ïŒåã®ã·ã³ãã«ãªåœ¢ã®è§£ãèŠã€ãããŸããã
ïŒ2a-b,a+3b,3a+2b,-3a-2b,-a-3b,-2a+b)
ããšã(a-2b,2a+3b,3a+b,-3a-b,-2a-3b,-a+2b)
ããã«ãïŒåã«ææŠäžã§ãã
2è¡ç®5åããèšæ£ããŸããã
ä»»æã®èªç¶æ°Nã«ãå¶æ°ãè¶³ããŠããã°ãå¹³æ¹æ°ã«ãªãããšãåãããŸããã2ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒããªã©
ä»»æã®æ°ã«ãããæ°åãè¶³ããŠãNïŒãN4,ãN5
å Žåã¯ã©ããªãã§ããããïŒ
ksæ§ãããã«ã¡ã¯ã
ïŒä»»æã®èªç¶æ°Nã«ãå¶æ°ãè¶³ããŠããã°ãå¹³æ¹æ°ã«ãªãããšãåãããŸããã
ããã¯ãN+(1+2+3+ã»ã»+N-1)x2=N+N(N-1)=N+N^2-N=N^2
ã§ããã
N+(2+4ïŒâŠïŒïŒïŒN-1ïŒïŒïŒNã®2ä¹
ãæãç«ã¡ã
NïŒïŒ6ïŒâŠïŒïŒNïŒN-1ïŒïŒ= âä¿®æ£ããŸããã
NïŒïŒ3ã®åæ°ã®æ°åã®åïŒïŒNã®ïŒä¹
NïŒïŒïŒã®åæ°ã®æ°åã®åïŒïŒNã®ïŒä¹ ãäžæç«
NïŒïŒïŒã®åæ°ã®æ°åã®åïŒïŒNã®ïŒä¹ãæãç«ã¡ãŸã
ïŒNïŒN-1ïŒãã
ïŒã®ïŒä¹ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒã®ïŒä¹ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒã®ïŒä¹ïŒ125ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒïŒã®åæ°ã®æ°åã§ïŒä¹æ°ãçãŸããŸãïŒ
ksæ§ããã¯ããããããŸãã
N+a1+a2+ã»ã»+aNã«ãããŠã
aN=3N(N-1)
ãšãããšã
a1=0
a2=6
a3=18
a4=36
a5=60
ã»ã»ã»ã»
ãã£ãŠã
ãN
N+â{3i(i-1)}
ãi=1
ããN
=N+3â{i(i-1)}
ããi=1
ããNããããN
=N+3âi^2ãŒ3âi
ããi=1ãããi=1
=N+3N(N+1)(2N+1)/6ãŒ3N(N+1)/2
=N+(3/2)N(N+1){(2N+1)/3ãŒ1}
=N+(3/2)N(N+1){(2N+1-3)/3)}
=N+(3/2)N(N+1){(2N-2)/3)}
=N+N(N+1)(N-1)=N+N(N^2-1)
=N+N^3-N=N^3
ãããã£ãŠã
N+a1+a2+a3ã»ã»+aN=N^3
N+0+6+18+ã»ã»+3N(N-1)=N^3
N+6+18+ã»ã»+3N(N-1)=N^3
管ç人æ§ã®ã³ã¡ã³ãããã
ïŒãïŒ ãã ïœ ãŸã§ã®èªç¶æ°ã®å ïŒ ïŒïŒïŒïŒã»ã»ã»ïŒïœ ïŒïœïŒïœïŒïŒïŒ/ïŒ
ãïŒ ãã ïœ ãŸã§ã®èªç¶æ°ã®å¹³æ¹ã®å ïŒ ïŒ^2ïŒïŒ^2ïŒã»ã»ã»ïŒïœ^2 ïŒïœïŒïœïŒïŒïŒïŒïŒïœïŒïŒïŒ/ïŒ
ãïŒ ãã ïœ ãŸã§ã®èªç¶æ°ã®ç«æ¹ã®å ïŒ ïŒ^3ïŒïŒ^3ïŒã»ã»ã»ïŒïœ^3 ïŒïœ^2ïŒïœïŒïŒ)^2/ïŒ
ïŒãä»»æã®æ°ïŒ®ã«å¯ŸããŠããïŒïŒ®ïŒïŒïŒïŒ® ã¯å¶æ°ã§ã
ããïŒïŒïŒ®ïŒïŒïŒïŒ®ïŒïŒ®ïŒN^2ïŒïŒ®ïŒN^2
åæ§ã«ãä»»æã®æ°ïŒ®ã«å¯ŸããŠããïŒïŒ®ïŒïŒïŒïŒ®ïŒïŒ®ïŒïŒïŒã¯å¶æ°ã§ã
ããïŒïŒïŒ®ïŒïŒïŒïŒ®ïŒïŒ®ïŒïŒïŒïŒïŒ®ïŒN^3ïŒïŒ®ïŒN^3
ãä»»æã®æ°ïŒ®ã«å¯ŸããŠããïŒïŒ®ïŒïŒïŒïŒ®ïŒïŒ®^2ïŒïŒ®ïŒïŒïŒã¯å¶æ°ã§ã
ããïŒïŒïŒ®ïŒïŒïŒïŒ®ïŒïŒ®^2ïŒïŒ®ïŒïŒïŒïŒïŒ®ïŒN^4ïŒïŒ®ïŒN^4
ãä»»æã®æ°ïŒ®ã«å¯ŸããŠããïŒïŒ®ïŒïŒïŒïŒ®ïŒïŒ®ïŒïŒïŒïŒïŒ®^2ïŒïŒïŒã¯å¶æ°ã§ã
ããïŒïŒïŒ®ïŒïŒïŒïŒ®ïŒïŒ®ïŒïŒïŒïŒïŒ®^2ïŒïŒïŒïŒïŒ®ïŒN^5ïŒïŒ®ïŒN^5
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ã§ããããN+a1+a2+ã»ã»+aNã«ãããŠãaNããããªãããã«ã決ããã°ããã§ããã
äœåºŠã远èšããŸããã
N+x1+x2+ã»ã»+xN=N^4ã«ãããŠã
xN=aN^3+bN^2+cN+dãšãããšã
N+â(ai^3+bi^2+ci+d)
=N+a{N^2(N+1)^2}/4+b{N(N+1)(2N+1)}/6+c{N(N+1)}/2+dN
=a{N^2(N+1)^2}/4+b{N(N+1)(2N+1)}/6+c{N(N+1)}/2+(d+1)N
N^4={3aN^4+(6a+4b)N^3+(3a+6b+6c)N^2+(2b+6c+12d+12)N}/12
ãã£ãŠã
3a/12=1 a/4=1 ããã«a=4
6a+4b=0 3a+2b=0 12+2b=0ããã«b=-6
3a+6b+6c=0 a+2b+2c=0 4-12+2c=0ããã«c=4
2b+6c+12d+12=0ãb+3c+6d+6=0 -6+12+6d+6=0 12+6d=0ããã«d=-2
ãã£ãŠã
xN=aN^3+bN^2+cN+d
=2(N-1)(2N^2-N+1)
ãããã£ãŠã
x1=0
x2=14
x3=64
x4=174
ã»ã»ã»ã»
ãã£ãŠã
N+x1+x2+ã»ã»+xN=N^4
N+0+14+64+174+ã»ã»ã»+2(N-1)(2N^2-N+1)=N^4
ããŠã
N=1 ã®ãšãïŒ
N=2 ã®ãšã2+0+14=16=2^4
N=3 ã®ãšã3+0+14+64=81=3^4
N=4 ã®ãšã3+0+14+64+174=256=4^4
N^4åã®å
¬åŒ{N(N+1)(2N+1)(3N^2+3N-1}/30ããã
N+x1+x2+ã»ã»+xN=N^5ã«ãããŠã
xN=aN^4+bN^3+cN^2+dN+eãšãããšã
ãN
N+â(ai^4+bi^3+ci^2+di+e)
ãi=1
=N+a{N(N+1)(2N+1)(3N^2+3N-1}/30+b{N^2(N+1)^2}/4+c{N(N+1)(2N+1)}/6+d{N(N+1)}/2+eN
=a{N(N+1)(2N+1)(3N^2+3N-1}/30+b{N^2(N+1)^2}/4+c{N(N+1)(2N+1)}/6+d{N(N+1)}/2+(e+1)N
N^5={12aN^5+(30a+15b)N^4+(20a+30b+20c)N^3+(15b+30c+30d)N^2+(-2a+10c+30d+60e+60)}/60
ãã£ãŠã
12a/60=1 a/5=1 ããã«a=5
30a+15b=0 2a+b=0 10+b=0ããã«b=-10
20a+30b+20c=0 2a+3b+2c=0 10-30+2c=0ããã«c=10
15b+30c+30d=0ãb+2c+2d=0 -10+20+2d=0 10+2d=0ããã«d=-5
-2a+10c+30d+60e+60=0ã -a+5c+15d+30e+30=0ã -5+50-75+30e+30=0ã 0+30e=0
ããã«e=0
ãã£ãŠã
xN=aN^4+bN^3+cN^2+dN+e
=5N^4-10N^3+10N^2-5N
=5N(N-1)(N^2-N+1)
ãããã£ãŠã
x1=0
x2=30
x3=210
x4=780
ã»ã»ã»ã»
ãã£ãŠã
N+x1+x2+ã»ã»+xN=N^5
N+0+30+210+780+ã»ã»ã»+5N(N-1)(N^2-N+1)=N^5
