äºé å®çã®äžæè°
äºé
å®çã¯ã
(a+b)^n=nC0 a^n b^0+nC1 a^(n-1) b^1+nC2 a^(n-2) b^2+nC3 a^(n-3) b^3+ã»ã»ã»ã»+nC(n-1) a^(n-(n-1)) b^(n-1)+nCn a^(n-n) b^n---(1)
ã§ã
ããããn
(a+b)^n=Σ{nCi a^(n-i) b^i}----(2)
ããããi=0
ãšãæžããŸãã
ã§ã¯ã
(1+1)^n=nC0 1^n 1^0+nC1 1^(n-1) 1^1+nC2 1^(n-2) 1^2+nC3 1^(n-3) 1^3+ã»ã»ã»ã»+nC(n-1) 1^(n-(n-1)) 1^(n-1)+nCn 1^(n-n) 1^n
2^n=nC0+nC1+nC2+nC3+ã»ã»ã»+nC(n-1)+nCn----(3)
ãšããæåãªå
¬åŒã«ããã©ãçããŸãã
ãŸãã
(a+b)^n=nC0 a^n b^0+nC1 a^(n-1) b^1+nC2 a^(n-2) b^2+nC3 a^(n-3) b^3+ã»ã»ã»ã»+nC(n-1) a^(n-(n-1)) b^(n-1)+nCn a^(n-n) b^n
(a+b)^n=a^n +nC1 a^(n-1) b^1+nC2 a^(n-2) b^2+nC3 a^(n-3) b^3+ã»ã»ã»ã»+nC(n-1) a b^(n-1)+b^n----(4)
(a+b)^n=a{a^(n-1)n +nC1 a^(n-2) b^1+nC2 a^(n-3) b^2+nC3 a^(n-4) b^3+ã»ã»ã»ã»+nCn-1) b^(n-1)}+b^n
(a+b)^n=aA+b^n ----(5)
ãã ããA=a^(n-1)n +nC1 a^(n-2) b^1+nC2 a^(n-3) b^2+nC3 a^(n-4) b^3+ã»ã»ã»ã»+nCn-1) b^(n-1)
(a+b)^nã¯ã(5)åŒãšãæžããŸãã
ïŒïŒäºé²å°æ°ã®10é²å°æ°åã®åé¡
ããã§ãäºé²å°æ°ã®10é²å°æ°åãèããŠã¿ãŸãããã1/2=0.5ã1/2^2=1/4=0.25ã1/8=0.125ã1/16=0.0625ã»ã»ã»1/256=0.00390625
ãšæ«å°Ÿããå¿
ã5ã«ãªãã®ã§ãã蚌æããŠã¿ãŸãããã
1/(2^n)=1/(2^n) 10^n/10^n=1/(2^n) (2^nã»5^n)/10^n=5^n/10^n=5(4+1)^(n-1)/10^n
ããã§ãäºé
å®çã®(5)åŒããã(4+1)^(n-1)=4A+1
5(4+1)^(n-1)/10^n=5(4A+1)/10^n=(20A+5)/10^n=20A/10^n+5/10^n=2A/10^(n-1)+5/10^n
ããã§ã2Aã¯èªç¶æ°ãªã®ã§ã5/10^nãããäžäœã®å°æ°ã§ãã
ãããã£ãŠãæ«å°Ÿã¯5ã«ãªããŸãã[蚌æçµãã]
äžè¬ã«2é²å°æ°ã¯
n
Σ{ai(1/2^i)} ãã ããaiã¯0ã1
i=0
ãªã®ã§ããã¹ãŠã®2é²å°æ°ã®10é²å°æ°åã¯æ«å°Ÿã¯5ã«ãªããŸãã
ãããããäºé²å°æ°ã§ã¯10é²å°æ°ã®1/5=0.2ã¯è¡šããªãããšã«ãªããŸããã0.24ã0.23ã0.22ã0.21ãè¡šããŸããã
