kæ¡ã®èªç¶æ°ã®åäœã®åãnãšãªãåæ°ãPn(k)ãšããã
1<k<nã®æãPn(k)ã®æå€§å€ãæ±ãã
è§£ãæ¹ãåãããŸããããããããé¡ãããŸãðââïž
No.1312ãã£ã±ãŒ2023幎7æ14æ¥ 19:33
n ãåºå®ã㊠k ãå€åããããšãã®æå€§å€
k ãåºå®ã㊠n ãå€åããããšãã®æå€§å€
2 ã€ã®æå³ã«åããŸãããåè
ã§ãããã§ãããïŒ
k æ¡ã®èªç¶æ°ã§ãåäœã®æ°ã®åã n ã§ããã€ãäžã®äœã 0 ã§ãããåæ°ã Qn(k) ãšããŸãã
(1) 2<k<n ç¯å²ã§ãPn(k-1) ãš Qn(k) ã®é¢ä¿ã¯ïŒ
(2) 1<k<n ç¯å²ã§ãPn(k) ãš Qn(k) ã¯ã©ã¡ãã倧ããïŒ
(3) 2<k<n ç¯å²ã§ãPn(k-1) ãš Pn(k) ã¯ã©ã¡ãã倧ããïŒ
(4) 1<k<n ç¯å²ã§ãPn(k) ãæå€§ã«ãªãã®ã¯ k ãããã€ã®ãšãïŒ
(5) n<10 ç¯å²ã§ã(4) ã®ãšãã® Pn(k) ã®å€ã¯ïŒ
---- ãããŸã§ç°¡åãããããé£å ----
(6) nâ§10 ç¯å²ã§ã(4) ã®ãšãã® Pn(k) ã®å€ã¯ïŒ
No.1313DD++2023幎7æ14æ¥ 21:09
ã¯ã¡ã¹ãããã
以äžã®è°è«ãã©ãæããŸããïŒ
âââ
åœé¡ãAãçãªãã°Bã¯çããšãåœé¡ãAãåœãªãã°ãBã¯åœãã¯ãã¯ãããŠåå€ã§ããããã
äžè¬ã«ãåœé¡ãAãªãã°Bããšãã®å¯Ÿå¶ãBã§ãªããªãã°Aã§ãªããã¯åå€ã§ãã
ããã¯ããBãåœãªãã°Aã¯åœããšåãæå³ã§ãã
ãã£ãŠãåœé¡ãAãçãªãã°Bã¯çããšãåœé¡ãAãåœãªãã°ãBã¯åœãã¯åå€ã§ãã
ïŒïŒïŒïŒ
ãããã¯ã¡ã¹ãããã®æ¬¡ã®åŸ¡çºèšã®çæã䌺ãããã£ãã®ã§ããŠã仿ã¯ãããŸãããããªãã¡ã
ãHP管çè
æ§ããã°ãã¯ã
Aãçã®ãšãBãçãªãã°ãAãåŠå®ã®ãšãBãåŠå®ã§ããã
ã
No.1286Dengan kesaktian Indukmu2023幎7æ10æ¥ 23:14
Dengan kesaktian Indukmuæ§ããã¯ããããããŸãã
nãçŽ æ°ã®ãšããa^n-a=nAãæãç«ã€ã
nãçŽ æ°ã§ãªããšãïŒnãåææ°ïŒãa^n-a=nAãæãç«ãããªãã
ããã¯ãèªæã ãšæãã®ã§ããã
ãã®ãèªæã§ããããšãã®èšŒæã®ã€ããã§ãããè«çã¯çåœã®2å€ãããããŸããã
ãããã管ç人ããã¯x>0ããšãxâŠ0ãšãçåœã®äžèº«ãåé¡ã«ããŠéãããšãèšã£ãŠãŸãã
ãããã¯ããã®ãèªæã§ããããšãã®èšŒæã¯ãã©ãããã°è¯ãã®ã§ããããïŒ
ãšéã«ã質åãããã®ã§ãã
ãªããDengan kesaktian Indukmuæ§ã®ææã¯ãã£ããããšããã§ç§ã¯æ£ãããšæããŸãã
No.1287ããããã¯ã¡ã¹ã2023幎7æ11æ¥ 07:12
ã¯ã¡ã¹ãããã
ãšããããã
1286 ã®ç§ã®æçš¿ã¯ãæšå€ã
Bing ã®çæAIã«ã
ééããå«ãè°è«ã®äœæãäŸé Œããçµæã
ã³ãããããã®ã§ãã
â»äžé±éã»ã©æèŠãããæçš¿ã¯é£ããã§ãã
å¿
ãã¿ãŠãããŸããããã§ã¯ã
No.1288Dengan kesaktian Indukmu2023幎7æ11æ¥ 09:13
ããããã¯ã¡ã¹ãããããã¯ããããããŸãã
ïŒnãçŽ æ°ã®ãšããa^n-a=nAãæãç«ã€ã
nãçŽ æ°ã§ãªããšãïŒnãåææ°ïŒãa^n-a=nAãæãç«ãããªãã
ããã¯ãèªæã ãšæãã®ã§ããã
ããã¯æ±ºããŠèªæã§ã¯ãããŸãããïœ^3ïŒïœ^3ïŒïœ^3ãšãªãèªç¶æ°ãååšããªãäºãèªæã§ã¯ãªãäºãšåãã¬ãã«ã ãšæããŸãã
èªæãšã¯ïŒïŒïŒïŒïŒãšåãã¬ãã«ã§ãã
ïŒãããã¯ããã®ãèªæã§ããããšãã®èšŒæã¯ãã©ãããã°è¯ãã®ã§ããããïŒ
ãšéã«ã質åãããã®ã§ãã
äŸãã°ãäžå¹³æ¹ã®å®çã®éãæãç«ã€äºã¯ã»ãŒèªæãªãããªæ°ãããŸãããå³å¯ã«èšŒæããªããã°ãªããŸãããå®éã䌌ããããªäžç·å®çã®éã¯æãç«ã¡ãŸãããã
å人çã«ã¯ãèªæãªäºã®èšŒæã«ã¯èçæ³ã圹ã«ç«ã€å Žåãå€ããšæã£ãŠããŸããã
åœç¶ãä»åã®å Žåãïœ^3ïŒïœ^3ïŒïœ^3ãšãªãèªç¶æ°ãååšããªãå Žåã«ã¯äœ¿ããŸãããã
No.1289å£ããæ2023幎7æ11æ¥ 09:48
ãèªæããšã¯ã誰ã§ãç°¡åã«èšŒæã§ããããšããæå³ã§ãã
èªåãã蚌æã§ããªãäºæã¯ããèªæããªã®ã§ã¯ãªãããèªåãäœãèšã£ãŠãããèªåã§çè§£ããŠããªããã ãã§ãã
No.1291DD++2023幎7æ11æ¥ 10:21
çããããã«ã¡ã¯ã
åææ¡ä»¶ããã£ãŠãæãç«ã£ãŠãããã®ã¯ãåææ¡ä»¶ãæãç«ããã°ãæãç«ããªãã®ã¯åœããåã§ãããã
äžå¹³æ¹ã®å®çã§ã¯ããçŽè§äžè§åœ¢ã«ãããŠããšããåææ¡ä»¶ããããŸãããããåŠå®ããããæãç«ããªãã®ã§ã¯ãããŸãããã
ãèªç¶æ°a,b,cã«ãããŠãããšããåææ¡ä»¶ããã£ãŠããã§ã«ããŒã®æçµå®çãããã®ã§ããåææ¡ä»¶ãåŠå®ãããããã§ã«ããŒã®æçµå®çã¯ãæãç«ããªãããšã¯æããã§ãã
ããããããšãããèªæãšèšã£ãã®ã§ãã
ãŸããçŽåŸããŠããããªãã§ããããã»ã»ã»ã»ã»
No.1292ããããã¯ã¡ã¹ã2023幎7æ11æ¥ 11:03
nãçŽ æ°ã®ãšããa^n-a=nAãæãç«ã€ã
nãçŽ æ°ã§ãªããšãïŒnãåææ°ïŒãa^n-a=nAãæãç«ãããªãã
å¥ã®æ¹æ³ã§ãã£ãŠã¿ãŸããã
ç·è²ã®ããããã¯ã¡ã¹ããã¯ãªãã¯ããŠãã ããã
7/12ã8:51ãç·šéæžã¿
No.1293ããããã¯ã¡ã¹ã2023幎7æ11æ¥ 11:58 Dengan kesaktian Indukmuæ§ã
ïŒBing ã®çæAIã«ã
çæAIã¯ãé£ç«æ¹çšåŒãééãã®ã§ããè«ççã«ããšããããŒã¯ãŒããæããšããŸãè¡ãå Žåãããããã§ãã
ããããçæAIã®çãã ã£ããšã¯ã»ã»ã»ã»ã»æ®å¿µ
No.1294ããããã¯ã¡ã¹ã2023幎7æ11æ¥ 12:12
ããããã¯ã¡ã¹ããããããã«ã¡ã¯ã
ã¬ããŒãèªãŸããŠé ããŸãããçžå€ãããèŠäºãªå€åœ¢ã§ãããæ¥œããŸããŠé ããŸããã
ïŒã»n=abã奿°ã®å Žån=2αβ+1
N^(2αβ+1)-N=N{N^(2αβ)-1}=N(N^(αβ)-1}{N^(αβ)+1}={N^(αβ+1)-N}{N^(αβ)+1}
ããã§ã{N^(αβ+1)-N}ã¯ãäŸãã°Î±Î²=10ãªãã11ã®åæ°ã«ãªãããn=2αβ+1=21ãšã¯äžèŽããªãã
{N^(αβ+1)-N}ã¯ãããšãαβ+1ã®åæ°ã§ãã£ãŠããn=2αβ+1ã®åæ°ã«ã¯ãªããªãã
(ïœãçŽ æ°ã®å Žåã¯ãããã«ã¯ããŠã¯ãŸããªãããšã«æ³šæïŒ
巊蟺ã®ïŒÎ±Î²ïŒïŒãçŽ æ°ãšãããšå·ŠèŸºã¯ïŒÎ±Î²ïŒïŒã®åæ°ã§ãå³èŸºã®Î±Î²ïŒïŒãçŽ æ°ã§ãçŽ æ°ãããªããŠã巊蟺ã®çžæ¹ã®çŽæ°ã«ãªã£ãŠåé¡ãªããšæããŸããïŒå³èŸºã®N^(αβ+1)-Nãã巊蟺ïŒ(ïŒÎ±Î²ïŒïŒ)Ãïœã®ïœã®çŽæ°ãšããäºãïŒ
åœç¶ãïŒÎ±Î²ïŒïŒãçŽ æ°ãããªãå Žåãåæ§ã§ãã
å ã¿ã«ã(ïœãçŽ æ°ã®å Žåã¯ãããã«ã¯ããŠã¯ãŸããªãããšã«æ³šæïŒã¯ã©ãããäºã§ãããããçµæãããããèããŠããã®ã§ããããã
ïŒN^561-Nã®å Žå
ïœ=561(3x11x17)ã§ãããã奿°ãªã®ã§ã{N^(αβ+1)-N}ã¯ã281ã®åæ°ãšãªããŸãã281ã¯çŽ æ°ãªã®ã§ã
N^(2x280+1)-N={N^281-N}{N^280+1}
N^(2x280+1)-N=281A{N^280+1}
ãããã£ãŠã561ã®åæ°ã«ã¯ãªããŸããã
AãŸãã¯N^280+1ãïŒïŒïŒã®åæ°ãããããŸããããããã£ãšãå
šãŠã®Nã§æãç«ã€ãšã¯ãšãŠãæããŸãããã
No.1295å£ããæ2023幎7æ11æ¥ 14:05
å£ããææ§ãããã°ãã¯ã
çžå€ãããåãçè§£åã§ãããç§ã¯ãäººã®æžãããã®ãèªãã®ã«èŠåŽããŸãã
ããŠ
ããã§ããããN^(2αβ+1)-Nããã2αβ+1ã®åæ°ãšããã°ãããã§ãããŸãã§ãããç¡é§ãªèšè¿°ã§ããã
ãã³ã»ã³ã¹ã§ããã
No.1296ããããã¯ã¡ã¹ã2023幎7æ11æ¥ 17:57
N^561-N ã 281 ã®åæ°ã瀺ããã281 ãš 561 ã¯éãæ°ã ãã N^561-N 㯠561 ã®åæ°ã«ãªããªãã
ãšããè¶£æšã®ããšãè¿°ã¹ãŠãããšèªèããŸããããã£ãŠããŸããïŒ
ãã£ãŠããå Žåããããå
ã¯äœãæ ¹æ ã«èšã£ãŠããã®ã§ããïŒ
No.1297DD++2023幎7æ11æ¥ 18:29
å£ããæãã
> ãã£ãšãå
šãŠã®Nã§æãç«ã€ãšã¯ãšãŠãæããŸãããã
ç§ã®ååã®ãªã³ã¯ãããwolfram å
çã«ããèšç®çµæãã芧ãã ããã
2âŠNâŠ30 ã®ç¯å²ã§ã¯äžè¶³ã ãšãã£ããããªããç¯å²æå®ããèªèº«ã§å€æŽããŠæºè¶³ãããŸã§ã確èªãã ããã
No.1299DD++2023幎7æ11æ¥ 19:23 ããããDD++ãããè±åžœã§ãã
NïŒïœã»ïœã®å Žåã¯ãã¡ãªãã§ãããïœ(ïœïŒïŒ)/(ïœïŒïŒ)ãæŽæ°ã«ãªãçŽ æ°ïœïŒïœã¯ååšããªããã§ãããïŒïœïŒïœãå
¥ãæããŠäž¡æ¹ãšãæŽæ°ã«ãªããïŒ
ïŒïœã»ïœã»ïœã®å Žåã¯ãïœ(ïœïœïŒïŒ)/(ïœïŒïŒ)ãæŽæ°ã«ãªãçŽ æ°ã¯ãDD++ããã®äŸã§ïœïŒïŒïŒïœïŒïŒïŒïŒïœïŒïŒïŒã®å
¥ãæããšãããšã
ïŒ(ïŒïŒã»ïŒïŒïŒïŒ)/(ïŒïŒïŒ)ïŒïŒïŒïŒ
ïŒïŒ(ïŒã»ïŒïŒïŒïŒ)/(ïŒïŒïŒïŒ)ïŒïŒïŒ
ïŒïŒ(ïŒã»ïŒïŒïŒïŒ)/(ïŒïŒïŒïŒ)ïŒïŒïŒ
ã§ïŒ¯ïŒ«ãªãã§ããã
äžå¿ãïœ(ïœïŒïŒ)/(ïœïŒïŒ)ãæŽæ°ã«ãªããªã蚌æã¯ãïœãšïœïŒïŒã¯é£ç¶ããïŒæŽæ°ãªã®ã§äºãã«çŽ ããã£ãŠãæŽæ°ã«ãªãå Žåã¯ãïœïŒïŒãïœïŒïŒã®çŽæ°ãâŽïœïŒïŒâŠïœïŒïŒã
ãšãããããã®å Žåãïœãšïœãå
¥ãæããå Žåã¯åæ¯ã®æ¹ã倧ãããªãæŽæ°ã«ã¯ãªããªãããã£ãŠãïŒæ°ã®å Žåã¯ãã¡ã§ããã
No.1300å£ããæ2023幎7æ11æ¥ 21:06
DD++æ§ãããã«ã¡ã¯ã
ïŒN^(2αβ+1)-N=N{N^(2αβ)-1}=N(N^(αβ)-1}{N^(αβ)+1}={N^(αβ+1)-N}{N^(αβ)+1}
ããã2αβ+1=281ã®ãšã{N^(αβ+1)-N}ããã141ã®åæ°ã«ãªãã¯ãã§ãã
ããããwolframalphaã«ãTable[(N^141-N)mod141,{N,2,30}]ããå
¥ãããš141ã®åæ°ã«ã¯ãªããŸããããŸããwolframalphaã«ãTable[(N^281-N)mod141,{N,2,30}]ããå
¥ãããš141ã®åæ°ã«ã¯ãªããŸããã
ãããã£ãŠãαβ+1=281ã¯åºãªã®ã§ãã281ã¯çŽ æ°ã§ãããã
ã§ã¯ã2αβ+1=561ã§ãããwolframalphaã«ãTable[(N^561-N)mod281,{N,2,30}]ããå