ããŠã
N=1ã®ãšãã1+0=1
N=2ã®ãšãã2+0+30=32=2^5
N=3ã®ãšãã3+0+30+210=243=3^5
N=4ã®ãšãã4+0+30+210+780=1024=4^5
N^5åã®å
¬åŒ{N^2(N+1)^2(2N^2+2N-1)}/12ããã
N+x1+x2+ã»ã»+xN=N^6ã«ãããŠã
xN=aN^5+bN^4+cN^3+dN^2+eN+fãšãããšã
ãN
N+â(ai^5+bi^4+ci^3+di^2+ei+f)
ãi=1
=N+a{N^2(N+1)^2(2N^2+2N-1)}/12+b{N(N+1)(2N+1)(3N^2+3N-1)}/30+c{N^2(N+1)^2}/4+d{N(N+1)(2N+1)}/6+e{N(N+1)}/2+fN
=a{N^2(N+1)^2(2N^2+2N-1)}/12+b{N(N+1)(2N+1)(3N^2+3N-1)}/30+c{N^2(N+1)^2}/4+d{N(N+1)(2N+1)}/6+e{N(N+1)}/2+(f+1)N
N^6={10aN^6+(30a+12b)N^5+(25a+30b+15c)N^4+(20b+30c+20d)N^3+(-5a+15c+30d+30e)N^2+(-2b+10d+30e+60f+60)N}/60
ãã£ãŠã
10a/60=1 a/6=1 ããã«a=6
30a+12b=0 5a+2b=0 30+2b=0ããã«b=-15
25a+30b+15c=0 5a+6b+3c=0 30-90+3c=0 -60+3c=0ããã«c=20
20b+30c+20d=0ã2b+3c+2d=0 -30+60+2d=0 30+2d=0ããã«d=-15
-5a+15c+30d+30e=0 -a+3c+6d+6e=0 -6+60-90+6e=0 -36+6e=0ããã«e=6
-2b+10d+30e+60f+60=0 30-150+180+60f+60=0 120+60f=0 12+6f=0ããã«f=-2
ãã£ãŠã
xN=aN^5+bN^4+cN^3+dN^2+eN+f
=6N^5-15N^4+20N^3-15N^2+6N-2
=(N-1)(6N^4-9N^3+11N^2-4N+2)
ãããã£ãŠã
x1=0
x2=62
x3=664
x4=3366
ã»ã»ã»ã»
ãã£ãŠã
N+x1+x2+ã»ã»+xN=N^6
N+0+62+664+3366+ã»ã»ã»+(N-1)(6N^4-9N^3+11N^2-4N+2)=N^6
ããŠã
N=1ã®ãšãã1+0=1
N=2ã®ãšãã2+0+62=64=2^6
N=3ã®ãšãã3+0+62+664=729=3^6
N=4ã®ãšãã4+0+64+664+3366=4096=4^6
N^6åã®å
¬åŒ{N(N+1)(2N+1)(3N^4+6N^3-3N+1)}/42ããã
N+x1+x2+ã»ã»+xN=N^7ã«ãããŠã
xN=aN^6+bN^5+cN^4+dN^3+eN^2+fN+gãšãããšã
ãN
N+â(ai^6+bi^5+ci^4+di^3+ei^2+fi+g)
ãi=1
=N+a{N(N+1)(2N+1)(3N^4+6N^3-3N+1)}/42+b{N^2(N+1)^2(2N^2+2N-1)}/12+c{N(N+1)(2N+1)(3N^2+3N-1)}/30+d{N^2(N+1)^2}/4+e{N(N+1)(2N+1)}/6+f{N(N+1)}/2+gN
=a{N(N+1)(2N+1)(3N^4+6N^3-3N+1)}/42+b{N^2(N+1)^2(2N^2+2N-1)}/12+c{N(N+1)(2N+1)(3N^2+3N-1)}/30+d{N^2(N+1)^2}/4+e{N(N+1)(2N+1)}/6+f{N(N+1)}/2+(g+1)N
N^7={60aN^7+(210a+70b)N^6+(210a+210b+84c)N^5+(175b+210c+105d)N^4+(-70a+140c+210d+140e)N^3+(-35b+105d+210e+210f)N^2+(10a-14c+70e+210f+420g+420)N}/420
ãã£ãŠã
60a/420=1 a/7=1 ããã«a=7
210a+70b=0 3a+b=0 21+b=0ããã«b=-21
210a+210b+84c=0 5a+5b+2c=0 35-105+2c=0 -70+2c=0ããã«c=35
175b+210c+105d=0ã5b+6c+3d=0 -105+210+3d=0 105+3d=0ããã«d=-35
-70a+140c+210d+140e=0 -a+2c+3d+2e=0 -7+70-105+2e=0 -42+2e=0ããã«e=21
-35b+105d+210e+210f=0 -b+3d+6e+6f=0 21-105+126+6f=0 42+6f=0 ããã«f=-7
10a-14c+70e+210f+420g+420=0 5a-7c+35e+105f+210g+210=0 210g=0 ããã«g=0
ãã£ãŠã
xN=aN^6+bN^5+cN^4+dN^3+eN^2+fN+g
=7N^6-21N^5+35N^4-35N^3+21N^2-7N
=7N(N-1)(N^2-N+1)^2
ãããã£ãŠã
x1=0
x2=126
x3=2058
x4=14196
ã»ã»ã»ã»
ãã£ãŠã
N+x1+x2+ã»ã»+xN=N^7
N+0+126+2058+14196+ã»ã»ã»+7N(N-1)(N^2-N+1)^2=N^7
ããŠã
N=1ã®ãšãã1+0=1
N=2ã®ãšãã2+0+126=128=2^7
N=3ã®ãšãã3+0+126+2058=2187=3^7
N=4ã®ãšãã4+0+126+2058+14196=16384=4^7
ãã£ãŠã
NïŒïŒïŒã®åæ°ã®æ°åã®åïŒïŒNã®ïŒä¹ãäžæç«
NïŒïŒïŒã®åæ°ã®æ°åã®åïŒïŒNã®ïŒä¹ãæãç«ã¡ãŸã
ã©ããïŒïŒïŒïŒïŒïŒïŒãããçŽ æ°ãªãæãç«ã¡ããã§ããã
ãªããK^rã®åã®å
¬åŒã¯ãç·è²ã®ããããã¯ã¡ã¹ããã¯ãªãã¯ããŠãã ããã
r=1ãïŒïŒãŸã§ãäœã£ãŠãããŸãã
pãçŽ æ°ã®æã
NïŒïŒããæ°åã®åïŒïŒNã®ïœä¹
ïœãŒïŒ®ïŒïŒ³ïœãšãããšãSn-1=(n-1)^p-(n-1)
an=Sn-Sn-1=N^p-N-(N-1)^p+(N-1)
=N^p-N-(N^p+Pã®åæ°ãŒïŒ)ïŒN-1ãïŒïœïŒ2ïŒ
ïŒïŒPã®åæ°ïŒãªã®ã§ã
(ããæ°åã®å)ïŒïŒïœã®åæ°ã®æ°åã®åïŒ
çŽ æ°ã®ãšãã¯ãæç«ããã
åææ°ã®ãšãã«ãæãç«ã€ããšãããããç¥ããŸãããïŒ
管ç人æ§ãããã«ã¡ã¯ã
ïŒãN^6ïŒNïŒNïŒïŒ®ïŒïŒïŒïŒïŒ®^4ïŒïŒ®^3ïŒïŒ®^2ïŒïŒ®ïŒïŒïŒããïŒã®åæ°ã«ãªãããšã¯ãªãã
ãN^7ïŒNïŒNïŒïŒ®ïŒïŒïŒ(NïŒïŒ)ïŒïŒ®^4ïŒïŒ®^2ïŒïŒïŒãã¯åžžã«ïŒã®åæ°ã«ãªãã
é¢åãããèšç®ã§ãæ±ããŠããŸããããç°¡åã«æ±ããããæ¹æ³ããããªãã°ãæ ¹æ ãæããŠãã ããã
ããããã¯ã¡ã¹ããããããã«ã¡ã¯ã
ïŒN^7ïŒNïŒNïŒïŒ®ïŒïŒïŒ(NïŒïŒ)ïŒïŒ®^4ïŒïŒ®^2ïŒïŒïŒãã¯åžžã«ïŒã®åæ°ã«ãªãã
ãã¡ãã«ãããŸãããhttps://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1486418324
æ°åŠçåž°çŽæ³ãè¯ãã§ãããäžã®è§£æ³ã®æ¹ããšã¬ã¬ã³ãã§ãããïŒããã¡ãã£ãšèªã¿æãæžããŠããããšæé£ãã§ãããïŒ
å ã¿ã«ãããããã®ã¯çºèŠããã®ã¯å€§å€ã§ããã蚌æã ããªããNïŒïŒïœïŒïŒïœÂ±ïŒïŒïŒïœÂ±ïŒïŒïŒïœÂ±ïŒã代å