ïŒïŒÎ±^n=nB+αã®å°åº
(4)åŒããã
ãã(1+1)^n=1^n +nC1 1^(n-1) +nC2 1^(n-2)+nC3 1^(n-3)+ã»ã»ã»ã»+nC(n-1) 1+1
ãã(2+1)^n=2^n +nC1 2^(n-1) +nC2 2^(n-2)+nC3 2^(n-3)+ã»ã»ã»ã»+nC(n-1) 2+1
ãã(3+1)^n=3^n +nC1 3^(n-1) +nC2 3^(n-2)+nC3 3^(n-3)+ã»ã»ã»ã»+nC(n-1) 3+1
ãã(4+1)^n=4^n +nC1 4^(n-1) +nC2 4^(n-2)+nC3 4^(n-3)+ã»ã»ã»ã»+nC(n-1) 4+1
ãã(5+1)^n=5^n +nC1 5^(n-1) +nC2 5^(n-2)+nC3 5^(n-3)+ã»ã»ã»ã»+nC(n-1) 5+1
ããããããããããããããããããããã»
ãã(r+1)^n=r^n +nC1 r^(n-1) +nC2 r^(n-2)+nC3 r^(n-3)+ã»ã»ã»ã»+nC(n-1) r+1
ããããããããããããããããããããã»
+)ã(a+1)^n=a^n +nC1 a^(n-1) +nC2 a^(n-2)+nC3 a^(n-3)+ã»ã»ã»ã»+nC(n-1) a+1
ã¯ã
ãã(1+1)^n-1^n= nC1 1^(n-1) +nC2 1^(n-2)+nC3 1^(n-3)+ã»ã»ã»ã»+nC(n-1) 1+1
ãã(2+1)^n-2^n= nC1 2^(n-1) +nC2 2^(n-2)+nC3 2^(n-3)+ã»ã»ã»ã»+nC(n-1) 2+1
ãã(3+1)^n-3^n= nC1 3^(n-1) +nC2 3^(n-2)+nC3 3^(n-3)+ã»ã»ã»ã»+nC(n-1) 3+1
ãã(4+1)^n-4^n= nC1 4^(n-1) +nC2 4^(n-2)+nC3 4^(n-3)+ã»ã»ã»ã»+nC(n-1) 4+1
ãã(5+1)^n-5^n= nC1 5^(n-1) +nC2 5^(n-2)+nC3 5^(n-3)+ã»ã»ã»ã»+nC(n-1) 5+1
ããããããããããããããããããããã»
ãã(r+1)^n-r^n= nC1 r^(n-1) +nC2 r^(n-2)+nC3 r^(n-3)+ã»ã»ã»ã»+nC(n-1) r+1
ããããããããããããããããããããã»
+)ã(a+1)^n-a^n= nC1 a^(n-1) +nC2 a^(n-2)+nC3 a^(n-3)+ã»ã»ã»ã»+nC(n-1) a+1
---------------------------------------------------------------------------------
ãã(a+1)^n-1^n=nC1{ã»ã»â ã»ã»}+nC2{ã»ã»â¡ã»ã»}+nC3{ã»ã»â¢ã»ã»}+ã»ã»ã»ã»+nC(n-1){ã»ã»(n-1)ã»ã»}+a
ãã(a+1)^n=nC1{ã»ã»â ã»ã»}+nC2{ã»ã»â¡ã»ã»}+nC3{ã»ã»â¢ã»ã»}+ã»ã»ã»ã»+nC(n-1){ã»ã»(n-1)ã»ã»}+a+1
ãšããã§ãnãå¥çŽ æ°ãªãã°nCsã¯nã®åæ°ã§ãããã
(a+1)^n=nB+a+1---(6)