¥ãããšN^(2αβ+1)-Nã¯281ã®åæ°ã«ãªããŸãããŸããwolframalphaã«ãTable[(N^561-N)mod561,{N,2,30}]ããå
¥ãããšN^(2αβ+1)-Nã¯561ã®åæ°ã«ãªããŸãã
次ã«ã3αβ+1=841ã§ãããwolframalphaã«ãTable[(N^841-N)mod281,{N,2,30}]ããå
¥ãããšN^(3αβ+1)-Nã¯281ã®åæ°ã«ãªããŸãã
次ã«ã4αβ+1=1121ã§ãããwolframalphaã«ãTable[(N^1121-N)mod281,{N,2,30}]ããå
¥ãããšN^(4αβ+1)-Nã¯281ã®åæ°ã«ãªããŸãããŸããwolframalphaã«ãTable[(N^1121-N)mod561,{N,2,30}]ããå
¥ãããšN^(4αβ+1)-Nã¯561ã®åæ°ã«ãªããŸãã
次ã«ã5αβ+1=1401ã§ãããwolframalphaã«ãTable[(N^1401-N)mod281,{N,2,30}]ããå
¥ãããšN^(5αβ+1)-Nã¯281ã®åæ°ã«ãªããŸãã
次ã«ã6αβ+1=1681ã§ãããwolframalphaã«ãTable[(N^1681-N)mod281,{N,2,30}]ããå
¥ãããšN^(6αβ+1)-Nã¯281ã®åæ°ã«ãªããŸãããŸããwolframalphaã«ãTable[(N^1681-N)mod561,{N,2,30}]ããå
¥ãããšN^(6αβ+1)-Nã¯561ã®åæ°ã«ãªããŸãã
次ã«ã7αβ+1=1961ã§ãããwolframalphaã«ãTable[(N^1961-N)mod281,{N,2,30}]ããå
¥ãããšN^(7αβ+1)-Nã¯281ã®åæ°ã«ãªããŸãã
次ã«ã8αβ+1=2241ã§ãããwolframalphaã«ãTable[(N^2241-N)mod281,{N,2,30}]ããå
¥ãããšN^(8αβ+1)-Nã¯281ã®åæ°ã«ãªããŸãããŸããwolframalphaã«ãTable[(N^2241-N)mod561,{N,2,30}]ããå
¥ãããšN^(8αβ+1)-Nã¯561ã®åæ°ã«ãªããŸãã
次ã«ã9αβ+1=2521ã§ãããwolframalphaã«ãTable[(N^2521-N)mod281,{N,2,30}]ããå
¥ãããšN^(9αβ+1)-Nã¯281ã®åæ°ã«ãªããŸãã
次ã«ã10αβ+1=2801ã§ãããwolframalphaã«ãTable[(N^2801-N)mod281,{N,2,30}]ããå
¥ãããšN^(10αβ+1)-Nã¯281ã®åæ°ã«ãªããŸãããŸããwolframalphaã«ãTable[(N^2801-N)mod561,{N,2,30}]ããå
¥ãããšN^(10αβ+1)-Nã¯561ã®åæ°ã«ãªããŸãã
以äžãããæšå¯ãããã«ãkαβ+1=280k+1ã¯ãN^(kαβ+1)-Nã¯281ã®åæ°ã§ãããšããããšã§ãã
ããã«ãk=2jãªããkαβ+1=280k+1ã¯ãN^(kαβ+1)-Nã¯561ã®åæ°ã§ãããšããããšã§ãã
No.1304ããããã¯ã¡ã¹ã2023幎7æ13æ¥ 13:59
ããã ãã®åŒã䞊ã¹ç«ãŠãŠãçµå±äœãããããã®ãæå³äžæã§ãã
ç§ãèšããŠããã®ã¯ã281 ã®åæ°ã§ãããã 561 ã®åæ°ã«ã¯ãªããªãããšããæ ¹æ ã§ãã
ã¯ã¡ã¹ããããããã«çããæ°ããªããªããå¯Ÿè©±ã®ææãªããšã¿ãªããŠè¿ä¿¡ãæã¡åããŸãã
No.1305DD++2023幎7æ13æ¥ 18:15
ã€ãã§ã«èšããšã2âŠNâŠ30 ã®ç¯å²ã§ã ãã®ç¢ºèªã¯ãæåéã 2âŠNâŠ30 ã®ç¯å²ã§ã®ç¢ºèªã§ãããªããNâ§31 ã§ãæãç«ã€ä¿èšŒã«ã¯äžåãªããŸããã
åæ°ã«ãªããšæèšããã«ã¯ãç¹å®ç¯å²å
ã ãã®ç¢ºèªã§ã¯ãªããå
šç¯å²ã§é©çšã§ãã蚌æãå¿
èŠã§ãã
ïŒè¿œèšïŒ
ååæçš¿ã§å
¥ãããªã³ã¯ãå
¥ãã£ã±ãªãã ã£ãã®ã§åé€ããŸããã
No.1306DD++2023幎7æ13æ¥ 18:20
DD++æ§ãããã°ãã¯ã
ãªã³ã¯ããã
ïŒã»nãn=ka+1ã®å Žå
ããã§ãn=ka+1ãšããåææ°ã®å Žåã
N^n-N=N^(ka+1)-N=N{(N^a)^k-1}
çæ¯çŽæ°ã®åã®å
¬åŒãã{(N^a)^k-1}/{(n^a)-1}={1+(N^a)+(N^a)^2+(N^a)^3+ã»ã»ã»+(N^a)^(k-2)}
ãã£ãŠã{(N^a)^k-1}={(n^a)-1}{1+(N^a)+(N^a)^2+(N^a)^3+ã»ã»ã»+(N^a)^(k-2)}
ãããã£ãŠã
=N{(N^a)-1}{1+(N^a)+(N^a)^2+(N^a)^3+ã»ã»ã»+(N^a)^(k-2)}
={N^(a+1)-N}{1+(N^a)+(N^a)^2+(N^a)^3+ã»ã»ã»+(N^a)^(k-2)}
ããã{N^(a+1)-N}ã§ããããa+1ã®åæ°ããšããã§ãN^(ka+1)-Nãããka+1ã®åæ°ã
ãããã£ãŠãa+1ãåºãšããka+1ã®åæ°ã§ããã
ïŒN^561-Nã®å Žå
ïœ=561(3x11x17)ã§ãããã奿°ãªã®ã§ã{N^(αβ+1)-N}ã¯ã281ã®åæ°ãšãªããŸãã281ã¯çŽ æ°ãªã®ã§ã
N^(2x280+1)-N={N^281-N}{N^280+1}
N^(2x280+1)-N=281A{N^280+1}
ããã§ãn=ka+1ãšããåææ°ã®å Žåãa+1ãåºãšããka+1ã®åæ°ã§ãããããa=280ããã281ãåºãšãã2a+1=561ã§ããã
Dengan kesaktian Indukmuæ§ãããæ¥ãæ¹ããŠèŠçŽããšããã¢ããã€ã¹ãããããŸããããã¡ãã£ãšã»ã»ã»ã»
ããã§ãçŽåŸããŠããã ããŸããïŒ
ãªãNã®ç¯å²ã«ã€ããŠã®ãææã¯ãå¥éã«è²ãããŠããã ããŸãã
No.1307ããããã¯ã¡ã¹ã2023幎7æ13æ¥ 19:40 > a+1ãåºãšããka+1ã®åæ°
åæ°ã«ãåºããªããŠæŠå¿µã¯ãããŸããã
ç¬èªçšèªã䜿ããããªãããŸãããã®å®çŸ©ãããŠãã ããã
No.1308DD++2023幎7æ13æ¥ 20:48
ããããã¯ã¡ã¹ããããããã°ãã¯ã
ïŒä»¥äžãããæšå¯ãããã«ãkαβ+1=280k+1ã¯ãN^(kαβ+1)-Nã¯281ã®åæ°ã§ãããšããããšã§ãã
ïŒããã«ãk=2jãªããkαβ+1=280k+1ã¯ãN^(kαβ+1)-Nã¯561ã®åæ°ã§ãããšããããšã§ãã
^(kαβ+1)ïŒïŒ®ïŒïŒ®{(^αβ)^kïŒïŒ}ïŒïŒ®(^αβïŒïŒ){(^αβ)^(k-1)ïŒã»ã»ã»ïŒïŒ}
ïŒ(^(αβ+1)ïŒN)(^αβ^(k-1)ïŒã»ã»ã»ïŒïŒ)
ããã§ãαβïŒïŒïŒïŒããαβ+1ïŒïŒïŒïŒã§çŽ æ°ããã£ãŠã^(αβ+1)ïŒïŒ®ã¯ïŒïŒïŒã®åæ°ã
ãã£ãŠã^(kαβ+1)ïŒïŒ®ãïŒïŒïŒã®åæ°ã
^(2jαβ+1)ïŒïŒ®ïŒïŒ®(^2jαβïŒïŒ)ïŒïŒ®{(^2αβ)^jïŒïŒ}ïŒïŒ®(^2αβïŒïŒ){(^2αβ)^(j-1)ïŒã»ã»ã»ïŒïŒ}
ïŒ(^(2αβ+1)ïŒïŒ®){(^2αβ)^(j-1)ïŒã»ã»ã»ïŒïŒ}
ããã§ãαβïŒïŒïŒïŒããïŒÎ±Î²+1ïŒïŒïŒïŒã¯çŽ æ°ã§ã¯ãªãããDD++ããã®No.1267ã®æçš¿ã®ã以äžãããN^561 - N 㯠561 ã®åæ°ã§ããããã^(2jαβ+1)ïŒïŒ®ã¯ïŒïŒïŒã®åæ°ã
ãã£ãŠã^(2jαβ+1)ïŒïŒ®ãïŒïŒïŒã®åæ°ã
念ã®ãããïŒïŒïŒã®åæ°ã§ããäºã¯äžãšåãå€åœ¢ãããã°è¯ãã
ãã£ãŠã瀺ãããã
No.1309å£ããæ2023幎7æ13æ¥ 22:50
DD++æ§ããã¯ããããããŸãã
ïŒåæ°ã«ãåºããªããŠæŠå¿µã¯ãããŸããã
ç¬èªçšèªã䜿ããããªãããŸãããã®å®çŸ©ãããŠãã ããã
ãããããŠããåºããããŠãããšèªã¿ãŸããïŒç§ã¯ããããã€ãŸããäžçªäžãæå°å€ãšãããããªæå³åãã§ããåæ°ã®åæå€ãšããæå³åãã§ãã
å£ããææ§ããã¯ããããããŸãã
ãŸãšããŠãã ãã£ãã®ã§ãããããããšãããããŸãã
No.1310ããããã¯ã¡ã¹ã2023幎7æ14æ¥ 07:39
åæ°ã«ãåæå€ããšããæŠå¿µããããŸããã
äœã«ãããç§ã®è³ªåã«çããæ°ããªãããã§ãã®ã§ã察話ã詊ã¿ãã諊ããŠãããã§æã¡åããŸãã
ãã以äžã®ç§ãžã®è¿ä¿¡ãäžèŠã§ãã
No.1311DD++2023幎7æ14æ¥ 07:55
åã倧ããã®ç«æ¹äœãïŒå暪ã«äžŠã¹ããã®ãèããã
ãã®ãšããïŒã€ã®ç«æ¹äœãç¹ãã£ãŠããã°åé ç¹ã¯åããã£ãŠããã®ã§ããã«äžã€ã®é ç¹ããããã®ãšèãããš
äžéšã«ã¯ïŒïŒåã®ããŸãäžéšã«ãïŒïŒåã®é ç¹ãæã¡
äžéšã®åé ç¹ãå·Šäžéšã®å¥¥ããæèšåãã«é ç¹1,2,3,4,5,6,7,8,9,10
åããé ç¹1ã®çäžãé ç¹11ãšããŠãæèšåãã«åºéšã®é ç¹ã12,13,14,15,16,17,18,19,20
ã®çªå·ãã€ããŠããã
ãã®ãšãã
[A]åºçºç¹ãæå®ããŠèŸº(åããã£ãæã¯äžã€ã®èŸºãšããã)ã蟿ã£ãŠ
ã ãã¹ãŠã®é ç¹ãäžåºŠãã€èšªããããã³ãŒã¹ãäœéãå¯èœãã調ã¹ãŠæ¬²ããã
(1)åºçºç¹ãé ç¹1ãšæå®ããå Žåã
(2)åºçºç¹ãé ç¹2ãšæå®ããå Žåã
(3)åºçºç¹ãé ç¹3ãšæå®ããå Žåã
次ã«
[B]å
šéšã®é ç¹ãäžåºŠãã€èšªããŠãåºçºç¹ã«æåŸæ»ã£ãŠããããã³ãŒã¹ã¯äœåŠãåºçºç¹ã«ããŠããã°ã
ã æãå€ãååšã§ãããïŒ
ã ãŸãããã¯äœéããïŒ
No.1245GAI2023幎7æ3æ¥ 07:24
GAIæ§ãããã«ã¡ã¯ã
äžçæžãã ãšæããŸãããWikipediaäžçæžãã®ãäžçæžãå¯èœãã©ããã®å€å®æ³ãã«ãããšã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒåŒçšéå§ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ããé£çµã°ã©ããäžçæžãå¯èœãªå Žåã®å¿
èŠå忡件ã¯ã以äžã®æ¡ä»¶ã®ããããäžæ¹ãæãç«ã€ããšã§ããïŒãªã€ã©ãŒè·¯åç
§ïŒã
ã»ããã¹ãŠã®é ç¹ã®æ¬¡æ°ïŒé ç¹ã«ã€ãªãã£ãŠããèŸºã®æ°ïŒãå¶æ° âéçãèµ·ç¹ã«æ»ãå ŽåïŒéè·¯ïŒ
ã»ã次æ°ã奿°ã§ããé ç¹ã®æ°ã2ã§ãæ®ãã®é ç¹ã®æ¬¡æ°ã¯å
šãŠå¶æ°ãâéçãèµ·ç¹ã«æ»ããªãå ŽåïŒéè·¯ã§ãªãè·¯ïŒ
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒåŒçšçµäºïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ãšãããŸãããããæºè¶³ããŠãŸããïŒ
管ç人ããã®å³ã§èŠããšãé ç¹ïŒ,11,20,10,5,6,15,16ã¯èŸºãïŒæ¬ã§å¥æ°ã§8ã§ãã
ãŸããé ç¹2,3,4,12,13,14,9,8,7,19,18,17ã§èŸºã4æ¬ã§å¶æ°ã§12ã§ãã
å¶æ°ã®å Žåãå
¥ãâåºãã®ç¹°ãè¿ãã§ãééç¹ã§ããã奿°ã¯ãåºâå
¥ãâåºãããå
¥ãâåºâå
¥ããããããããªãã®ã§ãåºçºç¹ãçµç¹ã§ããã ããã奿°ã¯2ã€ããããããªãã®ã§ãã
åéãã§ããããã¿ãŸããã
No.1250ããããã¯ã¡ã¹ã2023幎7æ4æ¥ 12:36
{A]
(1)é ç¹1ãåºçºç¹ãšããäžã€ã®çµè·¯
1->10->9->2->12->11->20->19->18->8->3->13->14->17->7->4->5->6->16->15
