ãã¿ãŽã©ã¹ã®å®çã®æ°èšŒæ
é¢çœãã£ãã®ã§ã玹ä»ããããŸãã
Hereâs How Two New Orleans Teenagers Found a New Proof of the Pythagorean Theorem | by Keith McNulty | Apr, 2023 | Medium
h_TT_ps://keith-mcnulty.medium.com/heres-how-two-new-orleans-teenagers-found-a-new-proof-of-the-pythagorean-theorem-b4f6e7e9ea2d
Dengan kesaktian Indukmuæ§ãããã°ãã¯ã
google翻蚳ããŸããã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
éšåã®ãã 1 ã€ã®çç±ã¯ããããã®è¥ãå
é§è
ãææ¡ãã蚌æãã確ç«ãããæ°äººã®æ°åŠè
ã«åœŒãã®èšèãé£ãç©ã«ãããããããªããšããããšã§ãã
ããã¯ã圌ãã®èšŒæãäžè§æ³ã䜿çšããŠããããã§ãã
ã§ã¯ããªãããããããªã«å€§ããªåé¡ãªã®ã§ããïŒ ããŠãç§ãã¡ã®äžè§æçåŒãšæ³åã®å€ãã¯ãã¿ãŽã©ã¹ã®å®çã«äŸåããŠãããããå€ãã®æ°åŠè
ã¯ãäžè§æ³ã䜿çšããå®çã®èšŒæã¯åŸªç°è«çã§ãããšç€ºåããŠããŸãã å¥ã®èšãæ¹ãããã°ãäžè§æ³ã䜿çšããŠãã¿ãŽã©ã¹ã蚌æããããšã¯ãåºæ¬çã« A ã䜿çšã㊠B ã蚌æããããšã§ãããA ãæ¢ã« B ã«äŸåããŠããå Žåã«ã圌ãã¯äž»åŒµããŸãã -å®çã®äžè§æ³ã«ãã蚌æãããã³äžè§æ³ã®èšŒæã¯äžå¯èœã§ããããšãæ瀺çã«è¿°ã¹ãŠããŸãã
ãããããã®èŠ³ç¹ã¯ããæ°å幎ã§ãŸããŸãçåèŠãããŠããŠããããã以æ¥ããã¿ãŽã©ã¹ã®ããã€ãã®äžè§æ³ã«ãã蚌æãè¡ãããŠããŸãã. ãžã§ã³ãœã³ãšãžã£ã¯ãœã³ã®èšŒæããã¿ãŽã©ã¹ã®æåã®äžè§æ³ã«ãã蚌æã§ãããšããã¡ãã£ã¢ã®äž»åŒµã¯èªåŒµãããŠããŸããã圌ãã®èšŒæã¯ããããŸã§ã«èŠãäžã§æãçŸãããæãåçŽãªäžè§æ³ã®èšŒæã§ããå¯èœæ§ãååã«ãããæããã«è¥ããŠéãç¥æ§ã®äœåã§ããã å€ãã®çµéšè±å¯ãªæ°åŠè
ã®ä»äºãç¹åŸŽä»ããæ·±ãç 究ã®å¹Žã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
æ°ããææ³ãªãã ãã©ãèŠããã«ã
å¥ã®èšãæ¹ãããã°ãäžè§æ³ã䜿çšããŠãã¿ãŽã©ã¹ã蚌æããããšã¯ãåºæ¬çã« A ã䜿çšã㊠B ã蚌æããããšã§ãããA ãæ¢ã« B ã«äŸåããŠããå Žåã«ã圌ãã¯äž»åŒµããŸãã -å®çã®äžè§æ³ã«ãã蚌æãããã³äžè§æ³ã®èšŒæã¯äžå¯èœã§ããããšãæ瀺çã«è¿°ã¹ãŠããŸãã
ãšããããšããåé¡ç¹ã§ããããšããããšã§ããã
ã¯ãã
ã§ãã®ã§ä»åã¯ãããã埪ç°è«æ³ãé¿ããŠããããšããç解ã§ããããããšããšã
ãããããŒãŒãŒãèªããšåŸªç°è«æ³ã®å®å
šãªåé¿ã¯åŸ®åŠã«å€±æããŠãŸãã
In this case we have an isoceles right-angled triangle and, our angles ⺠= β = Ï/4 radians. So our hypotenuse is a/sin(Ï/4) = â2a, which satisfies the Pythagorean Theorem.