ãã ããnB=nC1{ã»ã»â ã»ã»}+nC2{ã»ã»â¡ã»ã»}+nC3{ã»ã»â¢ã»ã»}+ã»ã»ã»ã»+nC(n-1){ã»ã»(n-1)ã»ã»}
ããŠã(6)åŒã§ãα=a+1ãšãããšã
α^n=nB+α----(7)
α^n-α=nB
α{α^(n-1)-1}=nB
ãããnBã¯ãn,αã®åæ°ã§ãããã
ãããã£ãŠã
α{α^(n-1)-1}=nC1{ã»ã»â ã»ã»}+nC2{ã»ã»â¡ã»ã»}+nC3{ã»ã»â¢ã»ã»}+ã»ã»ã»ã»+nC(n-1){ã»ã»(n-1)ã»ã»}
ãªãã
â =1^(n-1)+2^(n-1)+3^(n-1)+ã»ã»ã»ã»ã»+(a-1)^(n-1)+a^(n-1)
â¡=1^(n-2)+2^(n-2)+3^(n-2)+ã»ã»ã»ã»ã»+(a-1)^(n-2)+a^(n-2)
â¢=1^(n-3)+2^(n-3)+3^(n-3)+ã»ã»ã»ã»ã»+(a-1)^(n-3)+a^(n-3)
â£=1^(n-4)+2^(n-4)+3^(n-4)+ã»ã»ã»ã»ã»+(a-1)^(n-4)+a^(n-4)
ãããããããããããããã»
n-2çªç®=1^2+2^2+3^2+ã»ã»ã»ã»ã»+(a-1)^2+a^2
n-1çªç®=1+2+3+ã»ã»ã»ã»ã»+(a-1)+a
ïŒïŒãã§ã«ããŒã®æçµå®ç
a,b,cãäºãã«çŽ ãªèªç¶æ°ã§ãããnãå¥çŽ æ°ã§ãããªãã°ã
a^n+b^n=c^nãšãããšã(7)åŒããã
nX+a+nY+b=nZ+c
n(X+Y-Z)=c-a-b
X+Y-Z=c/n-a/n-b/n
ããã§ãa,b,cãäºãã«çŽ ãªèªç¶æ°ã§ãããããa,b,cã¯åæã«nã®åæ°ã§ãªãã
ãããã£ãŠã巊蟺ã¯èªç¶æ°ãªã®ã«ãå³èŸºã¯èªç¶æ°ã§ãªãã
ããããc=kn+jãa=ln+jãb=mnãšãããšãc/n=k+j/n,a/n=l+j/n,b/n=mã§å³èŸºã¯èªç¶æ°ã«ãªããããããªãã
ããã§ãa,b,cãäºãã«çŽ ãªèªç¶æ°ã§ãããnã¯å¥çŽ æ°ããã
c (mod n)â b (mod n)
c (mod n)â a (mod n)
a (mod n)â b (mod n)
ããããããªãã
ããã«ããã§ã«ããŒã®æçµå®çã蚌æãããã
以åãšã¯æã£ãŠå€ãã£ãŠã¡ãããšè«çãæžããŠãã ããããã«ãªããã¡ãããšæ°åŠçè°è«ãããã«å€ããèšè¿°ã«ãªã£ãŠããŸããã
> nã¯å¥çŽ æ°ããã
> c (mod n)â b (mod n)
> c (mod n)â a (mod n)
> a (mod n)â b (mod n)
> ããããããªãã
ããã¯ãå³èŸºãèªç¶æ°ã«ãªãããšããããããªãã®æå³ã ãšè§£éããŸããããããã« 2 ã€ããã³ãã©ããããããŸããã
ãŸã 1 ã€ã4â¡11 (mod7) ã®ããã«ãäºãã«çŽ ã§ãå¥çŽ æ°ãæ³ãšããŠååã«ãªãå Žåã¯ããåŸãŸãã
ãã 1 ã€ãããããå¥ã« a, b, c ãååã§ãªããŠã 10/7 - 2/7 - 1/7 = 1 ã®ããã« 3 ã€ã®åæ°ã®åãå·®ãæŽæ°ã«ãªãããšã¯ããåŸãŸãã