¥ããã°å¿
ãåºæ¥ããšæããŸãã
ïŒïŒïœã®æã¯èªæã§ããã
ïŒïŒïœÂ±ïŒã®æã^7ïŒïŒ®ïŒ(ïŒïœÂ±ïŒ)^7ïŒ(ïŒïœÂ±ïŒ) ãããäºé
å®çã§å±éãããšå®æ°é
以å€ã¯ïŒãããã£ãŠããã®ã§ïŒã®åæ°ã§ã(±ïŒ)^7ïŒ(±ïŒ)ïŒïŒããïŒã®åæ°ã§ããã
ïŒïŒïœÂ±ïŒã®æã^7ïŒïŒ®ïŒ(ïŒïœÂ±ïŒ)^7ïŒ(ïŒïœÂ±ïŒ) 宿°é
(±ïŒ)^7ïŒ(±ïŒ)ïŒÂ±ïŒïŒïŒïŒÂ±ïŒã»ïŒïŒããïŒã®åæ°ã
ïŒïŒïœÂ±ïŒã®æã^7ïŒïŒ®ïŒ(ïŒïœÂ±ïŒ)^7ïŒ(ïŒïœÂ±ïŒ) 宿°é
(±ïŒ)^7ïŒ(±ïŒ)ïŒÂ±ïŒïŒïŒïŒïŒÂ±ïŒã»ïŒïŒïŒããïŒã®åæ°ã
ãã£ãŠãNïŒïŒïœïŒïŒïœÂ±ïŒïŒïŒïœÂ±ïŒïŒïŒïœÂ±ïŒã®å
šãŠã®å Žåã§ïŒã®åæ°ãããN^7ïŒNã¯åžžã«ïŒã®åæ°ã«ãªãã
å£ããææ§ãããã°ãã¯ã
ãä¹
ãã¶ãã§ãã
ããŠããããããã説æã§ããããšãããããŸããã
ããããã以åã¯ã¡ã¹ãããèªèº«ãããã®èšŒæãããã«æçš¿ããŠãŸãããã
ã©ã®èšäºã ã£ããå¿ããŸãããã©ã
DDïŒïŒæ§ããã¯ããããããŸãã
ããããa^n=nA+aïŒãã ãnã¯å¥çŽ æ°ïŒã§ããã
http://y-daisan.private.coocan.jp/html/felmer-7-2.pdf
a^n-a=nAã§ããã
ãã ãnã¯å¥çŽ æ°ãšããæ¡ä»¶ãä»ããŠããŸããæ®å¿µã
ããããã¯ã¡ã¹ãããããã¯ããããããŸãã
ã¬ããŒãèªãŸããŠé ããŸããã以åã«ãç§ã¯ãå¥ããä»ããŠããŸããããå€ããŠäžããã
ããããã°ãããããã¯ã¡ã¹ãããã®No.1243ã®æçš¿ã®èšŒæãèªåã§ããäºã«ãªããŸããã
å£ããææ§ããã¯ããããããŸãã
ããããšãããããŸããä¿®æ£ããŸããã
å¥çŽ æ°ãçŽ æ°ã«ãããšããããšã¯2ã®å Žåãèããã°ããããã§ãããçŽåŸã§ãã
>ããããã°ãããããã¯ã¡ã¹ãããã®No.1243ã®æçš¿ã®èšŒæãèªåã§ããäºã«ãªããŸããã
ããã¯ãªããŸãããçŽ æ°ã§ãªãèªç¶æ°ã§ã¯ã ãã§ããããã
N^8-NãN^9-NãN^10^-Nã¯ãïŒïŒïŒïŒïŒïŒã®åæ°ã«ã¯ãªããŸããããç§ã®æ¹æ³ã§ã¯ã§ããªãã§ãã
管ç人æ§ã®ææ³ã§ãªããšèª¬æã§ããŸããã
N^11-Nã¯11ã®åæ°ã§ããããã ãã¯ç§ã®æ¹æ³ã䜿ããŸãã
ïŒè¿œèšã»ä¿®æ£æžã¿ïŒ
ããããã¯ã¡ã¹ããããããã°ãã¯ã
管ç人ããã¯åææ°ã®å Žåã¯æãç«ããªã蚌æããããã®ã§ããã
>ããããã°ãããããã¯ã¡ã¹ãããã®No.1243ã®æçš¿ã®èšŒæãèªåã§ããäºã«ãªããŸããã
ããã¯ãã©ããïŒïŒïŒïŒïŒïŒïŒãããçŽ æ°ãªãæãç«ã¡ããã§ãããããããçŽ æ°ãªãã°æãç«ã€èšŒæãšããæå³ã§ãã
ããã«ããŠãèªåã§æ³åãèŠã€ããŠèŠäºã§ããã
ãåææ°ã®å Žåã¯æãç«ããªããã¯ããããåœã§ããã管ç人ããããããªèšŒæã¯ãããŠããªããšæããŸããã
ããããäžå€
äžæäžæ¥ã¯ã«ã«ãã¹ãåããŠçºå£²ãããæ¥ã§ãã
æãå¹ãã§ããé ããã©ããã§ã§ããæ£åé¢äœã®æ ã®äžã«
çã®æ°Žæ¶ãå
¥ã£ãŠããã¢ã¯ã»ãµãªãŒãè²·ã£ãã
(ãã©ããããã¯ãŒãšæ°Žæ¶ãã¯ãŒã®ããã«ãã¯ãŒ)
ãããæ°Žæ¶ããã©ãããã®å
æ¥çã ã£ããæ£åé¢äœã®æ ã®äžããé£ã³åºããŠããŸãã
ä»ããæ³ãã°ããã®æ°Žæ¶ã¯æ£åé¢äœã®ã蟺æ¥çãã ã£ããã ãšæ°ã¥ããã
ä»ã¯ç¡ãããã®æ°Žæ¶ã¯ç¥ç€Ÿã®ãçãäžãã®çã®äžãžã
ãä»»æã®å¶æ°Aã«å¯ŸããŠãäºã€ã®çŽ æ°PãQãååšãã
AïŒP-Qãšããããšãã§ãããåäŸãããã§ããããïŒ
奿°ã®å Žåã¯ãããã«èŠã€ãããŸããã
å
æ¥æçš¿ãããäžè§åœ¢ã®å
æ¥äºæ¬¡æ²ç·ãšå
±åœ¹ç¹ãã«é¢é£ããŠãããäžåæçš¿ããŠã¿ãŸãã
ãã¡ããåé¡ã¯äœããŸãããèªåã§è§£ããŠã¯ããªãã®ã§è§£çã¯çšæããŠããŸããã
ïŒãã®åé¡ã®å
容ãå«ãããäžè¬çãªåœé¡ãæãç«ã€ããšã¯ç¢ºèªããŠããŸããïŒ
äžè§åœ¢ABCããããç·åBCã®äžç¹ãDãç·åCAã®äžç¹ãEãç·åABã®äžç¹ãFãšããã
äžè§åœ¢ABCã®å€æ¥åãšçŽç·EFã®2ã€ã®äº€ç¹ã«ããã倿¥åã®æ¥ç·ãl,l'ãšããã
çŽç·lãšçŽç·BC,CA,ABã®äº€ç¹ãããããP,Q,Rãšãã
çŽç·l'ãšçŽç·BC,CA,ABã®äº€ç¹ãããããP',Q',R'ãšããã
ãã®ãšãã PD=DP' ã QE=EQ' ã RF=FR' ãæãç«ã€ããšã瀺ãã
ããã²ããããããã«ã¡ã¯ã
ç°¡åãªãã€ïŒã€ã ãã§ãããããã§ããããã
ïŒâ
°ïŒPD=DP' ã®èšŒæ
çŽç·ïœãšåãšã®æ¥ç¹ãïŒçŽç·ïœ'ãšåãšã®æ¥ç¹ããšãããšãïŒç¹ïŒ¥ïŒïŒŠã¯ç·åäžã«ããã
â³ïŒ¡ïŒ¢ïŒ£ã§ã®äžç¹é£çµå®çãã//ãâŽïŒ³ïŒŽ//
ãŸããçŽç·ïœãšïœ'ã®äº€ç¹ããšãããšãåãšæ¥ç·ã®é¢ä¿ããïŒïŒ§ïŒŽ
ãã£ãŠãâ³ïŒ§ïŒ³ïŒŽã¯äºç蟺äžè§åœ¢ã§ããããŸããç¹ïŒ°,'ã¯ïŒ¢ïŒ£ã®å»¶é·äžã«ããã//ãã//'ã§ããã
âŽâ³ïŒ§ïŒ³ïŒŽâœâ³ïŒ§ïŒ°ïŒ°'ããã£ãŠãâ³ïŒ§ïŒ°ïŒ°'ãäºç蟺äžè§åœ¢ã§ããã
ãã£ãŠããã'ã«åç·ãäžãããã®è¶³ããšãããšãïŒïŒšïŒ°'ââââ
ãšããã§ã//ããåè§åœ¢ïŒ³ïŒ¢ïŒ£ïŒŽã¯å°åœ¢ã§åã«å
æ¥ããå°åœ¢ã¯çèå°åœ¢ã§ããŸããâ³ïŒ§ïŒ³ïŒŽã¯äºç蟺äžè§åœ¢ããã
ç¹ïŒšã¯ïŒ¢ïŒ£ã®äžç¹ã§ãããâŽïŒšïŒïŒ€ââââ¡
â¡ãâ ã«ä»£å
¥ãããšãïŒïŒ€ïŒ°'
ãã£ãŠã瀺ãããã
è£è¶³
åã«å
æ¥ããå°åœ¢ã¯çèå°åœ¢ã§ããäºã䜿ããªãå Žåã¯ããçµã¶ãšé¯è§ããâ ïŒâ ãâŽåŒ§ïŒ³ïŒ¢ïŒåŒ§ïŒŽïŒ£
âŽïŒ³ïŒ¢ïŒïŒŽïŒ£ããŸãã//ãããåè§åœ¢ïŒ³ïŒ¢ïŒ£ïŒŽã¯çèå°åœ¢ã§ããã
ãã®åœé¡ã«ã¯ â B ãš â C ãçŽè§ã§ã¯ãªããšããåæãå¿
èŠãªæ°ãããŸãã
ãããã¯ãå¹³è¡ç·ã¯ç¡éé ã§äº€ãã£ãŠãããšã¿ãªããšè£è¶³ãå
¥ãããã
ããã¯ãããšããŠãPD = DPâ ã«ã€ããŠã¯ã蟺 BC ã®åçŽäºçåç·ãåŒããš l ãš lâ ããã®çŽç·ã«é¢ããŠå¯Ÿç§°ã«ãªãããšããããšãèããã°ãããšèªæãªæããããŸããã
DD++ãã
> ãã®åœé¡ã«ã¯ â B ãš â C ãçŽè§ã§ã¯ãªããšããåæãå¿
