æ°ã®è¡šçŸïœç¶ãïŒ
ããããã¯ã¡ã¹ãããã®ä»°ã
ã0.999ã»ã»ã»=9/10+9/10^2+9/10^3+9/10^4+ã»ã»ã»ã»ã¯ãç¡çæ°ã§ããã
ãçŽæ¥èšŒæããŠããã ããŸãããïŒ
管ç人æ§ããã¯ããããããŸãã
ãã€ãããè¿·æãããããŸãã
ããã¯ãæçæ°ã¯ãååæŒç®ã§æçæ°ã§éããŠãããšããäºå®ã§ãããªããããã®ç¡éåãç¡çæ°ã«ãªããšããããŒãŒã«åé¡ãæ£ãããšããçµè«ãããå°ãåºããããã®ã§ãç§ãããã蚌æã§ããæéã»ãã³ãã¯ãçŸåšæã¡åãããŠãããŸããã
ããããå°æ¥ããããããã£ã³ã¹ã«æµãŸãããšããŸã§ããåŸ
ã¡ãã ããã
ãŸããæçš¿ã®äœèšãªäžæã管ç人æ§ã®ãæ©å«ãæããããšããèš±ããã ããã
ãããšããã¹ãŠã®ç¡éå°æ°ã¯ãç¡çæ°ã«ãªãã®ã§ã¯ãªãããšããçåããçãããšæããŸãã
ãã®çåãçãã¯ã
ã§ã¯ã1/3ã¯ãç¡çæ°ã«ãªããªãã®ããšãããšã1/3ã¯1÷3ã§ãããŸãã埪ç°ããããã埪 ç°ããã®ã§ãã〠ãŸããïŒÃ·3=0.333ã»ã»ã»ïŒïŒïŒïŒïŒã»ã»ã»ã»ïŒã§ãïŒïŒïŒïŒã»ã»ã»ã»ïŒã¯ãããŸãã§ãã
ã€ãŸããæŒç®ãå¯èœãªç¯å²ã§0.333ã»ã»ã»ã䞊ãã§ããã®ã§ãç¡éã§ã¯ãæŒç®ãã§ããªãã®ã§ã1÷ïŒã¯ãæéå°æ°ã«ãªãå¯èœæ§ããããŸãããããã£ãŠãæçæ°ã§ãã
ãã®èª¬æã§ã¯ãâïŒã¯ãç¡çæ°ã§ãããç¡éã«èšç®ããŠããã®ã§ãç¡éã§ã¯ãæŒç®ãã§ããªããªããæéå°æ°ã«ãªãå¯èœæ§ããããŸãããããã£ãŠãæçæ°ã§ããšãªã£ãŠããŸãã§ã¯ãªããïŒ
ããã«ã¯ã埪ç°ããç¡éå°æ°ã¯ãæçæ°ã«å«ãŸããŸããã埪ç°ããªãç¡éå°æ°ã¯ç¡çæ°ã§ããããçãã«ãªããªãã§ããããïŒ
ã€ãŸãã埪ç°ããŠãªããšãããªãã®ã§ãã
ïŒïŒïŒïŒïŒã»ã»ã»ã¯ãæ ¹æ ããªãã«ãã ãïŒã䞊ã¹å€æ°ã§ããããæŒç®ã¯ã©ãã«ããããŸããã
埪ç°å°æ°ã¯æçæ°ãªã®ã§ãåæ°ã«ã§ããŸãããïŒïŒïŒïŒïŒã»ã»ã»ã¯ãåæ°ã«ã§ããŸãããç§ããx=aãšããŠãïŒïŒåããŠåŒããŠãx=aã§ããã
0.333ã»ã»ã»ãšãã埪ç°å°æ°ãåæ°ã«ããæ¹æ³ã§ã¯ã1/3ã«ãªããŸããã1/3ã¯ãïŒïŒïŒïŒïŒã»ã»ã»ãããïŒïŒïŒïŒïŒã»ã»ã»ã»ïŒã§ãïŒïŒïŒïŒã»ã»ã»ã»ïŒã¯ãããŸãã§ããã€ãŸããïŒïŒïŒïŒïŒã»ã»ã»ãã倧ãããªã£ãŠããã®ã§ãããã埪ç°å°æ°ãåæ°ã«ããæ¹æ³ã¯ãééãã§ãã