DD++æ§ãããã«ã¡ã¯ã
ïŒïŒãã§ã«ããŒã®æçµå®ç
ã¯ã
ïŒïŒÎ±^n=nB+αã®å°åº
ã®å¿çšäŸãšããŠãäœã£ããã®ã§ãããè©°ããçãã£ãããã§ããã
äºãã«çŽ ãªèªç¶æ°a,b,c
ãšããã®ããããŠã
c (mod n)â b (mod n)
c (mod n)â a (mod n)
a (mod n)â b (mod n)
ãšãããšããããè¯ãã£ãããªïŒ
ã§ãã
a=jn+gãšããŠa (mod n)â¡g
b=kn+hãšããŠb(mod n)â¡h
c=ln+iãšã㊠c(mod n)â¡i
ãšããŠãc/n-a/n-b/nã§ãi-g-h=0ã¯ããããŸããã
ãã§ã«ããŒã®æçµå®çã¯ãã©ã㪠a, b, c ã§ãããã®çåŒãæç«ããªããšãããã®ã§ãã
èªåã§åæã«æ¡ä»¶ã足ãã a, b, c ã§è°è«ãå§ããŠããŸã£ããããã¯ããæçµå®çãšã¯å¥ã®è©±ã«ãªã£ãŠããŸããŸãã
ïŒãšããã§ãnãå¥çŽ æ°ãªãã°nCsã¯nã®åæ°ã§ãããã
ïŒÎ±^n=nB+α----(7)
α^nïŒÎ±ïŒnBããã®å³èŸºãïœã§å²ãåããã®ã§å·ŠèŸºãïœã§å²ãåããã
âŽÎ±^nïŒÎ±â¡ïŒïŒmod ïœïŒããã§ãαãšïœãäºãã«çŽ ãšãããšã䞡蟺ãαã§å²ããã
âŽÎ±^(n-1)ïŒïŒâ¡ïŒïŒmod ïœïŒ
âŽÎ±^(n-1)â¡ïŒïŒmod ïœïŒãã ããïœã¯çŽ æ°ã§Î±ãšïœã¯äºãã«çŽ
https://manabitimes.jp/math/680
KYæ§ãããã°ãã¯ã
ãªãã»ã©ããã§ã«ããŒã®å°å®çã§ãããæ°ã¥ããŸããã§ããã
ãã§ã«ããŒã®å°å®çãšããã°ããœãã£ãŒã»ãžã§ã«ãã³ã®ãã§ã«ããŒã®æçµå®çãžã®æ¥çžŸã§ããããéã£ãããªïŒ
ç§ãšå£ããæãããåããããªææ³ã§ãã§ã«ããŒã®æçµå®çã蚌æããŠããŸãã
ãã§ã«ããŒã®æçµå®çã®å¶éïŒ a + b ïŒ c ã çŽ æ°ã§ããïŒä»ãã®äžè¬ã® n ã®å Žå
http://y-daisan.private.coocan.jp/html/pdf/felmer-8-1.pdf
ããã«ããããŠã
ãã§ã«ããŒã®æçµå®çã®å¶éïŒ a + b ïŒ c ã n ã®åæ°ã§ãªãïŒä»ãã®äžè¬ã® n ã®å Žå
http://y-daisan.private.coocan.jp/html/pdf/felmer-8-2.pdf
ãšãããŸããã
ïŒãã§ã«ããŒã®å°å®çãšããã°ããœãã£ãŒã»ãžã§ã«ãã³ã®ãã§ã«ããŒã®æçµå®çãžã®æ¥çžŸã§ããããéã£ãããªïŒ
倩æãã§ã«ããŒ
ããã§ã«ããŒã¯ããã€ãã®å®éšçãªèŠ³å¯ããäžè¬çã«æãç«ã€åœé¡ãèŠã€ãã倩æã§ã倧å°æ§ã
ãªåœé¡ãæ®ããŸãããäŸãã°ãèªç¶æ°ã®ïŒä¹ããïŒãåŒããŸãããããšã