ã§åé ç¹ãäžåºŠãã€èšªããŠããã
ïŒå¥ã«ãã¹ãŠã®èŸºãéããšã¯èŠæ±ãããŠããªããïŒ
[B]
ã§é ç¹1ãåºçºç¹ãšããå Žåã®äžäŸ
1->2->9->19->18->8->3->4->7->17->16->6->5->15->14->13->12->11->20->10->1
ïŒå¿è«äžçã§æããŸãããéåžžã®äžçæžãã®åé¡ãšã¯è¶£æšãç°ã«ããŸããïŒ
No.1251GAI2023幎7æ4æ¥ 18:50
[B]ã¯ããã¹ãŠã®èŸºã1åã ãéã£ãŠãªãã®ã§ãäžçæžããšã¯èšããŸãããã
ïŒå¿è«äžçã§æããŸãããéåžžã®äžçæžãã®åé¡ãšã¯è¶£æšãç°ã«ããŸãã
ãããªããããããŸããããç§ã®åéãã§ããããã¿ãŸããã
No.1252ããããã¯ã¡ã¹ã2023幎7æ4æ¥ 19:26
[B]ã®æ¹ãæ¯èŒçç°¡åãããªã®ã§ããã¡ãã ããããŸããã
ãã£ãŠãããã©ããã¯èªä¿¡ããããŸããã
nåã®ç«æ¹äœã暪ã«äžŠã¹ããã®ãèããã
巊端ã®ç«æ¹äœã®å·ŠåŽã®4åã®é ç¹ãé çªã«A,B,C,Dãšãããã®ããå³åŽã®4åã®é ç¹ãããããa,b,c,dãšããã
å·Šããiçªç®ã®ç«æ¹äœã®å³åŽã®4åã®é ç¹(=i+1çªç®ã®ç«æ¹äœã®å·ŠåŽã®4åã®é ç¹)ããŸãšããŠi段ç®ãšç§°ããã
å
šéšã®é ç¹ãéãåºçºç¹ã«æåŸã«æ»ãã³ãŒã¹ã®æ°ã¯ããã¹ãŠã®é ç¹ãéãã«ãŒãã®æ°ã®2å(ã©ã¡ãåšããã®åºå¥)ã«ãªãã®ã§ã
ã©ããåºçºç¹ã«ããŠãã³ãŒã¹ã®æ°ã¯å€ãããªãããã®æ°ã a[n] éããšããã
以äžã§ã¯Aãåºçºç¹ãšããã³ãŒã¹ãèããã
1åšããŠAã«æ»ãäžã€åã®ç¹ã¯BãDãaã®ã©ããã§ããã察称æ§ããã©ã¹ãåãBã®ã³ãŒã¹æ°ãšã©ã¹ãåãDã®ã³ãŒã¹æ°ã¯çããã
ãã®ã©ã¹ãåãBã®ã³ãŒã¹æ°(=ã©ã¹ãåãDã®ã³ãŒã¹æ°)ã b[n] éããšããã
n=0ã®å Žåãããªãã¡åãªãåè§åœ¢ABCDãèãããšãã©ã¹ãåãBã®ã³ãŒã¹ã¯
AâDâCâBâA
ã®1éããªã®ã§ã b[0]=1 ã§ããã a[0]=2 ã§ããã
nâ§1ã®å Žåã0段ç®ã®4ç¹ãéãé çªã¯ä»¥äžã®(1.1)ãã(3.4)ãŸã§ã®ããããã«ãªãã
(1.1) AâaââŠâbâBâCâDâA
(1.2) AâBâbââŠâcâCâDâA
(1.3) AâBâCâcââŠâdâDâA
(1.4) AâBâCâDâdââŠâaâA
(1.5) AâaââŠâdâDâCâBâA
(1.6) AâDâdââŠâcâCâBâA
(1.7) AâDâCâcââŠâbâBâA
(1.8) AâDâCâBâbââŠâaâA
(2.1) AâaââŠâbâBâCâcââŠâdâDâA
(2.2) AâBâbââŠâcâCâDâdââŠâaâA
(2.3) AâaââŠâdâDâCâcââŠâbâBâA
(2.4) AâDâdââŠâcâCâBâbââŠâaâA
(3.1) AâaââŠâcâCâBâbââŠâdâDâA
(3.2) AâBâbââŠâdâDâCâcââŠâaâA
(3.3) AâaââŠâcâCâDâdââŠâbâBâA
(3.4) AâDâdââŠâbâBâCâcââŠâaâA
ã(1.1)ïœ(1.8)ã®å Žå
(1.1)ãäŸã«èãããšãéšååaââŠâbã®ç®æã¯n-1åã®ç«æ¹äœã§Aãåºçºãã©ã¹ãåãBã«ãªãã³ãŒã¹æ°ã«çããã®ã§ b[n-1] éããšãªãã
(1.2)ïœ(1.8)ãåæ§ã« b[n-1] éãã§ããã
ã(2.1)ïœ(2.4)ã®å Žå
(2.1)ãäŸã«èããã
éšååaââŠâbã®æé«å°é段ãi段ç®ãéšååcââŠâdã®æé«å°é段ãj段ç®ãšããã
ã³ãŒã¹ã¯å
šäœãšããŠãã¹ãŠã®ç¹ãéãã®ã§ãi,jã®å°ãªããšãäžæ¹ã¯nãšãªãã
i=j=nã®å Žåãäºã€ã®éšååã¯ã©ã¡ãããå³ãžçŽé²ãn段ç®ã§ã²ãšã€é£ãžç§»åãå·ŠãžçŽé²ããŠæ»ãã³ãŒã¹ãããªãã®ã§ã1éãã§ããã
i<j=nã®å ŽåãéšååaââŠâbã¯å³ãžçŽé²ãi段ç®ã§ã²ãšã€é£ãžç§»åãå·ŠãžçŽé²ããŠæ»ãããšã«ãªãã
éšååcââŠâdã¯i+1段ç®ãŸã§å³ãžçŽé²ãi+1段ç®ä»¥éã®ãã¹ãŠã®ç¹ãéã£ãåŸi+1段ç®ãã1段ç®ãŸã§å·ŠãžçŽé²ããããšã«ãªãã
ãã£ãŠãã®å Žåã¯ãn-i-1åã®ç«æ¹äœã§Aãåºçºãã©ã¹ãåãBã«ãªãã³ãŒã¹æ°ã«çããã®ã§ b[n-i-1] éããšãªãã
j<i=nã®å Žåãåæ§ã« b[n-i-1] éããšãªãã
以äžã®3ã€ã®å Žåã®æ°ãåããããš(2.1)ã®ã³ãŒã¹æ°ã¯ã
1+2*Σ[i=1..n-1]b[n-i-1]
= 1+2*Σ[k=0..n-2]b[k]
éããšãªãã
(2.2)ïœ(2.4)ãåæ§ã« 1+2*Σ[k=0..n-2]b[k] éãã§ããã
ã(3.1)ïœ(3.4)ã®å Žå
çµè«ãšããŠããã®å Žåã®ã³ãŒã¹ã¯ååšããªãããã®çç±ã以äžã«ç€ºãã
(3.1)ãäŸã«èããã
éšååaââŠâcã®æé«å°é段ãi段ç®ãéšååbââŠâdã®æé«å°é段ãj段ç®ãšããã
ã³ãŒã¹ã¯å
šäœãšããŠãã¹ãŠã®ç¹ãéãã®ã§ãi,jã®å°ãªããšãäžæ¹ã¯nãšãªãã
i=j=nã®å Žåãn段ç®ãŸã§ã¯çŽé²ã§è¡ãæ¥ãããããªãããn段ç®ã§ã®äºã€ã®éšååã®ã³ãŒã¹ã®äž¡ç«ãã§ããªãããããã¯ããããªãã
i<j=nã®å ŽåãéšååaââŠâcã¯i段ç®ãŸã§ã®ã©ããã®æ®µã§ãã®æ®µå
ã®å°ãªããšã3ç¹ãéãããšã«ãªããã
ãããããšéšååbââŠâdããã®æ®µãåŸåŸ©ã§ééããããã®å°ãªããšã2ç¹ã確ä¿ã§ããªãããããããªãã
j<i=nã®å Žåãåæ§ã§ããã
以äžããã(3.1)ã®ã³ãŒã¹ã¯ååšããªãããšããããã
(3.2)ïœ(3.4)ãåæ§ã§ããã
ãããŸã§ã®ããšããnâ§1ã®ãšã次ã®äºã€ã®åŒãåŸãããã
a[n] = 8*b[n-1] + 4*(1+2*Σ[k=0..n-2]b[k]) âŠåŒâ
b[n] = 3*b[n-1] + 1*(1+2*Σ[k=0..n-2]b[k]) âŠåŒâ¡
åŒâ¡ããb[n]ã®æŒžååŒ
b[n] = 1 + 3*b[n-1] + 2*Σ[k=0..n-2]b[k] âŠåŒâ¡'
ãåŸãããa[n]ã¯åŒâ ãã
a[n] = 4 + 8*Σ[k=0..n-1]b[k] âŠåŒâ '
ã䜿ãã°æ±ãŸãã
GAIããã®åé¡[B]ã¯n=4ã®å Žåãªã®ã§ãèšç®ãããš a[4]=612 éããšãªãã
ã©ãã§ãããããGAIãããæ±ããæ°ãšåãã«ãªããŸããã§ããããïŒ
No.1262ããã²ã2023幎7æ7æ¥ 20:15
[A]
(1) 2918(éã)
(2) 2188(éã)
(3) 2116(éã)
ã§ãã£ãã®ã«å¯Ÿã
[B]
ã®å
ã«æ»ããã³ãŒã¹ã«éå®ãããšãã©ã®é ç¹ããåºçºãããã
å
ã«æ»ããã³ãŒã¹æ°ã¯äžå®ã§ãããã²ããããæ±ããããŠãã612(éã)
ãããŸããã
[A]ã®å Žåã®æ§ã«åºçºç¹ãç°ãªãã°åœç¶ç°ãªãçµæãèµ·ããã ãããšèšç®ãããããŠã¿ããšã
åæã«æ±ºãã€ããŠããããšãèŠäºã«è£åãããŸããã
ãããåŸããèããŠã¿ãããéããçµè·¯ã¯ããããžãŒçã«ã©ããåããã®ã§ããããšã«ãªãããã«æããŠçŽåŸããŸããã
é ã®äžã ãã§ãã®612ãèŠã€ããããããšã«é©ããŸããã
No.1263GAI2023幎7æ8æ¥ 08:34
ã©ããããã£ãŠããããã§ããã£ãã§ãã
n=4ã§æãç«ã£ãŠããã®ãªãã°æŒžååŒã¯æ£ããå¯èœæ§ãé«ãã§ããã
ãšãããŸã§æžããåŸããµãšæãç«ã£ãŠèª¿ã¹ãŠã¿ããã
OEISã®A003699ã«ããã«ãã³éè·¯ã®æ°(=ã³ãŒã¹æ°ã®åå)ãèŒã£ãŠããŸããã
ããã®ïŒé
éæŒžååŒãèŠãã«ãã£ãšã·ã³ãã«ãªèãæ¹ãããããã§ãã
æåããååã®æ°ã§æ€çŽ¢ããŠããã°ããã£ãã®ãâŠâŠã
ç§ã®æçš¿ã§äžãæééããŠããã®ã§ä¿®æ£ããŸãã
ã(2.1)ïœ(2.4)ã®å Žåãã®äž
誀ïŒãj<i=nã®å Žåãåæ§ã« b[n-i-1] éããšãªããã
â
æ£ïŒãj<i=nã®å Žåãåæ§ã«èã㊠b[n-j-1] éããšãªããã
No.1264ããã²ã2023幎7æ8æ¥ 13:11
ããã²ãããã®ãšèãæ¹ãå
±éããéšåãå€ãã§ããããããªã®ã§ã©ãã§ãããã
n åã®ç«æ¹äœãå·Šå³äžåã«äžŠã¹ãŠããå Žåã§èããŸãã
æãå³åŽã«ããç«æ¹äœã®å³åŽã®é¢ã®é ç¹ 4 ã€ã¯ã
ã»4 ã€ãé£ç¶ããŠéãïŒã³åïŒ
ã»2 ã€ããŸãéããåŸã§æ®ã 2 ã€ãéãïŒäºåïŒ
ã®ããããã§éãããšã«ãªããŸãã
ã³åã®ãã¿ãŒã³æ°ã ã³[n], äºåã®ãã¿ãŒã³æ°ã äº[n] ãšããŸãã
ã³åã«ã€ããŠãå³åŽã®é¢ã® 4 é ç¹ãåé€ããŠçµè·¯ãç絡ããããšãèããŸãã
GAI ããã®å³ã§äŸãæããã°ãâŠâŠâ4â5â6â16â15â14ââŠâŠ ã âŠâŠâ4â14ââŠâŠ ã«ç絡ãããããªã€ã¡ãŒãžã§ãã
ç«æ¹äœ n+1 åã®å Žåã®ã³åã®çµè·¯å
šãŠãç絡ãããšã
ç«æ¹äœ n åã®å Žåã®ã³åã®çµè·¯å
šçš®ã 3 ã€ãã€ããã³äºåã®çµè·¯å
šçš®ã 2 ã€ãã€ã§ããã®ã§ã
ã³[n+1] = 3*ã³[n] + 2*äº[n]
äºåã«ã€ããŠãåæ§ã«èããŸãã
GAI ããã®å³ã§äŸãæããã°ãâŠâŠâ4â5â6â7ââŠâŠâ17â16â15â14ââŠâŠ ã âŠâŠâ4â7ââŠâŠâ17â14ââŠâŠ ã«ç絡ãããããªã€ã¡ãŒãžã§ãã
ç«æ¹äœ n+1 åã®å Žåã®äºåã®çµè·¯å
šãŠãç絡ãããšã
ç«æ¹äœ n åã®å Žåã®ã³åã®çµè·¯å
šçš®ã 1 ã€ãã€ããã³äºåã®çµè·¯å
šçš®ã 1 ã€ãã€ã§ããã®ã§ã
äº[n+1] = ã³[n] + äº[n]
䞡挞ååŒãã ã³[n] ãæ¶å»ããŠ
äº[n+2] = 4*äº[n+1] - äº[n]
ãŸããã³[1] = 8, äº[1] = 4 ãªã®ã§ãäº[2] = 12, äº[3] = 44, äº[4] = 164, äº[5] = 612
ãã£ãŠãæ±ããç·æ°ã¯ ã³[4] + äº[4] = äº[5] = 612 éãã§ãã
ããã«ãã³éè·¯æ°ããa[n] = (1/2)*ã³[n] + (1/2)*äº[n] = (1/2)*äº[n+1] ãšèãããšã
a[1] = 6, a[2] = 22, a[n+2] = 4*a[n+1] - a[n]
ãšããæŒžååŒãæãç«ã€ããšã瀺ãããŸãã
ïŒããã§ã¯ n ãç«æ¹äœæ°ãšããŠèããŠããã®ã§ãA003699 ãšã¯ n ã®å€ã 1 ã€ãããŸãïŒ
No.1290DD++2023幎7æ11æ¥ 10:17
DD++æ§ãããã«ã¡ã¯ã
ãäºé
å®çã®äžæè°ããã
ïŒïŒïŒïŒïŒïŒïŒïŒ
(4)åŒããã
ãã(1+1)^n=1^n +nC1 1^(n-1) +nC2 1^(n-2)+nC3 1^(n-3)+ã»ã»ã»ã»+nC(n-1) 1+1
ãã(2+1)^n=2^n +nC1 2^(n-1) +nC2 2^(n-2)+nC3 2^(n-3)+ã»ã»ã»ã»+nC(n-1) 2+1
ãã(3+1)^n=3^n +nC1 3^(n-1) +nC2 3^(n-2)+nC3 3^(n-3)+ã»ã»ã»ã»+nC(n-1) 3+1