ããããã¯ã¡ã¹ããããè«çãç Žç¶»ããŠããŸãããïŒ
è«çãç Žç¶»ããŠãŸããïŒã©ã®ãžãã§ããããïŒããã¯ãããŠãããŠãå€åã
ïŒããã¯ãæçæ°ã¯ãååæŒç®ã§æçæ°ã§éããŠãããšããäºå®ã§ãããªããããã®ç¡éåãç¡çæ°ã«ãªããšããããŒãŒã«åé¡ãæ£ãããšããçµè«ãããå°ãåºããããã®ã
ããšããšãæçæ°ã¯ãååæŒç®ã§æçæ°ã§éããŠãããšããäºå®ã§ãããªããããã®ç¡éåãç¡çæ°ã«ãªããšããããŒãŒã«åé¡ãæªããã®ã§ãã
ãããšããã¹ãŠã®ç¡éå°æ°ã¯ãæçæ°ã«ãªã£ãŠããŸããŸããããŒãŒã«åé¡ãæ£ãããã°ããã¹ãŠã®ç¡éå°æ°ã¯ãç¡çæ°ã«ãªã£ãŠããŸããŸãã
ïŒåŸªç°ããç¡éå°æ°ã¯ãæçæ°ã«å«ãŸããŸããã埪ç°ããªãç¡éå°æ°ã¯ç¡çæ°ã§ããã
ãããççŸããŸãã
ããšããšãæçæ°ã¯ãååæŒç®ã§æçæ°ã§éããŠãããšããäºå®ã§ãããªããããã®ç¡éåãç¡çæ°ã«ãªããšããããŒãŒã«åé¡ã¯ãäžé©åãªåœé¡ãªãã§ããããã
ããã§çµããã«ããŸãããã
é·ãéããè¿·æãããããŸããã
âŠâŠé¢ä¿ãããã®ãããããªããšæããŸããŠæçš¿ããããŸãã
ãŸãã¯åèæç®ã®ãæ¡å
ããã
â ãé«æ ¡çã«ããããç¡çæ°ãã®æŠå¿µãïŒå€§å±±æ£ä¿¡ã»ç±³æ²¢å
æŽïŒ
( https://core.ac.uk/download/pdf/144571306.pdf )
ãã®åèæç®ã® p.10 ããåŒçšããŸãã
-----
圌ã®ãã®èª€è§£ã¯,圌ãã1ãã«ãããŠ,ãç¡çæ°ãšã¯ç¢ºå®ããæ°ãååšããªããã®ããšããŠãããšããããçããŠãããšèãããã
-----
åŒçšéšåã«ããçåŸã®èª€è§£ã¯ããç¡éåã®æäœãå¿
èŠãšããã®ã§ãã€ãŸã§ãã£ãŠã確å®ããå€ãåããªãããšãã£ãæ°æã¡ãããããã®ãªã®ã§ããããšæšå¯ãããŸãã
èªåèªèº«ãæ¯ãè¿ããŸããšãå°åŠçãããã®é ãŸã§ã¯åããããªæ°æã¡ã匷ãã£ããšæããŸãã
ç§ã®å Žåã«ã¯äžåŠäžå¹Žã®é ã«åºäŒã£ãé¢æ ¹å
çã®æãæ¹ãäžæã ã£ãã®ãããããŸããããã©ããªããšãªãã§ããããããçåã¯æ¶ããŠããŸããŸããã
é¢æ ¹å
ç㯠確ãã
ãå
šãŠã®æéå°æ°ã¯ç¡éå°æ°ãšããŠãæžãããšãã§ãããæžãæ¹ãéãã ãã§å€ã¯åãã ããšãã€ãã宣èšããŠããã£ããããŸããã