ïŒ^2ïŒïŒïŒïŒïŒïŒÃïŒïŒ(ïŒ^2ïŒïŒïŒïŒïŒïŒïŒ^2ïŒïŒïŒïŒïŒïŒïŒÃïŒïŒ
ïŒ^2ïŒïŒïŒïŒïŒïŒïŒÃïŒïŒïŒïŒ^2ïŒïŒïŒïŒïŒïŒïŒïŒ^2ïŒïŒïŒïŒïŒïŒïŒÃïŒïŒïŒ
ïŒ^2ïŒïŒïŒïŒïŒïŒïŒÃïŒïŒïŒïŒïŒ^2ïŒïŒïŒïŒïŒïŒ
ãªã©ãšãªããŸããå
ã®å®æ°ïœãïŒã®åæ°ãªãã°ããã®ïŒä¹ããïŒãåŒãã°ïŒã®åæ°ã§ãªããªãã®ã¯åœããåã§ãã®ã§ãïŒãïŒå
ã«å
¥ããŸãããããã§ãªããšãã«ã¯ãïœ^2ïŒïŒã¯ïŒã®åæ°ã«ãªã£ãŠããããã§ãããèªç¶æ°ãïŒä¹ããŠïŒãåŒããšã©ããªãã§ãããã
ïŒ^4ïŒïŒïŒïŒïŒïŒïŒÃïŒïŒïŒ^4ïŒïŒïŒïŒïŒïŒïŒÃïŒïŒïŒ
ïŒ^4ïŒïŒïŒïŒïŒïŒïŒïŒÃïŒïŒïŒïŒïŒ^4ïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒ^4ïŒïŒïŒïŒïŒïŒïŒïŒïŒÃïŒïŒïŒïŒïŒ^4ïŒïŒïŒïŒïŒïŒïŒïŒïŒÃïŒïŒïŒïŒ
ïŒ^4ïŒïŒïŒïŒïŒïŒïŒïŒïŒÃïŒïŒïŒïŒïŒ^4ïŒïŒïŒïŒïŒïŒïŒïŒïŒÃïŒïŒïŒïŒ
ãšãªã£ãŠãå
ã®æ°ïœãïŒã®åæ°ã§ãªããã°ãïœ^4ïŒïŒã¯ïŒã®åæ°ã«ãªã£ãŠããããã§ãããã§ã«ããŒã«ãšã£ãŠã¯ãããã¯æ¬¡ã®ããã«äžè¬åããã®ã¯ããããä»äºã§ããïŒ
ãïœãçŽ æ°ïœãšäºãã«çŽ ãªãã°ãïœ^(p-1)ïŒïŒã¯ïœã§å²ãåãã
ãããæ°è«ã«ãããæãåºæ¬çãªå®çããã§ã«ããŒã®å°å®çã§ããèšå·ã§ã¯ïœ^(p-1)â¡ïŒïŒmod ïœïŒãšæžããŸãããšãŠãçŸããå®çã§ãããã
ãæ°åŠã®è±æãäžææ»èãã
å ã¿ã«ã蚌æãããã®ã¯ã©ã€ããããã ããã§ãããŠã£ãããã£ã¢ã«ã¯ïŒéãã®èšŒææ³ãèŒã£ãŠããŸãããäœãåºããã®ã¯åããŠèŠãŸãããæ¯éããã¡ã€ã«ã«ã§ãããŠæ®ããŠäžããã
KYæ§ããã¯ããããããŸãã
ããããšãããããŸãã
æ©éãPDFã«ããŸããã
ãã§ã«ããŒã®å°å®çã®èšŒæ
http://y-daisan.private.coocan.jp/html/felmer-7-2.pdf
以åãããã ã£ãã®ã§ãããhttp://y-daisan.private.coocan.jp/html/felmer-7-2.pdfãã§æ€çŽ¢ããŠã蟿ãçããŸããã§ãããïŒå€åãç§ã®ããœã³ã³ããããããšæãã®ã§ãããïŒ
å ã¿ã«ãã°ãŒã°ã«æ€çŽ¢ã§ã¯ã
