ãã§ã«ããŒã®æçµå®çã®åçç蚌æ
åã®ç¶ãã§ãããçš¿ãæ°ããããŸããã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ãã§ã«ããŒã®æçµå®çã®åçç蚌æãèããã
a^n+b^n=c^nã«ãããŠãa,b,cã¯èªç¶æ°ã§ãããnâ§3ã§ã¯ãæãç«ããªããšããåé¡ã§ããã
a,b,cã¯ãäºãã«çŽ ãªèªç¶æ°ãªã®ã§ãa,b,cçå¶æ°ã§ã¯ãªããa,b,cçå¥æ°ã¯å¥æ°ïŒå¥æ°ïŒå¥æ°ããªãã®ã§ã
ïŒïŒa,b,c:å¶æ°ãå¥æ°ãå¥æ°
ïŒïŒa,b,c:å¥æ°ãå¶æ°ãå¥æ°
ïŒïŒa,b,c:å¥æ°ãå¥æ°ãå¶æ°
ã®å Žåã ããèããã°ãããnãå¶æ°ã®æã¯ãç¡éäžéæ³ã§ããã§ã«ããŒã«ãã£ãŠèšŒææžã¿ã§ãããnãå¥æ°ã®åææ°ãªãã°ãæ§æããæå°ã®çŽ æ°ãèããã°ãããâwikipediaåç
§
ãããã£ãŠãnã¯ãå¥æ°ã®çŽ æ°ã§ããã
ããŠãå
¬åŒããã
c^n-b^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)}
ãŸããc^n-b^n=a^n
ãã£ãŠã
a^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)} ---(a)
ããŠãnã¯ãå¥æ°ã®çŽ æ°ã§ããã®ã§ãïœïœã®äžã¯ãné
ã§ããã
ïŒïŒa,b,c:å¶æ°ãå¥æ°ãå¥æ°
(a)åŒã¯ã2ã€ã®åææ°ã®ç©ã§ããããã
a^s=c-b---(1)
a^(n-s)=c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(2)
ã§ãªããã°ãªããªãããšããã(2)ã§ã¯ã巊蟺ã¯å¶æ°ãå³èŸºã¯å¥æ°ã®å¥æ°åã®åã§ããããå¥æ°ã
ãããã£ãŠãççŸã
ïŒïŒa,b,c:å¥æ°ãå¶æ°ãå¥æ°
(a)åŒã¯ã2ã€ã®åææ°ã®ç©ã§ããããã
a^s=c-b---(3)
a^(n-s)=c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(4)
ã§ãªããã°ãªããªãã(4)ã§ã¯ã巊蟺ã¯å¥æ°ãå³èŸºã¯c^(n-1)ã®å¥æ°ãé€ããŠãã¹ãŠã®é
ã¯å¶æ°ã§ããããå¥æ°ã
ãããã£ãŠãççŸããªãã
ïŒïŒa,b,c:å¥æ°ãå¥æ°ãå¶æ°
a)åŒã¯ã2ã€ã®åææ°ã®ç©ã§ããããã
a^s=c-b---(5)
a^(n-s)=c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(6)
ã§ãªããã°ãªããªãã(6)ã§ã¯ã巊蟺ã¯å¥æ°ãå³èŸºã¯b^(n-1)ã®å¥æ°ãé€ããŠãã¹ãŠã®é
ã¯å¶æ°ã§ããããå¥æ°ã
ãããã£ãŠãççŸããªãã
ãã£ãŠãïŒïŒãïŒïŒã ããèããã°ããã
a^s=c-b---(3)ããb=c-a^s bã¯èªç¶æ°ãããc > a^s
a^(n-s)=c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(7)
ãšããã§ã(7)ã¯ãåé
c^(n-1)ãé
æ¯b/c,é
æ°nã®çæ¯çŽæ°ã§ããã
ããã§ã
a^(n-s)=c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)}
ããã2ã€ã®åææ°ã®ç©ã§ãããã
a^t=c^(n-1) ---(8)
a^(n-s-t)={1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)} ----(9)