ãã(4+1)^n=4^n +nC1 4^(n-1) +nC2 4^(n-2)+nC3 4^(n-3)+ã»ã»ã»ã»+nC(n-1) 4+1
ãã(5+1)^n=5^n +nC1 5^(n-1) +nC2 5^(n-2)+nC3 5^(n-3)+ã»ã»ã»ã»+nC(n-1) 5+1
ããããããããããããããããããããã»
ãã(r+1)^n=r^n +nC1 r^(n-1) +nC2 r^(n-2)+nC3 r^(n-3)+ã»ã»ã»ã»+nC(n-1) r+1
ããããããããããããããããããããã»
+)ã(a+1)^n=a^n +nC1 a^(n-1) +nC2 a^(n-2)+nC3 a^(n-3)+ã»ã»ã»ã»+nC(n-1) a+1
ã¯ã
ãã(1+1)^n-1^n= nC1 1^(n-1) +nC2 1^(n-2)+nC3 1^(n-3)+ã»ã»ã»ã»+nC(n-1) 1+1
ãã(2+1)^n-2^n= nC1 2^(n-1) +nC2 2^(n-2)+nC3 2^(n-3)+ã»ã»ã»ã»+nC(n-1) 2+1
ãã(3+1)^n-3^n= nC1 3^(n-1) +nC2 3^(n-2)+nC3 3^(n-3)+ã»ã»ã»ã»+nC(n-1) 3+1
ãã(4+1)^n-4^n= nC1 4^(n-1) +nC2 4^(n-2)+nC3 4^(n-3)+ã»ã»ã»ã»+nC(n-1) 4+1
ãã(5+1)^n-5^n= nC1 5^(n-1) +nC2 5^(n-2)+nC3 5^(n-3)+ã»ã»ã»ã»+nC(n-1) 5+1
ããããããããããããããããããããã»
ãã(r+1)^n-r^n= nC1 r^(n-1) +nC2 r^(n-2)+nC3 r^(n-3)+ã»ã»ã»ã»+nC(n-1) r+1
ããããããããããããããããããããã»
+)ã(a+1)^n-a^n= nC1 a^(n-1) +nC2 a^(n-2)+nC3 a^(n-3)+ã»ã»ã»ã»+nC(n-1) a+1
---------------------------------------------------------------------------------
ãã(a+1)^n-1^n=nC1{ã»ã»â ã»ã»}+nC2{ã»ã»â¡ã»ã»}+nC3{ã»ã»â¢ã»ã»}+ã»ã»ã»ã»+nC(n-1){ã»ã»(n-1)ã»ã»}+a
ãã(a+1)^n=nC1{ã»ã»â ã»ã»}+nC2{ã»ã»â¡ã»ã»}+nC3{ã»ã»â¢ã»ã»}+ã»ã»ã»ã»+nC(n-1){ã»ã»(n-1)ã»ã»}+a+1
ãšããã§ãnãçŽ æ°ãªãã°nCsã¯åžžã«nã®åæ°ã§ãããã
(a+1)^n=nB+(a+1)---(6)
ãã ããnB=nC1{ã»ã»â ã»ã»}+nC2{ã»ã»â¡ã»ã»}+nC3{ã»ã»â¢ã»ã»}+ã»ã»ã»ã»+nC(n-1){ã»ã»(n-1)ã»ã»}
ïŒïŒïŒïŒïŒïŒ
ããã§ã
ãã(a+1)^n=nC1{ã»ã»â ã»ã»}+nC2{ã»ã»â¡ã»ã»}+nC3{ã»ã»â¢ã»ã»}+ã»ã»ã»ã»+nC(n-1){ã»ã»(n-1)ã»ã»}+a+1
ãã(a+1)^n-(a+1)=nC1{ã»ã»â ã»ã»}+nC2{ã»ã»â¡ã»ã»}+nC3{ã»ã»â¢ã»ã»}+ã»ã»ã»ã»+nC(n-1){ã»ã»(n-1)ã»ã»}
nãåææ°ãªããnCsã¯åžžã«nã®åæ°ã«ãªããªããã(ãã ã0<s<n)
(a+1)^n-(a+1)â nB---(6)'
ãããã£ãŠã
nãçŽ æ°ã®ãšãã ã
(a+1)^n=nB+(a+1)
(a+1)^n-(a+1)=nB
α^n-α=nBãïŒãã ãα=a+1ã)
ãæãç«ã€ã
ç·šéæžã¿
No.1265ããããã¯ã¡ã¹ã2023幎7æ8æ¥ 16:54
ãn ãçŽ æ°ã®ãšãã«æç«ãããã¯æ£ããã§ããã
ããããããã¯ãn ãåææ°ã®ãšãã¯äžæç«ã§ããããã©ããã«ã¯çŽæ¥é¢ä¿ããªãããã䞻匵ããããªãå¥é蚌æãå¿
èŠã§ãã
No.1266DD++2023幎7æ8æ¥ 21:16
åäŸããããšããŸããã
561 = 3*11*17 ã¯åææ°ã§ãã
N^561 - N = ( N^3 - N ) * ( N^558 + N^556 + âŠâŠ + 1 )
ã«ãããŠã3 ã¯çŽ æ°ãªã®ã§ N^3 - N 㯠3 ã®åæ°ãN^558 + N^556 + âŠâŠ + 1 ã¯æŽæ°ã§ãã
ãããã£ãŠãN^561 - N 㯠3 ã®åæ°ã§ãã
N^561 - N = ( N^11 - N ) * ( N^550 + N^540 + âŠâŠ + 1 )
ã«ãããŠã11 ã¯çŽ æ°ãªã®ã§ N^11 - N 㯠11 ã®åæ°ãN^550 + N^540 + âŠâŠ + 1 ã¯æŽæ°ã§ãã
ãããã£ãŠãN^561 - N 㯠11 ã®åæ°ã§ãã
N^561 - N = ( N^17 - N ) * ( N^544 + N^527 + âŠâŠ + 1 )
ã«ãããŠã17 ã¯çŽ æ°ãªã®ã§ N^17 - N 㯠17 ã®åæ°ãN^544 + N^527 + âŠâŠ + 1 ã¯æŽæ°ã§ãã
ãããã£ãŠãN^561 - N 㯠17 ã®åæ°ã§ãã
以äžãããN^561 - N 㯠561 ã®åæ°ã§ãã
No.1267DD++2023幎7æ8æ¥ 23:42
DD++æ§ããã¯ããããããŸãã
ããããã«N^33-NãèŠãŠã¿ãŸãããã33=3*11ã§ããã
(%i1) factor(N^33-N);åŒã®å æ°åè§£ãã
(%o1)(N - 1) N (N + 1) (N^2 + 1) (N^4 + 1) (N^8 + 1) (N^16 + 1)
33ãN^11ã¯ãããŸããããå æ°åè§£ã¯äžéãããã§ããŸããã®ã§ããã以å€ãªãã¯ãã§ãã
ãææã®åäŸã¯äžé©åœã ãšæããŸãã
No.1268ããããã¯ã¡ã¹ã2023幎7æ9æ¥ 07:23
(%i2) factor(N^561-N);åŒã®å æ°åè§£ãã
(%o2) (N - 1) N (N + 1) (N^2 + 1) (N^4 + 1) (N4 - N^3 + N^2 - N + 1)
(N^4 + N^3 + N^2 + N + 1) (N^6 - N^5 + N^4 - N^3 + N^2 - N + 1)
(N^6 + N^5 + N^4 + N^3 + N^2 + N + 1) (N^8 + 1) (N^8 - N^6 + N^4 - N^2 + 1)
(N^12 - N^10 + N^8 - N^6 + N^4 - N^2 + 1) (N^16 - N^12 + N^8 - N^4 + 1)
(N^24 - N^20 + N^16 - N^8 + N^4 - N + 1) (N^24 - N^23 + N^19 - N^18 + N^17 - N^16 + N^14 - N^13 + N^12 - N^11 + N^10 - N^8+ N^7- N^6+ N^5 - N + 1)
(N^24 + N^23 - N^19 - N^18 - N^17 - N^16 + N^14 + N^13 + N^12 + N^11 + N^10- N^8- N^7 - N^6- N^5+ N + 1) (N^32 - N^24 + N^16 - N^8 + 1)
(N^48 - N^40 + N^32 - N^24 + N^16 - N^8 + 1)
(N^48 + N^46 - N^38 - N^36 - N^34 - N^32 + N^28 + N^26 + N^24 + N^22 + N^20- N^16 - N^14 - N^12 - N^10 + N^2 + 1)
(N^96 + N^92 - N^76 - N^72 - N^68 - N^64 + N^56 + N^52 + N^48 + N^44 + N^40 -N^32 - N^28 - N^24 - N^20 + N^4 + 1)
(N^192+ N^184- N^152- N^144- N^136- N^128+ N^112 + N^104+ N^96 + N^88 + N^80- N^64 - N^56 - N^48 - N^40 + N^8 + 1)
ãšãªãã561ããããŸãããã3,11,17ããããŸããã
No.1269ããããã¯ã¡ã¹ã2023幎7æ9æ¥ 07:48
ç§ã¯ã561 ã®å Žåã«äŸå€çãªçŸè±¡ãçºçããããšèšã£ãŠããã®ã«ãªãç¡é¢ä¿ãª 33 ã®è©±ãå§ããã®ã§ããïŒ
ç§ã¯ 33 ãäŸå€ã ãªããŠäžèšãèšã£ãŠããŸãããã
No.1270DD++2023幎7æ9æ¥ 07:53
ïŒnãåææ°ãªããnCsã¯sã«ãããããåžžã«nã®åæ°ã«ãªããªããã(ãã ã0<s<n)
(a+1)^n-(a+1)â nB
ããã§ãnãåææ°ãªããα^n-αâ nBãšå³èŸºã«ã¯nåºãŠããŸããããšã¯ãèšŒææžã¿ã§ããã
No.1271ããããã¯ã¡ã¹ã2023幎7æ9æ¥ 08:17
ããããããªæ°è¡ãæãŸã£ãŠãŸãããã
誀ã1ïŒ
ãnãåææ°ãªããnCsã¯sã«ãããããåžžã«nã®åæ°ã«ãªããªããã¯åœã§ãã
åäŸã¯ã6C1 = 6 ã 9C4 = 126 ãªã©ãããã§ãã
誀ã2ïŒ
n ã®åæ°ã§ãªãæ°ã®åèšã n ã®åæ°ã§ãªãæ°ã«ãªãä¿èšŒã¯ãããŸããã
åäŸã¯ãn=4 ã«å¯Ÿãã4 ã®åæ°ã§ãªã 3 ãš 5 ã®å㯠4 ã®åæ°ã§ãã
No.1272DD++2023幎7æ9æ¥ 08:50
nCsã§ãs=1ãããs=n-1ãŸã§ããã¹ãŠïœã®åæ°ã§ãªããšãå³èŸºã¯nã§ããããŸããã
6C1ã¯ããããããããŸãããïŒC2ãïŒC3,ïŒC4,ïŒC5ã¯ã©ãã§ããïŒ
6C1=2x3
6C2=3x5
6C3=2^2x5
6C4=3x5
6C5=2x3
>(a+1)^n-(a+1)=nC1{ã»ã»â ã»ã»}+nC2{ã»ã»â¡ã»ã»}+nC3{ã»ã»â¢ã»ã»}+ã»ã»ã»ã»+nC(n-1){ã»ã»(n-1)ã»ã»}
å³èŸºã¯ãn=6ã§ããããªãã§ãããïŒ
No.1273ããããã¯ã¡ã¹ã2023幎7æ9æ¥ 09:11
3+5 㯠4 ã§ããããªããŠã 4 ã®åæ°ã§ãããšãã話ãããŠããã®ã§ããã
No.1274DD++2023幎7æ9æ¥ 10:14
ïŒn ã®åæ°ã§ãªãæ°ã®åèšã n ã®åæ°ã§ãªãæ°ã«ãªãä¿èšŒã¯ãããŸããã
åäŸã¯ãn=4 ã«å¯Ÿãã4 ã®åæ°ã§ãªã 3 ãš 5 ã®å㯠4 ã®åæ°ã§ãã
(a+1)^n-(a+1)=nAã®è©±ã§ãnåææ°ã®å Žåã
>(a+1)^n-(a+1)=nC1{ã»ã»â ã»ã»}+nC2{ã»ã»â¡ã»ã»}+nC3{ã»ã»â¢ã»ã»}+ã»ã»ã»ã»+nC(n-1){ã»ã»(n-1)ã»ã»}
ã«ããããŠãnCsãã¿ãªnã®åæ°ã«ãªããªãã®ã§ãå³èŸºã¯ïœã§ããããªããšãªãããã§ããããã®è©±ãšã©ãã«ãããããããã®ã§ããããïŒ
ç§ã¯ã代æ°èšç®ã®è©±ãããŠããã®ã§ããæŽæ°èšç®ã§ã¯ãããŸããã
No.1275ããããã¯ã¡ã¹ã2023幎7æ9æ¥ 10:53
ããããã¯ã¡ã¹ããããããã«ã¡ã¯ã
ïŒããã§ãnãåææ°ãªããα^n-αâ nBãšå³èŸºã«ã¯nåºãŠããŸããããšã¯ãèšŒææžã¿ã§ããã
ïœã§ããããªããŠãå³èŸºãïœã®åæ°ã«ãªãå¯èœæ§ã¯ãããŸãããã
No.1276å£ããæ2023幎7æ9æ¥ 11:14
å£ããææ§ãããã«ã¡ã¯ã
>(a+1)^n-(a+1)=nC1{ã»ã»â ã»ã»}+nC2{ã»ã»â¡ã»ã»}+nC3{ã»ã»â¢ã»ã»}+ã»ã»ã»ã»+nC(n-1){ã»ã»(n-1)ã»ã»}
ã«ãããŠãâ ãâ¡ãâ¢ãã»ã»ã»(n-1)ã¯ã倿°ãªã®ã§ã代æ°èšç®äžäžæãªå€ã§ããããã§nCsã«æ³šç®ããŠããããã§ãã
ïŒïœã§ããããªããŠãå³èŸºãïœã®åæ°ã«ãªãå¯èœæ§ã¯ãããŸãããã
ããã¯ãæ°å€èšç®äžåŠå®ã§ããŸãããã»ã»ã»ã»ã»
ïŒãã ããN^561-Nãå æ°åè§£ã§ããããã«ãå æ°åè§£ã§ããã¯ãã§ããïŒ
ã§ãã代æ°èšç®ã§ããã瀺ãããšã¯ã§ããŸããïŒnCsã¯ãäžå¿å¯Ÿç§°ãªé¢æ°ã§ããããæãè¿ããšnãå¶æ°ãªãã2ãåºãŠããŸããã©nã«ã¯ãªããŸããã
No.1277ããããã¯ã¡ã¹ã2023幎7æ9æ¥ 11:37