ãããã宣èšã念ä»ãããã¯åŸ¡é¡ç®ã®ããã«ããšããããšã«ããªãã³ã®å£°ã§ç¹°ãè¿ããŠããã£ããããŸããã
é¢æ ¹å
çã奜ããªäŸé¡ã¯ïŒ/ïŒã§ããã
é»æ¿ã«æžãã®ã¯ãã€ã
ïŒ.ïŒïŒïŒïŒ.ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒâŠâŠâŠâŠâŠâŠâŠâŠâŠ
ã§ããããã§ãŒã¯ã§âŠâŠãçŽ æ©ãé»æ¿ã®ç«¯ãã端ãŸã§äžæ°ã«æžãå¿
殺æããæã¡ã§ããŠãäžéšã®çåŸãã¡ãç䌌ããããšå¥®éããŠããããšãæãããæãåºãããŸãã ããããªããªãé£ããã®ã§ãããã©ã
å°»åããã³ãã§ãããã©ããä»åã®æçš¿ã¯ä»¥äžã§ãã
è¿œèšïŒå
çšã®åèæç®ã§ãåæãé¢é£ã®åããããè¡ãªã£ããšãã®çåŸãã¡ã®åå¿ã«ã€ããŠã®ã¢ã³ã±ãŒãçµæãåºãŠããŸããŠå€§å€ã«èå³æ·±ããã®ã§ããã
以äžã§ãã
ãããŠãããããã¯ã¡ã¹ãããã¯ããããããïŒäººã§è¡ãã°ãŒãã§ãããŒã§è¡ããžã£ã³ã±ã³ã¯ïŒåççã«ã¯ïŒå
¬å¹³ã§ãããšãèãã®çã§ãã
ã
ãžã£ã³ã±ã³ãœãã£ã
ãããã§ããã£ã
ãããã§ããã£ã
ãããã§ããã£ã
åã£ããŒïŒè² ãããŒïŒ
ã
ãšããäŸã®ãã€ã§ãã
ã
ããã®ãžã£ã³ã±ã³ã®ã«ãŒã«ã¯å
¬å¹³ã§ãããããšãš
ãïŒé²æ³ã§èšããšãã« ïŒ/ïŒ ïŒ ïŒ.ïŒïŒïŒïŒïŒïŒâŠâŠâŠïŒç¡éå°æ°ïŒã®çåŒãæç«ããã
ããšãšã¯åå€ã§ããããšãææããŠããããæããŸãã
Dengan kesaktian Indukmuæ§ãããã°ãã¯ã
ããããšãããããŸãã
> ãã®ããšããã
> 0.999ã»ã»ã»=9/10+9/10^2+9/10^3+9/10^4+ã»ã»ã»ã»
> ã¯ãç¡çæ°ã§ãããšãªããŸããã
ãªããããªããããªãã§ããã
ç§ã®äž»åŒµãåæã«æ»ãæ²ããªãã§ãã ããã
ç¶ã2ã«å
¥ã£ãŠããã®æçš¿ãèŠãŸããããã¯ã¡ã¹ãããããã£ãŠããããšã¯æ°åŠãšåŒã¹ãªãããã«æããŸãã
ã¯ã¡ã¹ãããã¯ãæ ¹æ ãããããšãªããããšèªåã®äºæ³ãééã£ãŠããããããªããšããåæã«ç«ã£ãŠããããã«æããŸãã
ãã®ãããªèãæ¹ã¯ãè¯ãèšã£ãŠå®æãæªãèšãã°åŠæ³ãšåŒã°ããã¹ããã®ã§ãã
ããã¯æ°åŠã®å Žã§ãã
蚌æãçšæã§ããªãã®ãªãã°ïŒå
¬çãšå®çŸ©ãé€ãïŒã©ããªèšè¿°ãçå®ãã©ããããããªãããšããæ°åŠçç«å Žã§çºèšããŠãã ããã
DD++æ§ããã¯ããããããŸãã
ãææããããšãããããŸãã
