèªããã¯ã«ããŠããªãã®ã§ããããïŒ
ã¡ãªã¿ã«ãããå³å¯ãªæ°å€ãæ±ãããšã
æ£ããèãã§ã¯0.0359303
誀ã£ãèãã§ã¯0.0358564
ãªã®ã§ãæ¬åœã«ãã ã®å¶ç¶ã§å°æ°ç¹ä»¥äž4æ¡ã®æŠæ°ãããŸããŸäžèŽããã ãã§ãã
管ç人ããã®ã³ã¡ã³ãã«å¯ŸããŠã§ãã
7çªãé¿ããåéšçãå€ããšæãã®ã§ã5çªã¯ããªãéžãã 人ãå€ãããããªãããšæããŸãã
7çªã¯
ã»å
±éãã¹ãã«å€ãã£ãŠããã®éå»åããªãã察çã®ããŒãã«ãé«ã
ã»æç³»ã ãšããããè€çŽ æ°å¹³é¢ã®ææ¥ãããŠããªãå Žåããã
ã»äºæ¬¡è©Šéšã§ãæ°Cã®ç¯å²ã¯ãã¯ãã«ã®ã¿ããæå®ãã倧åŠãã¡ãã»ãããã®ã§ãè€çŽ æ°å¹³é¢ã®å¯Ÿçåªå
é äœãäžãããã¡
ã»æ°åŠãèŠæãªåã¯ãæ°Cãäž¡æ¹è§£ãããæ°Bãäž¡æ¹è§£ãæ¹ããŸã åžæããããšå
容ãèŠãã«å€æããŠ67ã©ã£ã¡ãæãæšãŠãã
ãšãåéšçã«é¿ããããçç±ããŠããçãã§ãããããã
ã©ããã§èŠãããŠãã¡ã¢ããŠãããã¯ããªã®ã§ããçŽå€±ããŸããã
ããããããã«ããã°
åçé¢æ°ã䜿ã£ãŠè¯ãã®ã§ããã°
suc(n)
ã®ä»£æ¿ç©ãè¡šçŸã§ããã®ã ããã§ã
ããšãã° 4 = suc(suc(suc(1) ) )
â ç§ã«ãšã£ãŠã¯æªç¥ã®åçé¢æ°ã«ããè¡šçŸã§ãã
æç¯ããã
suc(2024)ããšæã£ãã®ã§ãããã©ãã
ããããããããæ瀺ãé¡ããã°ãšåããŸãã
sucã¯1å¢ããé¢æ°ã§ããããããããªãã°
suc(n) = exp(cot(atan(log(sqrt(exp(cot(atan(log(sec(atan(sqrt(n))))))))))))
ã§OKã§ãïŒnã¯æ£æŽæ°ïŒã
ããµãããããããããšãããããŸãïŒïŒïŒ
ããã«ããŠãç©åãçµµé¢ã§ãâŠâŠããããŸããã§ãã
ãªã£âŠâŠãªãã»ã©ã
sec(arctan(sqrt( n ))))
ãäºä¹ããã®ã«æéãããã£ãŠããã®ã§ãããã
ãã®ãµã€ãã§63ã64ã«ããåé¡ãšãã圢ã§åºé¡ãããç§ãåå ããŠããèšæ¶ãããã®ã§ãããèšäºãæ¢ããŠãèŠåœãããªãâŠâŠã
ã©ãã«ãããã ããïŒ
人åæ€çŽ¢ã«ç«ã¡ã¯ã ããã24幎éã®èšäºæ°ãšããå£ã
æ°åŠæåç§è©±ã®"åæé¢æ°ã®åæ" (3å䞊ã³ã®å·Šç«¯ãèŠãŠè¡ããšãäžè¡èŸºãã«ãããŸãã)
ããïŒ
63ãã64ãäœãã®ãéãåé¡ã ã£ãããªâŠâŠïŒ
åçé¢æ°ã®ãã¡ä»£æ°é¢æ°ã§ãªããã®ãåçè¶
è¶é¢æ°ãšããããšãšããŸãã
ããã€ãã®ïŒå€æ°ã®åçè¶
è¶é¢æ°ããåæé¢æ° f ãæ§æããŠæ¬¡ã®ãããªæ§è³ªããã€ããã«ããããšã¯ã§ããŸããïŒ
f(1) = 3
â» ã代æ°é¢æ° sqrt(ã») ã䜿ããªãã§ä»»æã®æ£æŽæ°ãè¡šãããšãã§ãããã ãã²ãŒã ã§ãã
ã¬ãŠã¹èšå·ã¯äœ¿ã£ãŠããã§ããïŒ
[exp(tan(sin(1)))]=3
ã¬ãŠã¹èšå·ã¯ç¡ãã®æ¹åæ§ã§ãé¡ãããããŸãã
ãã³ãªãð
ã§ã¯
cot(atan(sin(atan(sin(atan(sin(atan(sin(atan(sin(atan(sin(atan(sin(atan(sin(atan(1))))))))))))))))))=3
ã§ã©ãã§ãããã
ããããããããã§ããªã°(æ»èª)ã§ããã
ç§ãçšæããŠããã®ã¯ä»¥äžã§ãã
â
sec(atan(sec(atan(sec(atan(sec(atan(sec(atan(sec(atan(sec(atan(sec(atan(1))))))))))))))))
â¡
cosh(asinh(cosh(asinh(cosh(asinh(cosh(asinh(cosh(asinh(cosh(asinh(cosh(asinh(cosh(asinh(1))))))))))))))))
æåã«æ°ã¥ããã®ã¯sec(atan(x))ã®æ¹ã ã£ãã®ã§ãããå°ãã§ãèŠæ £ããŠããé¢æ°ã®æ¹ãè¯ãããšæã£ãŠsin(atan(x))ã®æ¹ãæ¡çšããŸããã
No.2466ã«æžãã解ã¯æåŸã«ãcot(atan(â))ãã§éæ°ã«ããŠããããã§ããã
ããèãããæåŸã®sinãcosecã«å€ããã ãã§éæ°ã«ãªããŸãã®ã§
cot(atan(sin(atan(sin(atan(sin(atan(sin(atan(sin(atan(sin(atan(sin(atan(sin(atan(1))))))))))))))))))=3
ã¯
cosec(atan(sin(atan(sin(atan(sin(atan(sin(atan(sin(atan(sin(atan(sin(atan(1))))))))))))))))=3
ãšããæ¹ãè¯ãã£ãã§ããã
ããããããã® 2470 ãã¡ãã¯è¯ãæãã§ãããã
ãšããã§å€å
žã®ïŒã€ã®ïŒåé¡ã«ããã€ããŸããšã
0 = acos(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec( 4 )))))))))))))))))))))))))))))))
1 = tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec( 4 ))))))))))))))))))))))))))))))
2 =
tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec( 4 ))))))))))))))))))))))))
3 = tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec( 4 ))))))))))))))
4 = sec(atan(tan(asec( 4 ))))
ãã ããããã
5 = sec(atan(sec(atan(sec(atan(sec(atan(sec(atan(sec(atan(sec(atan(sec(atan(sec(atan( 4 ))))))))))))))))))
6 以äžã¯ããã«ã¯ãããâŠâŠ
ãšãããããã§èš±ããŠããããŸãããïŒ
â»ä»»æã®æ£ã®æçæ°ã 1 ã€ã® 4 ã§ãšãå¯èœãªãã®ãªã®ã§ããããïŒ
è©Šãæ°åã¯ãããŸããããã©ãã
ä»»æã®æçæ°ãäœããŸããã
äŸãã°3/5ãäœãå Žåãæåã«2ä¹ããŠ
2ä¹ â 9/25
éæ° â 25/9
1åŒã â 16/9
1åŒã â 7/9
éæ° â 9/7
1åŒã â 2/7
éæ° â 7/2
1åŒã â 5/2
1åŒã â 3/2
1åŒã â 1/2
éæ° â 2
ã®ããã«ãªããŸãã®ã§ãç°¡åã®ãã1ããå§ãããšããŠ
cos atan 1 â â(1/2)
sec atan â(1/2) â â(3/2)
sec atan â(3/2) â â(5/2)
cos atan â(5/2) â â(2/7)
cos atan â(2/7) â â(7/9)
sec atan â(7/9) â â(16/9)
cos atan â(16/9) â â(9/25) = 3/5
ã®é ã«äœãã°ãããäžæ°ã«æžããš
cos atan sec atan cos atan cos atan sec atan sec atan cos atan 1 = 3/5
ã®ããã«ãªããŸãã
ãªããè² ã®æçæ°ã¯
log cot atan exp x = -x
ã䜿ãã°äœããŸããã
ãããããããåãïŒïŒ
P.S.
ç䌌ãããŠã¿ãŸããã
22/7 = sec(atan(sec(atan(sec(atan(sec(atan(sec(atan(sec(atan(sec(atan(sec(atan(sec(atan(cos(atan(cos(atan(sec(atan(sec(atan(sec(atan(sec(atan(sec(atan(sec(atan(cos(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec( 4 ))))))))))))))))))))))))))))))))))))))))))))))))))))))))
sec(x)=1/cos(x)
asec(x)=1/acos(x)
ãšããŠPARI/GPã®ãœããã§äžèšã®èšç®ããããã
sec(atan(sec(atan(sec(atan(sec(atan(sec(atan(sec(atan(sec(atan(sec(atan(sec(atan(cos(atan(cos(atan(sec(atan(sec(atan(sec(atan(sec(atan(sec(atan(sec(atan(cos(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec(tan(asec( 4 ))))))))))))))))))))))))))))))))))))))))))))))))))))))))
%63 = 3.1439957705696095373721028193842780037 + 0.00093791769925741310431658346259798553071*I
ãš22/7ãšã¯ãªããªãã£ãã®ã§ãããã©ãããŠãªãã§ããããïŒ
sec(x) 㯠sec(x)=1/cos(x) ã§OKã§ãã
asec(x) 㯠asec(x)=1/acos(x) ã§ã¯ãªã asec(x)=acos(1/x) ã§ãã
è¿œèš(ãããªãããšã®èª¬æ)
x=sec(y) (0âŠyâŠÏ,yâ Ï/2)ãšãããš
asec(x)
=asec(sec(y))
=y
x=sec(y)=1/cos(y)ãªã®ã§
cos(y)=1/x
y=acos(1/x)
âŽasec(x)=acos(1/x)
ãïœãªãã»ã©ïŒ
æå³ãèããã«åœ¢åŒã«æººããŠããã
å®çŸ©ãçŽããŠèšç®ããããããã¿ãª22/7(=3.142757142757)
ãšãªããŸããã
èªç¶æ°ã3ã§å²ã£ãå°äœã§åãããš
3ïœãããâã3ã§å²ã
3ïœïŒïŒãâã2åããŠã1ã足ã
3ïœïŒïŒãâãïŒåããŠã1ãåŒã
æçµçã«ãå
šãŠïŒã«ãªãã
2ïŒ3ã®æäœãéã«ããã ãã§é£åºŠãå¢ãã®ãäžæè°ã§ãã
mod3ã®ã³ã©ããæ¬ãã§ããã
https://www.lab2.toho-u.ac.jp/sci/is/shirayanagi/lab/dl/2014/yamanaka.pdf
ã«
3n â 3ã§å²ã
3n+1 â 4åããŠ2ã足ã
3n+2 â 4åããŠ1ã足ã
ãšããã³ã©ããæ¬ããèå¯ãããã®ããããŸãããäžèšã®ã³ã©ããæ¬ãã¯ã
1â6â2â9â3â1
7â30â10â42â14â57â19â78â26â105â35â141â47â189â63â21â7
ãšãã2çš®é¡ã®ã«ãŒãã®ããããã«å°éããŸããã
1ïœ1000ã§
1ãå«ãã«ãŒãã«å°éããã®ã79åã§7.9%
7ãå«ãã«ãŒãã«å°éããã®ã921åã§92.1%
1ïœ10000ã§
1ãå«ãã«ãŒãã«å°éããã®ã4.2%
7ãå«ãã«ãŒãã«å°éããã®ã95.8%
ã§ããã
4åã ãš1ãããã¯7ã«å°éããã®ãæ©ãã®ã§ã
3n â 3ã§å²ã