ïŒïœã§ããããªããŠãå³èŸºãïœã®åæ°ã«ãªãå¯èœæ§ã¯ãããŸãããã
ããããããã«å¯ŸããŠã¯ãïœãåææ°ãªããå æ°åè§£ã§ããããšã蚌æããnãšãã®çŽæ°ãæããªãããšã瀺ãã°ããïŒ
ããšããš
N^p-N=çŽæ°ã®å
ã ãããçŽæ°ããªããã°ãã»ãããããå€ãããããããçŽæ°ã®äžè¬åŒã®xNã®ä¿æ°ãpã§ãªããã°ãªããªãã£ããã ã
ããã«æ»ãã°ããã
ç·šéæžã¿
No.1278ããããã¯ã¡ã¹ã2023幎7æ9æ¥ 11:50
n ã«ã€ããŠã®ä»£æ°çèšç®ã ãšãããªããn ãçŽ æ°ãåææ°ãã«é¢ä¿ãªããåžžã« nCs 㯠n ã®åæ°ã§ãããã
äŸãã° s=3 ã®å ŽåãnC3 = (1/6)n(n-1)(n-2) 㯠n*æŽåŒã«ãªã£ãŠããã®ã§ãããã
ä»ãŸã§ã®ã¯ã¡ã¹ãããã®äž»åŒµãšçã£åããççŸãã䞻匵ã§ãã
ã¯ã¡ã¹ãããã¯ãèªåã®äž»åŒµãæ£ããã誀ãããšããæ°åŠã«æãå¿
èŠãªèŠç¹ãå
šãæ¬ ããŠããŠãèªåã®äž»åŒµãæ£ãããšããããšã«ããããå Žåœããçã«ãŽããŠããã ãã®ããã«èŠããŸãã
çºèšããããšã«åã®èªåã®çºèšãšççŸããããšãèšãããã§ã¯è©±ã«ãªããŸããã
ãŸãã¯ã¡ãããšæ°åŠã®äžçã«æ¥ãŠããã¡ããšè°è«ã®èå°ã«äžãã£ãŠããŠãã ããã
No.1279DD++2023幎7æ9æ¥ 11:54
ïŒã¯ã¡ã¹ãããã¯ãèªåã®äž»åŒµãæ£ããã誀ãããšããæ°åŠã«æãå¿
èŠãªèŠç¹ãå
šãæ¬ ããŠããŠãèªåã®äž»åŒµãæ£ãããšããããšã«ããããå Žåœããçã«ãŽããŠããã ãã®ããã«èŠããŸãã
ãããçã¿ã®èŠãã¿ãšè¡šçŸããŠããã£ããããã£ãã§ãã»ã»ã»
No.1280ããããã¯ã¡ã¹ã2023幎7æ9æ¥ 12:00
誀ã£ãŠããããšããŽãªæŒãã§æ£ããããšã«ããããšããã®ã¯ãçã¿ãã§ã¯ãªããã ã®ãåŠèšãã§ããã
No.1281DD++2023幎7æ9æ¥ 12:03
AïŒBãªãã°Cã§ããããïœãçŽ æ°ãªãã°ãa^n-a=ïœAããªããã€ã
åŠå®ïœïŒAïŒBïŒ}ãªãã°Cã§ãªãããïœãåææ°ãªãã°ãa^n-a=ïœAããªããããªãã
No.1282ããããã¯ã¡ã¹ã2023幎7æ9æ¥ 12:23
ã¯ã¡ã¹ãããã
å°ãèœã¡çããŠããé¡ãããŸãã
æçš¿ã«ããããäžæžããçšæããŠïŒæ¥å¯ãããŠãããŠãããå床èªèº«ã®äžæžããèªã¿ãªãããŠãã ãããããã ãã§ãã ãã¶éããŸããã
No.1283Dengan kesaktian Indukmu2023幎7æ9æ¥ 16:18
ãAïŒB ãªãã°Cã§ãããã®åŠå®ã¯ããAïŒB ã〠ã§ãªãããªã®ã§ã
ãïœ ãçŽ æ°ãªãã°ãa^n-a=ïœAãã®åŠå®ã¯ããïœ ãçŽ æ° ã〠a^n-aâ ïœAãã§ãããïŒ
ãªãããã§åŠå®ãèããã®ããããåãããŸãããïŒïŒïŒã
No.1284HP管çè
2023幎7æ9æ¥ 16:43 HP管çè
æ§ããã°ãã¯ã
Aãçã®ãšãBãçãªãã°ãAãåŠå®ã®ãšãBãåŠå®ã§ããã
ããã§ã
nãçŽ æ°ã®ãšãa^n-a=nAãæãç«ã€ãªãã°ãnãåææ°ã®ãšãa^n-a=nAã¯æãç«ããªãã
ãã ããnãçŽ æ°ã§ãªããšããnã¯åææ°ã§ããã
çåãšèª€è§£ã¯ããã ã§ããããïŒ
å
šé¢æ¹èš22:11
åä¿®æ£ã22:53
No.1285ããããã¯ã¡ã¹ã2023幎7æ9æ¥ 18:25
ïŒåã®ã·ã³ãã«ãªåœ¢ã®è§£ãèŠã€ãããŸããã
ïŒ2a-b,a+3b,3a+2b,-3a-2b,-a-3b,-2a+b)
ããšã(a-2b,2a+3b,3a+b,-3a-b,-2a-3b,-a+2b)
ããã«ãïŒåã«ææŠäžã§ãã
2è¡ç®5åããèšæ£ããŸããã
No.1261ks2023幎7æ6æ¥ 19:46
ä»»æã®èªç¶æ°Nã«ãå¶æ°ãè¶³ããŠããã°ãå¹³æ¹æ°ã«ãªãããšãåãããŸããã2ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒããªã©
ä»»æã®æ°ã«ãããæ°åãè¶³ããŠãNïŒãN4,ãN5
å Žåã¯ã©ããªãã§ããããïŒ
No.1229ks2023幎6æ28æ¥ 09:46
ksæ§ãããã«ã¡ã¯ã
ïŒä»»æã®èªç¶æ°Nã«ãå¶æ°ãè¶³ããŠããã°ãå¹³æ¹æ°ã«ãªãããšãåãããŸããã
ããã¯ãN+(1+2+3+ã»ã»+N-1)x2=N+N(N-1)=N+N^2-N=N^2
ã§ããã
No.1230ããããã¯ã¡ã¹ã2023幎6æ28æ¥ 14:09
N+(2+4ïŒâŠïŒïŒïŒN-1ïŒïŒïŒNã®2ä¹
ãæãç«ã¡ã
NïŒïŒ6ïŒâŠïŒïŒNïŒN-1ïŒïŒ= âä¿®æ£ããŸããã
NïŒïŒ3ã®åæ°ã®æ°åã®åïŒïŒNã®ïŒä¹
NïŒïŒïŒã®åæ°ã®æ°åã®åïŒïŒNã®ïŒä¹ ãäžæç«
NïŒïŒïŒã®åæ°ã®æ°åã®åïŒïŒNã®ïŒä¹ãæãç«ã¡ãŸã
No.1232ks2023幎6æ29æ¥ 18:45
ïŒNïŒN-1ïŒãã
ïŒã®ïŒä¹ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒã®ïŒä¹ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒã®ïŒä¹ïŒ125ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒïŒã®åæ°ã®æ°åã§ïŒä¹æ°ãçãŸããŸãïŒ
No.1235ks2023幎6æ30æ¥ 19:10
ksæ§ããã¯ããããããŸãã
N+a1+a2+ã»ã»+aNã«ãããŠã
aN=3N(N-1)
ãšãããšã
a1=0
a2=6
a3=18
a4=36
a5=60
ã»ã»ã»ã»
ãã£ãŠã
ãN
N+â{3i(i-1)}
ãi=1
ããN
=N+3â{i(i-1)}
ããi=1
ããNããããN
=N+3âi^2ãŒ3âi
ããi=1ãããi=1
=N+3N(N+1)(2N+1)/6ãŒ3N(N+1)/2
=N+(3/2)N(N+1){(2N+1)/3ãŒ1}
=N+(3/2)N(N+1){(2N+1-3)/3)}
=N+(3/2)N(N+1){(2N-2)/3)}
=N+N(N+1)(N-1)=N+N(N^2-1)
=N+N^3-N=N^3
ãããã£ãŠã
N+a1+a2+a3ã»ã»+aN=N^3
N+0+6+18+ã»ã»+3N(N-1)=N^3
N+6+18+ã»ã»+3N(N-1)=N^3
No.1236ããããã¯ã¡ã¹ã2023幎7æ1æ¥ 09:17
管ç人æ§ã®ã³ã¡ã³ãããã
ïŒãïŒ ãã ïœ ãŸã§ã®èªç¶æ°ã®å ïŒ ïŒïŒïŒïŒã»ã»ã»ïŒïœ ïŒïœïŒïœïŒïŒïŒ/ïŒ
ãïŒ ãã ïœ ãŸã§ã®èªç¶æ°ã®å¹³æ¹ã®å ïŒ ïŒ^2ïŒïŒ^2ïŒã»ã»ã»ïŒïœ^2 ïŒïœïŒïœïŒïŒïŒïŒïŒïœïŒïŒïŒ/ïŒ
ãïŒ ãã ïœ ãŸã§ã®èªç¶æ°ã®ç«æ¹ã®å ïŒ ïŒ^3ïŒïŒ^3ïŒã»ã»ã»ïŒïœ^3 ïŒïœ^2ïŒïœïŒïŒ)^2/ïŒ
ïŒãä»»æã®æ°ïŒ®ã«å¯ŸããŠããïŒïŒ®ïŒïŒïŒïŒ® ã¯å¶æ°ã§ã
ããïŒïŒïŒ®ïŒïŒïŒïŒ®ïŒïŒ®ïŒN^2ïŒïŒ®ïŒN^2
åæ§ã«ãä»»æã®æ°ïŒ®ã«å¯ŸããŠããïŒïŒ®ïŒïŒïŒïŒ®ïŒïŒ®ïŒïŒïŒã¯å¶æ°ã§ã
ããïŒïŒïŒ®ïŒïŒïŒïŒ®ïŒïŒ®ïŒïŒïŒïŒïŒ®ïŒN^3ïŒïŒ®ïŒN^3
ãä»»æã®æ°ïŒ®ã«å¯ŸããŠããïŒïŒ®ïŒïŒïŒïŒ®ïŒïŒ®^2ïŒïŒ®ïŒïŒïŒã¯å¶æ°ã§ã
ããïŒïŒïŒ®ïŒïŒïŒïŒ®ïŒïŒ®^2ïŒïŒ®ïŒïŒïŒïŒïŒ®ïŒN^4ïŒïŒ®ïŒN^4
ãä»»æã®æ°ïŒ®ã«å¯ŸããŠããïŒïŒ®ïŒïŒïŒïŒ®ïŒïŒ®ïŒïŒïŒïŒïŒ®^2ïŒïŒïŒã¯å¶æ°ã§ã
ããïŒïŒïŒ®ïŒïŒïŒïŒ®ïŒïŒ®ïŒïŒïŒïŒïŒ®^2ïŒïŒïŒïŒïŒ®ïŒN^5ïŒïŒ®ïŒN^5
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ã§ããããN+a1+a2+ã»ã»+aNã«ãããŠãaNããããªãããã«ã決ããã°ããã§ããã
äœåºŠã远èšããŸããã
No.1237ããããã¯ã¡ã¹ã2023幎7æ1æ¥ 09:35
N+x1+x2+ã»ã»+xN=N^4ã«ãããŠã
xN=aN^3+bN^2+cN+dãšãããšã
N+â(ai^3+bi^2+ci+d)
=N+a{N^2(N+1)^2}/4+b{N(N+1)(2N+1)}/6+c{N(N+1)}/2+dN
=a{N^2(N+1)^2}/4+b{N(N+1)(2N+1)}/6+c{N(N+1)}/2+(d+1)N
N^4={3aN^4+(6a+4b)N^3+(3a+6b+6c)N^2+(2b+6c+12d+12)N}/12
ãã£ãŠã
3a/12=1 a/4=1 ããã«a=4
6a+4b=0 3a+2b=0 12+2b=0ããã«b=-6
3a+6b+6c=0 a+2b+2c=0 4-12+2c=0ããã«c=4
2b+6c+12d+12=0ãb+3c+6d+6=0 -6+12+6d+6=0 12+6d=0ããã«d=-2
ãã£ãŠã
xN=aN^3+bN^2+cN+d
=2(N-1)(2N^2-N+1)
ãããã£ãŠã
x1=0
x2=14
x3=64
x4=174
ã»ã»ã»ã»
ãã£ãŠã
N+x1+x2+ã»ã»+xN=N^4
N+0+14+64+174+ã»ã»ã»+2(N-1)(2N^2-N+1)=N^4
ããŠã
N=1 ã®ãšãïŒ
N=2 ã®ãšã2+0+14=16=2^4
N=3 ã®ãšã3+0+14+64=81=3^4
N=4 ã®ãšã3+0+14+64+174=256=4^4
No.1240ããããã¯ã¡ã¹ã2023幎7æ1æ¥ 18:24
N^4åã®å
¬åŒ{N(N+1)(2N+1)(3N^2+3N-1}/30ããã
N+x1+x2+ã»ã»+xN=N^5ã«ãããŠã
xN=aN^4+bN^3+cN^2+dN+eãšãããšã
ãN
N+â(ai^4+bi^3+ci^2+di+e)
ãi=1
=N+a{N(N+1)(2N+1)(3N^2+3N-1}/30+b{N^2(N+1)^2}/4+c{N(N+1)(2N+1)}/6+d{N(N+1)}/2+eN
=a{N(N+1)(2N+1)(3N^2+3N-1}/30+b{N^2(N+1)^2}/4+c{N(N+1)(2N+1)}/6+d{N(N+1)}/2+(e+1)N
N^5={12aN^5+(30a+15b)N^4+(20a+30b+20c)N^3+(15b+30c+30d)N^2+(-2a+10c+30d+60e+60)}/60
ãã£ãŠã
12a/60=1 a/5=1 ããã«a=5
30a+15b=0 2a+b=0 10+b=0ããã«b=-10
20a+30b+20c=0 2a+3b+2c=0 10-30+2c=0ããã«c=10
15b+30c+30d=0ãb+2c+2d=0 -10+20+2d=0 10+2d=0ããã«d=-5
-2a+10c+30d+60e+60=0ã -a+5c+15d+30e+30=0ã -5+50-75+30e+30=0ã 0+30e=0
ããã«e=0
ãã£ãŠã
xN=aN^4+bN^3+cN^2+dN+e
=5N^4-10N^3+10N^2-5N
=5N(N-1)(N^2-N+1)
ãããã£ãŠã
x1=0
x2=30
x3=210
x4=780
ã»ã»ã»ã»
ãã£ãŠã
N+x1+x2+ã»ã»+xN=N^5
N+0+30+210+780+ã»ã»ã»+5N(N-1)(N^2-N+1)=N^5
ããŠã
N=1ã®ãšãã1+0=1
N=2ã®ãšãã2+0+30=32=2^5
N=3ã®ãšãã3+0+30+210=243=3^5
N=4ã®ãšãã4+0+30+210+780=1024=4^5
No.1241ããããã¯ã¡ã¹ã2023幎7æ1æ¥ 19:03
N^5åã®å
¬åŒ{N^2(N+1)^2(2N^2+2N-1)}/12ããã
N+x1+x2+ã»ã»+xN=N^6ã«ãããŠã
xN=aN^5+bN^4+cN^3+dN^2+eN+fãšãããšã
ãN
