角の二等分線の傾き
三角形ABCがあり、辺BCがx-y座標平面上のx軸上にあり、頂点Aはy軸の正の部分にあるものとする。
今x軸の正の部分と線分AB,ACの傾きをそれぞれm1,m2と表すとき、角Aの二等分線が辺BCと交わる点をDとしたとき
各(m1,m2)の値に対するADの線分の傾きmがどの様な値となるか見つけてほしい。
(1)(m1,m2)=(1/7,-1)
(2)(m1,m2)=(1/2,-2)
(3)(m1,m2)=(1/3,-3)
(4)(m1,m2)=(1/4,-4)
(5)(m1,m2)=(1,-5)
「線分AB,ACの傾きをそれぞれm1,m2と表す」ならば普通の意味でわかるのですが、
「x軸の正の部分と線分AB,ACの傾きをそれぞれm1,m2と表す」の「x軸の正の部分と」は
どういう意味を持っているのでしょうか。無視して大丈夫ですか?
今、新幹線で帰宅しました。
mの値の可能性として、(1)3、(2)3、(3)2、(4)5/3、(5)(3+√13)/2 でしょうか?
新幹線の中から返信しようとしたら、「不正アクセス」としてはじかれてしまいました。
普段の環境では返信できるので、多分新幹線内のFreeWifiが悪さをしたものと思われます。
らすかるさんへ
「x軸の正の部分と」のコメントはいらないですね。ついなす角度とごっちゃになっていました。
管理人さんへ
-1/2は?
(3-√13)/2は惜しいか。
できたら何番がどの答えかをお願いします。
正解です。
一般式は
{m1*m2-1-√((m1^2+1)*(m2^2+1))}/(m1+m2)
でしょうか。
個別に出していたので、こんな式で表せるとは思ってもいませんでした。
これはAB とACが直角なら(m1*m2=-1)
m=(1+m1)/(1-m1)
の式に還元できるので、
m1=1 ==>m=∞
m1=1/2 ==>m=3
m1=2 ==>m=-3
m1=1/3 ==>m=2
・・・・・・・・
と対応していくから、BCを直径とする円を利用してm1での値を使って
作図することで各Aでの二等分線が引けることができたり、他にも応用が出来そうですね。