https://www.google.com/search?q=http%3A%2F%2Fy-daisan.private.coocan.jp%2Fhtml%2Ffelmer-7-2.pdf&hl=ja&ei=phkyZP7OAdu02roPrfCbsAg&ved=0ahUKEwj-ufa-15v-AhVbmlYBHS34BoYQ4dUDCA8&oq=http%3A%2F%2Fy-daisan.private.coocan.jp%2Fhtml%2Ffelmer-7-2.pdf&gs_lcp=Cgxnd3Mtd2l6LXNlcnAQDEoECEEYAFAAWABgAGgAcAB4AIABAIgBAJIBAJgBAA&sclient=gws-wiz-serp
ã€ããŒæ€çŽ¢ã§ã¯ã
https://search.yahoo.co.jp/search?p=http%3A%2F%2Fy-daisan.private.coocan.jp%2Fhtml%2Ffelmer-7-2.pdf&fr=top_ga1_sa&ei=UTF-8&ts=32910&aq=-1&oq=&at=&ai=8ca69f0b-b347-4657-b8ca-050b0f50e8b7
ãšããç»é¢ã§ããç§ã«ã¯èŠãããŸãããã倧åã«ä¿ç®¡ããŠäžããã
KY ããã¯ãªã URL ãæ€çŽ¢ããããšæã£ããã ããâŠâŠã
URL ãäœãªã®ãããã£ãŠãªãã®ããšãæããŸãããããã®å²ã«ã¯ Google æ€çŽ¢ã®çµæç»é¢ãèªå㧠URL æžããŠãŸããã
ããŒãïŒïŒ
ã§ãPDF èªãŸããŠããã ããŸããã
ãã¡ããšèšŒæã§ããŠãããšæããŸãã
Wikipedia ã®èšŒæ (2) ãšåæ§ã®ãã®ã§ããããã¡ãã¯ããªãçç¥ããæžãæ¹ãããŠããã®ã«å¯ŸããŠãã¯ã¡ã¹ãããã¯ããªãäžå¯§ã«é²ããŠããã£ããããŸããã
现ããç¹ã§ãããæ¹åç¹ã 1 ã€ã
2 ããŒãžç®åŸåãã 3 ããŒãžç®ååã«ãã㊠a = 6 ã§ã®äŸç€ºãããŠãããããã
1^(n-1) + 2^(n-1) + 3^(n-1) + 4^(n-1) + âŠâŠ + 5^(n-1)
ã¿ããã«ãªã£ãŠããŸããã4 ã®æ¬¡ã 5 ãªã®ã§ããã®ãâŠâŠãã¯äžèŠããªãšæããŸãã
DD++ãããããã«ã¡ã¯ãç§ã¯ä»¥åãéããããããšãããã³ãã«ããŒã ã䜿ã£ãŠãããã®ã§ããã
ïŒKY ããã¯ãªã URL ãæ€çŽ¢ããããšæã£ããã ããâŠâŠã
ãããããŠãhttp://y-daisan.private.coocan.jp/html/felmer-7-2.pdfããã¯ãªãã¯åºæ¥ãããã«ãªã£ãŠããã®ã§ããããã
ç§ã®ããœã³ã³ã§ã¯ã¯ãªãã¯åºæ¥ãªãã®ã§ãã³ããããŠæ€çŽ¢ããã®ã§ããã蟿ãçããŸããã§ããã
ïŒWikipedia ã®èšŒæ (2) ãšåæ§ã®ãã®ã§ããããã¡ãã¯ããªãçç¥ããæžãæ¹ãããŠããã®ã«å¯ŸããŠãã¯ã¡ã¹ãããã¯ããªãäžå¯§ã«é²ããŠããã£ããããŸããã
èšãããŠèŠçŽããŠã¿ãŸãããã確ãã«çè«çã«ã¯åãã§ããã
ããããªãã»ã©ãäœã§è©°ãŸã£ãŠããããããŸããã
ãããã web ãã©ãŠã¶ã£ãŠãURL ãæå®ã㊠web ãµã€ããé²èŠ§ããããŒã«ãã§ãã