N+â(ai^5+bi^4+ci^3+di^2+ei+f)
ãi=1
=N+a{N^2(N+1)^2(2N^2+2N-1)}/12+b{N(N+1)(2N+1)(3N^2+3N-1)}/30+c{N^2(N+1)^2}/4+d{N(N+1)(2N+1)}/6+e{N(N+1)}/2+fN
=a{N^2(N+1)^2(2N^2+2N-1)}/12+b{N(N+1)(2N+1)(3N^2+3N-1)}/30+c{N^2(N+1)^2}/4+d{N(N+1)(2N+1)}/6+e{N(N+1)}/2+(f+1)N
N^6={10aN^6+(30a+12b)N^5+(25a+30b+15c)N^4+(20b+30c+20d)N^3+(-5a+15c+30d+30e)N^2+(-2b+10d+30e+60f+60)N}/60
ãã£ãŠã
10a/60=1 a/6=1 ããã«a=6
30a+12b=0 5a+2b=0 30+2b=0ããã«b=-15
25a+30b+15c=0 5a+6b+3c=0 30-90+3c=0 -60+3c=0ããã«c=20
20b+30c+20d=0ã2b+3c+2d=0 -30+60+2d=0 30+2d=0ããã«d=-15
-5a+15c+30d+30e=0 -a+3c+6d+6e=0 -6+60-90+6e=0 -36+6e=0ããã«e=6
-2b+10d+30e+60f+60=0 30-150+180+60f+60=0 120+60f=0 12+6f=0ããã«f=-2
ãã£ãŠã
xN=aN^5+bN^4+cN^3+dN^2+eN+f
=6N^5-15N^4+20N^3-15N^2+6N-2
=(N-1)(6N^4-9N^3+11N^2-4N+2)
ãããã£ãŠã
x1=0
x2=62
x3=664
x4=3366
ã»ã»ã»ã»
ãã£ãŠã
N+x1+x2+ã»ã»+xN=N^6
N+0+62+664+3366+ã»ã»ã»+(N-1)(6N^4-9N^3+11N^2-4N+2)=N^6
ããŠã
N=1ã®ãšãã1+0=1
N=2ã®ãšãã2+0+62=64=2^6
N=3ã®ãšãã3+0+62+664=729=3^6
N=4ã®ãšãã4+0+64+664+3366=4096=4^6
No.1242ããããã¯ã¡ã¹ã2023幎7æ2æ¥ 17:34
N^6åã®å
¬åŒ{N(N+1)(2N+1)(3N^4+6N^3-3N+1)}/42ããã
N+x1+x2+ã»ã»+xN=N^7ã«ãããŠã
xN=aN^6+bN^5+cN^4+dN^3+eN^2+fN+gãšãããšã
ãN
N+â(ai^6+bi^5+ci^4+di^3+ei^2+fi+g)
ãi=1
=N+a{N(N+1)(2N+1)(3N^4+6N^3-3N+1)}/42+b{N^2(N+1)^2(2N^2+2N-1)}/12+c{N(N+1)(2N+1)(3N^2+3N-1)}/30+d{N^2(N+1)^2}/4+e{N(N+1)(2N+1)}/6+f{N(N+1)}/2+gN
=a{N(N+1)(2N+1)(3N^4+6N^3-3N+1)}/42+b{N^2(N+1)^2(2N^2+2N-1)}/12+c{N(N+1)(2N+1)(3N^2+3N-1)}/30+d{N^2(N+1)^2}/4+e{N(N+1)(2N+1)}/6+f{N(N+1)}/2+(g+1)N
N^7={60aN^7+(210a+70b)N^6+(210a+210b+84c)N^5+(175b+210c+105d)N^4+(-70a+140c+210d+140e)N^3+(-35b+105d+210e+210f)N^2+(10a-14c+70e+210f+420g+420)N}/420
ãã£ãŠã
60a/420=1 a/7=1 ããã«a=7
210a+70b=0 3a+b=0 21+b=0ããã«b=-21
210a+210b+84c=0 5a+5b+2c=0 35-105+2c=0 -70+2c=0ããã«c=35
175b+210c+105d=0ã5b+6c+3d=0 -105+210+3d=0 105+3d=0ããã«d=-35
-70a+140c+210d+140e=0 -a+2c+3d+2e=0 -7+70-105+2e=0 -42+2e=0ããã«e=21
-35b+105d+210e+210f=0 -b+3d+6e+6f=0 21-105+126+6f=0 42+6f=0 ããã«f=-7
10a-14c+70e+210f+420g+420=0 5a-7c+35e+105f+210g+210=0 210g=0 ããã«g=0
ãã£ãŠã
xN=aN^6+bN^5+cN^4+dN^3+eN^2+fN+g
=7N^6-21N^5+35N^4-35N^3+21N^2-7N
=7N(N-1)(N^2-N+1)^2
ãããã£ãŠã
x1=0
x2=126
x3=2058
x4=14196
ã»ã»ã»ã»
ãã£ãŠã
N+x1+x2+ã»ã»+xN=N^7
N+0+126+2058+14196+ã»ã»ã»+7N(N-1)(N^2-N+1)^2=N^7
ããŠã
N=1ã®ãšãã1+0=1
N=2ã®ãšãã2+0+126=128=2^7
N=3ã®ãšãã3+0+126+2058=2187=3^7
N=4ã®ãšãã4+0+126+2058+14196=16384=4^7
ãã£ãŠã
NïŒïŒïŒã®åæ°ã®æ°åã®åïŒïŒNã®ïŒä¹ãäžæç«
NïŒïŒïŒã®åæ°ã®æ°åã®åïŒïŒNã®ïŒä¹ãæãç«ã¡ãŸã
ã©ããïŒïŒïŒïŒïŒïŒïŒãããçŽ æ°ãªãæãç«ã¡ããã§ããã
No.1243ããããã¯ã¡ã¹ã2023幎7æ2æ¥ 17:37
ãªããK^rã®åã®å
¬åŒã¯ãç·è²ã®ããããã¯ã¡ã¹ããã¯ãªãã¯ããŠãã ããã
r=1ãïŒïŒãŸã§ãäœã£ãŠãããŸãã
No.1244ããããã¯ã¡ã¹ã2023幎7æ2æ¥ 18:00 pãçŽ æ°ã®æã
NïŒïŒããæ°åã®åïŒïŒNã®ïœä¹
ïœãŒïŒ®ïŒïŒ³ïœãšãããšãSn-1=(n-1)^p-(n-1)
an=Sn-Sn-1=N^p-N-(N-1)^p+(N-1)
=N^p-N-(N^p+Pã®åæ°ãŒïŒ)ïŒN-1ãïŒïœïŒ2ïŒ
ïŒïŒPã®åæ°ïŒãªã®ã§ã
(ããæ°åã®å)ïŒïŒïœã®åæ°ã®æ°åã®åïŒ
çŽ æ°ã®ãšãã¯ãæç«ããã
åææ°ã®ãšãã«ãæãç«ã€ããšãããããç¥ããŸãããïŒ
No.1246ks2023幎7æ3æ¥ 08:24
管ç人æ§ãããã«ã¡ã¯ã
ïŒãN^6ïŒNïŒNïŒïŒ®ïŒïŒïŒïŒïŒ®^4ïŒïŒ®^3ïŒïŒ®^2ïŒïŒ®ïŒïŒïŒããïŒã®åæ°ã«ãªãããšã¯ãªãã
ãN^7ïŒNïŒNïŒïŒ®ïŒïŒïŒ(NïŒïŒ)ïŒïŒ®^4ïŒïŒ®^2ïŒïŒïŒãã¯åžžã«ïŒã®åæ°ã«ãªãã
é¢åãããèšç®ã§ãæ±ããŠããŸããããç°¡åã«æ±ããããæ¹æ³ããããªãã°ãæ ¹æ ãæããŠãã ããã
No.1247ããããã¯ã¡ã¹ã2023幎7æ3æ¥ 13:38
ããããã¯ã¡ã¹ããããããã«ã¡ã¯ã
ïŒN^7ïŒNïŒNïŒïŒ®ïŒïŒïŒ(NïŒïŒ)ïŒïŒ®^4ïŒïŒ®^2ïŒïŒïŒãã¯åžžã«ïŒã®åæ°ã«ãªãã
ãã¡ãã«ãããŸãããhttps://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1486418324
æ°åŠçåž°çŽæ³ãè¯ãã§ãããäžã®è§£æ³ã®æ¹ããšã¬ã¬ã³ãã§ãããïŒããã¡ãã£ãšèªã¿æãæžããŠããããšæé£ãã§ãããïŒ
å ã¿ã«ãããããã®ã¯çºèŠããã®ã¯å€§å€ã§ããã蚌æã ããªããNïŒïŒïœïŒïŒïœÂ±ïŒïŒïŒïœÂ±ïŒïŒïŒïœÂ±ïŒã代å
¥ããã°å¿
ãåºæ¥ããšæããŸãã
ïŒïŒïœã®æã¯èªæã§ããã
ïŒïŒïœÂ±ïŒã®æã^7ïŒïŒ®ïŒ(ïŒïœÂ±ïŒ)^7ïŒ(ïŒïœÂ±ïŒ) ãããäºé
å®çã§å±éãããšå®æ°é
以å€ã¯ïŒãããã£ãŠããã®ã§ïŒã®åæ°ã§ã(±ïŒ)^7ïŒ(±ïŒ)ïŒïŒããïŒã®åæ°ã§ããã
ïŒïŒïœÂ±ïŒã®æã^7ïŒïŒ®ïŒ(ïŒïœÂ±ïŒ)^7ïŒ(ïŒïœÂ±ïŒ) 宿°é
(±ïŒ)^7ïŒ(±ïŒ)ïŒÂ±ïŒïŒïŒïŒÂ±ïŒã»ïŒïŒããïŒã®åæ°ã
ïŒïŒïœÂ±ïŒã®æã^7ïŒïŒ®ïŒ(ïŒïœÂ±ïŒ)^7ïŒ(ïŒïœÂ±ïŒ) 宿°é
(±ïŒ)^7ïŒ(±ïŒ)ïŒÂ±ïŒïŒïŒïŒïŒÂ±ïŒã»ïŒïŒïŒããïŒã®åæ°ã
ãã£ãŠãNïŒïŒïœïŒïŒïœÂ±ïŒïŒïŒïœÂ±ïŒïŒïŒïœÂ±ïŒã®å
šãŠã®å Žåã§ïŒã®åæ°ãããN^7ïŒNã¯åžžã«ïŒã®åæ°ã«ãªãã
No.1248å£ããæ2023幎7æ3æ¥ 20:09
å£ããææ§ãããã°ãã¯ã
ãä¹
ãã¶ãã§ãã
ããŠããããããã説æã§ããããšãããããŸããã
No.1249ããããã¯ã¡ã¹ã2023幎7æ3æ¥ 20:36
ããããã以åã¯ã¡ã¹ãããèªèº«ãããã®èšŒæãããã«æçš¿ããŠãŸãããã
ã©ã®èšäºã ã£ããå¿ããŸãããã©ã
No.1253DD++2023幎7æ4æ¥ 21:54
DDïŒïŒæ§ããã¯ããããããŸãã
ããããa^n=nA+aïŒãã ãnã¯å¥çŽ æ°ïŒã§ããã
http://y-daisan.private.coocan.jp/html/felmer-7-2.pdf
a^n-a=nAã§ããã
ãã ãnã¯å¥çŽ æ°ãšããæ¡ä»¶ãä»ããŠããŸããæ®å¿µã
No.1254ããããã¯ã¡ã¹ã2023幎7æ5æ¥ 07:45
ããããã¯ã¡ã¹ãããããã¯ããããããŸãã
ã¬ããŒãèªãŸããŠé ããŸããã以åã«ãç§ã¯ãå¥ããä»ããŠããŸããããå€ããŠäžããã
ããããã°ãããããã¯ã¡ã¹ãããã®No.1243ã®æçš¿ã®èšŒæãèªåã§ããäºã«ãªããŸããã
No.1256å£ããæ2023幎7æ5æ¥ 09:24
å£ããææ§ããã¯ããããããŸãã
ããããšãããããŸããä¿®æ£ããŸããã
å¥çŽ æ°ãçŽ æ°ã«ãããšããããšã¯2ã®å Žåãèããã°ããããã§ãããçŽåŸã§ãã
>ããããã°ãããããã¯ã¡ã¹ãããã®No.1243ã®æçš¿ã®èšŒæãèªåã§ããäºã«ãªããŸããã
ããã¯ãªããŸãããçŽ æ°ã§ãªãèªç¶æ°ã§ã¯ã ãã§ããããã
N^8-NãN^9-NãN^10^-Nã¯ãïŒïŒïŒïŒïŒïŒã®åæ°ã«ã¯ãªããŸããããç§ã®æ¹æ³ã§ã¯ã§ããªãã§ãã
管ç人æ§ã®ææ³ã§ãªããšèª¬æã§ããŸããã
N^11-Nã¯11ã®åæ°ã§ããããã ãã¯ç§ã®æ¹æ³ã䜿ããŸãã
ïŒè¿œèšã»ä¿®æ£æžã¿ïŒ
No.1257ããããã¯ã¡ã¹ã2023幎7æ5æ¥ 11:19
ããããã¯ã¡ã¹ããããããã°ãã¯ã
管ç人ããã¯åææ°ã®å Žåã¯æãç«ããªã蚌æããããã®ã§ããã
>ããããã°ãããããã¯ã¡ã¹ãããã®No.1243ã®æçš¿ã®èšŒæãèªåã§ããäºã«ãªããŸããã
ããã¯ãã©ããïŒïŒïŒïŒïŒïŒïŒãããçŽ æ°ãªãæãç«ã¡ããã§ãããããããçŽ æ°ãªãã°æãç«ã€èšŒæãšããæå³ã§ãã
ããã«ããŠãèªåã§æ³åãèŠã€ããŠèŠäºã§ããã
No.1258å£ããæ2023幎7æ5æ¥ 20:11
ãåææ°ã®å Žåã¯æãç«ããªããã¯ããããåœã§ããã管ç人ããããããªèšŒæã¯ãããŠããªããšæããŸããã
No.1260DD++2023幎7æ6æ¥ 05:38
ããããäžå€
äžæäžæ¥ã¯ã«ã«ãã¹ãåããŠçºå£²ãããæ¥ã§ãã
æãå¹ãã§ããé ããã©ããã§ã§ããæ£åé¢äœã®æ ã®äžã«
çã®æ°Žæ¶ãå
¥ã£ãŠããã¢ã¯ã»ãµãªãŒãè²·ã£ãã
(ãã©ããããã¯ãŒãšæ°Žæ¶ãã¯ãŒã®ããã«ãã¯ãŒ)
ãããæ°Žæ¶ããã©ãããã®å
æ¥çã ã£ããæ£åé¢äœã®æ ã®äžããé£ã³åºããŠããŸãã
ä»ããæ³ãã°ããã®æ°Žæ¶ã¯æ£åé¢äœã®ã蟺æ¥çãã ã£ããã ãšæ°ã¥ããã
ä»ã¯ç¡ãããã®æ°Žæ¶ã¯ç¥ç€Ÿã®ãçãäžãã®çã®äžãžã
No.1259ã«ã«ãã¹2023幎7æ6æ¥ 00:32
ãä»»æã®å¶æ°Aã«å¯ŸããŠãäºã€ã®çŽ æ°PãQãååšãã
AïŒP-Qãšããããšãã§ãããåäŸãããã§ããããïŒ
奿°ã®å Žåã¯ãããã«èŠã€ãããŸããã
No.1255ks2023幎7æ5æ¥ 09:08