ãã® sin(Ï/4) ã®å€ã¯ã©ãããïŒ
éåžžã¯äžå¹³æ¹ã®å®çã§å°åºãããã®ã§ãããããã埪ç°è«æ³ãé¿ããããšã«æåãããšäž»åŒµããã«ã¯ãããå¥ã®æ¹æ³ã§å°åºããŠèŠããå¿
èŠããã£ãã§ãããã
ãŸããçžäŒŒãªå³åœ¢ã®é¢ç©æ¯ã䜿ããšãåé¿æ¹æ³ã¯ãããã§ãããã®ã§å çä¿®æ£ã¯å®¹æã§ããããã©ã
ããã£ã
a=b ã®ç¹æ®ãªã±ãŒã¹ã§ã¯
AãCã®åæ¯ã 0 ã«ãªã£ãŠããŸã
ä»åã®èšŒæãéçšããªãã
ãããã話ã®æµããªã®ã§ããïŒïŒ
ãã®ã±ãŒã¹ã§ã®ç蚌æã«
sin(Ï/4)
ã䜿ãã®ã¯ç¢ºãã«ååã§ããã
å¯ããããŠããã³ã¡ã³ããè¿œãããããšãã
a = b ã®ã±ãŒã¹ã§ã¯ã次ã®ããã«æ¹åããæ¡ããããããŠããŸããã
By the way, that case is trivial: the triangle is a one-fourth of a square whose side length is $c$. The area of this square is c^2, while the triangleâs area is (ab)/2 = a^2/2. Therefore c^2=4 times a^2/2 = 2a^2 = a^2+b^2, as desired.
google翻蚳ããŸãã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ãã®æ°ãã蚌æ ã¯äœã§ããïŒ
ããããŸããã®ã§ããããç§ãèããæ¹æ³ã§ãã ãã®å³ãèŠãŠããã®èšŒæãéããŠãã£ãšåç
§ããŠãã ããã
å³ã®ããã«ã蟺 aãbãc (æ蟺) ãæã€å·Šäžã®åçŽãªçŽè§äžè§åœ¢ããå§ããŸãããã ããã§ã¯ãa â b ãšä»®å®ããŸããã â ãã®èšäºã®æåŸã®æ³šã§ãa = b ã®èªæãªç¹æ®ãªã±ãŒã¹ãæ±ããŸãã é·ã b ãš c ã®èŸºã®éã®è§åºŠã ⺠ãšããé·ã a ãš c ã®èŸºã®éã®è§åºŠã β ãšããŸãã 次ã«ããã®å
ã®çŽè§äžè§åœ¢ãã 3 ã€ã®å¹ŸäœåŠçãªã¹ããããäœæããŸãã
é·ã b ã®èŸºã«åæ ããŠãå³äžã®ç䟡äžè§åœ¢ã圢æããŸãã
å
ã®äžè§åœ¢ã®é·ã c ã®èŸºã«åçŽãªçŽç·ã延é·ããŸãã
åå°ããäžè§åœ¢ã®æ蟺ããé£ç¶ç·ã延é·ããŸãã
ã¹ããã 2 ãš 3 ãã延é·ããç·ã亀ãããšãå³ã®ããã«ãæ蟺ã®é·ãã Cã蟺ã A ãš c ã®æ°ãã倧ããªçŽè§äžè§åœ¢ã圢æãããŸãã
ãã®å€§ããªçŽè§äžè§åœ¢å
ã«ãå³ã®ããã«äžé£ã®å°ãããŠå°ããé¡äŒŒã®çŽè§äžè§åœ¢ãæç»ãããµã€ãºãæžå°ããé¡äŒŒã®äžè§åœ¢ã®ç¡éã®ã·ãŒã±ã³ã¹ã圢æããŸãã