ããŠãhttps://ja.wikipedia.org/wiki/0.999...ã«ããã°ã0.999ã»ã»ã»=1ãšããäœç³»ãããã°ã0.999ã»ã»ã»<1ãšããäœç³»ãããããã§ããããã¯ãç¡éå°ã0ãšãããããªããã®éãã ããã§ãã
æšæ¥ã¯ã2æ¥ãæŽæ°ããããããã¯ãDD++æ§ãžã®è¿ä¿¡ããå¿
èŠã§ãããšæ°ã¥ããŠãæçš¿ããã®ã§ããããã®è¡ã¯ãDD++æ§ã®çºèšã®åçã«ã¯ãäžèŠã§ãããšæ°ã¥ããŠããã®è¡ãæ¶ãããšæã£ãæã«ã管ç人æ§ã®æçš¿ããã£ãã®ã§ããããã§ãäžèŠãªäºæ
ãæããŠããŸããŸããã
çæ§ã倧å€ããè¿·æãããããŸããã
ããããã¯ã¡ã¹ãããã¯ã
ãã0.999ã»ã»ã»=1ãšããäœç³»ãããã°ã0.999ã»ã»ã»<1ãšããäœç³»ãããã
ãšããããšãç¥ã£ãäžã§ãã0.999ã»ã»ã»=1ãšããäœç³»ãã¯èª€ãã ãšããç«å Žãªãã§ãããïŒ
管ç人æ§ããã¯ããããããŸãã
ç¡éå°ãâ¿ãšããŸãã
ïŒïŒïŒïŒïŒã»ã»ã»=1ã®èãã§ã¯ãâ¿ïŒïŒã§ãã
äžæ¹ïŒïŒïŒïŒïŒã»ã»ã»ïŒ1ã®èãã§ã¯ãâ¿ïŒïŒã§ãã
ããã§ãååæŒç®ããç¡éã§ãé©çšã§ãããšããŸãã
ïŒïŒããŠãå®æ°ã¯é£ç¶ãªã®ã§ãaïŒâ¿=bãšãããšãa,bã¯é£ãåãã¯ãã§ããã
ãšããããâ¿=0ãªããa=bã§ãåããã®ã§ããå®æ°ã¯ãé£ã³é£ã³ã§ãé£ãåããã®ãã§ããªããé£ç¶ã§ãªããšãªããŸãããïŒ
ïŒïŒæçæ°ã®çš å¯æ§ã§ãa<bãªããa<(a+b)/2<bã§ããã(a+b)/2=cãšãããšã
a<(a+c)/2<c<bã§çš å¯ãªãã§ãããã
ããã§ãïœïŒïŒâ¿+aãšãããšãa<(a+b)/2<bã¯
a<(a+â¿)<a+2â¿
ãšãªããŸãããâ¿=0ã§ã¯ããã®äžçåŒã¯æãç«ã¡ãŸãããã
ãããšãæçæ°ã®çš å¯æ§ãæãç«ã¡ãŸãããšãªããŸãããïŒ
ç§ã¯ãæ®éã®äžè¬äººãªã®ã§ããããªåæ©çãªçåã§ãã
> ããŠãå®æ°ã¯é£ç¶ãªã®ã§ãaïŒâ¿=bãšãããšãa,bã¯é£ãåãã¯ãã§ããã
ãé£ãåãããšã¯äœãæå³ããŠããŸããïŒ
ãããŠããã®æå³ã®äžã§ãaïŒâ¿=bãšãããšãa,bã¯é£ãåããã®èšŒæã¯ïŒ
DD++æ§ãããã«ã¡ã¯ã
aâ bãšãªãb>a>0ãšããŸããc=(b-a)ãšãããšãcã®æå°å€ã¯ãâ¿ã«ãªããŸãããã
aãšbã®è·é¢ã¯ãæå°å€â¿ã§ããããé£ãåããšãªããšæããŸãã
äžæ¬¡å
