ãã§ã«ããŒã®å€§å®çãã
èªç¶æ°ã§ã¯
x^n+y^n=z^n (n=3,4,5,)
ãæºããèªç¶æ°ã®çµ(x,y,z)ã¯å
šãååšã§ããªãããšãæããŠãããã
ãããæ°åŠã®äžçã§ã¯è€çŽ æ°ãªããã®ã®ååšæãã«ã¯èããããªããªã£ãŠãã
ç®ããã®äžçãŸã§åºããŠã¿ãŠã¿ãã°
(9 + â23*i)^3 + (9 - â23*i)^3 = 6^3
(16 + â2*i)^3 + (16 - â2*i)^3 = 20^3
æãã¯è€çŽ æ°ãŸã§åºããªããŸã§ã
(9 + â5)^3 + (9 - â5)^3 = 12^3
(378 + 357*â2)^3 + 127^3 = (451 + 306*â2)^3
ãªã©å¹³æ°ã§æç«ãããŠããã
ããã§ä»z1,z2ãè€çŽ æ°ãšããã°
(1)z1^3 + z2^3 = 2^3
(2)z1^4 + z2^4 = 2^4
(3)z1^5 + z2^5 = 2^5
(4)z1^7 + z2^7 = 2^7
ã®é¢ä¿åŒãæç«ãããã®ã¯ããããäœããæ¢ããŠã»ããã
(1) 2^3+0^3=2^3 ãªã©ãšããèªæãªè§£ãé€ããŠãïŒã€è§£ãèŠã€ããŸããã
äžã€ã®äŸãšããŠãïŒïŒïŒâïŒïŒ/ïŒïŒïœïŒ^3ïŒïŒïŒïŒâïŒïŒ/ïŒïŒïœïŒ^3ïŒïŒ^3
解ã¯ç¡æ°ã«ãããšæãããŸãã
äœã§ããããªã
(1)z1=z2=[3]â4
(2)z1=z2=[4]â8
(3)z1=z2=[5]â16
(4)z1=z2=[7]â64
ãªã©ã®å
šãé¢çœããªã解ããããŸããã
(è¿œèš)
ãããé¢çœããªãã§ãããäžè¬è§£ãæžããŸããã
(1)(z1,z2)=(t,[3]â(8-t^3))
(2)(z1,z2)=(t,[4]â(16-t^4))
(3)(z1,z2)=(t,[5]â(32-t^5))
(4)(z1,z2)=(t,[7]â(128-t^7))
çããå¿è«æ£è§£ãªãã§ãããæå€æ§ãèæ
®ããŠäžå¿æ¬¡ã®ãããªãã®ãæãç«ã€ããšãèµ·ããŸããã
(4 + â5*i)^3 + (4 - â5*i)^3 = 2^3
(1 + â7*i)^4 + (1 - â7*i)^4 = 2^4
(1 + â3*i)^5 + (1 - â3*i)^5 = 2^5
(â(9 + â5)/â3)^6 + (â(9 -â5)/â3)^6 = 2^6
(1 + â3*i)^7 + (1 - â3*i)^7 = 2^7
ä»ã«ã
(4 + â109)^3 + (4 - â109)^3 = 14^3
(1 + â457)^3 + (1 - â457)^3 = 14^3
(36 + â89*i)^3 + (36 - â89*i)^3 = 42^3
((-1 + â3*i)/2)^p + ((-1 - â3*i)/2)^p = (-1)^p (ïœâ¡0 (mod 3)ã§ãªãä»»æã®èªç¶æ°)
etc
ãªãå¹³æ¹ã§ã¯
(9 + â17)^2 + (9 - â17)^2=
(5 + â73)^2 + (5 - â73)^2=
(3 + â89)^2 + (3 - â89)^2=
(1 + â97)^2 + (1 - â97)^2= 14^2
ãªã©ãæç«ããŠããã
ãã£ãšæå€æ§ãæãããã®ãèŠã€ããããããæãäžããã