èŠãªæ°ãããŸãã
> ãããã¯ãå¹³è¡ç·ã¯ç¡éé ã§äº€ãã£ãŠãããšã¿ãªããšè£è¶³ãå
¥ãããã
確ãã«ããã§ããã倱瀌ããŸããã
â B ãš â C ãçŽè§ã§ã¯ãªããšããã®ãããããã§ããã
ïŒå¹³è¡ç·ã¯ç¡éé ã§äº€ãã£ãŠãããšã¿ãªããšè£è¶³ãå
¥ããå Žåã¯ã
亀ç¹ã¯å®çŸ©ãããŠãé·ããå®çŸ©ãããªãã®ã§ã
åé¡æã®æåŸããPãšP'ãDã«é¢ããŠå¯Ÿç§°ãã®ãããªåœ¢ã«ããã®ãããã§ãããïŒ
察称ã®å®çŸ©ãç¡éé ç¹ã«åã¶ãããããªããã埮åŠããªïŒïŒ
ãäžè§åœ¢ã®å
æ¥äºæ¬¡æ²ç·ãšå
±åœ¹ç¹ãã¹ã¬ããã«ç§ãæžã蟌ãã çè§å
±åœ¹ç¹ãšçè·é¢å
±åœ¹ç¹ã®èª¬æãå¹³è¡ç·ãšãªãå ŽåãæããŠããŠäžååã§ããã
ãŠãŒã¯ãªããå¹³é¢ã«ç¡éé ç¹ã®éåã§ããç¡éé çŽç·ãå ããŠå°åœ±å¹³é¢ã®å®çŸ©ãæºããããã«æ¡åŒµããå¹³é¢ã§èããŠãããšããŠãã ããã
ãã®æ¡å€§ãŠãŒã¯ãªããå¹³é¢ã§ã¯å¹³è¡ç·ã¯ç¡éé ç¹ã§äº€ãããŸãã
ããäžåäœããŸããã
äŸã®ããšããåé¡ã¯äœããŸãããèªåã§è§£ããŠã¯ããªãã®ã§è§£çã¯çšæããŠããŸããã
ïŒãã®åé¡ã®å
容ãå«ãããäžè¬çãªåœé¡ãæãç«ã€ããšã¯ç¢ºèªããŠããŸããïŒ
æçš¿No.1202ã®åé¡ãåé¡ãã®ïŒãšããŠãããŸãã
åé¡ãã®ïŒ
äžè§åœ¢ABCããããâ Aã®äºçåç·ãšèŸºBCã®äº€ç¹ãDãâ Bã®äºçåç·ãšèŸºCAã®äº€ç¹ãEãâ Cã®äºçåç·ãšèŸºABã®äº€ç¹ãFãšããã
äžè§åœ¢ABCã®å€æ¥åãšçŽç·EFã®2ã€ã®äº€ç¹ã«ããã倿¥åã®æ¥ç·ãl,l'ãšããã
çŽç·lãšçŽç·BC,CA,ABã®äº€ç¹ãããããP,Q,Rãšãã
çŽç·l'ãšçŽç·BC,CA,ABã®äº€ç¹ãããããP',Q',R'ãšããã
ãã®ãšãã â PAD=â DAP' ã â QBE=â EBQ' ã â RCF=â FCR' ãæãç«ã€ããšã瀺ãã
GeoGebraã§äœå³ããŠã¿ããšãã©ããã â QBE(=â EBQ') ãš â RCF(=â FCR') ãçãããªãããã§ãã
ãã¡ãã¯èšŒæããŠããªãã®ã§æ£ãããã©ããããããŸããã
ãã®åé¡ã®å
ãã¿ïŒããäžè¬çãªåœé¡ïŒãèŒããŠãããŸãã
以äžããŠãŒã¯ãªããå¹³é¢ã«ç¡éé ç¹ã®éåã§ããç¡éé çŽç·ãå ããŠå°åœ±å¹³é¢ã®å®çŸ©ãæºããããã«æ¡åŒµããå¹³é¢ã§èããŸãã
ãã®æ¡å€§ãŠãŒã¯ãªããå¹³é¢ã§ã¯ãä»»æã®ç°ãªã2ç¹ãçµã¶çŽç·ããã 1ã€ååšããä»»æã®ç°ãªã2çŽç·ã¯ãã 1ç¹ã§äº€ãããŸãã
åæç¥èãã®ïŒãçžåå
±åœ¹ç·
äžè§åœ¢ABCã®åé ç¹ãéããªãçŽç·lããšãã
çŽç·lãšçŽç·BC,CA,ABã®äº€ç¹ãããããP,Q,Rãšãã
ç·åBCã®äžç¹ã«é¢ããŠç¹Pãšå¯Ÿç§°ãªç¹ãP'ã
ç·åCAã®äžç¹ã«é¢ããŠç¹Qãšå¯Ÿç§°ãªç¹ãQ'ã
ç·åABã®äžç¹ã«é¢ããŠç¹Rãšå¯Ÿç§°ãªç¹ãR'ãšãããšã
3ç¹P',Q',R'ã¯äžçŽç·äžã«ããã
ãã®çŽç·ã(äžè§åœ¢ABCã«é¢ãã)çŽç·lã®çžåå
±åœ¹ç·ãšããã
åæç¥èãã®ïŒãïŒïŒïŒ (è§åºŠã®å
±åœ¹ç·)
äžè§åœ¢ABCã®åé ç¹ãéããªãçŽç·lããšãã
çŽç·lãšçŽç·BC,CA,ABã®äº€ç¹ãããããP,Q,Rãšãã
è§Aã®äºçåç·ã«é¢ããçŽç·APã®é¡æ ãçŽç·BCãšäº€ããç¹ãP'ã
è§Bã®äºçåç·ã«é¢ããçŽç·BPã®é¡æ ãçŽç·CAãšäº€ããç¹ãQ'ã
è§Cã®äºçåç·ã«é¢ããçŽç·CPã®é¡æ ãçŽç·ABãšäº€ããç¹ãR'ãšãããšã
3ç¹P',Q',R'ã¯äžçŽç·äžã«ããã
ãã®çŽç·ãäœãšããã®ããããã¯ç¥ããŸããããããããåç§°ãããã®ãã©ãããããããŸããã®ã§ã
ãã®æçš¿ã«ãããŠã¯ãã®çŽç·ã(äžè§åœ¢ABCã«é¢ãã)çŽç·lã®è§åºŠã®å
±åœ¹ç·ãšåŒã¶ããšã«ããŸãã
ããšã°ã®å®çŸ©ã倿¥äºæ¬¡æ²ç·
3ç¹A,B,Cãéãäºæ¬¡æ²ç·ãäžè§åœ¢ABCã®å€æ¥äºæ¬¡æ²ç·ãšããã
â»äžéšãäžè§åœ¢ABCã®å
éšãéãåæ²ç·ãå«ããã
ããšã°ã®å®çŸ©ãantiorthic axis
äžè§åœ¢ABCã«å¯ŸããŠãç¹A,B,Cã®å€è§ã®äºçåç·ãšå¯ŸèŸºã®å»¶é·ç·ã®äº€ç¹ãããããD',E',F'ãšãããšããã®3ç¹ã¯äžçŽç·äžã«ããã
ãã®çŽç·ãäžè§åœ¢ABCã® antiorthic axis ãšããã
(æ¥æ¬èªã®åç§°ã¯ããããŸããã)
åé¡ãã®ïŒã®å
ãã¿
äžè§åœ¢ABCããããç·åBCã®äžç¹ãDãç·åCAã®äžç¹ãEãç·åABã®äžç¹ãFãšããã
ç¡éé çŽç·ãšçŽç·EF,FD,DEã®äžããäžè§åœ¢ABCã®å€æ¥äºæ¬¡æ²ç·Îãš2ç¹ã§äº€ããçŽç·ãéžã¶ã
ãã®çŽç·ãšÎã®2ã€ã®äº€ç¹ã«ãããæ¥ç·ã¯äºãã«äžè§åœ¢ABCã«é¢ããçžåå
±åœ¹ç·ã§ããã
åé¡ãã®ïŒã®å
ãã¿
äžè§åœ¢ABCããããç¹A,B,Cã®å
è§ã®äºçåç·ãšå¯ŸèŸºã®äº€ç¹ãããããD,E,Fãšããã
äžè§åœ¢ABCã® antiorthic axis ãšçŽç·EF,FD,DEã®äžããäžè§åœ¢ABCã®å€æ¥äºæ¬¡æ²ç·Îãš2ç¹ã§äº€ããçŽç·ãéžã¶ã
ãã®çŽç·ãšÎã®2ã€ã®äº€ç¹ã«ãããæ¥ç·ã¯äºãã«äžè§åœ¢ABCã«é¢ããè§åºŠã®å
±åœ¹ç·ã§ããã
å
ãã¿ã®å
ãã¿ïŒããäžè¬çãªåœé¡ïŒãèŒããŠãããŸãã
çžåå
±åœ¹ç·ãè§åºŠã®å
±åœ¹ç·ã¯ããã«äžè¬åããããçŽç·ã®å
±åœ¹é¢ä¿ãã®ãã¡ã®ã²ãšã€ã§ãã
äžè¬åãããçŽç·ã«é¢ããå
±åœ¹é¢ä¿ã«ã¯ãèªå·±å
±åœ¹ãªçŽç·ã4ã€æã€ãã®ãš1ã€ãæããªããã®ããããŸãã
å
ãã¿ã®å
ãã¿
äžè§åœ¢ABCã«é¢ããŠãèªå·±å
±åœ¹ãªçŽç·ã4ã€æã€ãçŽç·ã«é¢ããå
±åœ¹é¢ä¿ããã²ãšã€æ±ºããã
ãã®4ã€ã®èªå·±å
±åœ¹ãªçŽç·ã®äžããäžè§åœ¢ABCã®å€æ¥äºæ¬¡æ²ç·Îãš2ç¹ã§äº€ããçŽç·ãéžã¶ã
ãã®çŽç·ãšÎã®2ã€ã®äº€ç¹ã«ãããæ¥ç·ã¯äºãã«æåã«å®ããå
±åœ¹é¢ä¿ã«ããã
ãã®å
ãã¿ã®å
ãã¿ã¯å°åœ±å¹Ÿäœã®ç¯çãªã®ã§å察ãæãç«ã¡ãŸãã
ãã®å察ãããã²ãšã€ã®ã¹ã¬ãããäžè§åœ¢ã®å
æ¥äºæ¬¡æ²ç·ãšå
±åœ¹ç¹ãã®å