(8)åŒã¯ã䞡蟺ãa^tã§å²ããšãa,cã¯äºãã«çŽ ã§ãããããc^(n-1)/a^tã¯å²ãåãããæãç«ããªãã
ãããšã(7)ã¯ãæãç«ããªãããã(6)åŒã¯æãç«ããªãã
ããã«ã(a)åŒã¯æãç«ãããc^n-b^n=a^nã¯æãç«ããªãã
ãã£ãŠããã§ã«ããŒã®æçµå®çã¯ãåççã«èšŒæãããã
> nãå¶æ°ã®æã¯ãç¡éäžéæ³ã§ããã§ã«ããŒã«ãã£ãŠèšŒææžã¿ã§ããã
ãã§ã«ããŒã蚌æããïŒãšèããããŠããïŒã®ã¯ n=4 ã®å Žåã®ã¿ã®ã¯ãã§ããã
n=8, 12, 16, âŠâŠã¯ãšããããn=6, 10, 14, âŠâŠã¯ãã§ã«ããŒèªèº«ã®çµæããã¯ç€ºãããªãã¯ãã§ãã
> (a)åŒã¯ã2ã€ã®åææ°ã®ç©ã§ããããã
> a^s=c-b---(1)
ïŒä»¥äžã(6) åŒãŸã§ïŒ
ãããã a ã®çŽ¯ä¹æ°ã§ãªããã°ãªããªããšèããçç±ãæããŠãã ããã
ããšãc-b ãåæã«åææ°ãšãããŠããçç±ãã§ãããã
ãªããããçŽ æ°ã 1 ãããããªããã§ãããïŒ
DD++ããŸããã¯ããããããŸãã
> nãå¶æ°ã®æã¯ãç¡éäžéæ³ã§ããã§ã«ããŒã«ãã£ãŠèšŒææžã¿ã§ããã
ãã§ã«ããŒã蚌æããïŒãšèããããŠããïŒã®ã¯ n=4 ã®å Žåã®ã¿ã®ã¯ãã§ããã
n=8, 12, 16, âŠâŠã¯ãšããããn=6, 10, 14, âŠâŠã¯ãã§ã«ããŒèªèº«ã®çµæããã¯ç€ºãããªãã¯ãã§ãã
äŸãã°ãïœïŒïŒïŒ3x2ã§ãããã
(a^2)^3+(b^2)^3=(c^2)^3
ããã§ãA=a^2,B=b^2,C=c^ïŒãšããã°ã
A^3+B^3=C^3
10=2x5,15=3x5,18=3x3x2,ã»ã»ã»ã»
ãšããããã«ãçŽ å æ°å解ã§ããã°ãå¥æ°ã®çŽ æ°ã«ãªããŸãã®ã§ãå¥æ°ã®çŽ æ°ã蚌æã§ããã°ããã®ã§ããããWikipediaïŒãã§ã«ããŒã®æçµå®çïŒãèŠãŠãã ããã
> (a)åŒã¯ã2ã€ã®åææ°ã®ç©ã§ããããã
> a^s=c-b---(1)
ïŒä»¥äžã(6) åŒãŸã§ïŒ
ãããã a ã®çŽ¯ä¹æ°ã§ãªããã°ãªããªããšèããçç±ãæããŠãã ããã
ã€ãŸãã巊蟺ãa^nã§ããããã巊蟺ã¯aã®çŽ¯ä¹ã§ãªããšãããŸããã
ïŒããšãc-b ãåæã«åææ°ãšãããŠããçç±ãã§ãããã
ãªããããçŽ æ°ã 1 ãããããªããã§ãããïŒ
çŽ æ°ã§ã1ã§ãæ§ããªãã®ã§ãããäžè¬çã«äžçªå€§ããªå¯èœæ§ãåææ°ã§ããããèªç¶æ°ã®æ¹ãããããªïŒ
ãå¥çŽ æ°ã§ã®èšŒæãã§ããã°ååã§ãããèªäœã¯æ£ããã§ããã
ã§ããæåŸã®äžæã«çµæçã«æ£ããããšãæžããŠãããããšãã£ãŠãéäžã«æžãããã®ãå
šéšæ£ããã£ãããšã«ãªããããããããŸããã
ãã§ã«ããŒã®æçµå®çã®èšŒæããæåŸã®çµæã¯å¥ã®æ¹æ³ã§èšŒæãããŠãããã ãããäœãã©ãæžããã£ãŠæ£ãã蚌æã«ãªããã ããšãæã£ãŠãŸããããïŒ
> 巊蟺ãa^nã§ããããã巊蟺ã¯aã®çŽ¯ä¹ã§ãªããšãããŸããã
æå³ãããããŸããã
> çŽ æ°ã§ã1ã§ãæ§ããªãã®ã§ãããäžè¬çã«äžçªå€§ããªå¯èœæ§ãåææ°ã§ããããèªç¶æ°ã®æ¹ãããããªïŒ
ã»ããåæãªæ±ºãã€ããè¡ãªã£ãŠããã