ãã®ç¡éã®çžäŒŒäžè§åœ¢ã®ã·ãŒã±ã³ã¹ã䜿çšããŠãé·ã A ãš C ãå°åºããæ¹æ³ã調ã¹ãŸãã
å°ããäžè§åœ¢ã®èŸºã®é·ããå°ãåºã
蟺ã®é·ã A ã®å·Šäžãã 1 çªç®ã®çŽè§äžè§åœ¢ãèŠããšããã®äžè§åœ¢ã®èŸºã®é·ã㯠2a ã§ããããããã£ãŠæ蟺ã®é·ã㯠2a/sinβ ã§ãã ããããå
ã®äžè§åœ¢ãããsinβ = b/c ã§ããããšãããã£ãŠããã®ã§ããã®æ蟺ã¯é·ã (2ac)/b ã§ãããšçµè«ä»ããããšãã§ããŸãã ããã«ããããã®äžè§åœ¢ã® 3 çªç®ã®èŸºã¯ 2a²/b ã«ãªããŸãã
ããã«å³åŽã®äžè§åœ¢ã«ç§»åãããšãç蟺㮠1 ã€ãé·ã 2a²/b ã§ããããšãããããŸãããããã£ãŠããã®äžè§åœ¢ã®æ蟺 (蟺ã®é·ã C ã®ã»ã°ã¡ã³ã) 㯠2a²/(bsinβ) = (2a²c) /b² ã§ãã
ãã®ããã»ã¹ãç¶ããããšãã§ããŸãããå°ããªçžäŒŒäžè§åœ¢ã®ããããã a²/b² ã®ä¿æ°ã§æžå°ããããšãæããã«ãªããŸãã ããã¯ãé·ã A ãæåã®é
(2ac)/b ãšå
¬æ¯ a²/b² ãæã€çæ¯çŽæ°ã§ããããšãæå³ããŸãã åæ§ã«ãé·ã C 㯠c ã§å§ãŸããæåã®é
(2a²c)/b² ãšå
¬æ¯ a²/b² ã®çæ¯çŽæ°ã«ãªããŸãã
é·ã A ãš C ã®èšç®
ããã§ãçæ¯çŽæ°ã®åã®åŒã䜿çšããŠãé·ã A ãš C ãèšç®ã§ããŸããåé
k ãšå
¬æ¯ r ã®çæ¯çŽæ°ã®åã®åŒã¯ãk/(1-r) ã§ãã ãã®åèšã¯ãr ã®çµ¶å¯Ÿå€ã 1 æªæºã®å Žåã«åæããŸãããã®å Žåãr 㯠a²/b² ã§ãããããåžžã«åæããããšã確èªã§ããŸã (a>b ã®å Žåã¯ããããã亀æããã ãã§ã)ã
ããã§ã¯ãé·ã A ãèšç®ããŠã¿ãŸãããããã®å Žåãk = (2ac)/b ããã³ r = a²/b² ãšãªãã®ã§ã
A=2ac/b(1-a^2/b^2)=2abc/b^2-a^2
k = (2a²c)/b² ã§åæ§ã®ã¢ãããŒãã䜿çšããæåã« c ãè¿œå ããå¿
èŠãããããšãæãåºããŠãã ããã
C=c+2a^2c/b^2(1-a^2/b^2)=c(b^2+a^2)/(b^2-a^2)
ããã§ã¯ãé·ã A ãèšç®ããŠã¿ãŸãããããã®å Žåãk = (2ac)/b ããã³ r = a²/b² ãšãªãã®ã§ã
k = (2a²c)/b² ã§åæ§ã®ã¢ãããŒãã䜿çšããæåã« c ãè¿œå ããå¿
èŠãããããšãæãåºããŠãã ããã
ãã®çŸãã蚌æãç· ãããã
A ãš C ã®æ¯ãåããšã©ããªããèŠãŠã¿ãŸãããã
A/C=2ab/(a^2+b^2)
ããããå
ã®å³ããããã㯠sin(2âº) ã§ããããšãããããŸãã
