> ïŒïŒïŒãïœ ãïŒã§ã¯ãªã宿°ã§ãããšããæŽåŒ ïœïŒïŒ/ïœ ã®åãããå€ã®ç¯å²ãæ±ããã
æŽåŒâŠâŠïŒ
ãããå®éã®å
¥è©Šã®åæãããªãã§ããïŒ
No.1092DD++2023幎5æ15æ¥ 13:53
ãå®éã®å
¥è©Šã®åæãéããªã®ã§ãããæããã«èª€åã§ããããã§ã¯ãæ°åŒãã«ä¿®æ£ããŠãããŸãã
No.1094HP管çè
2023幎5æ15æ¥ 15:07 ãŸããé²è¡å»å€§ã ãšæ°åŠã®å°éå®¶ã¯ããªãã§ããããããããããžãã®æ£ç¢ºãã¯èãã«ãªããããåŸãªããã§ãããããã
No.1095DD++2023幎5æ15æ¥ 15:56
ã2038074743ããããã®ã§ããïŒ
ãã®æã®åé¡ã¯ãïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ãšãããå«ãçŽ æ°ãšããããªããªãã§ããã
æ±ããããåªåãšæè¡ã¯å°éããŸãã
No.1079ks2023幎5æ13æ¥ 13:30
çŽ æ°ã2ããçŽ1ååãæ±ããã®ã«ã25ç§ã§ã§ããŸãã(CPU:i5-2500)
çµéæé= 0 å 25 ç§
çŽ æ°åæ°=105080509
ãŸããããã§ã¯ããµãããã話ã§ããªãããèšå€§ãªã®ã§ãWebã«ããããããªãããæå³ããªãã§ããã
æ±ããæåŸã®5åã¯ã
2147117417ã2147117419ã2147117507ã2147117509ã2147117519
ã§ããã
No.1088ããããã¯ã¡ã¹ã2023幎5æ14æ¥ 17:13
41 ã®ä»ã« 27 ãè§£ã§ã¯ãªãã§ããããïŒ
27 + (2+7) + (2*7) = 27 + 9 + 14 = 50
No.1077DD++2023幎5æ13æ¥ 10:52
DD++ ããã誀ãããææããã ãããããšãããããŸãã
èšç®ãèŠçŽããããã¯ãããŠã¯ãããªãè§£ãã¯ãããŠããŸããã
ïŒè§£ïŒã¯ä¿®æ£ããŸããã
No.1078HP管çè
2023幎5æ13æ¥ 11:08 åºå¥ãã€ã n æ¬ã®ãŸã¡éãšã1 åã®éå±±ããããŸãã
ãã®ãŸã¡éã¯ãèªèº«ã®é ããŸãéå±±ã®ããã«ãªã£ãŠããŠãããã«å¥ã®ãŸã¡éãåºãããšãã§ããŸãã
ãã® n æ¬ã®ãŸã¡éå
šãŠããçŽæ¥çãŸãã¯éæ¥çã«éå±±ã«åºãããšãèããŸãã
äŸãã°ãn=2 ã§èµ€ããŸã¡éãšéããŸã¡éãããå Žåã
ãäž¡æ¹ãçŽæ¥éå±±ã«åºãã
ãèµ€ãçŽæ¥éå±±ã«åºããéãèµ€ã®é ã«åºãã
ãéãçŽæ¥éå±±ã«åºããèµ€ãéã®é ã«åºãã
ã® 3 éãã®åºãæ¹ããããŸãã
äŸãã°ãn=3 ã§èµ€éé»ã®ãŸã¡éãããå Žåã
ãèµ€ãšéãçŽæ¥éå±±ã«åºããé»ã¯èµ€ã®é ã«åºãã
ãéãçŽæ¥éå±±ã«åºããèµ€ãšé»ãäž¡æ¹ãšãéã®é ã«åºãã
ãé»ãçŽæ¥éå±±ã«åºããèµ€ãé»ã®é ã«ãéãèµ€ã®é ã«åºãã
ãªã©ãªã©ãå
šéšã§ 16 éãã®åºãæ¹ããããŸãã
åé¡ã
(1) n=3 ã®æ®ãã® 13 éããèŠã€ããŠãã ããã
(2) n=4 ã®å Žåãåºãæ¹ã¯ 125 éããããŸããå
šãŠèŠã€ããããã§ããããã
(3) n=5 ã®å Žåãåºãæ¹ã¯äœéãããã§ãããã
(4) n=6 ã n=7 ã®å Žåã¯ã©ãã§ãããã