ããã 1 ã€ã§ããã£ãç¬éãããã¯ãååšããªã蚌æãã§ã¯ãªãããã ã®ãèªåã«ã¯èŠã€ããããªãã£ããšããç¡äŸ¡å€ãªå€±æå ±åãã«ãªããŸãã
蚌æãããšããã®ãªããŸããã®èªèãæã£ãŠãã ããã
DD++ããŸãããã«ã¡ã¯ã
> 巊蟺ãa^nã§ããããã巊蟺ã¯aã®çŽ¯ä¹ã§ãªããšãããŸããã
æå³ãããããŸããã
(a)ã®åŒã
a^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)} ---(a)
(a)ã®åŒã¯ãa^nã¯2ã€ã®èªç¶æ°ã®ç©ã§æ§æãããŠããŸããããã¯ã
c-b---(1)
c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(2)
ã®(1),(2)åŒã§ãããã®2ã€ã®åŒã®ç©ãa^nãªã®ã§ãããã
a^s=c-b---(1)
a^(n-s)=c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(2)
ã§ãªããã°ãªããªããšããããšã§ãã
> çŽ æ°ã§ã1ã§ãæ§ããªãã®ã§ãããäžè¬çã«äžçªå€§ããªå¯èœæ§ãåææ°ã§ããããèªç¶æ°ã®æ¹ãããããªïŒ
a^s=c-bã«ãããŠã巊蟺ã¯aã®çŽ¯ä¹ã®åŒã§ããããc-bã¯ãçŽ æ°ã«ã¯ãªããªãã§ãããã
a^sãs=1ãªããa=c-bãªã®ã§ãaãçŽ æ°ã§ãããããŸãããããã
(c-b)^n+b^n=c^n
c^n-nC1 c^(n-1)b+nC2 c^(n-2) b^2-nC3 c^(n-3)b^3+ã»ã»ã»+nC1 c b^(n-1)-b^n+b^n=c^n
-b^n+b^n=0ã§ãæ¶ãã䞡蟺ããc^nãåŒããšã
-nC1 c^(n-1)b+nC2 c^(n-2) b^2-nC3 c^(n-3)b^3+ã»ã»ã»+nC1 c b^(n-1)=0
ããã¯ãcbã§ããããŸããã
cb{-nC1 c^(n-2)+nC2 c^(n-3) b-nC3 c^(n-4)b^2+ã»ã»ã»+nC1 b^(n-2)}=0
cbã¯0ã§ãªãã®ã§ãå²ããšã
-nC1 c^(n-2)+nC2 c^(n-3) b-nC3 c^(n-4)b^2+ã»ã»ã»+nC1 b^(n-2)=0
nC2 c^(n-3) b+nC4 c^(n-5) b^3+ã»ã»+nC1 b^(n-2)=nC1 c^(n-2)+nC3 c^(n-4)b^2+ã»ã»ã»+nC2 c b^(n-3)
ãšãªãã(a)åŒã«ã¯ãªããã(1),(2)åŒã¯ååšããªããªããŸãã
ãããã£ãŠãa=c-bã§ã¯ããŸããã®ã§ãã
c-b=1ãªãã
a^n+b^n=(b+1)^n
a^n+b^n=b^n+nC1 b^(n-1) +nC2 b^(n-2) +nC3 b^(n-3) +ã»ã»ã»+nC(n-1) b +1
䞡蟺ããb^nãåŒããŠã
a^n=nC1 b^(n-1) +nC2 b^(n-2) +nC3 b^(n-3) +ã»ã»ã»+nC(n-1) b +1
ãšãªãã(a)åŒã«ã¯ãªããã(1),(2)åŒã¯ååšããªããªããŸãã
ãããã£ãŠãc-b=1ã§ã¯ããŸããã®ã§ãã
DD++ããŸãããã°ãã¯ã
(a)ã®åŒã
a^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)} ---(a)
(a)ã®åŒã¯ãa^nã¯2ã€ã®èªç¶æ°ã®ç©ã§æ§æãããŠããŸããããã¯ã
α=c-b---(1)
β=c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(2)
ãšããŸãã
a^n=αβ
ããã§ãa^n=v^n u^n ãšãããšã
α=v^p
β=v^q u^n