å
æ¥æçš¿ãããäžè§åœ¢ã®å
æ¥äºæ¬¡æ²ç·ãšå
±åœ¹ç¹ãã«é¢é£ããŠãããäžåæçš¿ããŠã¿ãŸãã
ãã¡ããåé¡ã¯äœããŸãããèªåã§è§£ããŠã¯ããªãã®ã§è§£çã¯çšæããŠããŸããã
ïŒãã®åé¡ã®å
容ãå«ãããäžè¬çãªåœé¡ãæãç«ã€ããšã¯ç¢ºèªããŠããŸããïŒ
äžè§åœ¢ABCããããç·åBCã®äžç¹ãDãç·åCAã®äžç¹ãEãç·åABã®äžç¹ãFãšããã
äžè§åœ¢ABCã®å€æ¥åãšçŽç·EFã®2ã€ã®äº€ç¹ã«ããã倿¥åã®æ¥ç·ãl,l'ãšããã
çŽç·lãšçŽç·BC,CA,ABã®äº€ç¹ãããããP,Q,Rãšãã
çŽç·l'ãšçŽç·BC,CA,ABã®äº€ç¹ãããããP',Q',R'ãšããã
ãã®ãšãã PD=DP' ã QE=EQ' ã RF=FR' ãæãç«ã€ããšã瀺ãã
No.1202ããã²ã2023幎6æ14æ¥ 12:52
ããã²ããããããã«ã¡ã¯ã
ç°¡åãªãã€ïŒã€ã ãã§ãããããã§ããããã
ïŒâ
°ïŒPD=DP' ã®èšŒæ
çŽç·ïœãšåãšã®æ¥ç¹ãïŒçŽç·ïœ'ãšåãšã®æ¥ç¹ããšãããšãïŒç¹ïŒ¥ïŒïŒŠã¯ç·åäžã«ããã
â³ïŒ¡ïŒ¢ïŒ£ã§ã®äžç¹é£çµå®çãã//ãâŽïŒ³ïŒŽ//
ãŸããçŽç·ïœãšïœ'ã®äº€ç¹ããšãããšãåãšæ¥ç·ã®é¢ä¿ããïŒïŒ§ïŒŽ
ãã£ãŠãâ³ïŒ§ïŒ³ïŒŽã¯äºç蟺äžè§åœ¢ã§ããããŸããç¹ïŒ°,'ã¯ïŒ¢ïŒ£ã®å»¶é·äžã«ããã//ãã//'ã§ããã
âŽâ³ïŒ§ïŒ³ïŒŽâœâ³ïŒ§ïŒ°ïŒ°'ããã£ãŠãâ³ïŒ§ïŒ°ïŒ°'ãäºç蟺äžè§åœ¢ã§ããã
ãã£ãŠããã'ã«åç·ãäžãããã®è¶³ããšãããšãïŒïŒšïŒ°'ââââ
ãšããã§ã//ããåè§åœ¢ïŒ³ïŒ¢ïŒ£ïŒŽã¯å°åœ¢ã§åã«å
æ¥ããå°åœ¢ã¯çèå°åœ¢ã§ããŸããâ³ïŒ§ïŒ³ïŒŽã¯äºç蟺äžè§åœ¢ããã
ç¹ïŒšã¯ïŒ¢ïŒ£ã®äžç¹ã§ãããâŽïŒšïŒïŒ€ââââ¡
â¡ãâ ã«ä»£å
¥ãããšãïŒïŒ€ïŒ°'
ãã£ãŠã瀺ãããã
è£è¶³
åã«å
æ¥ããå°åœ¢ã¯çèå°åœ¢ã§ããäºã䜿ããªãå Žåã¯ããçµã¶ãšé¯è§ããâ ïŒâ ãâŽåŒ§ïŒ³ïŒ¢ïŒåŒ§ïŒŽïŒ£
âŽïŒ³ïŒ¢ïŒïŒŽïŒ£ããŸãã//ãããåè§åœ¢ïŒ³ïŒ¢ïŒ£ïŒŽã¯çèå°åœ¢ã§ããã
No.1203å£ããæ2023幎6æ14æ¥ 13:54
ãã®åœé¡ã«ã¯ â B ãš â C ãçŽè§ã§ã¯ãªããšããåæãå¿
èŠãªæ°ãããŸãã
ãããã¯ãå¹³è¡ç·ã¯ç¡éé ã§äº€ãã£ãŠãããšã¿ãªããšè£è¶³ãå
¥ãããã
ããã¯ãããšããŠãPD = DPâ ã«ã€ããŠã¯ã蟺 BC ã®åçŽäºçåç·ãåŒããš l ãš lâ ããã®çŽç·ã«é¢ããŠå¯Ÿç§°ã«ãªãããšããããšãèããã°ãããšèªæãªæããããŸããã
No.1204DD++2023幎6æ14æ¥ 14:14
DD++ãã
> ãã®åœé¡ã«ã¯ â B ãš â C ãçŽè§ã§ã¯ãªããšããåæãå¿
èŠãªæ°ãããŸãã
> ãããã¯ãå¹³è¡ç·ã¯ç¡éé ã§äº€ãã£ãŠãããšã¿ãªããšè£è¶³ãå
¥ãããã
確ãã«ããã§ããã倱瀌ããŸããã
â B ãš â C ãçŽè§ã§ã¯ãªããšããã®ãããããã§ããã
ïŒå¹³è¡ç·ã¯ç¡éé ã§äº€ãã£ãŠãããšã¿ãªããšè£è¶³ãå
¥ããå Žåã¯ã
亀ç¹ã¯å®çŸ©ãããŠãé·ããå®çŸ©ãããªãã®ã§ã
åé¡æã®æåŸããPãšP'ãDã«é¢ããŠå¯Ÿç§°ãã®ãããªåœ¢ã«ããã®ãããã§ãããïŒ
察称ã®å®çŸ©ãç¡éé ç¹ã«åã¶ãããããªããã埮åŠããªïŒïŒ
ãäžè§åœ¢ã®å
æ¥äºæ¬¡æ²ç·ãšå
±åœ¹ç¹ãã¹ã¬ããã«ç§ãæžã蟌ãã çè§å
±åœ¹ç¹ãšçè·é¢å
±åœ¹ç¹ã®èª¬æãå¹³è¡ç·ãšãªãå ŽåãæããŠããŠäžååã§ããã
ãŠãŒã¯ãªããå¹³é¢ã«ç¡éé ç¹ã®éåã§ããç¡éé çŽç·ãå ããŠå°åœ±å¹³é¢ã®å®çŸ©ãæºããããã«æ¡åŒµããå¹³é¢ã§èããŠãããšããŠãã ããã
ãã®æ¡å€§ãŠãŒã¯ãªããå¹³é¢ã§ã¯å¹³è¡ç·ã¯ç¡éé ç¹ã§äº€ãããŸãã
No.1206ããã²ã2023幎6æ15æ¥ 02:11
ããäžåäœããŸããã
äŸã®ããšããåé¡ã¯äœããŸãããèªåã§è§£ããŠã¯ããªãã®ã§è§£çã¯çšæããŠããŸããã
ïŒãã®åé¡ã®å
容ãå«ãããäžè¬çãªåœé¡ãæãç«ã€ããšã¯ç¢ºèªããŠããŸããïŒ
æçš¿No.1202ã®åé¡ãåé¡ãã®ïŒãšããŠãããŸãã
åé¡ãã®ïŒ
äžè§åœ¢ABCããããâ Aã®äºçåç·ãšèŸºBCã®äº€ç¹ãDãâ Bã®äºçåç·ãšèŸºCAã®äº€ç¹ãEãâ Cã®äºçåç·ãšèŸºABã®äº€ç¹ãFãšããã
äžè§åœ¢ABCã®å€æ¥åãšçŽç·EFã®2ã€ã®äº€ç¹ã«ããã倿¥åã®æ¥ç·ãl,l'ãšããã
çŽç·lãšçŽç·BC,CA,ABã®äº€ç¹ãããããP,Q,Rãšãã
çŽç·l'ãšçŽç·BC,CA,ABã®äº€ç¹ãããããP',Q',R'ãšããã
ãã®ãšãã â PAD=â DAP' ã â QBE=â EBQ' ã â RCF=â FCR' ãæãç«ã€ããšã瀺ãã
GeoGebraã§äœå³ããŠã¿ããšãã©ããã â QBE(=â EBQ') ãš â RCF(=â FCR') ãçãããªãããã§ãã
ãã¡ãã¯èšŒæããŠããªãã®ã§æ£ãããã©ããããããŸããã
No.1207ããã²ã2023幎6æ15æ¥ 21:21
ãã®åé¡ã®å
ãã¿ïŒããäžè¬çãªåœé¡ïŒãèŒããŠãããŸãã
以äžããŠãŒã¯ãªããå¹³é¢ã«ç¡éé ç¹ã®éåã§ããç¡éé çŽç·ãå ããŠå°åœ±å¹³é¢ã®å®çŸ©ãæºããããã«æ¡åŒµããå¹³é¢ã§èããŸãã
ãã®æ¡å€§ãŠãŒã¯ãªããå¹³é¢ã§ã¯ãä»»æã®ç°ãªã2ç¹ãçµã¶çŽç·ããã 1ã€ååšããä»»æã®ç°ãªã2çŽç·ã¯ãã 1ç¹ã§äº€ãããŸãã
åæç¥èãã®ïŒãçžåå
±åœ¹ç·
äžè§åœ¢ABCã®åé ç¹ãéããªãçŽç·lããšãã
çŽç·lãšçŽç·BC,CA,ABã®äº€ç¹ãããããP,Q,Rãšãã
ç·åBCã®äžç¹ã«é¢ããŠç¹Pãšå¯Ÿç§°ãªç¹ãP'ã
ç·åCAã®äžç¹ã«é¢ããŠç¹Qãšå¯Ÿç§°ãªç¹ãQ'ã
ç·åABã®äžç¹ã«é¢ããŠç¹Rãšå¯Ÿç§°ãªç¹ãR'ãšãããšã
3ç¹P',Q',R'ã¯äžçŽç·äžã«ããã
ãã®çŽç·ã(äžè§åœ¢ABCã«é¢ãã)çŽç·lã®çžåå
±åœ¹ç·ãšããã
åæç¥èãã®ïŒãïŒïŒïŒ (è§åºŠã®å
±åœ¹ç·)
äžè§åœ¢ABCã®åé ç¹ãéããªãçŽç·lããšãã
çŽç·lãšçŽç·BC,CA,ABã®äº€ç¹ãããããP,Q,Rãšãã
è§Aã®äºçåç·ã«é¢ããçŽç·APã®é¡æ ãçŽç·BCãšäº€ããç¹ãP'ã
è§Bã®äºçåç·ã«é¢ããçŽç·BPã®é¡æ ãçŽç·CAãšäº€ããç¹ãQ'ã
è§Cã®äºçåç·ã«é¢ããçŽç·CPã®é¡æ ãçŽç·ABãšäº€ããç¹ãR'ãšãããšã
3ç¹P',Q',R'ã¯äžçŽç·äžã«ããã
ãã®çŽç·ãäœãšããã®ããããã¯ç¥ããŸããããããããåç§°ãããã®ãã©ãããããããŸããã®ã§ã
ãã®æçš¿ã«ãããŠã¯ãã®çŽç·ã(äžè§åœ¢ABCã«é¢ãã)çŽç·lã®è§åºŠã®å
±åœ¹ç·ãšåŒã¶ããšã«ããŸãã
ããšã°ã®å®çŸ©ã倿¥äºæ¬¡æ²ç·
3ç¹A,B,Cãéãäºæ¬¡æ²ç·ãäžè§åœ¢ABCã®å€æ¥äºæ¬¡æ²ç·ãšããã
â»äžéšãäžè§åœ¢ABCã®å
éšãéãåæ²ç·ãå«ããã
ããšã°ã®å®çŸ©ãantiorthic axis
äžè§åœ¢ABCã«å¯ŸããŠãç¹A,B,Cã®å€è§ã®äºçåç·ãšå¯ŸèŸºã®å»¶é·ç·ã®äº€ç¹ãããããD',E',F'ãšãããšããã®3ç¹ã¯äžçŽç·äžã«ããã
ãã®çŽç·ãäžè§åœ¢ABCã® antiorthic axis ãšããã
(æ¥æ¬èªã®åç§°ã¯ããããŸããã)
åé¡ãã®ïŒã®å
ãã¿
äžè§åœ¢ABCããããç·åBCã®äžç¹ãDãç·åCAã®äžç¹ãEãç·åABã®äžç¹ãFãšããã
ç¡éé çŽç·ãšçŽç·EF,FD,DEã®äžããäžè§åœ¢ABCã®å€æ¥äºæ¬¡æ²ç·Îãš2ç¹ã§äº€ããçŽç·ãéžã¶ã
ãã®çŽç·ãšÎã®2ã€ã®äº€ç¹ã«ãããæ¥ç·ã¯äºãã«äžè§åœ¢ABCã«é¢ããçžåå
±åœ¹ç·ã§ããã
åé¡ãã®ïŒã®å
ãã¿
äžè§åœ¢ABCããããç¹A,B,Cã®å
è§ã®äºçåç·ãšå¯ŸèŸºã®äº€ç¹ãããããD,E,Fãšããã
äžè§åœ¢ABCã® antiorthic axis ãšçŽç·EF,FD,DEã®äžããäžè§åœ¢ABCã®å€æ¥äºæ¬¡æ²ç·Îãš2ç¹ã§äº€ããçŽç·ãéžã¶ã
ãã®çŽç·ãšÎã®2ã€ã®äº€ç¹ã«ãããæ¥ç·ã¯äºãã«äžè§åœ¢ABCã«é¢ããè§åºŠã®å
±åœ¹ç·ã§ããã
å
ãã¿ã®å
ãã¿ïŒããäžè¬çãªåœé¡ïŒãèŒããŠãããŸãã
çžåå
±åœ¹ç·ãè§åºŠã®å
±åœ¹ç·ã¯ããã«äžè¬åããããçŽç·ã®å
±åœ¹é¢ä¿ãã®ãã¡ã®ã²ãšã€ã§ãã
äžè¬åãããçŽç·ã«é¢ããå
±åœ¹é¢ä¿ã«ã¯ãèªå·±å
±åœ¹ãªçŽç·ã4ã€æã€ãã®ãš1ã€ãæããªããã®ããããŸãã
å
ãã¿ã®å
ãã¿
äžè§åœ¢ABCã«é¢ããŠãèªå·±å
±åœ¹ãªçŽç·ã4ã€æã€ãçŽç·ã«é¢ããå
±åœ¹é¢ä¿ããã²ãšã€æ±ºããã
ãã®4ã€ã®èªå·±å
±åœ¹ãªçŽç·ã®äžããäžè§åœ¢ABCã®å€æ¥äºæ¬¡æ²ç·Îãš2ç¹ã§äº€ããçŽç·ãéžã¶ã
ãã®çŽç·ãšÎã®2ã€ã®äº€ç¹ã«ãããæ¥ç·ã¯äºãã«æåã«å®ããå
±åœ¹é¢ä¿ã«ããã
ãã®å
ãã¿ã®å
ãã¿ã¯å°åœ±å¹Ÿäœã®ç¯çãªã®ã§å察ãæãç«ã¡ãŸãã
ãã®å察ãããã²ãšã€ã®ã¹ã¬ãããäžè§åœ¢ã®å
æ¥äºæ¬¡æ²ç·ãšå
±åœ¹ç¹ãã®å
ãã¿ã®å
ãã¿ã«ãªããŸãã
ãããããããã®ããšãèãããã£ããã«ãªã£ãã®ã¯æ¬¡ã®å®çãèŠãããããšã«ãããŸãã
åé¡ãã®ïŒãããã®ïŒããããã®å
ãã¿ã®åœé¡ã¯æ¬¡ã®å®çããã®é£æ³ã§çãŸããŸããã
ãäžè§åœ¢ABCã®çžåå
±åœ¹ç·ãšãªã2çŽç·ã®çµã¯ã3ç¹A,B,Cãéãããåæ²ç·ã®2æ¬ã®æŒžè¿ç·ã§ãããã
No.1226ããã²ã2023幎6æ22æ¥ 09:10
äžè¬åããããçŽç·ã«é¢ããå
±åœ¹é¢ä¿ã(èªå·±å
±åœ¹ãªçŽç·ã4ã€ãã€ãã®)ã«ã€ããŠæžã蟌ãã§ãããŸãã
1çŽç·äžã«ãã4ç¹ã®è€æ¯ã [P1,P2;P3,P4] ã®ããã«æžãã
1ç¹ãéã4çŽç·ã®è€æ¯ã [l1,l2;l3,l4] ã®ããã«æžãã
çŽç·dã¯ç¹A,B,Cãéããªããšããã
ãŸããçŽç·dãšçŽç·BC,CA,ABã®äº€ç¹ãããããD1,D2,D3ãšããã
4ã€ã®èªå·±å
±åœ¹ãªçŽç·ãæã¡ãã®äžã®1ã€ãçŽç·dã§ãããããªå
±åœ¹é¢ä¿ã®ããšãd-å
±åœ¹ãšæžãããšã«ãã
ããçŽç·ã«å¯ŸããŠd-å
±åœ¹ã®é¢ä¿ã«ããçŽç·ã®ããšãd-å
±åœ¹ç·ãšæžãããšã«ããã
d-å
±åœ¹ç·