(5) äžè¬ã® n ã®å Žåã«è§£ããã§ããããïŒ
n=7 ãŸã§ã¯ãšãŠã綺éºãªçµæã«ãªããŸãã
nâ§8 ã§ãåãæ³åãç¶ãã®ãªãã°ãäžè¬ã® n ã«ã€ããŠãããšè§£ãæ¹æ³ãããããã§ãããç§ã¯ä»ã®ãšããçºèŠã§ããŠããŸããã
ã°ã©ãçè«æ¹é¢ã«ãã³ãããããããªæ°ãããããšãããã¢ãã«ã°ã©ãçè«ã®ç¯å²ãããªãããšæãã®ã§ãããããŸãæ
å ±ãèŠã€ããããŸããã
ã©ãªãããæ
å ±ããæã¡ã§ããããã²æããŠãã ããã
No.1035DD++2023幎5æ5æ¥ 07:26
næ¬ã®å Žåã«åºãæ¹ãF(n)éããããšããã
ãã ããn=0ã®å Žåã¯F(0)=1ãšããã
ãŸã¡éãn+1æ¬ããæãèããã
ç¹å®ã®1æ¬ã®ãŸã¡é[èµ€]ã«çç®ãããã®å
端åŽã«ãããŸã¡éã®æ¬æ°ãiæ¬ãé åŽã«ãããŸã¡éã®æ¬æ°ãn-iæ¬ãšãã(0âŠiâŠn)ã
næ¬ã®ãŸã¡éããã®2ã°ã«ãŒãã«åããæ¹æ³ã¯Combination(n,i)éãã
å
端åŽã«ããiæ¬ã®ãŸã¡éã®åºãæ¹ã¯F(i)éãã§ããã®åã
ã«å¯ŸããŸã¡é[èµ€]ãåºãå Žæãi+1éã(éå±±ãšiæ¬ã®ãŸã¡éã®é )ã
é åŽã«ããn-iæ¬ã®ãŸã¡éã®åºãæ¹ã¯F(n-i)éã(ãŸã¡é[èµ€]ã®é ãéå±±ãšã¿ãªãã°ãããã)ã
ãã£ãŠæŒžååŒã¯ã
F(n+1) = Σ[i=0...n] Combination(n,i) * F(i) * (i+1) * F(n-i)
ãšãªãã
F(n)ã®åŒã®åœ¢ã¯äºæ³ã§ããŠããã®ã§æ°åŠçåž°çŽæ³ã§ç€ºãã°ããã
âŠâŠã®ã§ãããåŒå€åœ¢ã§ããã«è©°ãŸã£ãŠããŸãã
No.1046ããã²ã2023幎5æ6æ¥ 03:29
ãããªãã§ããã
Σ[k=0...n] nCk * (k+1)^k * (n-k+1)^(n-k-1) = (n+2)^n
Σ[k=0...n] nCk * (k+1)^(k-1) * (n-k+1)^(n-k-1) = 2*(n+2)^(n-1)
ãã®ã©ã£ã¡ããæãç«ã£ãŠãããã°è©±ã¯çµãããªãã§ããã©ã
ãç§ã®åå¿é²ã->ã代æ°åŠåéã->ãäºé
ä¿æ°ã®æ§è³ªã
ã«ãããã£ãœãåŒã¯ãªããã§ãããã
äºé
ä¿æ°é¢ä¿ã®ç·åã¯ãåºãææ°ãã©ã¡ããåºå®ãããŠããããããããåé¡ããªãã§ãããäž¡æ¹å€ãã£ãŠããã®ã¯ã»ãšãã©èŠãããšããããŸããã
No.1051DD++2023幎5æ6æ¥ 08:27
ã©ããç©ã§ã©ããæ·»åãå
šãããããªãã®ã§ãæ·»å㯠[ ] ã§æžããªã©åºå¥ãããã衚èšã«ããŠãããããšã¯ã§ããŸããïŒ
No.1054DD++2023幎5æ6æ¥ 10:31
ãã£ãšæ
å ±ãèŠã€ããŸããã
https://en.m.wikipedia.org/wiki/Cayley%27s_formula
ãã£ã¡ã«ããèšŒææ³ãããããããã£ãã®ã§ããã®åé¡ã®çšèªãæ°å€ã«åãããªãã翻蚳ããŸãã
https://en.m.wikipedia.org/wiki/Double_counting_(proof_technique)
ãŸããéå±±ããŸã¡éãšã¿ãªããŸãã
ã€ãŸããéå±±ããŸã¡éã®é ã«åºãããããªããã§ããããªæ°åã«ãªã£ãŠãããŸãã
以äžã®æäœãè¡ããŸãã