ãããã£ãŠã
v^p=c-b
v^p=v^r(c'-b')
c'-b'=v^(p-r)
c=v^rc'
b=v^rb'
ãšããããa,b,cã¯äºãçŽ ã§ãããããããã¯ããããªãã
> ãã®2ã€ã®åŒã®ç©ãa^nãªã®ã§ãããã
> a^s=c-b---(1)
> a^(n-s)=c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(2)
> ã§ãªããã°ãªããªããšããããšã§ãã
ã ãããããããªãããã§ãªããã°ãããªãã®ããšåããŠããŸãã
ãèªåãæ£ãããšæã£ãŠããããæ£ãããã ãã§ã¯èšŒæã«ãªã£ãŠããŸããã
ãŸãããã解æ¶ãããªãéããã®å
ã®è©±ã¯èªã䟡å€ããªãã®ã§äžæŠçœ®ããšããŸãã
> a^s=c-b---(1)
ïŒä»¥äžã(6) åŒãŸã§ïŒ
ãããã a ã®çŽ¯ä¹æ°ã§ãªããã°ãªããªããšèããçç±ãæããŠãã ããã
ã€ãŸãã巊蟺ãa^nã§ããããã巊蟺ã¯aã®çŽ¯ä¹ã§ãªããšãããŸããã
ïŒåŒçšçµããïŒ
ãããåºæ¥ãã®ã¯ïœãçŽ æ°ã®å Žåã ãã§ããäŸãã°ãïœãåææ°ã§ïœïŒïœ1ïœ2ãšãããšã
a^n=(a1a2)^n=a1^na2^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)}
c-b=a1ãããããªãããc-b=a1a2ãããããŸãããïœïŒïŒãããã ã£ããå
šãŠã®çµã¿åããã調ã¹ãããŸããã
ïŒc-b=1ãªãã
a^n+b^n=(b+1)^n
a^n+b^n=b^n+nC1 b^(n-1) +nC2 b^(n-2) +nC3 b^(n-3) +ã»ã»ã»+nC(n-1) b +1
䞡蟺ããb^nãåŒããŠã
a^n=nC1 b^(n-1) +nC2 b^(n-2) +nC3 b^(n-3) +ã»ã»ã»+nC(n-1) b +1
ãšãªãã(a)åŒã«ã¯ãªããã(1),(2)åŒã¯ååšããªããªããŸãã
ãããã£ãŠãc-b=1ã§ã¯ããŸããã®ã§ãã
ïŒåŒçšçµããïŒ
c-b=1ã®å Žåã¯èšŒæããªããŠã¯ãããŸããã
a^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)} ---(a)
(a)åŒãša^n=nC1 b^(n-1) +nC2 b^(n-2) +nC3 b^(n-3) +ã»ã»ã»+nC(n-1) b +1ã¯åãåŒã§ãã
(a)åŒã«c-b=1ã代å
¥ããŠããã«c=b+1ã代å
¥ãããšã
a^n=(b+1)^(n-1)+(b+1)^(n-2)b+ã»ã»ã»+(b+1)b^(n-2)+b^(n-1)ãšãªããŸããããããäºé
å®çã§å±éããŠ
b^(n-1)ã®ä¿æ°ãèãããš1+1+ã»ã»ã»+1(nå)=nããŸããnC1=nã§ãããäžèŽããŸãã
ãŸããå®æ°é
ãïŒã§äžèŽããŸããããã€ãŸããåãåŒãšããäºã§ããã ãããc-b=1ã®å Žåã蚌æããŠäžããã
DD++ããŸãéããããïŒæ§ãããã°ãã¯ã
ããäžåºŠã泚æããŠãããããã®ã¯ãåææ¡ä»¶ã§ãã
â a,b,cã¯ãäºãã«çŽ ãªèªç¶æ°
a,bã®æ倧å
¬çŽæ°gcd(a,b)=1
a,cã®æ倧å
¬çŽæ°gcd(a,c)=1
b,cã®æ倧å
¬çŽæ°gcd(b,c)=1
ãšããããšãå®ãããŠãããïŒ
â¡a,b,c:å¥æ°ãå¶æ°ãå¥æ°
â¢a,b,c:å¥æ°ãå¥æ°ãå¶æ°
â£a^n+b^n=c^n
ã§ãã
ããšãã°ãNo.585ã®
*************
(a)ã®åŒã¯ãa^nã¯2ã€ã®èªç¶æ°ã®ç©ã§æ§æãããŠããŸããããã¯ã