ãã¿ã®å
ãã¿ã«ãªããŸãã
ãããããããã®ããšãèãããã£ããã«ãªã£ãã®ã¯æ¬¡ã®å®çãèŠãããããšã«ãããŸãã
åé¡ãã®ïŒãããã®ïŒããããã®å
ãã¿ã®åœé¡ã¯æ¬¡ã®å®çããã®é£æ³ã§çãŸããŸããã
ãäžè§åœ¢ABCã®çžåå
±åœ¹ç·ãšãªã2çŽç·ã®çµã¯ã3ç¹A,B,Cãéãããåæ²ç·ã®2æ¬ã®æŒžè¿ç·ã§ãããã
äžè¬åããããçŽç·ã«é¢ããå
±åœ¹é¢ä¿ã(èªå·±å
±åœ¹ãªçŽç·ã4ã€ãã€ãã®)ã«ã€ããŠæžã蟌ãã§ãããŸãã
1çŽç·äžã«ãã4ç¹ã®è€æ¯ã [P1,P2;P3,P4] ã®ããã«æžãã
1ç¹ãéã4çŽç·ã®è€æ¯ã [l1,l2;l3,l4] ã®ããã«æžãã
çŽç·dã¯ç¹A,B,Cãéããªããšããã
ãŸããçŽç·dãšçŽç·BC,CA,ABã®äº€ç¹ãããããD1,D2,D3ãšããã
4ã€ã®èªå·±å
±åœ¹ãªçŽç·ãæã¡ãã®äžã®1ã€ãçŽç·dã§ãããããªå
±åœ¹é¢ä¿ã®ããšãd-å
±åœ¹ãšæžãããšã«ãã
ããçŽç·ã«å¯ŸããŠd-å
±åœ¹ã®é¢ä¿ã«ããçŽç·ã®ããšãd-å
±åœ¹ç·ãšæžãããšã«ããã
d-å
±åœ¹ç·
ç¹A,B,CãéããªãçŽç·lãšçŽç·BC,CA,ABã®äº€ç¹ãããããL1,L2,L3ãšããã
ç¹M1ã¯çŽç·BCäžã«ãã [B,C;D1,M1]=1/[B,C;D1,L1] ãšãªãç¹ãšãã
ç¹M2ã¯çŽç·CAäžã«ãã [C,A;D2,M2]=1/[C,A;D2,L2] ãšãªãç¹ãšãã
ç¹M3ã¯çŽç·ABäžã«ãã [A,B;D3,M3]=1/[A,B;D3,L3] ãšãªãç¹ãšããã
ãã®ãšãã3ã€ã®ç¹M1,M2,M3ã¯1çŽç·äžã«ããã
ãã®çŽç·ãçŽç·lã®d-å
±åœ¹ç·ã§ããã
ã¡ãªã¿ã«ã
d-å
±åœ¹ã®4ã€ã®èªå·±å
±åœ¹ãªçŽç·ã®ãã¡çŽç·d以å€ã®3æ¬ã®çŽç·ã¯ã
çŽç·BC,AD1ã«é¢ããçŽç·dã®èª¿åå
±åœ¹ç·,
çŽç·CA,BD2ã«é¢ããçŽç·dã®èª¿åå
±åœ¹ç·,
çŽç·AB,CD3ã«é¢ããçŽç·dã®èª¿åå
±åœ¹ç·ã§ããã
â»èª¿åå
±åœ¹ç·ãšã¯è€æ¯ã-1ãšãªãçŽç·ã®ããšãããã
æšå¹Žããã®ç§ã®å人çãªããŒã ã¯äžè§åœ¢ã«é¢ããããããã§ä»ãç¶ç¶ããŠããŸãã
æ°æ¥åã«ãµãšåé¡ãæãã€ããã®ã§æžããŠã¿ãŸãã
ãã ããåé¡ã¯äœããŸãããèªåã§è§£ããŠã¯ããªãã®ã§è§£çã¯çšæããŠããŸããã
ïŒãã®åé¡ã®å
容ãå«ãããäžè¬çãªåœé¡ãæãç«ã€ããšã¯ç¢ºèªããŠããŸããïŒ
åæç¥èãã®ïŒãçè§å
±åœ¹ç¹ (isogonal conjugate)
äžè§åœ¢ABCã®å蟺ããã³ãã®å»¶é·ç·ã®äžã«ãªãç¹Pããšãã
è§Aã®äºçåç·ã«é¢ããçŽç·APã®é¡æ ãçŽç·lã
è§Bã®äºçåç·ã«é¢ããçŽç·BPã®é¡æ ãçŽç·mã
è§Cã®äºçåç·ã«é¢ããçŽç·CPã®é¡æ ãçŽç·nãšãããšã
3æ¬ã®çŽç·l,m,nã¯1ç¹ã§äº€ããã
ãã®ç¹ã(äžè§åœ¢ABCã«é¢ãã)ç¹Pã®çè§å
±åœ¹ç¹ãšããã
åæç¥èãã®ïŒãçè·é¢å
±åœ¹ç¹ (isotomic conjugate)
äžè§åœ¢ABCã®å蟺ããã³ãã®å»¶é·ç·ã®äžã«ãªãç¹Pããšãã
çŽç·APãšBCã®äº€ç¹ãLãBPãšCAã®äº€ç¹ãMãCPãšABã®äº€ç¹ãNãšãã
ç·åBCã®äžç¹ã«é¢ããŠç¹Lãšå¯Ÿç§°ãªç¹ãL'ã
ç·åCAã®äžç¹ã«é¢ããŠç¹Mãšå¯Ÿç§°ãªç¹ãM'ã
ç·åABã®äžç¹ã«é¢ããŠç¹Nãšå¯Ÿç§°ãªç¹ãN'ãšãããšã
3æ¬ã®çŽç·AL',BM',CN'ã¯1ç¹ã§äº€ããã
ãã®ç¹ã(äžè§åœ¢ABCã«é¢ãã)ç¹Pã®çè·é¢å
±åœ¹ç¹ãšããã
åé¡ãã®ïŒ
äžè§åœ¢ã®å
æ¥åã«å¯ŸããŠããã²ãšã€ã®åå¿ãã2æ¬ã®æ¥ç·ãåŒãããšãã®2ã€ã®æ¥ç¹ã¯äºãã«çè§å
±åœ¹ç¹ã§ããããšã瀺ãã
åé¡ãã®ïŒ
äžè§åœ¢ABCã«å¯ŸããŠãåè§åœ¢ABCDãå¹³è¡å蟺圢ãšãªãããã«ç¹Dããšãã
äžè§åœ¢ABCã®å
æ¥åã«å¯ŸããŠç¹Dãã2æ¬ã®æ¥ç·ãåŒãããšãã®2ã€ã®æ¥ç¹ã¯äºãã«çè·é¢å
±åœ¹ç¹ã§ããããšã瀺ãã
ããã²ããããããã«ã¡ã¯ãã¡ãã£ãšèããŠã¿ãŸããã
åé¡ãã®ïŒ
äžè§åœ¢ã®å
æ¥åã«å¯ŸããŠããã²ãšã€ã®åå¿ãã2æ¬ã®æ¥ç·ãåŒãããšãã®2ã€ã®æ¥ç¹ã¯äºãã«çè§å
±åœ¹ç¹ã§ããããšã瀺ãã
åç
â³ïŒ¡ïŒ¢ïŒ£ã®å
å¿ããšããâ å
ã®åå¿ã'ãšãããšãïŒç¹ïŒ¢ïŒïŒ©ïŒïŒ©'ã¯äžçŽç·äžã«ããã'ããå
æ¥åã«åŒããæ¥ç·ã®ïŒã€ã®æ¥ç¹ã'ã®é¢ããŠç¹ïŒ¡åŽãïŒç¹ïŒ£åŽããšãããšã
ã¯â ã®äºçåç·ã§ïŒ¡ïŒ©'ã¯â ã®å€è§ã®äºçåç·ããâ 'ïŒïŒïŒïŒÂ°Ã·ïŒïŒïŒïŒÂ°
ãŸãã'â¥ïŒ©ïŒ³ããâ 'ïŒïŒïŒÂ°
ãã£ãŠãâ 'ïŒâ 'ãããååšè§ã®å®çã®éã«ããïŒç¹ïŒ³ïŒïŒ©ïŒïŒ©'ïŒïŒ¡ã¯åäžååšäžã«ããã
ãšããã§ãâ³ïŒ©'â¡â³ïŒ©'ããâ 'ïŒâ 'ïŒâãšçœ®ããšãååšè§ããâ ïŒâ 'ïŒâ
ãŸããâ 'ïŒïŒïŒÂ°ïŒâ 'ïŒïŒïŒÂ°ããåè§åœ¢ïŒ¡ïŒ©ïŒŽïŒ©'ã¯åã«å
æ¥ããåè§åœ¢ã§ããã
ãã£ãŠãååšè§ããâ ïŒâ 'ïŒâãâŽâ ïŒâ 
ãšããã§ãã¯â ã®äºçåç·ããããšïŒ¡ïŒŽã¯â ã®äºçåç·ã«é¢ããŠé¡æ ã§ããã
ãŸããâ³ïŒ©'â¡â³ïŒ©'ããâ 'ïŒâ 'ãâŽâ ïŒâ ããŸããååŸããïŒïŒ©ïŒŽãã¯å
±éããã
äºèŸºæè§ãçããã®ã§ãâ³ïŒ¢ïŒ©ïŒ³â¡â³ïŒ¢ïŒ©ïŒŽãâŽâ ïŒâ 
ãšããã§ãã¯â ã®äºçåç·ããããšïŒ¢ïŒŽã¯â ã®äºçåç·ã«é¢ããŠé¡æ ã§ããã
ãã£ãŠãç¹ïŒ³ãšç¹ïŒŽã¯äºãã«çè§å
±åœ¹ç¹ã§ããããã£ãŠã瀺ãããã
è£è¶³
â 'ïŒâ 'ïŒïŒïŒÂ°ããïŒç¹ïŒ©ïŒïŒŽïŒïŒ£ïŒïŒ©'ã¯åäžååšäžã«ãããååšè§ããâ ïŒâ 'ïŒâ
ãŸããåè§åœ¢ïŒ³ïŒ©ïŒ£ïŒ©'ã¯åã«å
æ¥ããåè§åœ¢ããååšè§ã§ãâ ïŒâ 'ïŒâãâŽâ ïŒâ 
ãšããã§ãã¯â ã®äºçåç·ããããšïŒ£ïŒ³ã¯â ã®äºçåç·ã«é¢ããŠé¡æ ã§ããã
å£ããæãã
çããŠããã ãããããšãããããŸãã
6ã€ã®ç¹ A, C, S, T, I, I' ãåäžååšäžã«ãããã§ããã
åé¡ãã®ïŒã¯ããã»ã©é£ããã¯ãªãã ãããªãšãªããšãªãæã£ãŠããŸããããããªãããããªåœ¢ã§ããã
ã¡ãªã¿ã«ã
ãäžè§åœ¢ã®åæ¥åã«å¯ŸããŠå