(1) n+1 æ¬ã®ãŸã¡éïŒæ¬åœã¯éå±±ã§ãããã®ãå«ãïŒãæºäžã«äžŠã¹ãŸãã
(2) n+1 åã®é ãã 1 ã€ãéžã³ãŸãããããŠããã®é ãšã€ãªãã£ãŠãããããã€ã©ãã«ãåºããŠããªãéå
n åã®ãã¡ 1 ã€ãéžã³ãŸããéžãã éå
ãéžãã é ã«åºããŸãã
(3) n+1 åã®é ãã 1 ã€ãéžã³ãŸãããããŠããã®é ãšã€ãªãã£ãŠãããããã€ã©ãã«ãåºããŠããªãéå
n-1 åã®ãã¡ 1 ã€ãéžã³ãŸããéžãã éå
ãéžãã é ã«åºããŸãã
(4) ããã«ç¹°ãè¿ããåèš n åè¡ããŸããéžã¹ãéå
ã®éžæè¢ã 1 ã€ãã€æžã£ãŠãããn åç®ã§ã¯ 1 åã®ãã¡ 1 åãéžãã§åºãããšã«ãªããŸãã
(5) ãã 1 æ¬ã®ãŸã¡éã®é ã«ä»ã® n æ¬ãå
šéšåºãã£ãŠãããªããžã§ïŒæšãšåŒã³ãããæ ¹ã£ããåºãã£ãŠãªãâŠâŠïŒãã§ãããæäœçµäºã§ãã
åéžæè¢ã®åæ°ãèãããšããã®æäœã®æ¹æ³ã¯å
šéšã§ (n+1)^n * n! éããããŸãã
ãã ããåã圢ã®ãªããžã§ããŸã¡éãåºãé çªéãã§ n! åãã€ã§ããã®ã§ããªããžã§ã®çš®é¡ã¯ (n+1)^n éãã§ãã
ãããŠããã®ãªããžã§ã«ã¯ n+1 æ¬ã®åãŸã¡éãäžçªäžã«ãªããã¿ãŒã³ã (n+1)^(n-1) éããã€å«ãŸããŸãã
ã€ãŸãããŸã¡éãšã¿ãªããŠããéå±±ã®äžã«æ¬ç©ã®ãŸã¡é n æ¬ãå
šéšåºãã£ãŠããã¡ããšé¡æéãã®åœ¢ã«ãªã£ãŠãããã¿ãŒã³ã¯ (n+1)^(n-1) éããšãªããŸãã
ããã§ãæé·æ°åã®ç·æ°ãã解決ããããšã«ãªããŸãã
ãããã¯ãèãæ¹ãæµçšããã°ããŸã¡éã®æšãã®åé¡ã«åž°çããããŸã§ããªããã£ã¡ãè§£ããããã
äžæã説æãã§ãããã©ããèããŠã¿ãŸãã
ãããŠæ®ã£ã No.1051 ã®æçåŒã®è¬ã
çµã¿åãããçšããŠèšŒæã§ããããšã«ãªããŸãããåŒå€åœ¢ã§ç€ºããã®ãã©ããã
No.1056DD++2023幎5æ6æ¥ 11:45
DD++ãã
> ãããŠæ®ã£ã No.1051 ã®æçåŒã®è¬ã
> çµã¿åãããçšããŠèšŒæã§ããããšã«ãªããŸãããåŒå€åœ¢ã§ç€ºããã®ãã©ããã
åŒå€åœ¢ã§ããŸããã
nCk ã C[n,k] ãšæžãããšã«ããŸãã
äºåæºåãã®ïŒ
C[n,i] * C[n-i,j] = C[n,j] * C[n-j,i]
ïŒèšŒæç¥ïŒ
äºåæºåãã®ïŒ
f(k)ãkã®n-1次以äžã®å€é
åŒãšããŠã
Σ[k=0...n] C[n,k] * (-1)^k * f(k) = 0
ïŒèšŒæã¯ããç§ã®åå¿é²ã->ã代æ°åŠåéã->ãäºé
ä¿æ°ã®æ§è³ªãã®äžã®æ§è³ª(5)ãš(28)ããããã¯
ãå¹³æïŒïŒå¹ŽïŒïŒæïŒïŒæ¥ããïŒïŒæ¥ã«ãããŠã®ããããã»æ»ç¥æ³ããã»ïœïœ ããã»ïŒŠïŒ®ããã®ãããšã ãåç
§ïŒ
ããã§ã¯æ¬çª (2è¡ç®ãã3è¡ç®ã®çœ®ãæãã¯h=n-k)
Σ[h=0...n] C[n,h] * (h+1)^h * (n-h+1)^(n-h-1)
= Σ[h=0...n] C[n,n-h] * (n-h+1)^(n-h-1) * (h+1)^h