α=c-b---(1)
β=c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(2)
ãšããŸãããããã£ãŠãa^n=αβ
a,b,cã¯ãäºãã«çŽ ãªèªç¶æ°ã®ç¢ºèªã¯ã(1)åŒãéœåãè¯ãã®ã§ã
ããã§ãa^n=v^n u^nïŒã€ãŸããaãçŽ å æ°å解ãããa=vuãšãããš) ãšãããšã
ããšãã°ã
α=v^p
β=v^q u^nããïŒãã ããp+q=nïŒ
ãããã£ãŠã
v^p=c-bããåŒãç®ãæç«ããã®ã§å
±éå åv^rããããšããŠã
ãŸããv^p=v^r(c'-b')ãããã«c'-b'=v^(p-r)
ãããšãc=v^rc'ãã€b=v^rb'
ãšããããa,b,cã¯äºãçŽ ã§ãããããããã¯ããããªãã
*********
ã®ããã«ã確èªããªããã°ããªããªãã¯ãã§ãã
éããããïŒããŸã
1=c-bã®å Žåã®æ€èšã¯ãåèã«ãªããŸãããããããšãããããŸãã
> å
±éå åv^rããããšããŠã
ãŸããv^p=v^r(c'-b')
ãªãã®å
±éå åã§ããïŒ
DD++æ§ããã¯ããããããŸãã
äœèšãªããšãåé€ããã°ããããšã«æ°ã¥ããŸããã
ïŒïŒïŒïŒïŒïŒïŒïŒ
ãã§ã«ããŒã®æçµå®çã®åçç蚌æãèããã
a^n+b^n=c^nã«ãããŠãa,b,cã¯èªç¶æ°ã§ãããnâ§3ã§ã¯ãæãç«ããªããšããåé¡ã§ããã
a,b,cã¯ãäºãã«çŽ ãªèªç¶æ°ã§ãããšããã
ããŠãå
¬åŒããã
c^n-b^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)}
ãŸããc^n-b^n=a^n
ãã£ãŠã
a^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)} ---(a)
ããã§ã{}ã®äžã¯ãåé
c^(n-1)ãé
æ¯b/c,é
æ°nã®çæ¯çŽæ°ã§ããã
a^n=(c-b)c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)} ---(b)
(b)åŒã®äž¡èŸºãa^tã§å²ããšãa,cã¯äºãã«çŽ ã§ãããããc^(n-1)/a^tã¯å²ãåããªãã
ãã ããtã¯t<nã®èªç¶æ°ã§ããã
ãããšã(b)ã¯ã巊蟺ã¯å²ãåããããå³èŸºã¯å°ãªããšãc^(n-1)/a^tãå²ãåããªãã®ã§ãæãç«ããªããããã«ã(a)åŒã¯æãç«ãããc^n-b^n=a^nã¯æãç«ããªãã
ãã£ãŠããã§ã«ããŒã®æçµå®çã¯ãåççã«èšŒæãããã
ïŒã³ã¡ã³ãïŒãã(b)ã¯ã巊蟺ã¯å²ãåããããå³èŸºã¯å°ãªããšã c^(n-1)/a^t ãå²ãåããªãã®
ããããããã§ãæãç«ããªããããšãããŸãããããã¯èª€éåãã§ã¯ãããŸãããïŒ
ãããåŠå®ããã®ã§ããã°ã
(c-b)c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)}
ã®c^(n-1)ãé€ããéšåããa^tã§å²ãããã€ãŸããa^tã®åæ°ã§ããããšã蚌æããªããã°ãªããŸããã
éã«ãc^(n-1)ãé€ããéšåããa^tã§å²ããªããšããããšãããããã¯ã¡ã¹ããã
ã®æ¹ã§åæã«ä»®å®ããŠããŸãããïŒ
è«çãç Žç¶»ããŠããã®ã§ãããã§ã«ããŒã®æçµå®çã¯ãåççã«èšŒæããããããšã¯
ãªããªãã®ã§ã¯ïŒ
ïŒïŒã³ã¡ã³ãïŒãã(b)ã¯ã巊蟺ã¯å²ãåããããå³èŸºã¯å°ãªããšã c^(n-1)/a^t ãå²ãåããªãã®