ã®ã°ã©ãäžã®a,bãšãªããšã話ãéã£ãŠããŸãããæ°çŽç·ã§èãããšãšããããšã§ãã
cã®æå°å€ã¯â¿ãããªãããã§ãããã
ãªãã以äžã®è©±ã¯ããªããã®ãšããŠãããŸãã
ïŒïŒé£ç¶ãªããa<(a+b)/2<bãååšããããæå°å€ã¯â¿/2ã ãïŒç¡éå°ã¯â¿ãªã®ã§ãïŒãšã¯ãªããŸããããã
ïŒïŒåŸ®åã®â¿ïŒâ¿^2>0ããããã§ã¯ãæ±ããªããšããŸãã
(1) ãé£ãåãããšããèšèãæ£ç¢ºã«å®çŸ©ããŠãã ããã
(2) ãã® c=
b-a ã«æå°å€ã¯ååšããŸããã
ãé£ãåããšã¯ã
æå°ç®çãå¹
ãâ¿ã®æ°çŽç·ã§ãç®çãäžã®aã®é£ã®ç®çãäžãbãšããŠãé£ãåãa,bãšèšã£ãŠãŸãã
ãã¹ãŠã®ç¹ã¯ãæå°ç®çãå¹
ã®èªç¶æ°åã«ãããšããŸãã
ãã ããa,bã3ç®çãé¢ããŠãããšãäžç¹cã¯1ïŒ5ç®çããªã®ã§ãç®çãäžãããããŠããŸããŸãã
ãŸããç¹éã¯ãç¡éå°ä»¥äžãå®ããªããšãããªãã®ã§ãé£ç¶ããã«ã¯ããã¹ãŠã®ç¹ã¯ãæå°ç®çãå¹
ã§ãªããã°ãªããªããšæããŸãã
ããžã¿ã«çã ãšæããããããŸããããç¡éå°ééã§ããç®çãã¯å¯ä»çªã§ãã©ãäžã€åããã®ã¯ãããŸããã
ã€ãŸããâ¿=0ã ãšããã¹ãŠã®ç¹ãã座æšã§æ±ºããããŠããã°ãäžç¹ã«éãªããŸãã座æšãšã¯ç¡é¢ä¿ãªãã°ã座æšãïŒç¹ã«ãªãã®ã§ãå€ãã®ç¹ãæ¶ããŠããŸããŸããããã¯ãå
ã«ãâ¿ïŒïŒã§åº§æšã決ãŸã£ãŠãããã®ããâ¿ïŒïŒã«ãããšããåéãã§ããã
c ãç®çãäžãããããŠããŸããšããã®ã¯ã
ã»c=(a+b)/2 ã¯å®æ°ãšã¯èªããªã
ã»ãã®ç¹ã®éåã¯å
šãŠã®å®æ°ãè¡šããŠããªã
ã®ã©ã¡ãã§ããïŒ
ïœã¯ãå®æ°ã§ãã
ç®çãäžã§ããªããšãããªããšããã®ã§ã¯ãªããŠãç¹ãšç¹ã®å¹
ãâ¿ä»¥äžããã°ããã®ã§ã¯ãªãã§ããããïŒ
æåã«æžããb=a+â¿ã§ãããããç®çãä»ãã®æ°çŽç·ã§ã説æããã»ãããé£ãåããšããããšã説æããããã£ããã®ã§ã»ã»ã»ã»
ã ãããé£ç¶ããç¹ãšç¹ã®å¹
ãâ¿ã§ããã°ãç®çãäžã§ããå¿
èŠã¯ãªããšæžããã€ããã§ãã
ã§ã¯ãa ãš b ã®éã 3 ç®çãã ãšããŠã
c=(a+b)/2 ãš d=(a+2b)/3 ã®è¡šãç¹ã®å¹
ã¯ããã€ã§ããïŒ
ããããã¯ã¡ã¹ããããÎãæã¡åºããŠããããã®ã§ã暪å
¥ãã§ãããã©ãã²ãšããšãã