ããã§ãå
ã®çŽè§äžè§åœ¢ãåæ ããŠåœ¢æãããäžã®äºç蟺äžè§åœ¢ã®æ£åŒŠèŠåãèŠãŠã¿ãŸãããã æ£åŒŠå®çã¯çŽè§äžè§åœ¢ã«äŸåããªãããšã«æ³šæããŠãã ããã ãµã€ã³ ã«ãŒã«ã¯ãã©ã®äžè§åœ¢ã§ãã蟺ãšãã®å察åŽã®è§åºŠã®ãµã€ã³ãšã®æ¯çã¯åžžã«åãã§ãããšè¿°ã¹ãŠããŸãã
ãããã£ãŠïŒ
sin 2α/2a=sinβ/c
ãããã£ãŠãçŸåšããã£ãŠããããšã次ã®åŒã«å€æããŸãã
b/(a^2+b^2)=b/c^2
ãã®ç¶æ³ã§ã¯ãaãbãc ã®ãããããŒãã§ã¯ãªãããšã«æ³šæããååãåäžã§ããããšã«æ³šæãããšãåæ¯ãåäžã§ãããšããçµè«ã«è³ããŸãã ããã§ãã¿ãŽã©ã¹ã®å®çã蚌æãããŸããã
[泚: a = b ãšããç¹æ®ãªã±ãŒã¹ã§ã¯ãäžè§åœ¢ã«é·ã a ã® 2 ã€ã®çã蟺ãšæ蟺ãããå Žåã蚌æã¯èªæã§ãã ãã®å ŽåãçŽè§äºç蟺äžè§åœ¢ããããè§åºŠ ⺠= β = Ï/4 ã©ãžã¢ã³ã§ãã ãããã£ãŠãæ蟺㯠a/sin(Ï/4) = â2a ã§ããããã¿ãŽã©ã¹ã®å®çãæºãããŸãã ããã£ã¢ã ãŠãŒã¶ãŒã«æè¬
ãŠã©ããã·ãã
ãã®ç¹å¥ãªã±ãŒã¹ã«å¯ŸåŠããå¿
èŠæ§ãææããŠãããŠ.]
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
å³ãããã«ã¯ãããŸããããåæã«ã¯ãããŸãã
æŸããã®ã§ãã
ððð ðŠ = ððð (ð¥ â (ð¥ â ðŠ))
= ððð ð¥ ððð (ð¥ â ðŠ) + ð ðð ð¥ ð ðð(ð¥ â ðŠ)
= ððð ð¥(ððð ð¥ ððð ðŠ + ð ðð ð¥ ð ðð ðŠ) + ð ðð ð¥(ð ðð ð¥ ððð ðŠ â ððð ð¥ ð ðð ðŠ)
= (ððð ² ð¥ + ð ðð² ð¥) ððð ðŠ.
cos y ã0ã§ãªããã°ã䞡蟺ãããã§å²ãã
以äžã¯ããã¿ãŽã©ã¹ã®å®çãéœã«ã¯äœ¿ããã«
cos^2x ãš sin^2x ãšã®åã 1 ãšç€ºããã®ã§ãã
å æ³å®çã¯äžäœã©ããã湧ããŠåºãã®ã§ããããã
sin ã cos ã埮åã§å®çŸ©ããŠããå Žåã¯å æ³å®çããã¯ããŒãªã³å±éãšäºé
å®çã§ç€ºãããšã«ãªãã§ããããããã®å Žåã¯ããã§å€§äžå€«ãšãã話ãªã®ããªïŒ
ãšæããŸããããå°ãèããŠã¿ãã
sâ(x) = c(x)
câ(x) = -s(x)
s(0) = 0
c(0) = 1
ã®è§£ã s(x) = sin x, c(x) = cos x ãšããå®çŸ©ã®å Žåã
{ (sin x)^2 + (cos x)^2 }â = 0 ãäžç¬ã§ç€ºããã®ã§ãå æ³å®çã䜿ããŸã§ããªãã£ãâŠâŠã