ããããããã§ãæãç«ããªããããšãããŸãããããã¯èª€éåãã§ã¯ãããŸãããïŒ
ãããåŠå®ããã®ã§ããã°ã
(c-b)c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)}
ã®c^(n-1)ãé€ããéšåããa^tã§å²ãããã€ãŸããa^tã®åæ°ã§ããããšã蚌æããªããã°ãªããŸããã
ïŒåŒçšçµããïŒ
ïŒa^n=(c-b)c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)} ---(b)
(b)åŒã®äž¡èŸºãa^tã§å²ããšãa,cã¯äºãã«çŽ ã§ãããããc^(n-1)/a^tã¯å²ãåããªãã
ãã ããtã¯t<nã®èªç¶æ°ã§ããã
ãããšã(b)ã¯ã巊蟺ã¯å²ãåããããå³èŸºã¯å°ãªããšãc^(n-1)/a^tãå²ãåããªãã®ã§ãæãç«ããªããããã«ã(a)åŒã¯æãç«ãããc^n-b^n=a^nã¯æãç«ããªãã
ïŒåŒçšçµããïŒ
ãc^(n-1)/a^tã¯å²ãåããªããã®ã§ãc-bãš1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)ãa^tã§å²ãåããªãäºã瀺ããã°èçæ³ã§èšŒæåºæ¥ãã®ã§ãã
ããããã1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)ãããªãèªç¶æ°ã ãšèšããã®ã§ãïŒ
äŸãã°ãïœ^2ïŒïŒã§1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)ïŒïŒ/ïŒã®å¯èœæ§ã ã£ãŠãããããªãã§ãããïŒçŽ°ãã調æŽã¯ããŠããŸãããïŒ
äŸãã°ãïŒ^2ïŒïŒ^2ïŒïŒ^2ãããïŒ^2ïŒïŒ^2ïŒïŒ^2ïŒ(ïŒïŒïŒ)(ïŒïŒïŒ)ïŒ(ïŒïŒïŒ)ïŒ(ïŒïŒïŒ/ïŒ)ã§ïŒïŒïŒ/ïŒã¯èªç¶æ°ãããªãã§ãããã
ãc^(n-1)/a^tã¯å²ãåããªããã®ã§ãc-bãš1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)ãa^tã§å²ãåããªãäºã瀺ããã°
ãšã®ããšã§ãããããã¯èšŒæãããã®ã§ããïŒ
HP管çè
æ§ãã¢ã«ã³èŠå¯æ§ãããã«ã¡ã¯ã
ïŒãããåŠå®ããã®ã§ããã°ã
(c-b)c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)}
ã®c^(n-1)ãé€ããéšåããa^tã§å²ãããã€ãŸããa^tã®åæ°ã§ããããšã蚌æããªããã°ãªããŸããã
ã§ããããã¯ãè¡šçŸããŸããã§ãã
c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)}
ãšããçæ¯çŽæ°ããa,cãäºãã«çŽ ãªã®ã§ãå²ããªããšããã¹ãã§ããããc^(n-1)ã ããåãåºãããããããããªããŸããããã¿ãŸããã
éã«ãc^(n-1)ãé€ããéšåããa^tã§å²ããªããšããããšãããããã¯ã¡ã¹ããã
ã®æ¹ã§åæã«ä»®å®ããŠããŸãããïŒ
ãããªããšã¯ãæã£ãŠããŸãããéã§ããa^tã®åæ°ã§ãªããã°ãããŸããã
ãc^(n-1)/a^tã¯å²ãåããªããã®ã§ãc-bãš1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)ãa^tã§å²ãåããªãäºã瀺ããã°
ãšã¯ãèšã£ãŠãŸãããéã§ããa^tã®åæ°ã§ãªããšãããªãã®ã§ãã