å¿ãã2æ¬ã®æ¥ç·ãåŒãããšãã®2ã€ã®æ¥ç¹ã¯äºãã«çè§å
±åœ¹ç¹ã§ããããšã
ãã»ãšãã©åæ§ã«ç€ºããŸãã
管ç人ãã
æçš¿No.1194ãä¿®æ£ããŸããã
ä¿®æ£åïŒãç·åBCã®äžç¹ã«é¢ããç¹Lã®é¡æ ãç¹L'ãä»
ä¿®æ£åŸïŒãç·åBCã®äžç¹ã«é¢ããŠç¹Lãšå¯Ÿç§°ãªç¹ãL'ãä»
çç± âŠ å¹³é¢ã«ãããŠç¹å¯Ÿç§°ã®ããšã顿 ãšã¯èšããªãããã
ããã²ããããããã°ãã¯ã
ãäžè§åœ¢ã®åæ¥åã«å¯ŸããŠå
å¿ãã2æ¬ã®æ¥ç·ãåŒãããšãã®2ã€ã®æ¥ç¹ã¯äºãã«çè§å
±åœ¹ç¹ã§ããããšã
ãã»ãšãã©åæ§ã«ç€ºããŸãã
å
çšãã£ãŠã¿ãŸããããã»ãšãã©åæ§ãã®æå³ãåãããŸãããããè¬ãè§£ããªããšãããŸãããã
ãã®åé¡ã®å
ãã¿ïŒããäžè¬çãªåœé¡ïŒãèŒããŠãããŸãã
以äžããŠãŒã¯ãªããå¹³é¢ã«ç¡éé ç¹ã®éåã§ããç¡éé çŽç·ãå ããŠå°åœ±å¹³é¢ã®å®çŸ©ãæºããããã«æ¡åŒµããå¹³é¢ã§èããŸãã
ãã®æ¡å€§ãŠãŒã¯ãªããå¹³é¢ã§ã¯ãä»»æã®ç°ãªã2ç¹ãçµã¶çŽç·ããã 1ã€ååšããä»»æã®ç°ãªã2çŽç·ã¯ãã 1ç¹ã§äº€ãããŸãã
ããšã°ã®å®çŸ©ãå
æ¥äºæ¬¡æ²ç·
3çŽç·BC,CA,ABã«æ¥ããäºæ¬¡æ²ç·ãäžè§åœ¢ABCã®å
æ¥äºæ¬¡æ²ç·ãšããã
â»äžè§åœ¢ã®å
åŽã«ãã3èŸºã«æ¥ããæ¥åã ãã§ã¯ãªããäžè§åœ¢ã®å€åŽã«ãã1èŸºãšæ®ã2蟺ã®å»¶é·ç·ã«æ¥ããæ¥åã»æŸç©ç·ã»åæ²ç·ãå«ããã
åé¡ãã®ïŒã®å
ãã¿
äžè§åœ¢ABCã®å
å¿ãš3ã€ã®åå¿ã®äžããäžè§åœ¢ABCã®å
æ¥äºæ¬¡æ²ç·Îã«2æ¬ã®æ¥ç·ãåŒããç¹ãéžã¶ã
ãã®ç¹ããÎã«åŒãã2æ¬ã®æ¥ç·ã®æ¥ç¹ã¯äºãã«äžè§åœ¢ABCã«é¢ããçè§å
±åœ¹ç¹ã§ããã
åé¡ãã®ïŒã®å
ãã¿
äžè§åœ¢ABCã«å¯ŸããŠãåè§åœ¢ABA'C,ABCB',AC'BCãå¹³è¡å蟺圢ãšãªãããã«ç¹A',B',C'ãå®ããã
äžè§åœ¢ABCã®éå¿Gãš3ç¹A',B',C'ã®äžããäžè§åœ¢ABCã®å
æ¥äºæ¬¡æ²ç·Îã«2æ¬ã®æ¥ç·ãåŒããç¹ãéžã¶ã
ãã®ç¹ããÎã«åŒãã2æ¬ã®æ¥ç·ã®æ¥ç¹ã¯äºãã«äžè§åœ¢ABCã«é¢ããçè·é¢å
±åœ¹ç¹ã§ããã
å
ãã¿ã®å
ãã¿ïŒããäžè¬çãªåœé¡ïŒãèŒããŠãããŸãã
çè§å
±åœ¹ç¹ãçè·é¢å
±åœ¹ç¹ã¯ããã«äžè¬åããããç¹ã®å
±åœ¹é¢ä¿ãã®ãã¡ã®ã²ãšã€ã§ãã
äžè¬åãããç¹ã«é¢ããå
±åœ¹é¢ä¿ã«ã¯ãèªå·±å
±åœ¹ãªç¹ã4ã€æã€ãã®ãš1ã€ãæããªããã®ããããŸãã
å
ãã¿ã®å
ãã¿
äžè§åœ¢ABCã«é¢ããŠãèªå·±å
±åœ¹ãªç¹ã4ã€æã€ãç¹ã«é¢ããå
±åœ¹é¢ä¿ããã²ãšã€æ±ºããã
ãã®4ã€ã®èªå·±å
±åœ¹ãªç¹ã®äžããäžè§åœ¢ABCã®å
æ¥äºæ¬¡æ²ç·Îã«2æ¬ã®æ¥ç·ãåŒããç¹ãéžã¶ã
ãã®ç¹ããÎã«åŒãã2æ¬ã®æ¥ç·ã®æ¥ç¹ã¯äºãã«æåã«å®ããå
±åœ¹é¢ä¿ã«ããã
ãã®å
ãã¿ã®å
ãã¿ã¯å°åœ±å¹Ÿäœã®ç¯çãªã®ã§å察ãæãç«ã¡ãŸãã
ãã®å察ãããã²ãšã€ã®ã¹ã¬ãããäžè§åœ¢ã®å€æ¥äºæ¬¡æ²ç·ãšå
±åœ¹çŽç·ãã®å
ãã¿ã®å
ãã¿ã«ãªããŸãã
äžè¬åããããç¹ã«é¢ããå
±åœ¹é¢ä¿ã(èªå·±å
±åœ¹ãªç¹ã4ã€ãã€ãã®)ã«ã€ããŠæžã蟌ãã§ãããŸãã
1ç¹ãéã4çŽç·ã®è€æ¯ã [l1,l2;l3,l4] ã®ããã«æžãã
1çŽç·äžã«ãã4ç¹ã®è€æ¯ã [P1,P2;P3,P4] ã®ããã«æžãã
ç¹Dã¯çŽç·BC,CA,ABäžã«ãªããšããã
4ã€ã®èªå·±å
±åœ¹ãªç¹ãæã¡ãã®äžã®1ã€ãç¹Dã§ãããããªå
±åœ¹é¢ä¿ã®ããšãD-å
±åœ¹ãšæžãããšã«ãã
ããç¹ã«å¯ŸããŠD-å
±åœ¹ã®é¢ä¿ã«ããç¹ã®ããšãD-å
±åœ¹ç¹ãšæžãããšã«ããã
D-å
±åœ¹ç¹
çŽç·BC,CA,ABäžã«ãªãç¹Pã«å¯ŸããŠã
çŽç·m1ã¯ç¹Aãéã [AC,AB;AD,m1]=1/[AC,AB;AD,AP] ãšãªãçŽç·ãšãã
çŽç·m2ã¯ç¹Aãéã [BA,BC;BD,m2]=1/[BA,BC;BD,BP] ãšãªãçŽç·ãšãã
çŽç·m3ã¯ç¹Aãéã [CB,CA;CD,m3]=1/[CB,CA;CD,CP] ãšãªãçŽç·ãšããã
ãã®ãšãã3æ¬ã®çŽç·m1,m2,m3ã¯1ç¹ã§äº€ããã
ãã®ç¹ãç¹Pã®D-å
±åœ¹ç¹ã§ããã
ã¡ãªã¿ã«ã
çŽç·BCãšADã®äº€ç¹ãA',CAãšBDã®äº€ç¹ãB',ABãšCDã®äº€ç¹ãC'ãšãããšã
D-å
±åœ¹ã®4ã€ã®èªå·±å
±åœ¹ãªç¹ã®ãã¡ç¹D以å€ã®3ã€ã®ç¹ã¯ã
ç¹A,A'ã«é¢ããç¹Dã®èª¿åå
±åœ¹ç¹,
ç¹B,B'ã«é¢ããç¹Dã®èª¿åå
±åœ¹ç¹,
ç¹C,C'ã«é¢ããç¹Dã®èª¿åå
±åœ¹ç¹ã§ããã
â»èª¿åå
±åœ¹ç¹ãšã¯è€æ¯ã-1ãšãªãç¹ã®ããšãããã
> ã¯ã¡ã¹ããã
ãççŸããããšããèšèã¯ãïŒæ°åŠçæèã§ã¯ç¹ã«ïŒéåžžã«å®¢èгçãªèšèã§ãã
æ®éã¯ææ³ãšãã䞻芳çãªè¡šçŸã®äžã§äœ¿ãèšèãããããŸãããããã®èšèã䜿ã£ãæãææ³ã ãšåãåã人ãããããã»ãšãã©ããªãã§ãããã
ç§ã«ã¯ãæ°åŠè
ã®æ¥çžŸãåéãã§æ¹å€ããæå¥çºèšã®è²¬ä»»ãè² ããããªããŠèšãèš³ãããŠããããã«ããèãããŸããã
> dengan ãã
p ãš q ã¯çŽæ¥ã«éµãšãªã£ãŠããã®ã§ã¯ãªãã
a*b â¡ 1 ( mod(p-1) )
a*b â¡ 1 ( mod(q-1) )
ãäž¡æ¹æºãã b ãèŠã€ããã®ã«çšããããã ããªã®ã§ã
b ãçŽæ¥ãã«ãŒããã©ãŒã¹ããã° p ã q ãæ±ããªããŠããããå¹³æãæã«å
¥ããšãããã®ããšèªäœã¯è³æ¥µåœç¶ã®è©±ãšããæ°ãããŸãã
ãããããããã§ããªãã£ããç§å¯éµãæã£ãŠããŠã埩å·ã§ããªãããã§ãããããã®æ¹ãããããã§ãã
ãã æ°ã«ãªãã®ã¯ãb ã 1,2,3,4,âŠâŠ ãšè©Šãã a,a^2,a^3,a^4,âŠâŠ ãšè©Šããã§äœããå€ããã®ããšããç¹ã§ããã
åœãããåŒããŸã§ã®åæ°ã®æåŸ
å€ãå°ãããšããäžå®åæ°ä»¥å
ã«åœãããåŒã確çãé«ããšãããã®ããªïŒ
ããã«ããŠããç¹èš±ã£ãŠãªãã®ç¹èš±ãªãã§ããããã
a,a^2,a^3,a^4,âŠâŠ ãšããé ã«ã ãèæ§ãããæ¹æ³ã ãšããããæå³ãªãã§ãããã