çŽæ°ã§å®çŸ©ããå Žåããã®åŸ®åã®é¢ä¿åŒãããäœããŸãããäœãç®çãšããåŒå€åœ¢ã ã£ããã§ããããã³ã¬ã
倱瀌ããŸããã
æŸã£ãå ŽæãèšãæŒãããŸããã
https://forumgeom.fau.edu/FG2009volume9/FG200925.pdf
ã§ãã
ããéè§éå®ãªãã§ããã
ãããªã確ãã«å æ³å®çã«äžå¹³æ¹ã¯äžèŠã§ããã
ã§ããéè§éå®ã§ããã£ã±ãå æ³å®ç䜿ããŸã§ããªããããªæ°ãããŸããã
â B = Ξ, â C = Ï/2, AB = 1 ã®äžè§æ¯ã®å®çŸ©ã«äœ¿ããã€ãã®çŽè§äžè§åœ¢ ABC ã«å¯Ÿãã
蟺 DE ãç¹ C ãéãããã«é·æ¹åœ¢ ABDE ãæžãã°çžäŒŒãªçŽè§äžè§åœ¢ã 3 ã€ã§ããŠã
BC = cosΞ 㧠DC = (cosΞ)^2
AC = sinΞ 㧠EC = (sinΞ)^2
(cosΞ)^2 + (sinΞ)^2 = DC + EC = AB = 1
ã§çµãã話ãªãããªã
Dengan kesaktian Indukmuæ§ããã¯ããããããŸãã
ïŒã§ãã®ã§ä»åã¯ãããã埪ç°è«æ³ãé¿ããŠããããšããç解ã§ããããããšããšã
ããããsinαãsinβãšããäžè§é¢æ°ã®æŠå¿µã䜿ã£ãŠããŸãããã
ïŒèŸºã®é·ã A ã®å·Šäžãã 1 çªç®ã®çŽè§äžè§åœ¢ãèŠããšããã®äžè§åœ¢ã®èŸºã®é·ã㯠2a ã§ããããããã£ãŠæ蟺ã®é·ã㯠2a/sinβ ã§ãã ããããå
ã®äžè§åœ¢ãããsinβ = b/c ã§ããããšãããã£ãŠããã®ã§ããã®æ蟺ã¯é·ã (2ac)/b ã§ãããšçµè«ä»ããããšãã§ããŸãã ããã«ããããã®äžè§åœ¢ã® 3 çªç®ã®èŸºã¯ 2a²/b ã«ãªããŸãã
ãããæããã§ãããsinβ = b/c ã¯ã
ïŒããã«å³åŽã®äžè§åœ¢ã«ç§»åãããšãç蟺㮠1 ã€ãé·ã 2a²/b ã§ããããšãããããŸãããããã£ãŠããã®äžè§åœ¢ã®æ蟺 (蟺ã®é·ã C ã®ã»ã°ã¡ã³ã) 㯠2a²/(bsinβ) = (2a²c) /b² ã§ãã
ã§ã䜿ãããŠããŸããb/cãsinβãšããããšãªãã«ãè«çã¯ãã¿ããŠãããªããšæããŸãã
ïŒA ãš C ã®æ¯ãåããšã©ããªããèŠãŠã¿ãŸãããã
A/C=2ab/(a^2+b^2)
ããããå
ã®å³ããããã㯠sin(2âº) ã§ããããšãããããŸãã
ããã§ããsin(2âº)ãšããäžè§é¢æ°ã®æŠå¿µã䜿ãããŠããŸãã
ïŒåŸªç°è«æ³ãé¿ããŠãã
ãšã¯èšããªãã®ã§ã¯ãªãã§ããããïŒ
ã§ãªããã°ãæç« ã®ååã¯ããããªãã£ãã¯ãã§ããã埪ç°è«æ³ãªããã©ãããšããå眮ããããããããã®ææžãããã®ã§ã¯ãªãã§ããããïŒ