3n+1 â 5åããŠ1ã足ã
3n+2 â 5åããŠ2ã足ã
ãšããŠã¿ããšãäžèšã®ã³ã©ããæ¬ãã¯ã1000000ãŸã§ã§
4â21â7â36â12â4
8â42â14â72â24â8
ãšãã2çš®é¡ã®ã«ãŒãã®ããããã«å°éããŸãããã4ãããã¯8ã«å°éãããŸã§ã«ãäŸãã°åæå€10ã®å Žåã¯4ã«å°éãããŸã§ã«43åã®æäœãå¿
èŠã§éäžã§æ倧å€3186ã«éããåæå€38ã®å Žåã¯8ã«å°éãããŸã§ã«386åã®æäœãå¿
èŠã§éäžã§æ倧å€12317562ã«éããŸããã100000ãŸã§ã§æ倧å€ãæŽæ°ããåæå€ãšããã®å°éå
ãããã«èŠããåæ°ãéäžã§éããæ倧å€ã¯ä»¥äžã®ããã«ãªããŸããã
10 4 43 3186
38 8 386 12317562
253 8 755 60008787
325 4 204 61921287
443 8 509 2792211912
550 4 2832 366801780869709687
1973 4 5101 68833498238053197854493312
13301 4 2815 99325854394514885320584021
16955 8 7959 724763997101386821051531936
20776 4 4265 2933570318473933999921361031139062
59113 4 7510 1470455996222092703757506943141135411
85925 4 13246 340816539304436064398165865804406618021466224558460882751162
4ãå«ãã«ãŒããš8ãå«ãã«ãŒãã«å°éããåæå€ã®åæ°ã¯ã
1ïœ1000ã§
4ãå«ãã«ãŒãã«å°éããã®ã688å
8ãå«ãã«ãŒãã«å°éããã®ã312å
1ïœ10000ã§
4ãå«ãã«ãŒãã«å°éããã®ã6417å
8ãå«ãã«ãŒãã«å°éããã®ã3583å
1ïœ100000ã§
4ãå«ãã«ãŒãã«å°éããã®ã62273å
8ãå«ãã«ãŒãã«å°éããã®ã37727å
1ïœ1000000ã§
4ãå«ãã«ãŒãã«å°éããã®ã615220å
8ãå«ãã«ãŒãã«å°éããã®ã384780å
ã§ããã
äžèšã®ã³ã©ããæ¬ããåæå€ãè² æ°ã®å Žåã«æ¡åŒµãããš-1ââ-3ãšããã«ãŒããçŸããã®ã§ã
3n â 3ã§å²ã
3n+1 â 5åããŠ2ãåŒã
3n+2 â 5åããŠ1ãåŒã
ãšããŠã¿ããšãäžèšã®ã³ã©ããæ¬ãã¯ã1000000ãŸã§ã§å
šãŠ1ââ3ãšããã«ãŒãã«å°éããŸãããäžèšã®ã³ã©ããæ¬ãã§ã¯ãäŸãã°åæå€10ã®å Žåã¯1ã«å°éãããŸã§ã«88åã®æäœãå¿
èŠã§éäžã§æ倧å€3564ã«éããŸããã100000ãŸã§ã§æ倧å€ãæŽæ°ããåæå€ãšãããã«èŠããåæ°ãéäžã§éããæ倧å€ã¯ä»¥äžã®ããã«ãªããŸããã
10 88 3564
25 116 10314
70 191 431604
82 201 124755588
140 707 18169045713
502 3077 3550975356647313
619 12254 570087155057912340205131104638425588
54847 12687 10089667480019633619334988145153010515029612088
ããã«ãksããã®ã³ã©ããæ¬ãã§ã¯ã
3n â 3ã§å²ã
3n+1 â 2åããŠ1ã足ã
3n+2 â 2åããŠ1ãåŒã
ã ã£ãã®ã§ã
3n â 3ã§å²ã
3n+1 â 5åããŠ1ã足ã
3n+2 â 5åããŠ1ãåŒã
ãšããŠã¿ããšãäžèšã®ã³ã©ããæ¬ãã¯ã1000000ãŸã§ã§
1â6â2â9â3â1
4â21â7â36â12â4
ãšãã2çš®é¡ã®ã«ãŒãã®ããããã«å°éããŸãããã1ãããã¯4ã«å°éãããŸã§ã«ãäžèšã®ã³ã©ããæ¬ãã§ã¯ãäŸãã°åæå€5ã®å Žåã¯1ã«å°éãããŸã§ã«95åã®æäœãå¿
èŠã§éäžã§æ倧å€20934ã«éããŸããã100000ãŸã§ã§æ倧å€ãæŽæ°ããåæå€ãšããã®å°éå
ãããã«èŠããåæ°ãéäžã§éããæ倧å€ã¯ä»¥äžã®ããã«ãªããŸããã
5 1 95 20934
44 1 70 40986
86 1 810 3419283861
235 1 488 46196151066
820 1 1167 3841972080939
1310 4 1080 8170346115441
1315 1 7145 157854812287762612809
1790 1 3337 978623937310722214986
8645 1 4953 209921511803443804073439891
8770 1 6819 64901218184254749066376852519465177611
68455 1 5931 533522890015686639949625171648394237684
1ãå«ãã«ãŒããš4ãå«ãã«ãŒãã«å°éããåæå€ã®åæ°ã¯ã
1ïœ1000ã§
1ãå«ãã«ãŒãã«å°éããã®ã901å
4ãå«ãã«ãŒãã«å°éããã®ã99å
1ïœ10000ã§
1ãå«ãã«ãŒãã«å°éããã®ã8774å
4ãå«ãã«ãŒãã«å°éããã®ã1226å
1ïœ100000ã§
1ãå«ãã«ãŒãã«å°éããã®ã87410å
4ãå«ãã«ãŒãã«å°éããã®ã12590å
1ïœ1000000ã§
1ãå«ãã«ãŒãã«å°éããã®ã874580å
4ãå«ãã«ãŒãã«å°éããã®ã125420å
ã§ããã