ãªã³ã¯ãã¯ãªãã¯ãããããã¯ããŒã¯ã§ç§»åãããããã®ã¯ã åã« URL ãæå®ããæéãçããŠãããã ãã§ããæ¬æ¥éãèªåã§çŽæ¥ URL ãæå®ããŠããµã€ããé²èŠ§ã§ããããã§ããã
æå
¥åãé¢åãªãæåãæåŸã®æåãæ¬ èœãããäœèšãªæåãå
¥ã£ããããªãããã«æ³šæããªããã³ããŒããŒã¹ãã§å€§äžå€«ã§ãã
âŠâŠ ã£ãŠããšã§åœãã£ãŠãŸããïŒ
ã¡ãã»ãŒãžäžã® URL ãèªåã§ãªã³ã¯ã«ããæ©èœãç¡å¹ã«ãªã£ãŠããã®ã¯ãããããã¹ãã ãšãã®å¯Ÿçã§ãããã
æ®éã®ãŠãŒã¶ãŒãèªåã§ãªã³ã¯ããŠã»ãããšæã£ããšãã¯ãã¡ãã»ãŒãžæ¬ãããªã URL æ¬ã«ãã® URL ãæžãã°ããããã§ããã
ïŒã¯ã¡ã¹ãããããªãããããªãã£ãã®ãã¯ãç§ã«ã¯ããããŸãããïŒ
KYæ§ãããã«ã¡ã¯ã
ïŒã€ããŒæ€çŽ¢ã§ã¯ã
https://search.yahoo.co.jp/search?p=http%3A%2F%2Fy-daisan.private.coocan.jp%2Fhtml%2Ffelmer-7-2.pdf&fr=top_ga1_sa&ei=UTF-8&ts=32910&aq=-1&oq=&at=&ai=8ca69f0b-b347-4657-b8ca-050b0f50e8b7
ãšãªããŸããããã®https://ã»ã»ã»ã»ã»ãšè¡šç€ºãããŠãããšããã«ã
http://y-daisan.private.coocan.jp/html/felmer-7-2.pdf
ã匵ãä»ããã®ã§ããã€ãŸããã³ããŒããŒã¹ãããã®ã§ãã
ä»ãã®ç»é¢ãèŠãŠãããšãã¯ã
(http://)shochandas.xsrv.jp(/ïŒã(ã)ã§å²ãŸããŠããéšåã¯è¡šç€ºãããŸããã
ãšè¡šç€ºãããŠããè¡ã§ããããã«ãhttp://y-daisan.private.coocan.jp/html/felmer-7-2.pdfãã³ããŒããŒã¹ãããŸãã
ãã®ç»é¢ããæ»ã£ãŠããã«ã¯ããâïŒå·Šç¢å°ïŒããã¯ãªãã¯ãããšãã®ç»é¢ã«æ»ããŸãã
ããœã³ã³çŽ 人ãªè
ã§ãã¿ãŸããã
ïŒæå
¥åãé¢åãªãæåãæåŸã®æåãæ¬ èœãããäœèšãªæåãå
¥ã£ããããªãããã«æ³šæããªããã³ããŒããŒã¹ãã§å€§äžå€«ã§ãã
http://y-daisan.private.coocan.jp/html/felmer-7-2.pdfããã®ãŸãŸã³ããŒããŒã¹ãããŠã°ãŒã°ã«æ€çŽ¢ããŠãã€ããŒæ€çŽ¢ããŠããã®URLã«è¡ããªããã§ããæ®éã¯ããã€ãäžçªäžã«åºãã®ã§ãããããããã¯ã¡ã¹ãããã®äŸãã°ã
ãã§ã«ããŒã®æçµå®çã®å¶éïŒ a + b ïŒ c ã çŽ æ°ã§ããïŒä»ãã®äžè¬ã® n ã®å Žå
http://y-daisan.private.coocan.jp/html/pdf/felmer-8-1.pdf
ã§ïŒã°ãŒã°ã«ïŒæ€çŽ¢ãããšäžçªäžã«ãå¥æ°ã®å®å