è©Šãæ¹ãªã㊠1,2,4,8,âŠâŠ ãšè©Šããšã 1,2,3,5,8,13,21,âŠâŠ ãšè©Šããšãç¡æ°ã«ããããã§ãããã
ããããã©ãããæ¹æ³ã«å¯ŸããŠå¯ŸçããŠããããè¿°ã¹ãã»ã©ãããã«ãªãæ¹æ³ã«ã¯å¯ŸçããŠããªããšè¿°ã¹ãŠããã ããªããã«æããŠããŸãã®ã§ããâŠâŠã
ã§ãæªç¥ã®æ¹æ³ãå«ããŠå
šãŠã®è©Šãæ¹ã«èæ§ããããªããŠå€¢ã®ãããªæ¹æ³ã¯ãªãã§ããããã
ããŒãïŒ
DD++æ§ããã¯ããããããŸãã
ã¡ãã£ãšç§ãã誀解ããŠããã®ãããããŸããã
ïŒçŽ æ°çæå€é
åŒã¯ååšããªãããšã蚌æãããŠããããã§ãã
ãªã€ã©ãŒã®çŽ æ°çæåŒã®ãããª
ïŒïŒïŒïœïŒïœ^2ïŒãã®ïŒïŒ
hïŒttps://ikuro-kotaro.sakura.ne.jp/koramu2/25000_k9.htm
ããçŽæ¥çŽ æ°ãçæããåŒãååšããªããŠã
ïŒããããããã£ã»ãããã®å€é
åŒã¯ã蚌æãããŠããããã§ãã
ã¯ãããã£ã»ãããã®å€é
åŒãæãç«ã¡ãçµæãæ£ã§ããã°ãçŽ æ°ã§ãããšããã®ã§ãã£ãŠãã¡ãã£ãšçŽæ¥çŽ æ°ãçæããåŒãšã¯éãããã«æããŸãã
ã ããã
hïŒttps://enpedia.rxy.jp/wiki/%E7%B4%A0%E6%95%B0
ã§ã¯ãççŸããªãã®ã§ãããã
ãªããhïŒttpsã¯httpsã«æžãæããŠãã ããã
ããããããšã§ãã
ããããã®ãã®ãäœã䞻匵ããŠããã®ãæ£ç¢ºã«çè§£ããããšã¯å€§åã§ãã
DD++ãã
https://patents.google.com/patent/JP3835896B2/ja
ãåœè©²ç¹èš±ã§ãã
åãæ¥ãã
2 7 61 211
åšèŸºã調ã¹ãŠã㊠ãè¿äºãé
ããŸããŸããã
ç³ãèš³ãããŸããã§ããã
ãããããè¿äºãæ¥ãã§ãããã§ã¯ãªãã®ã§ãæ°ã«ãªãããã
ãªãã»ã©ãç¹°ãè¿ãæå·åæ»æã«åŒ·ãçŽ æ°ãéžã¶ãšãããšå°ãèªåŒãããæããããŸããã
ããæ£ç¢ºã«ã¯ããã©ããªçŽ æ°ãéžãã§ãäžéšã®ç¹å®ã®å¹³æãç¹°ãè¿ãæå·åæ»æã§ç°¡åã«çªç ŽãããŠããŸãã®ã¯é¿ããããªãããçŽ æ°ã®éžã³æ¹æ¬¡ç¬¬ã§éæªãããããå¹³æã«åœãã£ãŠããŸã確çãäžãããããã®ããšã¯ã§ããããšããæãã®ããã§ãã
çŽ æ°ã®éžã³æ¹ãå
¬éããããšã§éã«çªç Žã®æããããäžããŠããå¯èœæ§ã¯ãªãã®ãããšããæ°æããã¯ãã¯ãæããããªãæ°ãããŸããã
ãããããé©ããããšãã
ãã®ç¹èš±ãPocklington ã®æ¹æ³ãçšããŠç¢ºå®ã«çŽ æ°ãçã¿åºããããšã匷ã¿ã«äžããŠããã§ããâŠâŠã
ãŸããäžã®äžã® RSA æå·ã£ãŠç¢ºçççŽ æ°ã§æå·åããŠãããããã§ããïŒ
ããæ¬åœã«ïŒ
çŸBIPROGYãæ§æ¥æ¬ãŠãã·ã¹ã2000幎é ã«å
¬çã«åºããŠãããè«æãã§ã¯ã確çççŽ æ°ã§éçšããŠãããã·ããããŸããå瀟ã¯éèç³»åžå Žã§å€§æã§ãããå¿é
ã§ããã
RSA å
¬é鵿巿¹åŒã®å®çŸ
https://www.biprogy.com/pdf/tec_info/6403.pdf
ãã®ãè«æãã誀ãããããŸããã
54 ããŒãž
ãã€ãŸã j åã®åææ°ãã¹ãã«ãã£ãŠåææ°ã§ãããšå€å®ãããªããã°ããã®æ°ã¯ u^j ã®ç¢ºçã§åææ°ã§ãããšèããããšãã§ããã
ãšãããŸããã©ãããã¯ãªããŸããããã
u^j ã¯
ãéžãã æ°ããåææ°ã§ãã£ããšããæ¡ä»¶ã®ããšã§ãj åå
šãŠã§çŽ æ°ãšå€å®ããã確çã
ã§ãã£ãŠã
ãéžãã æ°ããj åå
šãŠã§çŽ æ°ãšå€å®ããããšããæ¡ä»¶ã®ããšã§ãåææ°ã§ãã確çã
ã§ã¯ãªãã¯ãã
仿¥ãNHKã®Eãã¬ã§ååŸ9:30ãããç¬ããªãæ°åŠãABCäºæ³ããæŸéãããŸãã
ããã¯ããããããããšæããŸãã
ABCäºæ³ã®äž»åŒµã®è§£èª¬
https://manabitimes.jp/math/2030
ãã§ã«ããŒã®æçµå®çãç°¡åã«èšŒæãããŠãŸããã
仿¥ãNHKã®Eãã¬ã§ååŸ9:30ãããç¬ããªãæ°åŠã確çããæŸéãããŸãã
Wikipediaãã¢ã³ãã£ã»ããŒã«åé¡ããã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒåŒçšéå§ïŒïŒïŒïŒïŒïŒ
ïŒæçš¿ãããçžè«ïŒ
ãã¬ãŒã€ãŒã®åã«éãã3ã€ã®ãã¢ããã£ãŠã1ã€ã®ãã¢ã®åŸãã«ã¯æ¯åã®æ°è»ãã2ã€ã®ãã¢ã®åŸãã«ã¯ãã¯ãããæå³ããã€ã®ãããããã¬ãŒã€ãŒã¯æ°è»ã®ãã¢ãåœãŠããšæ°è»ãããããããã¬ãŒã€ãŒã1ã€ã®ãã¢ãéžæããåŸãåžäŒã®ã¢ã³ãã£ãæ®ãã®ãã¢ã®ãã¡ã€ã®ããããã¢ãéããŠã€ã®ãèŠããã
ããã§ãã¬ãŒã€ãŒã¯ãæåã«éžãã ãã¢ããæ®ã£ãŠããéããããŠããªããã¢ã«å€æŽããŠããããšèšãããã
ããã§ãã¬ãŒã€ãŒã¯ãã¢ã倿Žãã¹ãã ãããïŒ
ïŒïŒïŒïŒïŒïŒïŒåŒçšçµäºïŒïŒïŒïŒïŒïŒïŒ
çããå·¡ã£ãŠå€§éšåã«ãªã£ãããã§ãã
åçŽã«èãããšå€ããªããã°ã3ã€ãã1ã€éžãã ã®ã ãã確ç1/3ãå€ãããš2ã€ããïŒã€éžãã ã®ã ããã確ç1/2ã§ãå€ããã»ãã確çãããããŸããã
ã¯ã¡ã¹ãããã
>åçŽã«èãããšå€ããªããã°ã3ã€ãã1ã€éžãã ã®ã ãã確ç1/3ãå€ãããš2ã€ããïŒã€éžãã ã®ã ããã確ç1/2ã§ãå€ããã»ãã確çãããããŸããã
å€ãããšãã®ç¢ºçãšå€ããªããšãã®ç¢ºçãšãå ãããšã1 ã«ãªãã¯ãã§ãã
1/3+1/2 㯠1 ã«ã¯ãªã£ãŠããŸããããâŠâŠ
Dengan kesaktian Indukmuæ§ããã¯ããããããŸãã
æ£è§£ã¯ãWikipediaãã¢ã³ãã£ã»ããŒã«åé¡ãèŠãŠãã ããã
å€ããã»ããæå©ãšãªããŸãã
åžäŒè
ã¯ãçããç¥ã£ãŠããããããããæ£è§£ã ãããå€ããŠãè¯ããšãããã ãªïŒäžã®äžã¯ãæå°æªãªãã ãªã
ãããã¯ãããªãã¯ééã£ãŠãããããããäžåºŠãã£ã³ã¹ãããããšæããã§ããè¯ãäžã®äžã§ããããšããããšã§ãã
çãã¯ãå€ããã»ãã2/3ã§è¯ãã®ã§ããã®äžã¯è¯ãäžçã§ãããšããããšã§ããã
ã¯ã¡ã¹ãããã
ç·šéã®çµæãšããŠãæ°åŠè
ã¯éè«ççããšããããªãã®åŸ¡çºèšãæ¶ããã®ã¯ããã£ãã§ãã
ãã¡ããå€éã®èå¯ãçšæããŸããããç¡é§ã«çµãã£ãããšã幞ãã§ãã
çµè«ã ãç³ãäžããã°ãããªããããã€ãã£ãããããªåé¡ãééããããéè«ççãªãæ°åŠè