ã³ã©ããäºæ³ã®æäœã
2nããâã2ã§å²ã
2n+1ãâã3åããŠã1ã足ãã2ã§å²ã
ãšããã·ã§ãŒãã«ããããæäœã«å€åœ¢ããããã«ã
f(z)=(z/2)cos^2(Ïz/2)+((3z+1)/2)sin^2(Ïz/2)
ãšè€çŽ æ°ã«æ¡åŒµããå Žåã®ã³ã©ããååã®ãžã¥ãªã¢éåããããããããã®ãWikipediaã«èŒã£ãŠããŸãã
https://commons.wikimedia.org/wiki/File:CollatzFractal.png
ã³ã©ããæ¬ã
3nããâã3ã§å²ã
3n+1ãâã5åããŠã2ãåŒã
3n+2ãâã5åããŠã1ãåŒã
ã«ã€ããŠããåæ§ã«
3nããâã3ã§å²ã
3n+1ãâã5åããŠã2ãåŒãã3ã§å²ã
3n+2ãâã5åããŠã1ãåŒãã3ã§å²ã
ãšããã·ã§ãŒãã«ããããæäœã«å€åœ¢ããããã«ã
f(z)=(z/3)g_0(z)+((5z-2)/3)g_1(z)+((5z-1)/3)g_2(z)
ãšè€çŽ æ°ã«æ¡åŒµããå Žåã®ã³ã©ããååã®ãžã¥ãªã¢éåã«ã€ããŠèããŠã¿ãŸããã
ãã ããg_0(z)ãg_1(z)ãg_2(z)ã«ã€ããŠã¯ã
g_0(z)=(1/2)cos(2Ïz/3)+(1/6)cos(4Ïz/3)+(1/3)
g_1(z)=g_0(z-1),g_2(z)=g_0(z-2)
ãã¡ããåç
§ã
http://kuiperbelt.la.coocan.jp/collatz/mod3-collatz.html#g
ãšããŸããããžã¥ãªã¢éåãããããããçµæã¯ãã¡ããåç
§ã
http://kuiperbelt.la.coocan.jp/collatz/mod3-collatz.html#julia
ãã³ã©ããæ¬ã
3nããâã3ã§å²ã
3n+1ãâã5åããŠã1ã足ã
3n+2ãâã5åããŠã1ãåŒã
ã«ã€ããŠããåæ§ã«
3nããâã3ã§å²ã
3n+1ãâã5åããŠã1ã足ãã3ã§å²ã
3n+2ãâã5åããŠã1ãåŒãã3ã§å²ã
ãšããã·ã§ãŒãã«ããããæäœã«å€åœ¢ããããã«ã
f(z)=(z/3)g_0(z)+((5z+1)/3)g_1(z)+((5z-1)/3)g_2(z)
ãšè€çŽ æ°ã«æ¡åŒµããå Žåã®ã³ã©ããååã®ãžã¥ãªã¢éåã«ã€ããŠèããŠã¿ãŸããã
ãžã¥ãªã¢éåãããããããçµæã¯ãã¡ããåç
§ã
http://kuiperbelt.la.coocan.jp/collatz/mod3-collatz.html#pm
1ãã9ã®9åãã4ã€ãéžã³åºããš9C4=126éãã®çµåããèµ·ããã
ããããåå¥ã®4æ°ãšããŠååæŒç®ãšæ¬åŒ§ãçµã¿åãããŠæ£ã®æŽæ°ãäœããã®ãšããã(12+34=46ãªã©ã¯çŠæ¢)
ãã®æã©ãããŠã1ãäœããªãçµåããçºçããã
ããã¯ã©ããªçµåãã§ãããïŒ
åãã5,6,7,8,9ãæ§æäžå¯èœãªããããã®çµåããšã¯äœã§ããããïŒ
(2,3,4,10ã¯ãã©ã®çµåãã§ãäœããããªãã§ããïŒ
ãŸã126éãã®äžã§äœããæ°ã1,2,3,ãšé£ç¶ããŠæé·ã«äŒžã°ããããçµåãã¯äœã§ããããïŒ
1ãäœããªãã®ã¯ (1,4,7,8),(1,4,8,9),(1,5,7,8),(1,6,7,9),(1,6,8,9)ã®5éã
5ãäœããªãã®ã¯ (1,5,6,9),(4,5,7,9),(4,5,8,9)ã®3éã
6ãäœããªãã®ã¯ (6,7,8,9)ã®ã¿
7ãäœããªãã®ã¯ (1,3,7,8),(3,4,5,7),(4,6,7,8),(4,7,8,9)ã®4éã
8ãäœããªãã®ã¯ (1,3,7,8),(1,3,8,9),(1,5,8,9),(3,5,6,8),(5,6,7,8),(5,7,8,9)ã®6éã
9ãäœããªãã®ã¯ (1,3,8,9),(1,5,8,9),(3,4,5,9),(4,5,6,9),(4,7,8,9),(6,7,8,9)ã®6éã
äœããªããã®ã10éã以äžã®ãã®ã¯
0éã: 2,3,4,10
1éã: 6,12 (12ã¯(1,5,7,8)ã®ã¿äžå¯)
2éã: 24 (24ã¯(1,6,7,8)ãš(3,4,6,7)ãäžå¯)
3éã: 5
4éã: 7,16
5éã: 1
6éã: 8,9,11,15,18,20
8éã: 14
10éã: 13,19,21,28
(1,2,5,8)ã¯1ïœ51ãäœããŠæé·
ã§ã¯ã126éããã¹ãŠã§äœããªãæå°ã®èªç¶æ°ã¯ïŒ
298ã§ããããïŒ(次ã¯299ïŒ
æ£è§£ã§ãïŒæ¬¡ã®299ãïŒã
ãããŸããŠããã§ãšãããããŸãã
é¢çœãåé¡ãèŠã€ããŸããã®ã§ãã玹ä»ããŸãã
åºå
žã¯å€§æã®å€§æ°ã§ãããæš¡ç¯è§£çãèŒã£ãŠãããŸããã§ããã
çããŸã®ãã®åé¡ã«å¯ŸããããŸããŸãªã¢ãããŒããèŠãŠã¿ããã§ãã
ããã«ãæ¬åã«é¢é£ããæ°åŠçäºå®ãªã©ãåç¥ã§ããããæããŠãã ããã
åäœååšäžã®nç¹ããz_1,z_2, ⊠,z_n ãšãã
å€é
åŒ
P(w)=(w-z_1)*(w-z_2)*âŠ*(w-z_n)
ãèããã
|P(w)|â§2 ã〠1â§|w| ãªã w ã®ååšã次ã®ããã«ããŠç€ºããã
(z_1)*(z_2)*âŠ*(z_n)=(-1)^n ãšãªãããã«åº§æšãèšå®ã§ããã
k=1,2,âŠ,nã«å¯ŸããŠãw_k=exp(i*2*Ï*k/n) ãšãããšã
P(w_1)+P(w_2)+âŠ+P(w_n)=2*n
ã§ããããšããããããã£ãŠã
|P(w_1)|+|P(w_2)|+âŠ+|P(w_n)|â§2*n.