äžè§é¢æ°ã®å®çŸ©èªäœã䜿ãã ããªã埪ç°è«æ³ã«ã¯ãªããŸãããã
ãæå
ã®æ°åŠã®æç§æžãèŠãŠãã ããã
(sinΞ)^2 + (cosΞ)^2 = 1 ãšããéèŠãªåŒã®èšŒæã«äžå¹³æ¹ã®å®çãé¢ãã£ãŠããŸããã
ã ããããã®ããŒãžããåŸã«æžããŠããããšã¯ãäžå¹³æ¹ã®å®çã®èšŒæã«äœ¿ã£ãŠã¯ãªããŸããã
èšãæ¹ãå€ããã°ããã®ããŒãžããåã«æžããŠããããšã¯å¥ã«äœ¿ã£ãŠãäœãåé¡ã¯ãªããã§ãã
ã ãããäžè§é¢æ°ïŒã®äžå¹³æ¹ã®å®çã䜿ãåã®éšåïŒã§ãã¡ããšäžå¹³æ¹ã®å®çã蚌æããããšã«æåããããšãã話é¡ãªã®ã§ããã
ã¯ã¡ã¹ãããã¯ã©ããæ°åŒããèŠãŠããªãããã§ãããèšèªãšåãããŠèªãããã«ããæ¹ãããããããšã
(sinΞ)^2 + (cosΞ)^2 = 1
ãããåæãšããã«
æ£åŒŠå®çã£ãŠãªããã€ãã ã£ãïŒ
ãããã念ã®ããã«ç¢ºèªã¯ããããŸããã
埪ç°è«æ³ã«ãªã£ãŠããªãããšã確èªããããã§ãã
ããããããã°æ£åŒŠå®ç䜿ã£ãŠãŸãããã
ã§ã¯ã2 ã€äžã®ã³ã¡ã³ããèšæ£ã
ãäžè§é¢æ°ïŒã®äžå¹³æ¹ã®å®çã䜿ãåã®éšåãšãæç§æžã®æ²èŒé çã«ã¯åŸãã ãã©äžå¹³æ¹ã䜿ããã®ã«äŸåãã蚌æãæ§æãããŠãããã®ïŒã§ãã¡ããšäžå¹³æ¹ã®å®çã蚌æããããšã«æåããã
ã§ããã
éè§ã®äžè§æ¯ã®å®çŸ©
tan = sin / cos
éè§ã®æ£åŒŠå®ç
第äžäœåŒŠå®çïŒé«æ ¡ã§ç¿ããã€ã¯ç¬¬äºäœåŒŠå®çã§ããã£ã¡ã¯ãã¡ïŒ
éè§ã®å æ³å®çâŠâŠãããã§ããã
ãªããæããã§äŒŒããããªããšãã£ããããªããšæã£ãŠèª¿ã¹ãŠã¿ãããããŸããã
ãäžç·å®çã
http://shochandas.xsrv.jp/mathbun/mathbun658.html
äžå¹³æ¹ã®å®çã䜿ããã«äžç·å®çã瀺ãããããšãã話é¡ã§ãã
ååã¯ãªãã¯ãããé£ã¹ãããã«ããŠãããŸãã
管ç人ããããç矩ãããã£ãŠããããšã«
æ°ãä»ããŸãããæŠããäžèšã®ããšããšåããŸãã
ãæ£åŒŠå®çã¯(第ïŒ)äœåŒŠå®çããå°ãããããã®äœåŒŠå®çããã¯çŽæ¥ã«äžå¹³æ¹ã®å®çãå°ãããããžã§ã³ãœã³ãšãžã£ã¯ãœã³ã«ããä»åã®æ°èšŒæãæ£åŒŠå®çã«äŸæ ããã®ã¯ãŸããã®ã§ã¯ãªããïŒã
ç§ãå°ã
èã蟌ã¿ãŸããã
調ã¹ããšããã以äžãããããŸãããããªãã¡
äžè§é¢æ°ã®å æ³å®çã®ããšã§ã¯
æ£åŒŠå®çãšç¬¬ïŒäœåŒŠå®çãšç¬¬ïŒäœåŒŠå®çãšã¯
åå€ã§ããã
ã§ããã