ç¹A,B,CãéããªãçŽç·lãšçŽç·BC,CA,ABã®äº€ç¹ãããããL1,L2,L3ãšããã
ç¹M1ã¯çŽç·BCäžã«ãã [B,C;D1,M1]=1/[B,C;D1,L1] ãšãªãç¹ãšãã
ç¹M2ã¯çŽç·CAäžã«ãã [C,A;D2,M2]=1/[C,A;D2,L2] ãšãªãç¹ãšãã
ç¹M3ã¯çŽç·ABäžã«ãã [A,B;D3,M3]=1/[A,B;D3,L3] ãšãªãç¹ãšããã
ãã®ãšãã3ã€ã®ç¹M1,M2,M3ã¯1çŽç·äžã«ããã
ãã®çŽç·ãçŽç·lã®d-å
±åœ¹ç·ã§ããã
ã¡ãªã¿ã«ã
d-å
±åœ¹ã®4ã€ã®èªå·±å
±åœ¹ãªçŽç·ã®ãã¡çŽç·d以å€ã®3æ¬ã®çŽç·ã¯ã
çŽç·BC,AD1ã«é¢ããçŽç·dã®èª¿åå
±åœ¹ç·,
çŽç·CA,BD2ã«é¢ããçŽç·dã®èª¿åå
±åœ¹ç·,
çŽç·AB,CD3ã«é¢ããçŽç·dã®èª¿åå
±åœ¹ç·ã§ããã
â»èª¿åå
±åœ¹ç·ãšã¯è€æ¯ã-1ãšãªãçŽç·ã®ããšãããã
No.1234ããã²ã2023幎6æ30æ¥ 04:36
æšå¹Žããã®ç§ã®å人çãªããŒã ã¯äžè§åœ¢ã«é¢ããããããã§ä»ãç¶ç¶ããŠããŸãã
æ°æ¥åã«ãµãšåé¡ãæãã€ããã®ã§æžããŠã¿ãŸãã
ãã ããåé¡ã¯äœããŸãããèªåã§è§£ããŠã¯ããªãã®ã§è§£çã¯çšæããŠããŸããã
ïŒãã®åé¡ã®å
容ãå«ãããäžè¬çãªåœé¡ãæãç«ã€ããšã¯ç¢ºèªããŠããŸããïŒ
åæç¥èãã®ïŒãçè§å
±åœ¹ç¹ (isogonal conjugate)
äžè§åœ¢ABCã®å蟺ããã³ãã®å»¶é·ç·ã®äžã«ãªãç¹Pããšãã
è§Aã®äºçåç·ã«é¢ããçŽç·APã®é¡æ ãçŽç·lã
è§Bã®äºçåç·ã«é¢ããçŽç·BPã®é¡æ ãçŽç·mã
è§Cã®äºçåç·ã«é¢ããçŽç·CPã®é¡æ ãçŽç·nãšãããšã
3æ¬ã®çŽç·l,m,nã¯1ç¹ã§äº€ããã
ãã®ç¹ã(äžè§åœ¢ABCã«é¢ãã)ç¹Pã®çè§å
±åœ¹ç¹ãšããã
åæç¥èãã®ïŒãçè·é¢å
±åœ¹ç¹ (isotomic conjugate)
äžè§åœ¢ABCã®å蟺ããã³ãã®å»¶é·ç·ã®äžã«ãªãç¹Pããšãã
çŽç·APãšBCã®äº€ç¹ãLãBPãšCAã®äº€ç¹ãMãCPãšABã®äº€ç¹ãNãšãã
ç·åBCã®äžç¹ã«é¢ããŠç¹Lãšå¯Ÿç§°ãªç¹ãL'ã
ç·åCAã®äžç¹ã«é¢ããŠç¹Mãšå¯Ÿç§°ãªç¹ãM'ã
ç·åABã®äžç¹ã«é¢ããŠç¹Nãšå¯Ÿç§°ãªç¹ãN'ãšãããšã
3æ¬ã®çŽç·AL',BM',CN'ã¯1ç¹ã§äº€ããã
ãã®ç¹ã(äžè§åœ¢ABCã«é¢ãã)ç¹Pã®çè·é¢å
±åœ¹ç¹ãšããã
åé¡ãã®ïŒ
äžè§åœ¢ã®å
æ¥åã«å¯ŸããŠããã²ãšã€ã®åå¿ãã2æ¬ã®æ¥ç·ãåŒãããšãã®2ã€ã®æ¥ç¹ã¯äºãã«çè§å
±åœ¹ç¹ã§ããããšã瀺ãã
åé¡ãã®ïŒ
äžè§åœ¢ABCã«å¯ŸããŠãåè§åœ¢ABCDãå¹³è¡å蟺圢ãšãªãããã«ç¹Dããšãã
äžè§åœ¢ABCã®å
æ¥åã«å¯ŸããŠç¹Dãã2æ¬ã®æ¥ç·ãåŒãããšãã®2ã€ã®æ¥ç¹ã¯äºãã«çè·é¢å
±åœ¹ç¹ã§ããããšã瀺ãã
No.1194ããã²ã2023幎6æ10æ¥ 11:30
ããã²ããããããã«ã¡ã¯ãã¡ãã£ãšèããŠã¿ãŸããã
åé¡ãã®ïŒ
äžè§åœ¢ã®å
æ¥åã«å¯ŸããŠããã²ãšã€ã®åå¿ãã2æ¬ã®æ¥ç·ãåŒãããšãã®2ã€ã®æ¥ç¹ã¯äºãã«çè§å
±åœ¹ç¹ã§ããããšã瀺ãã
åç
â³ïŒ¡ïŒ¢ïŒ£ã®å
å¿ããšããâ å
ã®åå¿ã'ãšãããšãïŒç¹ïŒ¢ïŒïŒ©ïŒïŒ©'ã¯äžçŽç·äžã«ããã'ããå
æ¥åã«åŒããæ¥ç·ã®ïŒã€ã®æ¥ç¹ã'ã®é¢ããŠç¹ïŒ¡åŽãïŒç¹ïŒ£åŽããšãããšã
ã¯â ã®äºçåç·ã§ïŒ¡ïŒ©'ã¯â ã®å€è§ã®äºçåç·ããâ 'ïŒïŒïŒïŒÂ°Ã·ïŒïŒïŒïŒÂ°
ãŸãã'â¥ïŒ©ïŒ³ããâ 'ïŒïŒïŒÂ°
ãã£ãŠãâ 'ïŒâ 'ãããååšè§ã®å®çã®éã«ããïŒç¹ïŒ³ïŒïŒ©ïŒïŒ©'ïŒïŒ¡ã¯åäžååšäžã«ããã
ãšããã§ãâ³ïŒ©'â¡â³ïŒ©'ããâ 'ïŒâ 'ïŒâãšçœ®ããšãååšè§ããâ ïŒâ 'ïŒâ
ãŸããâ 'ïŒïŒïŒÂ°ïŒâ 'ïŒïŒïŒÂ°ããåè§åœ¢ïŒ¡ïŒ©ïŒŽïŒ©'ã¯åã«å
æ¥ããåè§åœ¢ã§ããã
ãã£ãŠãååšè§ããâ ïŒâ 'ïŒâãâŽâ ïŒâ 
ãšããã§ãã¯â ã®äºçåç·ããããšïŒ¡ïŒŽã¯â ã®äºçåç·ã«é¢ããŠé¡æ ã§ããã
ãŸããâ³ïŒ©'â¡â³ïŒ©'ããâ 'ïŒâ 'ãâŽâ ïŒâ ããŸããååŸããïŒïŒ©ïŒŽãã¯å
±éããã
äºèŸºæè§ãçããã®ã§ãâ³ïŒ¢ïŒ©ïŒ³â¡â³ïŒ¢ïŒ©ïŒŽãâŽâ ïŒâ 
ãšããã§ãã¯â ã®äºçåç·ããããšïŒ¢ïŒŽã¯â ã®äºçåç·ã«é¢ããŠé¡æ ã§ããã
ãã£ãŠãç¹ïŒ³ãšç¹ïŒŽã¯äºãã«çè§å
±åœ¹ç¹ã§ããããã£ãŠã瀺ãããã
è£è¶³
â 'ïŒâ 'ïŒïŒïŒÂ°ããïŒç¹ïŒ©ïŒïŒŽïŒïŒ£ïŒïŒ©'ã¯åäžååšäžã«ãããååšè§ããâ ïŒâ 'ïŒâ
ãŸããåè§åœ¢ïŒ³ïŒ©ïŒ£ïŒ©'ã¯åã«å
æ¥ããåè§åœ¢ããååšè§ã§ãâ ïŒâ 'ïŒâãâŽâ ïŒâ 
ãšããã§ãã¯â ã®äºçåç·ããããšïŒ£ïŒ³ã¯â ã®äºçåç·ã«é¢ããŠé¡æ ã§ããã
No.1195å£ããæ2023幎6æ10æ¥ 17:42
å£ããæãã
çããŠããã ãããããšãããããŸãã
6ã€ã®ç¹ A, C, S, T, I, I' ãåäžååšäžã«ãããã§ããã
åé¡ãã®ïŒã¯ããã»ã©é£ããã¯ãªãã ãããªãšãªããšãªãæã£ãŠããŸããããããªãããããªåœ¢ã§ããã
ã¡ãªã¿ã«ã
ãäžè§åœ¢ã®åæ¥åã«å¯ŸããŠå
å¿ãã2æ¬ã®æ¥ç·ãåŒãããšãã®2ã€ã®æ¥ç¹ã¯äºãã«çè§å
±åœ¹ç¹ã§ããããšã
ãã»ãšãã©åæ§ã«ç€ºããŸãã
管ç人ãã
æçš¿No.1194ãä¿®æ£ããŸããã
ä¿®æ£åïŒãç·åBCã®äžç¹ã«é¢ããç¹Lã®é¡æ ãç¹L'ãä»
ä¿®æ£åŸïŒãç·åBCã®äžç¹ã«é¢ããŠç¹Lãšå¯Ÿç§°ãªç¹ãL'ãä»
çç± âŠ å¹³é¢ã«ãããŠç¹å¯Ÿç§°ã®ããšã顿 ãšã¯èšããªãããã
No.1196ããã²ã2023幎6æ12æ¥ 04:32
ããã²ããããããã°ãã¯ã
ãäžè§åœ¢ã®åæ¥åã«å¯ŸããŠå
å¿ãã2æ¬ã®æ¥ç·ãåŒãããšãã®2ã€ã®æ¥ç¹ã¯äºãã«çè§å
±åœ¹ç¹ã§ããããšã
ãã»ãšãã©åæ§ã«ç€ºããŸãã
å
çšãã£ãŠã¿ãŸããããã»ãšãã©åæ§ãã®æå³ãåãããŸãããããè¬ãè§£ããªããšãããŸãããã
No.1205å£ããæ2023幎6æ14æ¥ 22:20
ãã®åé¡ã®å
ãã¿ïŒããäžè¬çãªåœé¡ïŒãèŒããŠãããŸãã
以äžããŠãŒã¯ãªããå¹³é¢ã«ç¡éé ç¹ã®éåã§ããç¡éé çŽç·ãå ããŠå°åœ±å¹³é¢ã®å®çŸ©ãæºããããã«æ¡åŒµããå¹³é¢ã§èããŸãã
ãã®æ¡å€§ãŠãŒã¯ãªããå¹³é¢ã§ã¯ãä»»æã®ç°ãªã2ç¹ãçµã¶çŽç·ããã 1ã€ååšããä»»æã®ç°ãªã2çŽç·ã¯ãã 1ç¹ã§äº€ãããŸãã
ããšã°ã®å®çŸ©ãå
æ¥äºæ¬¡æ²ç·
3çŽç·BC,CA,ABã«æ¥ããäºæ¬¡æ²ç·ãäžè§åœ¢ABCã®å
æ¥äºæ¬¡æ²ç·ãšããã
â»äžè§åœ¢ã®å
åŽã«ãã3èŸºã«æ¥ããæ¥åã ãã§ã¯ãªããäžè§åœ¢ã®å€åŽã«ãã1èŸºãšæ®ã2蟺ã®å»¶é·ç·ã«æ¥ããæ¥åã»æŸç©ç·ã»åæ²ç·ãå«ããã
åé¡ãã®ïŒã®å
ãã¿
äžè§åœ¢ABCã®å
å¿ãš3ã€ã®åå¿ã®äžããäžè§åœ¢ABCã®å
æ¥äºæ¬¡æ²ç·Îã«2æ¬ã®æ¥ç·ãåŒããç¹ãéžã¶ã
ãã®ç¹ããÎã«åŒãã2æ¬ã®æ¥ç·ã®æ¥ç¹ã¯äºãã«äžè§åœ¢ABCã«é¢ããçè§å
±åœ¹ç¹ã§ããã
åé¡ãã®ïŒã®å
ãã¿
äžè§åœ¢ABCã«å¯ŸããŠãåè§åœ¢ABA'C,ABCB',AC'BCãå¹³è¡å蟺圢ãšãªãããã«ç¹A',B',C'ãå®ããã
äžè§åœ¢ABCã®éå¿Gãš3ç¹A',B',C'ã®äžããäžè§åœ¢ABCã®å
æ¥äºæ¬¡æ²ç·Îã«2æ¬ã®æ¥ç·ãåŒããç¹ãéžã¶ã
ãã®ç¹ããÎã«åŒãã2æ¬ã®æ¥ç·ã®æ¥ç¹ã¯äºãã«äžè§åœ¢ABCã«é¢ããçè·é¢å
±åœ¹ç¹ã§ããã
å
ãã¿ã®å
ãã¿ïŒããäžè¬çãªåœé¡ïŒãèŒããŠãããŸãã
çè§å
±åœ¹ç¹ãçè·é¢å
±åœ¹ç¹ã¯ããã«äžè¬åããããç¹ã®å
±åœ¹é¢ä¿ãã®ãã¡ã®ã²ãšã€ã§ãã
äžè¬åãããç¹ã«é¢ããå
±åœ¹é¢ä¿ã«ã¯ãèªå·±å
±åœ¹ãªç¹ã4ã€æã€ãã®ãš1ã€ãæããªããã®ããããŸãã
å
ãã¿ã®å
ãã¿
äžè§åœ¢ABCã«é¢ããŠãèªå·±å
±åœ¹ãªç¹ã4ã€æã€ãç¹ã«é¢ããå
±åœ¹é¢ä¿ããã²ãšã€æ±ºããã
ãã®4ã€ã®èªå·±å
±åœ¹ãªç¹ã®äžããäžè§åœ¢ABCã®å
æ¥äºæ¬¡æ²ç·Îã«2æ¬ã®æ¥ç·ãåŒããç¹ãéžã¶ã
ãã®ç¹ããÎã«åŒãã2æ¬ã®æ¥ç·ã®æ¥ç¹ã¯äºãã«æåã«å®ããå
±åœ¹é¢ä¿ã«ããã
ãã®å
ãã¿ã®å
ãã¿ã¯å°åœ±å¹Ÿäœã®ç¯çãªã®ã§å察ãæãç«ã¡ãŸãã
ãã®å察ãããã²ãšã€ã®ã¹ã¬ãããäžè§åœ¢ã®å€æ¥äºæ¬¡æ²ç·ãšå
±åœ¹çŽç·ãã®å
ãã¿ã®å
ãã¿ã«ãªããŸãã
No.1225ããã²ã2023幎6æ22æ¥ 09:10
äžè¬åããããç¹ã«é¢ããå
±åœ¹é¢ä¿ã(èªå·±å
±åœ¹ãªç¹ã4ã€ãã€ãã®)ã«ã€ããŠæžã蟌ãã§ãããŸãã
1ç¹ãéã4çŽç·ã®è€æ¯ã [l1,l2;l3,l4] ã®ããã«æžãã
1çŽç·äžã«ãã4ç¹ã®è€æ¯ã [P1,P2;P3,P4] ã®ããã«æžãã
ç¹Dã¯çŽç·BC,CA,ABäžã«ãªããšããã
4ã€ã®èªå·±å
±åœ¹ãªç¹ãæã¡ãã®äžã®1ã€ãç¹Dã§ãããããªå
±åœ¹é¢ä¿ã®ããšãD-å
±åœ¹ãšæžãããšã«ãã
ããç¹ã«å¯ŸããŠD-å
±åœ¹ã®é¢ä¿ã«ããç¹ã®ããšãD-å
±åœ¹ç¹ãšæžãããšã«ããã
D-å
±åœ¹ç¹
çŽç·BC,CA,ABäžã«ãªãç¹Pã«å¯ŸããŠã
çŽç·m1ã¯ç¹Aãéã [AC,AB;AD,m1]=1/[AC,AB;AD,AP] ãšãªãçŽç·ãšãã
çŽç·m2ã¯ç¹Aãéã [BA,BC;BD,m2]=1/[BA,BC;BD,BP] ãšãªãçŽç·ãšãã
çŽç·m3ã¯ç¹Aãéã [CB,CA;CD,m3]=1/[CB,CA;CD,CP] ãšãªãçŽç·ãšããã
ãã®ãšãã3æ¬ã®çŽç·m1,m2,m3ã¯1ç¹ã§äº€ããã
ãã®ç¹ãç¹Pã®D-å
±åœ¹ç¹ã§ããã
ã¡ãªã¿ã«ã
çŽç·BCãšADã®äº€ç¹ãA',CAãšBDã®äº€ç¹ãB',ABãšCDã®äº€ç¹ãC'ãšãããšã
D-å
±åœ¹ã®4ã€ã®èªå·±å
±åœ¹ãªç¹ã®ãã¡ç¹D以å€ã®3ã€ã®ç¹ã¯ã
ç¹A,A'ã«é¢ããç¹Dã®èª¿åå
±åœ¹ç¹,
ç¹B,B'ã«é¢ããç¹Dã®èª¿åå
±åœ¹ç¹,
ç¹C,C'ã«é¢ããç¹Dã®èª¿åå
±åœ¹ç¹ã§ããã
â»èª¿åå
±åœ¹ç¹ãšã¯è€æ¯ã-1ãšãªãç¹ã®ããšãããã
No.1233ããã²ã2023幎6æ30æ¥ 04:35