ãã£ãŠã|P(w_1)|ïŒ|P(w_2)|ïŒâŠïŒ|P(w_n)|ã®ãã¡ã
å°ãªããšã1ã€ã¯2以äžã
ç¹æ®ãªå Žåã§ã¯ãããªã£ãŠããããã§ãã
åäœåã«å
æ¥ããæ£ n+1 è§åœ¢ã®é ç¹ã®ãã¡ n åããšããŸããããããŸã§ã® n åã®è·é¢ã®ç©ã 2 以äžã«ãªãç¹ããååšäžãªããã¯åã®å
éšã«ååšããããšã瀺ãã
âââ
æ£ n+1 è§åœ¢ã®é ç¹ã®ãã¡ n åããšã£ããšãã«ãã¶ããé ç¹ã P ãšããŸãã
P ãã ããããããšãããŠãã n åã®é ç¹ã«åŒããç·åã®é·ãã®ç© N 㯠n+1 ã«çããã
äžæè°âŠâŠ
ããŸãã¯åã®å
éšããããããã€ããŠããã®ãæ°ã«ãªã£ãŠãããã§ããã
ãã®ç©ãæ倧å€ããšãç¹ã¯å¿
ãååšäžã«ããããã§ããªããã§ãããïŒ
æèŠçã«ã¯å¿
ãååšäžãšèšããããªæ°ãããŠããŸããããããšãŠèšŒæãã§ããã
å察å€è§åœ¢ãå©çšãã¹ããšçŽæçã«æã£ãã®ã§ããä»æ¥ãŸã§éŒ äžå¹æããŸããã§ããã
(åã®å
éšã«ããããšãããâŠâŠ)
1ã®åå§(n+1)ä¹æ ¹ãzãšãããšãz^(n+1)=1ã§ãz^i(i=0,1,2,...,n)ã¯è€çŽ æ°å¹³é¢äžã§æ£(n+1)è§åœ¢ãšãªããŸãã
zã®è€çŽ å
±åœ¹z^*ã¯z^*=z^-1ãªã®ã§ãå®è»žäžã®ç¹(x,0)ãšz^i(i=1,2,...,n)ãšã®è·é¢ã®ç©ã®2ä¹ã¯ã
(x-z)*(x-z^-1)*(x-z^2)*(x-z^-2)*...*(x-z^n)*(x-z^-n)
=(x-z)*(x-z^n)*(x-z^2)*(x-z^(n-1))*...*(x-z^n)*(x-z)
=((x-z)*(x-z^2)*...(x-z^n))^2
ãšãªããŸãã
(x-1)*(x-z)*(x-z^2)*..(x-z^n)=x^(n+1)-1=(x-1)*(x^n+...x^2+x+1)
ãªã®ã§ã
(x-z)*(x-z^2)*...(x-z^n)=x^n+...x^2+x+1
ãšè¡šãããšãã§ããŠãå®è»žäžã®ç¹(x,0)ãšz^i(i=1,2,...,n)ãšã®è·é¢ã®ç©ã¯
|x^n+...x^2+x+1|
ãšãªããŸãã
x=1ã®ãšãã¯ã
x^n+...x^2+x+1=n+1
ãšãªã£ãŠãè·é¢ã®ç©ã¯n+1ãšãªããŸãã
x=0ã®ãšãã¯ã(0,0)ãšz^i(i=1,2,...,n)ãšã®è·é¢ã¯1ãªã®ã§ããããã®ç©ãæããã«1ã§ããã
((-z)*(-z^2)*...*(z^n))^2=(-z)^(n(n+1)/2*2)=(-z)^(n(n+1))
=(-1)^(n(n+1))*z^(n(n+1))=1*1=1
ãšãªãã®ã§ãè·é¢ã®ç©ã¯1ãšãªããŸãã
å®è»žäžã®ç¹(x,0)ãšz^i(i=1,2,...,n)ãšã®è·é¢ã®ç©|x^n+...x^2+x+1|ã¯xã«ã€ããŠé£ç¶ãªå®æ°å€é¢æ°ãªã®ã§ã
äžéå€ã®å®çãããè·é¢ã®ç©ã2ãšãªãç¹ã¯(0,0)ãš(1,0)ã®éã«ããããšã«ãªããŸãã
--------------------------------------------------------------
1ã®åå§(2k+1)ä¹æ ¹ãzãšãããšãz^(2k+1)=1ã§ãz^i(i=0,1,...,2k)ã¯è€çŽ æ°å¹³é¢äžã§æ£(2k+1)è§åœ¢ãšãªããŸãã
å®è»žäžã®ç¹(x,0)ãšz^i(i=0,1,...,2k)ãšã®è·é¢ã®ç©ã®2ä¹ã¯ã
(x-1)^2*(x-z)*(x-z^-1)*(x-z^2)*(x-z^-2)*...*(x-z^2k)*(x-z^-2k)
=((x-1)*(x-z)*(x-z^2)*...(x-z^2k))^2
=(x^(2k+1)-1)^2
ãšãªããŸãã
x=-1ã®ãšãã
(x^(2k+1)-1)^2=(-2)^2=4
ãšãªãã®ã§ã(-1,0)ãšz^i(i=0,1,...,2k)ãšã®è·é¢ã®ç©ã¯2ãšãªããŸãã
--------------------------------------------------------------
1ã®åå§2kä¹æ ¹ãzãåå§4kä¹æ ¹ãwãšãããšãn=2k,w^2=z,w^4k=z^2k=1ã§ãw^i(i=0,1,...,4k-1)ã¯è€çŽ æ°å¹³é¢äžã§æ£4kè§åœ¢ãšãªããw^(2i+1)(i=0,1,...,2k-1)ã¯è€çŽ æ°å¹³é¢äžã§æ£2kè§åœ¢ãšãªããŸãã
å®è»žäžã®ç¹(x,0)ãšw^(2i+1)(i=0,1,...,2k-1)ãšã®è·é¢ã®ç©ã®2ä¹ã¯ã
(x-w)*(x-w^-1)*(x-w^3)*(x-w^-3)*...*(x-w^(4k-1))*(x-w^-(4k-1))
=(x-w)*(x-w^(4k-1))*(x-w^3)*(x-w^(4k-3))*...*(x-w^(4k-1))*(x-w)
=((x-w)*(x-w^3)*...*(x-w^(4k-1)))^2
ãšãªããŸãã
(x-w)*(x-w^3)*(x^w^5)*...*(x-w^(4k-1))
=(x-w)*(x-w*z)*(x-w*z^2)*...*(x-w*z^(2k-1))
=x^2k-w^2k=x^2k+1
ãªã®ã§ïŒx^2k-1=0ã®æ ¹ãšä¿æ°ã®é¢ä¿ãå¿çšïŒãx=±1ã®ãšãã
x^2k+1=2
ãšãªãã®ã§ã(±1,0)ãšw^(2i+1)(i=0,1,...,2k-1)ãšã®è·é¢ã®ç©ã¯2ãšãªããŸãã
[2448] ã® DD++ ããã«ããåãããã«ã€ããŠ
ãŒããããšæ³èµ·ããã®ã以äžã§ãã
è€çŽ é¢æ°è«ã«ãããæ倧å€ã®åçïŒãŸãã¯æ倧å€ã®å®çïŒ
ãæ£åé¢æ°f(z)ããåã®äžå¿ããããäžå®ã®è·é¢ãŸã§ã®ç¯å²ã§å®çŸ©ãããŠããŠããã®ç¯å²ã§å€ããªãããã«å€åããé¢æ°ãšããŸãããã®ãšããf(z)ã®å€§ãããè¡šã|f(z)|ã®æ倧å€ã¯ããã®ç¯å²ã®ç«¯ã£ãã®éšåãã€ãŸãååšäžã§å¿