ã®å€§éšåã¯ãåé¡ãåèããããªã©ããŠãåé¡ã®èšå®ã誀ã£ãŠèããã誀ã£ãŠè§£éããããã«èª€çãããŠããŸã£ãŠããã®ã§ãã
ç¹ã«ãšã«ãã·ã¥ãªã©ãå
žåã§ãã
ãªãªãžãã«ãšã¯ç°ãªãåé¡ã«å¯ŸããŠè«ççã«æ£çããŠããã®ã§ããã
以äžãæ°åŠè
ã®åèªã®ããã«ç³ãæ·»ããŠãããŸãã
ãã®æ¬ããå§ãããŠãããŸãã
https://www.amazon.co.jp/%E3%83%A2%E3%83%B3%E3%83%86%E3%82%A3%E3%83%BB%E3%83%9B%E3%83%BC%E3%83%AB%E5%95%8F%E9%A1%8C-%E3%83%86%E3%83%AC%E3%83%93%E7%95%AA%E7%B5%84%E3%81%8B%E3%82%89%E7%94%9F%E3%81%BE%E3%82%8C%E3%81%9F%E5%8F%B2%E4%B8%8A%E6%9C%80%E3%82%82%E8%AD%B0%E8%AB%96%E3%82%92%E5%91%BC%E3%82%93%E3%81%A0%E7%A2%BA%E7%8E%87%E5%95%8F%E9%A1%8C%E3%81%AE%E7%B4%B9%E4%BB%8B%E3%81%A8%E8%A7%A3%E8%AA%AC-%E3%82%B8%E3%82%A7%E3%82%A4%E3%82%BD%E3%83%B3%E3%83%BB%E3%83%AD%E3%83%BC%E3%82%BC%E3%83%B3%E3%83%8F%E3%82%A6%E3%82%B9/dp/4791767527
Dengan kesaktian Indukmuæ§ãã玹ä»ããããšãããããŸãã
ïŒçµè«ã ãç³ãäžããã°ãããªããããã€ãã£ãããããªåé¡ãééããããéè«ççãªãæ°åŠè
ã®å€§éšåã¯ãåé¡ãåèããããªã©ããŠãåé¡ã®èšå®ã誀ã£ãŠèããã誀ã£ãŠè§£éããããã«èª€çãããŠããŸã£ãŠããã®ã§ãã
ç¹ã«ãšã«ãã·ã¥ãªã©ãå
žåã§ãã
ãªãã»ã©ãããã§ãããã»ã»ã»ã»ã»
仿¥ãNHKã®Eãã¬ã§ååŸ9:30ãããç¬ããªãæ°åŠãã¬ãã¢çè«ããæŸéãããŸãã
ããã§ã第äžã·ãªãŒãºã¯çµããã§ãã
ããããç¬ããªãæ°åŠãã¯çµãããªã®ããªã»ã»ã»ã»ïŒ
ãããšãã第2ã·ãªãŒãºãå§ãŸãã®ã§ããããïŒ
https://natalie.mu/owarai/news/530022
ã«ããã°ã10æãã第2ã·ãªãŒãºãå§ãŸãããã§ãã
å¹³é¢ã«7åã®ç¹ã倧ãŸãã«åãæãããã«ãšã(é£ã®ç¹ãšã®è·é¢ã¯ä»»æ)ã
ããç¹ãã2ã€é£ã°ãã§ã次ã®ç¹ã次ã
ãšçµãã§ãããšãäžã€ã®éãã
éè·¯ãåºæ¥äžããã(æãèŒããŠãããããªå³åœ¢)
ãã®æãç¹ãããäœçœ®P1,P2,P3,P4,P5,P6,P7
ã«ã§ããç·ãåŒããçŽç·ã§äœããã7ã€ã®éšåãäœãããããã®è§åºŠã
Ξi(i=1,2,3,,7)ãšããã°ãå¿
ã
â[i=1,7]Ξi=180°
ãèµ·ãããïŒäžå¿ããã¯èšŒæã§ãããšèªåã§ã¯æããŠããŸãã)
ãšããã§åãèšå®ã§
ããç¹ãã1ã€é£ã°ãã§ã次ã®ç¹ã次ã
ãšçµãã§ãããšãåãããã«
äžã€ã®éããéè·¯ãåºæ¥äžããã(ãŽããŽããã岩ã®ãããªå³åœ¢)
ãã®å³åœ¢ã«å¯ŸããΞiã«ãããŠã¯
â[i=1,7]Ξi=540°
ãèµ·ãããããªãã§ãã
ãããšããèšããªãã®ã¯ãå®éšãããŠå床åã§èšæž¬ããŠäºæ³ããŠããã ãã§
蚌æãããããªãã®ã§ãã
äœæ¹ããŠãœãçãæ±ºçãé¡ããŸãã
çã§ãã
åè§åœ¢ã®å€è§ã®å€§ããã¯ãæ®ã 3 ã€ã®å
è§ã®åãã 180° ãåŒããå€ã«ãªããŸãã
ãããçšãããšãP7 ã®ãšããã«ã§ããäžè§åœ¢ã® 3 ã€ã®å
è§ã
Ξ1+Ξ3+Ξ5-180°
Ξ2+Ξ4+Ξ6-180°
Ξ7
ãšè¡šããããããã®åã 180° ã§ããããšãã瀺ãããŸãã
ãïœïŒ
ãªãã»ã©
äžè§åœ¢ã®å€è§ãæ¡åŒµãããŠèããã°ãã¹ãŒãšè§£ãã¡ãããã§ããã
é ã®äžã«ã¯å€è§ãšèšãã°ãŠã£ããäžè§åœ¢ããçµã³ã€ããããŠããªãããšã«çžãããŠããããšã«æ°ä»ããããŸããã
GAIãããããã«ã¡ã¯ã
çã§ããã
ç°¡æçã«ã¯ãååšäžã«P1ïœP7ãŸã§é©åœã«ç¹ãåããšã
Ξ1ïŒâ P1ïŒåŒ§p3p4ã®ååšè§ïŒåŒ§p4p5ã®ååšè§ïŒåŒ§p5p6ã®ååšè§
Ξ2ïŒâ P2ïŒåŒ§P4P5ã®ååšè§ïŒåŒ§P5P6ã®ååšè§ïŒåŒ§P6P7ã®ååšè§
ã»
ã»
ã»
Ξ6ïŒâ P6ïŒåŒ§P1P2ã®ååšè§ïŒåŒ§P2P3ã®ååšè§ïŒåŒ§P3P4ã®ååšè§
Ξ7ïŒâ P7ïŒåŒ§P2P3ã®ååšè§ïŒåŒ§P3P4ã®ååšè§ïŒåŒ§P4P5ã®ååšè§
âŽâ[i=1,7]ΞiïŒïŒ(匧P1P2ã®ååšè§ïŒåŒ§P2P3ã®ååšè§ïŒåŒ§P3P4ã®ååšè§ïŒåŒ§P4P5ã®ååšè§ïŒåŒ§P5P6ã®ååšè§ïŒåŒ§P6P7ã®ååšè§ïŒåŒ§P7P1ã®ååšè§)ïŒïŒÃå
šåã®ååšè§ïŒïŒÃïŒïŒïŒÂ°ïŒïŒïŒïŒÂ°
å³å¯ã«ã¯DD++ããã®è§£æ³ã䜿ãã°è¯ãã§ãããïŒä»¥åã«è§£èª¬ããŠãããåºçŠã«ãªã£ãäºãããã®ã§æ¢ããŠãããŸããïŒ
ãŸããïŒã€é£ã°ãã®æ¹ã¯ãïŒã€ã®äžè§åœ¢ã®å
察è§ã®åãšããŒã¡ã©ã³ã®å®çã䜿ããšç°¡åã«ç€ºããŸããã
äžã€ã®åæ°
ïœïŒïœ/a,ãïœïŒïœ/ïœ,ãz=(b+d)/(a+c)
ïœïŒïœïŒïœã®ãšããïœã, xããããïœãããïŒè¿ãïŒ
倿ããæ¡ä»¶ããããŸããïŒ
a,b,c,dïŒ0ãšããŸãã
(x+y)/2=b/(2a)+d/(2c)=(ad+bc)/(2ac)
z-(x+y)/2ïŒ0ãæŽçãããš
(ad-bc)(c-a)ïŒ0
xïŒyããad-bcïŒ0ãªã®ã§
z-(x+y)/2ïŒ0 â cïŒa
åŸã£ãŠaãšcãæ¯èŒããŠ
aã®æ¹ã倧ãããã°xå¯ã
cã®æ¹ã倧ãããã°yå¯ã
ãšãªããŸãã
ãããããããããããšãããããŸãã
ã©ã®äœã®äœçœ®ã«ããããèããŸããã
b/a+(d/c -b/a)Ãïœ/(a+c)=(b+d)/(a+c)
ãªã®ã§ãïœãšïœããïœïŒïœãã«å
åããç¹
ã§ããããšããåãããŸããã
ååã¯åœ±é¿ããªãã®ãé¢çœãã§ããã
b/a< x/(a+c) <d/c (a<c)ãæºããïœã®å¿
èŠæ¡ä»¶ã調ã¹ãã
ïŒïœïŒïœïŒïŒïœã§ãb+ïœã¯ãã»ãŒäžéã§ããããšãåãããŸããã
äŸãã°ã3/7<x/18<6/11ãã®ãšãã
ïœïŒ7ïŒ8ïŒïŒïŒïŒ0ïŒïŒïŒã§ããã
n人ã§ãžã£ã³ã±ã³ã1åãããšããk人ïŒkâŠn)ãåã¡æ®ã確çãP(n,k)ãšãããšã
ïŒã€ã®nãç°ãªã£ã人æ°ã§ãåãk人æ®ãã§ãã確çãåãããšãèµ·ããå Žåãããäºãé¢çœããäžæè°ã«æããã
nãæå€§20ãšããç¯å²ã§èŠã€ããŠäžããã
ã§ã¯ãã®2ã€ã®nãšããã«å¯Ÿããkã®å€ã¯åŠäœã«ïŒ