ã©ãããŠãããªã£ãã®ããªïŒ
ããããã1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)ãããªãèªç¶æ°ã ãšèšããã®ã§ãïŒ
ããã¯ãçæ¯çŽæ°c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)}ã§ãããèªç¶æ°ã§ãã
(c-b)c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)}ããa,cãäºãã«çŽ ã§ããããa^tã§å²ããªããšèšã£ãŠããã ãã§ãã
ãããåŠå®ãããªãã
(c-b)c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)}ããa^tã§å²ãããšããã°ããã®ã§ãã
ããã ãã§ãã
å±±äžééããã¯ãä»å¹ŽïŒïŒæ³ã®èªçæ¥ãè¿ããŸããããŠãŒãã³ãæ¥å¹ŽïŒïŒæ³ã§ãçããŠããã°ãå®éšãããæ¥å¹ŽïŒïŒæ³ã§ãããç§ãæ¥å¹ŽïŒïŒæ³ã§ãã
ããããã€ããããšã¯ãã§ããŸãããHP管çè
æ§ã¯ããè«çãç Žç¶»ããŠããããšèšããŸããããããç解ã§ããŸããã
ã§ãããã§ã«ããŒã®æçµå®çã¯ãn=3ãšãïœãçŽ æ°ãšããå¶éãä»ãããšãè«ççã«åãå
¥ããããŸãã
ããããnã«ãªããšããšãŠã€ããªãå£ãåã«ãç«ã¡ã¯ã ããã®ã§ãã
ããããªè©±ã§ãã
ããããªè©±ã§ã¯ãªãã®ã§ã¯ïŒäŸãã°ãå®æšã»ã³ã³ãã¹ãçšããŠãè§ã®ïŒçååé¡
ãèããå ŽåãïŒïŒÂ°ã®è§ãïŒçåã§ãããããäžè¬ã®å Žåãã§ããããšèšã£ãŠ
ãããããªãã®ã§ã¯ãªãã§ããããïŒ
FLTã®èšŒæã«ã€ããŠã§ãããè«ççã«ã¯åççã«èšŒæã§ããå¯èœæ§ã¯ãããŸãã
ãããããããŸã§ãããããªæ°åŠè
ãææŠããŠãå°ãªããšãåççãªèšŒæã¯ã§ããªãã£ãããã§ãã
ããFLTã®ç°¡åãª(äŸãã°100ããŒãžä»¥äžã®)åçç蚌æãååšããã®ã§ããã°ãåã ããæ°åŠè
ã®æã«ãã£ãŠæ¢ã«èšŒæã§ããŠããããšã§ãããã
ãšããããšã¯ãFLTã®åçç蚌æã¯(äžçãããŠãæžããããªãã»ã©ã«)ãšãã§ããªãé·ããã®ã§ããå¯èœæ§ãé«ãã§ããåœç¶ããã®èšŒæãæ£ãããã©ããæ€èšŒããã®ãå°é£ãããããŸããã
åè¶ãªãããããããã¯ã¡ã¹ãããã«ããããŸããŠã¯ãèªèº«ãæžãã蚌æãæ£ããã®ãã©ããèªåã§å€æã§ããããã«ãªããŸã§ãFLTã®èšŒæ(ãšç§°ãããã®)ã®å
¬è¡šãæ§ããŠããã ããèªèº«ãæžãã蚌æã®æ£ããã»èª€ããæ£ç¢ºã«å€æã§ããããã«ãªã£ãããFLTã®èšŒæãå
¬è¡šããŠããã ããããšæããŸãã
ãããããããããã¯ã¡ã¹ãããã®FLTã®åçç蚌æ(No.590)ã§ã¯ãn>=3ãšããæ¡ä»¶ãïŒåã䜿ã£ãŠããªãã
ãã䜿ã£ãŠãããšããã®ã§ããã°ãã©ãã§äœ¿ã£ãŠããã®ã§ããïŒ
ä»®ã«ããã®èšŒæãæ£ãããšä»®å®ãããšãn>=2ã§ãFLTãæç«ããããšã«ãªããççŸããã
ããã§ããæ£ããFLTã®èšŒæãšèšããã®ã§ããããïŒ
(泚æ)
åœé¡FLT(n)ããx^n+y^n=z^nãæºããèªç¶æ°x,y,zã¯ååšããªãããšãããšã
FLT(2)ã¯æç«ããªã(ãªããªãã3^2+4^2=5^2ãªã©ã®åäŸãå€æ°ååšããã®ã§)ã