ãèŠã€ãããŸããã
ãã®ãã㪠f ãã¿ã€ãããšå¬ãããªãšã
â»ã§ãã倧æ°ã®èšäºäžã®åé¡ã«è€çŽ é¢æ°è«äœ¿ãã®ããšãè¿éãããã®ã§ãããã
(1)2ã€ã®æ£ã®æŽæ°ããã
2ã€ã®ç©ã296352ã§æ倧å
¬çŽæ°ã84
ã®æ2ã€ã®æŽæ°ã¯ïŒ
(2)2ã€ã®æ£ã®æŽæ°ããã
2ã€ã®åã1092ã§æå°å
¬åæ°ã3528
ã®æ2ã€ã®æŽæ°ã¯ïŒ
(1)
296352=2^5Ã3^3Ã7^3
84=2^2Ã3Ã7
ãªã®ã§2^5ã2^2ãš2^3ã3^3ã3ãš3^2ã7^3ã7ãš7^2ã«åããŠ
çµã¿åãããã°ããããã£ãŠè§£ã¯4éããšãªãã
2^2Ã3Ã7 ãš 2^3Ã3^2Ã7^2 â 84 ãš 3528
2^2Ã3Ã7^2 ãš 2^3Ã3^2Ã7 â 588 ãš 504
2^2Ã3^2Ã7 ãš 2^3Ã3Ã7^2 â 252 ãš 1176
2^2Ã3^2Ã7^2 ãš 2^3Ã3Ã7 â 1764 ãš 168
䞊ã¹æ¿ããŠã2æ°ã®çµåãã¯
(84,3528),(168,1764),(252,1176),(504,588)
(2)
3528=2^3Ã3^2Ã7^2
ãªã®ã§2æ°ã®ã©ã¡ããã«2^3ã3^2ã7^2ãå«ãŸããŠããå¿
èŠãããã
1092ã¯2,3,7ã§å²ãåãã2^2ã§ãå²ãåãã2^3,3^2,7^2ã§ã¯å²ãåããªãã®ã§
ä»æ¹ã®ææ°ã¯èªåçã«2^2ã3ã7ãšæ±ºãŸãã
ããªãã¡çµåãã¯(1)ãšåã4éãã«ãªãã®ã§ã
(1)ã®äžã§2æ°ã®åã1092ãšãªã(504,588)ãçãã
(1)
296352=2^5*3^3*7^3
ã§ã2æ°ãN,N'ãšããŠãN=2^n1*3^n2*7^n3ãšãããšã
N'=2^(5-n1)*3^(3-n2)*7^(3-n3)ã§ã
NãšN'ã®æ倧å
¬çŽæ°ã84=2^2*3*7ãªã®ã§ã
min{n1,5-n1}=2,min{n2,3-n2}=1,min{n3,3-n3}=1
ããã
n1=2,3
n2=1,2
n3=1,2
ãªã®ã§ã2æ°N,N'ã®çµã¿åããã¯ã
84ãš3528ã588ãš504ã252ãš1176ã1764ãš168
(2)
3528=2^3*3^2*7^2
ã§ã2æ°ãM,NãšããŠãM=2^m1*3^m2*7^m3,N=2^n1*3^n2*7^n3ãšãããšã
max{m1,n1}=3,max{m2,n2}=2,max{m3,n3}=2ã§ã
1092 mod 4=0, 1092 mod 8â 0
1092 mod 3=0, 1092 mod 9â 0
1092 mod 7=0, 1092 mod 49â 0
ãªã®ã§ã
m1,n1â§2,min{m1,n1}=2
m2,n2â§1,min{m2,n2}=1
m3,n3â§1,min{m3,n3}=1
ããã
m1=2,n1=3ãšãããšã
(m2,m3,n2,n3)=(1,1,2,2),(1,2,2,1),(2,1,1,2),(2,1,2,1)
ãŸããM,N<1092ãããM/4=3^m2*7^m3,N/8=3^n2*7^n3<273/2
ãªã®ã§ã
M/4=63,147ãããªãã¡(m2,m3)=(2,1),(1,2)
N/8=63ãããªãã¡(n2,n3)=(2,1)
ããã
(m2,m3,n2,n3)=(1,2,2,1)ãªã®ã§ã(M,N)=(588,504),M+N=1092
3蟺ã®é·ãã3,5,6(åºé¢3Ã6ïŒé«ã5)ã®çŽæ¹äœã§ã¯
åºé¢ã®äžè§Sã«ã¯ã¢ãããŠå€©äºã®åããã®äžè§Gã«ããš
ããããã®ãšããã
ã¯ã¢ã¯ããšãããããŠçŽæ¹äœã®è¡šé¢ãçŽé²ãããšããã
ãã®æã¡ããã©10ã®è·é¢ã§å°çã§ããã³ãŒã¹ãçºçããã
ã³ãŒã¹åãã誀ããšâ130ãšæçã§ãæŽæ°ã§ããªãå€ã«
ãªã£ãŠããŸãã
ãŸãåãçŽæ¹äœã§ãåºé¢5Ã6;é«ã3ã§ã
SããGãžã®ã³ãŒã¹ã¯æç10ïŒèª€ããã°â106)ã確ä¿ãããã
ããã§å蟺ã®é·ããæŽæ°ã§æ倧蟺ã10ãŸã§åãããšãããšã
åããåãè§ãžçŽæ¹äœã®è¡šé¢ãæçè·é¢ãæŽæ°å€ã§èŸ¿ãã
çŽæ¹äœãäœéãååšããŠããããåãã
ç§ã®è§£éãæ£ãããã°
(1,3,3), (2,2,3), (1,2,4), (2,6,6), (3,5,6), (4,4,6), (1,5,8),
(2,4,8), (3,3,8), (7,8,8), (3,9,9), (4,8,9), (5,7,9), (6,6,9)
ã®14éãã ãšæããŸããã¡ãªã¿ã«ããã§æ£ãããªãã°ãæ倧蟺ã
100ãŸã§ãªã2060éãã1000ãŸã§ãªã281334éãã10000ãŸã§ãªã36553574éãã
100000ãŸã§ãªã4487105091éãã1000000ãŸã§ãªã532281148674éãã
10000000ãŸã§ãªã61589103127262éãã100000000ãŸã§ãªã6995157501115431éãã
1000000000ãŸã§ãªã783139679297467648éã
ç§ãåãã¯ãããããããåºãããæ°å€ã§OKã ãšæãŠãããã§ããã
å±éå³ãæžããŠç¢ºèªããŠããäžã§(2,9,10)ã®çµã¿åãããå¯èœãªã¯ãã ããªïŒ
(åºé¢ïŒÃ9;é«ã10ãšã)
ãããäœæ
åã£ãŠãããªãã®ããèãçŽããæ¹ããŠããã°ã©ã ããçŽããŠ
(1,6,7),(2,5,10),(2,9,10),(3,5,9),(4,5,8),(5,5,7),(5,6,6),(5,8,10),(6,8,9)
ã®9åãèããããªãããªããšæãçŽããŸããã
ããšã¯äººå·¥ç¥èœãæèŒããŠãªãç§ã¯ãå±éå³ãæžããªããæçè·é¢ãæŽæ°ãšãªããã
èŠãŠè¡ããš(5,6,6)ã®çµåãã ãæçè·é¢ãâ157ã§æŽæ°ãšãªãã³ãŒã¹ã©ãã§ã¯13ãšã¯
ãªãããæçã§ã¯ãªãããšã«ãªã£ãŠããŸã!