šæ°ã¯ãªãããåºãŸããããã§ããhttp://y-daisan.private.coocan.jp/html/kanzensu.pdf
ïŒã¡ãã»ãŒãžäžã® URL ãèªåã§ãªã³ã¯ã«ããæ©èœãç¡å¹ã«ãªã£ãŠããã®ã¯ãããããã¹ãã ãšãã®å¯Ÿçã§ãããã
æ®éã®ãŠãŒã¶ãŒãèªåã§ãªã³ã¯ããŠã»ãããšæã£ããšãã¯ãã¡ãã»ãŒãžæ¬ãããªã URL æ¬ã«ãã® URL ãæžãã°ããããã§ããã
ïŒã¯ã¡ã¹ãããããªãããããªãã£ãã®ãã¯ãç§ã«ã¯ããããŸãããïŒ
ãããããŠé ããã°èŸ¿ãçãããšæããŸããã
URLãèšå
¥ããŸãããããã§ã©ãã§ãããïŒ
ç·è²ã®ãããããã¯ã¡ã¹ãããã¯ãªãã¯ããŠãã ããã
ããããæ©èœã䜿ã£ãŠãªãã£ãããã§ããŠã£ãããèªåã®ããŒã ããŒãžã貌ãããã ãšæã£ãŠããŸããã
ãã ãæ°ã«ãªãããšããããŸããTexã§PDFãã€ãããšããã©ã³ããåã蟌ãŸããªãã®ã§ãWindowsã§ã¯ãæ¥æ¬èªã®æåãå€ãªæåã«å²ãæ¯ãããããšããããŸãã
ã¢ã¯ãããããªãŒããŒãã€ã³ã¹ããŒã«ããŠããã°ãåé¡ãªãã®ã§ããã
ãã¡ãããã¢ã¯ãããããªãŒããŒã¯ãç¡æã§ãã
ããããã¯ã¡ã¹ããããããããšãããããŸããç¡äºã蟿ãçããŸããã
DD++ããã®ææã®ã
ïŒçŽ°ããç¹ã§ãããæ¹åç¹ã 1 ã€ã
2 ããŒãžç®åŸåãã 3 ããŒãžç®ååã«ãã㊠a = 6 ã§ã®äŸç€ºãããŠãããããã
1^(n-1) + 2^(n-1) + 3^(n-1) + 4^(n-1) + âŠâŠ + 5^(n-1)
ã¿ããã«ãªã£ãŠããŸããã4 ã®æ¬¡ã 5 ãªã®ã§ããã®ãâŠâŠãã¯äžèŠããªãšæããŸãã
ããã¯çŽãããã®ã§ããããã倧äžå€«ã¿ããã§ããã
ïŒWikipedia ã®èšŒæ (2) ãšåæ§ã®ãã®ã§ããããã¡ãã¯ããªãçç¥ããæžãæ¹ãããŠããã®ã«å¯ŸããŠãã¯ã¡ã¹ãããã¯ããªãäžå¯§ã«é²ããŠããã£ããããŸããã
ïœ^pïŒ[ïŒïŒ(ïœïŒïŒ)]^p
ããâ¡ïŒ^pïŒ[ïŒïŒ(ïœïŒïŒ)]^p
ããâ¡ïŒïŒïŒ^pïŒ[ïŒïŒ(ïœïŒïŒ)]^p
ããâ¡ïœïŒmod ïœïŒ
ãã¡ãã®æ¹ããã»ã»ã»ãå
¥ããæ¹ãè¯ããšæããŸãã
å ã¿ã«ããããèŠãŠããããã¯ã¡ã¹ãããã®è§£æ³ãäœãã人ã¯ããŸãããã
ãããã ãããªãæ€çŽ¢æ¬ã«æã¡èŸŒãã®ãâŠâŠã
æ€çŽ¢æ¬ã¯ãããã«é¢ä¿ããæ
å ±ãããå ŽæãæããŠãã ãããã§ãã
ããã®å Žæã«é£ããŠè¡ã£ãŠãã ãããã§ã¯ãããŸãããããããªæ©èœã¯ Google ã«ã Yahoo ã«ããããŸããã
ããããæå³ãåãããŸãããçŽæ¥äžã®éµå°ã®æã«ã³ããããã°è¯ãã£ãã®ã§ããã
ãéšããããŸããã