ããããã¯ã¡ã¹ããããçŸåšå±éãªããããšããŠããç¡éå°ã«ã€ããŠã®ã話ãã®çç«ãŠã«ã¯æªæ¥ããããŸãããæ©æ©ãççŸããã¡ãã¡ããå¹ãåºããŠè¡ãè©°ãŸããŸãããããŠãããã»ããããã§ãã
ããããã¯ã¡ã¹ããããããªãªãžãã«ãªæ¹æ³ã§ãçå£ã«ç¡éå°ãå®æ°ã«çµã¿èŸŒãããšæã£ãŠããã£ãããã®ã§ããã°ã
æ°åŠåºç€è«ãã²ãšãšããå匷ãããªãã§ãã¢ãã«çè«ã«ã€ããŠèªä¿¡ãæãŠãã»ã©ã«ãã£ãããšèº«ã«ã€ãã
ããããæŠåšãé§äœ¿ããäžã§ãªãªãžãã«ã®è¶
å®æ°ã«ã€ããŠäœç³»ãæ§æããŠããã¹ãã§ãã
ç§ãã¡ã¯ãéåžžãæšæºçãªã¢ãã«ã®äžã§æ°åŠã«ã€ããŠèªãåã£ãŠããŸãã
ããŸãããããã¯ã¡ã¹ãããã¯ãæšæºçãªã¢ãã«ã®äžã§ãÎãæã¡åºããŠããã£ããããŸãããããã¯äžæ¯ã§ããæšæºçãªã¢ãã«ã«ã¯ãã£ããããããªæŠå¿µã®ã€ãããéã¯ãããŸããã
ã§ãã®ã§ããç§ã¯ãã®ããã«ç¡éå°ãæãããããšããã®ã§ããã°ã
å
šãæ°ããéæšæºçãªã¢ãã«ã®äžã§ã®æ°ã®äœç³»ãåµé ããªããã°ãªããŸããã
ããã¯ãçŽ äººã«ã¯ç¡çãªè©±ã§ãã
ããããŒã«ããããšãããšå€±æããã®ã§ãå³å¯ãªããæ¹ããŸãã¯åŠã¶å¿
èŠãããã®ã§ãããã¶ãã倧åŠé¢ã¬ãã«ã
ãªããæ°ããã¢ãã«ã®äžã§ç¡éå°ãå®åŒåãå®æ°ã®äœç³»ãè£å®ãæ°ããæ°ã®äœç³»ãçã¿åºããäºäŸã¯æ¢ã«ã*è€æ°*ããååšããŠããŸããã
ãããããªãã«ã¯ã1ïŒïŒ.ïŒïŒïŒâŠãæ¯ãšããäœç³»ãã1ïŒïŒ.ïŒïŒïŒâŠãæ¯ãšããäœç³»ãããšãã«ããã®ã ããã§ããã
ã©ããæ£è§£ã ããšããåãã¯ååšããããããããããããã®ææ³ã§æ°ã®äœç³»ãæ§ç¯ãããããããªã£ããããããããã§ãããªãã®ã§ãã
éããŠç³ãäžããŸãããæšæºçãªã¢ãã«ã§ã®äžã§ã®å®æ°äœãåæãšããŠããã倧æŠã®æ°åŠæ²ç€ºæ¿ã§ã¯ãïŒïŒïŒ.ïŒïŒïŒâŠâŠãçã§ãã
ãããåœã ãšããã¯ããããšãããããäŒè©±ãããŸããããŸããã
ãã ã£ããæ°ããäœç³»ã建èšããŠãã£ãŠããŠããæ°åŠåºç€è«ã®èšèã§åçš®ã®è¿°èªãå®çŸ©ããŠãå
¬çã»å®çã®é£éã§ãã£ãŠãå®æ°äœã®æ¡åŒµãããŠã¿ãŠãã ãããããšãããåå¿ã§ããŸããããã
â»ããããããã³ãœã³æµã®è¶
æºè§£æã§ããïŒïŒïŒ.ïŒïŒïŒâŠâŠã ã£ãæ°ãããŸãããäžå匷ã®ç§ã§ãããçåŸã§ããã