ä»ã®8åã¯æçã確èªã§ããŸããã
以äžããç°ãªãçŽæ¹äœã®çš®é¡ã¯14+8=22ã§ãªãããšæã£ãŠãããšããã§ãã
ç§ãåãã«äœã£ãŠããããã°ã©ã ã§ã¯100ãŸã§ã§ã¯2060éããšãªã£ãŠããŸããã
ã§ãä»ã¯ç¢ºããããããªãã©ãã ããïŒãšæã£ãŠãããšããã§ãã
(2,9,10)ã®å Žå
â((2+9)^2+10^2)=â221
â((2+10)^2+9^2)=15
â((9+10)^2+2^2)=â365
â221ïŒ15ïŒâ365
ãšãªãæçã®â221ã¯æŽæ°ã§ã¯ãªãã®ã§äžé©ã§ã¯ïŒ
ããšãããã3æ¹åã®ãã¡æçã§ãããã®ãæŽæ°ãã§ãªã
ã3æ¹åã®ãã¡ã©ãããæŽæ°ãã§ãããªãã°ã
(5,6,6)ãâ((6+6)^2+5^2)=13ã§æŽæ°ãªã®ã§
(5,6,6)ãå«ããŠ23éãã«ããªããšãããããšæããŸãã
ïŒã€ãŸã22éããšãªãèãæ¹ã¯ããåŸãªãã®ã§ã¯ããšããæå³ã§ãïŒ
ãããïŒ
çŽæ¹äœã®åããåãè§ã«åããã«ãŒãã¯3éãåºæ¥ãã®ã§ããã®ãã¡ã®æçãæŽæ°ãšãªããªããã°ãããªãã®ã
æ¡ä»¶ã§ããããè¿œå ããããšãã9åã¯å
šããã®æ¡ä»¶ãæºãããŸãããã
ã€ãã€ãèªåãæžããå±éå³ã®ã¿ã«åŸã£ãŠå€æããŠããŸããã
ååšç(Ï)ãšèªç¶å¯Ÿæ°ã®åº(e)ãæ§æããæ°åãã¯ãããã(3,1,4,1,5,ã 2,7,1,8,2)100åã®æ°ã
10è¡10åã«äžŠã¹(å·Šäžããå³ãž10å䞊ã¹ã第ïŒè¡ããã¯ãå·Šããå³ãž10å䞊ã¹ãŠããããšãç¹°ãè¿ãã)
å·Šäžããã¹ã¿ãŒããå³äžããŽãŒã«ãšããã³ãŒã¹ã«ã€ããŠé²ããã®ãšã
éäžã§ã¯äžãäžãå·Šãå³ãžã©ãã®æ¹åã«ãé²ããŠè¡ãããã®ãšããã
ãã®æé²ãã³ãŒã¹ã«ããæ°åãæŸã£ãŠé²ãããšã«ãããšãããŽãŒã«ã«
蟿ãçããæã«æŸã£ãæ°ã®åèšæ°ãæå°ã«ãªãã®ã¯ã©ã¡ãããã
å°ãããã®ã«ãªãã§ããããïŒ
ããããã®æå°åèšæ°ãèŠã€ããŠäžããã
åé¡ã®è§£éãšããã°ã©ã ãæ£ãããã°
Ïã¯
é²ã¿æ¹: å³äžäžäžå³å³äžäžå³äžå³äžå³å³äžäžå³å³
åèš: 3+1+8+2+5+0+2+3+2+0+3+0+6+2+0+4+0+6+7=54
eã¯
é²ã¿æ¹: äžå³äžå³äžå³äžäžå³äžå³å³å³äžäžå³äžå³
åèš: 2+4+5+0+2+6+2+0+7+4+7+2+4+0+4+2+1+2+7=61
ã®ããã«ãªããšæããŸãã
ãããããã£ãããäžäžå·Šå³ã©ã®æ¹åãžãé²ããããšããæ¡ä»¶ãªã®ã«
å³ãšäžããåºãŠããŸãããã
100Ã100=10000æ¡ã«ãããšããäžãããå·ŠããåºãŠããŸãã
ïŒç¹ã«ãÏã®å Žåã¯æå°å€ãšãªãããã«äžãå·Šãå¿
èŠã§ããeã¯å³ãšäžã ãã§ãæå°å€ãåŸãããŸããïŒ
ãŸãã10Ã10ã®å Žåã¯æå°ãšãªãé²ã¿æ¹ã¯1éããã€ãããããŸãããã
100Ã100ã®å Žåã¯è€æ°éãã«ãªããŸãã
ã§ã¯ã100Ã100ã®å ŽåãÏã»eããããã«ã€ããŠãæå°å€ã¯ããã€ã§
æå°ãšãªãçµè·¯ã®æ°ã¯ããããããã€ããã§ããããïŒ
Ïã§ã®æå°å€430
e ã§ã®æå°å€455
ã§ããããïŒ(å
人ã®ããæ¹ã倧ãã«åèã«ããŠãã£ãŠã¿ãŸãããèªä¿¡ã¯ãããŸããã)
ãªãäœéãã®è¡ãæ¹ãããã®ããã³ãŒã¹ãã©ã®æ§ã«èŸ¿ã£ãŠãããç¥ãããã®ããã°ã©ã ã¯
ä»ã¯æã足ãã§ãŸããã
ããã£ããÏã®ã³ãŒã¹ã§ãªãã ãäžãå·Šãžã®ã³ãŒã¹ã蟿ããã®ãããã°æããŠäžããã
430ãš455ã¯æ£è§£ã§ããÏã®çµè·¯ã¯4608éããeã®çµè·¯ã¯48éãã§ãã
100Ã100ã®Ïã¯ãã¹ãŠãäžãã2åå«ã¿ããå·Šãã¯2å(768éã)ã»
3å(2304éã)ã»4å(1536éã)ã®ããããã§ãã
ãå·Šãã4åå«ããã®ã¯ãäŸãã°
å³å³å³äžå³å³å³äžå³äžå³äžäžäžäžå³äžäžäžå³å³å³äžå³å³äžå³äžå³å³
å³äžå³å³å³å³å³å³äžäžå³å³å³äžäžå³å³å³å³å³å³å³å³å³äžäžå³äžäžå·Š