å æ³å®çã«äŸæ ãã€ã€
ãžã§ã³ãœã³ãšãžã£ã¯ãœã³ãšã®æ°èšŒæãç解ããããšãããã¯ãŸããããã埪ç°è«æ³ã®è¬ããå
ããªãã
ãããã©ãããã°ããã®ãïŒ
æ£åŒŠå®çã®åçš®ã®èšŒæã調ã¹ãŠãã ãã£ãŠããããã¹ããã¿ã€ããŸããã
http://izumi-math.jp/K_Satou/seigen/seigen.htm
äžèšã®ãªãããé©åãªãã®ãèŠãã ããã°ãããšæããŸããã
ãžã§ã³ãœã³ãšãžã£ã¯ãœã³ã¯
é¢ç©ã«ãã蚌æãåé¿ã
蟺ã®é·ãã®çžäŒŒãå©çšããŠããŸããã
ãã®å¿åãšãæŽåããã»ããè¯ãã§ããã
ãããã®ææžã®ãæ®éã®èšŒæïŒïŒïŒã
ã解ããããããšæããŸããã
ãããã¯ã
ãïŒã幟äœåŠç蚌æãïŸïœ¯ïŸïœ°ïŸïŸã«ãããäžè§æ³ã®åºç€ãã€ãã£ãïŸïœ·ïŸïœµïŸïŸïŸïŸïœœ(1436-1376)ã®èšŒæã
ãçŽ æµã§ãã
ããã«ããŠããDD++ããã«ãã
No.858
ã¯ã¯ãŒã«ã§ããã
æå
ã«é«æ ¡æ°åŠã®æç§æžããªãã®ã§èšæ¶é Œãã§ãããæ¥æ¬ã®é«æ ¡æè²ã§ã¯æ£åŒŠå®çã¯åãååšè§ããã€çŽè§äžè§åœ¢ã䜿ã£ãŠèšŒæããŠãããšæããŸãã
ããã§äœ¿ã£ãŠããã®ã¯
ã»ååšè§ã®å®ç
ã»ã¿ã¬ã¹ã®å®ç
ã»äžè§æ¯ã®å®çŸ©
ã»çŽåŸãšååŸã®å®çŸ©
ãããã ã£ãã¯ãã§ãäžå¹³æ¹ã®å®çã¯å
šã䜿ã£ãŠãªãã§ããã
äœåŒŠå®çã䜿ãæ¹æ³ã¯ãç§ã¯ä»å調ã¹ãŠåããŠååšãç¥ããŸããã
æµ·å€ã ãšã©ã®æ¹æ³ã§ã®èšŒæãã¡ãžã£ãŒãªãã ããã
law of sines ã§æ€çŽ¢ããŠè±èªããŒãžãããããèŠãŠã¿ãŸããã
æ¥æ¬ãšã¯éã£ãŠã=2R ãã€ããŠããªã圢ã§çŽ¹ä»ãããŠããããšãã»ãšãã©ã®ããã§ãã
ãã®ããã蚌æã以äžã§çµãããšããã®ãæ®éã®ããã
A ã B ãéè§ã®å Žåãé ç¹ C ãã蟺 AB ã«äžãããåç·ã®é·ããèãããš
b*sinA = a*sinB
䞡蟺ã sinA ããã³ sinB ã§å²ã£ãŠåŸãããã
ã©ã¡ãããéè§ã®å Žåã¯å
è§ãšå€è§ã® sin ã®å€ã¯çããããšãèããã°åãããšãèšããã
åé¡ã¯äžå¹³æ¹ã®å®çã䜿ã£ãŠãããã©ããã
çŽè§ãéè§ã®å Žåã¯ããããäžå¹³æ¹ã®å®çã䜿ã£ãŠå®çŸ©ããã®ã§ãã¡ã§ãããéè§ã®å Žåã«éå®ããã°äœ¿ã£ãŠãªãã§ããã
ãããŠä»¶ã®èšŒæã§ã¯ã2αãβãéè§ã§ãã
ãã£ãŠãæµ·å€ã§äž»æµã£ãœãæ£åŒŠå®çã®èšŒææ¹æ³ãåæãšããå Žåã埪ç°è«æ³ã«ã¯ãªã£ãŠããªããšèšã£ãŠããããã§ãã