äžäžå³å³å³äžäžäžäžå³äžå³å³äžå³å³äžäžäžå³å³å³å³å³äžå³å³å³å³å³
äžå³å³å³å³äžäžäžäžäžå³å³å³äžå³äžäžå³å³å³å³å³å³äžå³å³äžå³äžäž
å³å³å³å³äžå³å³å³äžäžå³äžå³å³å³äžäžäžäžå³äžäžäžäžå³å³äžäžäžäž
å³äžäžå³å³å³äžå³äžäžäžäžå³äžäžå·Šå·Šäžäžå³äžäžå³å³äžå³å³äžäžäž
å·Šäžäžäžäžäžå³å³å³äžäžå³äžäžå³äžå³äžäžäžäžäžäžäžäžäžäžäžäžäž
(è¿œèš)
å³ãäœã£ãŠã¿ãŸããããããã§ã¯ç²ããŠããèŠããŸããã®ã§
粟现ãªç»åã¯ãã¡ãã§ã©ãã â http://www10.plala.or.jp/rascalhp/image/pi10000.gif
ç§ããšã¯ã»ã«ã«æ°å€ã貌ãä»ããæããŠããã£ãã³ãŒã¹ãå¡ã朰ããŠã³ãŒã¹ãçºããŠããŸããã
ãµãšæã£ãã®ã§ããããã®ã³ãŒã¹ãèŠã€ããæ¹æ³ã¯æå°å€ãæ±ããããã«å©çšããŠããÏã®æ°å€ãš
察å¿ãããŠãã100Ã100è¡åã®ããŒã¿ãéãã蟿ã£ãŠããã°èŠã€ããããããïŒ
(10Ã10ã®æã¯ãããã£ãŠã³ãŒã¹ãæäœæ¥ã§èŠã€ããŠããã)
ã§ãããã°ã©ã ã®æ§ææ¹æ³ã¯ãŸã åãããŸããã
å
šéšã§4608éãã®ã³ãŒã¹ãååšã§ãããšã¯ãã£ããŸãïœã§ãã
ã¡ãªã¿ã«ããé²è·¯ãå³ãšäžã ãã«éå®ãããŠé²ãããšãããæå°å€ã¯442ã§ããã
ã¯åã£ãŠããŸããïŒ
> ãµãšæã£ãã®ã§ããããã®ã³ãŒã¹ãèŠã€ããæ¹æ³ã¯æå°å€ãæ±ããããã«å©çšããŠããÏã®æ°å€ãš
> 察å¿ãããŠãã100Ã100è¡åã®ããŒã¿ãéãã蟿ã£ãŠããã°èŠã€ããããããïŒ
ã¯ããããã§ãããç§ã®ããã°ã©ã ã§ã¯ãã®ããã«ããŠã³ãŒã¹ã調ã¹ãŠããŸãã
ããæ¹ã¯äººéãæäœæ¥ã§ããã®ãšåãã§ãããã®ãã¹ã«ã¯ã©ãããæ¥ãããã
4æ¹å調ã¹ãå€ãäžèŽããæ¹åã«é²ãã§ãããç¹°ãè¿ãããšããã®ãååž°çã«
åŠçããã°ãèªåçã«äœéãããããããŸãã
æ¢ã«ééããå Žæã«å床è¡ããªãããã«ããããã®å€§ããåã®ãééæžã¿ãã©ã°ãã
å¿
èŠã§ãïŒããããªããš0ãäºã€é£ãåã£ãŠãããšããã§ç¡éã«ãŒãããŸãïŒã
> ããé²è·¯ãå³ãšäžã ãã«éå®ãããŠé²ãããšãããæå°å€ã¯442ã§ããã
> ã¯åã£ãŠããŸããïŒ
ã¯ãã確ãã«442ã§ããããã®å Žåã®çµè·¯æ°ã¯3456éãã§ãã
ãããŸããŠããã§ãšãããããŸãã
æ¬å¹Žããããããé¡ãèŽããŸãã
åé¡ã
25ã¯å¹³æ¹æ°ã§ãããããŠã
ã25ã®æ£ã®å¹³æ¹æ ¹ã¯5ã§ããã
ãšããæã«äœ¿ãããŠããæ°åãå
šãŠæ¬¡ã®æ°åã«å€ãããš
ã36ã®æ£ã®å¹³æ¹æ ¹ã¯6ã§ããã
ãšãªãããããæ£ããæã«ãªããŸãã
ããŠããã®ãããªæ§è³ªããã€å¥ã®å¹³æ¹æ°ãæ±ããŠãã ããã
ãããŸããŠããã§ãšãããããŸãã
ä»å¹Žããããããé¡ãããŸãã
R[n]=(10^n-1)/9 (repunit=1ãnå䞊ã¹ãèªç¶æ°) ãšããã
næ¡ã®æ°ã®å¹³æ¹ã¯2næ¡ãŸãã¯2n-1æ¡ã«ãªããã
(a+R[n])^2-a^2=2aR[n]+(R[n])^2ïŒR[2n-1] ãšãªããã
æ¡ä»¶ãæºããããã«ã¯å
ã®æ°ã¯2næ¡ã§ãªããã°ãªããªãã
(a+R[n])^2-a^2=R[2n] ã解ããš a=4R[n]+1 ãšãªãã
nâ§3ã®ãšã4R[n]+1ã®å¹³æ¹ã®äžãã2æ¡ç®ã9ã«ãªã
ã次ã®æ°åããååšããäžé©ã
ãã£ãŠæ¡ä»¶ãæºãããã®ã¯4R[1]+1=5, 4R[2]+1=45ã®äºã€ã
åè
ã®å¹³æ¹ã®25ã¯äŸç€ºãããŠãããã®ã ããã
çãã¯åŸè
ã®å¹³æ¹ã®2025ã
ãèŠäºã§ãã
å®ã¯åœåãâ2025=25ã§ãããã§åºé¡ããããšããŠããã®ã§ããããã®åœ¢ã ãšãã1ã€è§£ãããããšã«æ°ã¥ããŠæ
ãŠãŠèšè¿°ãå€æŽããŸããã
å±ãªãã£ãâŠâŠã
æžãééãã
â2025=45ã§ããâŠâŠã