= Σ[k=0...n] C[n,k] * (k+1)^(k-1) * (n-k+1)^(n-k)
= Σ[k=0...n] C[n,k] * (k+1)^(k-1) * ((n+2)-(k+1))^(n-k)
= Σ[k=0...n] C[n,k] * (k+1)^(k-1) * { Σ[m=0...n-k] C[n-k,m] * (n+2)^m * (-1)^(n-k-m) * (k+1)^(n-k-m) }
= Σ[k=0...n] Σ[m=0...n-k] C[n,k] * C[n-k,m] * (n+2)^m * (-1)^(n-k-m) * (k+1)^(n-m-1)
= Σ[m=0...n] Σ[k=0...n-m] C[n,k] * C[n-k,m] * (n+2)^m * (-1)^(n-k-m) * (k+1)^(n-m-1)
= (n+2)^n + Σ[m=0...n-1] Σ[k=0...n-m] C[n,k] * C[n-k,m] * (n+2)^m * (-1)^(n-k-m) * (k+1)^(n-m-1)
= (n+2)^n + Σ[m=0...n-1] Σ[k=0...n-m] C[n,m] * C[n-m,k] * (n+2)^m * (-1)^(n-m) * (-1)^k * (k+1)^(n-m-1)
= (n+2)^n + Σ[m=0...n-1] C[n,m] * (n+2)^m * (-1)^(n-m) * { Σ[k=0...n-m] C[n-m,k] * (-1)^k * (k+1)^(n-m-1) }
= (n+2)^n + Σ[m=0...n-1] C[n,m] * (n+2)^m * (-1)^(n-m) * 0
= (n+2)^n
No.1068ããã²ã2023幎5æ8æ¥ 19:12
ããããªãã»ã©ããããªæ¹æ³ã§ k+1 ã®ææ°ãã k ãæ¶ãããšã¯ã
ããã§
> Σ[k=0...n] nCk * (k+1)^k * (n-k+1)^(n-k-1) = (n+2)^n
>
> Σ[k=0...n] nCk * (k+1)^(k-1) * (n-k+1)^(n-k-1) = 2*(n+2)^(n-1)
ã®äžã®åŒã¯ç€ºãããŸãããã
äžã®åŒã¯ããã²ãããã®èšŒæã® 1 è¡ç®ïŒ h ããã®ãŸãŸ k ã«æžãæãïŒãš 3 è¡ç®ãè¶³ãããã®ãæçµçµæã® 2 åã«ãªãããšããåŸãããŸãã
ãããã®ç·åããã€ãã©ããã§ãŸã䜿ãããšããããããããªãã®ã§ãèšŒææ¹æ³ãšãã©ãèŠããŠãããããšæããŸãã
ããããšãããããŸãã
No.1069DD++2023幎5æ9æ¥ 00:44
å
æ¥ã®åŒå€åœ¢ïŒNo.1068ïŒãããäžåºŠçºããŠããŠæã£ãã®ã§ãããæ¬¡ã®åŒ
(a+b)^n / a = Σ[k=0...n] C[n,k] * (a+k)^(k-1) * (b-k)^(n-k)
ãæãç«ã€ãã§ããã
ãã ãã aâ 0ãšããŸãã
èšç®ã¯å
æ¥ã®3è¡ç®ïœæçµè¡ãšãŸã£ããåæ§ã§ãã
å
æ¥ã®åŒã¯ã a=1, b=n+1 ã®å Žåã«ããããŸãã
a,bã¯æŽæ°ã«éãã宿°ã§ãããã®ãé¢çœããšããã§ããã
No.1076ããã²ã2023幎5æ12æ¥ 13:29
ãµãšãç¡éã®æ°åŠçãªãå®çŸ©ãæ°ã«ãªããŸããã
ã³ã³ãã¥ãŒã¿ãŒã¯ãç¡éãã©ãçè§£ããã®ãïŒ
å
·äœçã«ã¯ã1÷3ãšããè¿äŒŒã§ããçè§£ã§ããªããšæãããŸãããã
æè¿ã®ãšã¯ã»ã«ã§ã¯ãäžæ¡äœã§çè§£ããŠããããã§ãã
No.1070ks2023幎5æ9æ¥ 11:14
ããæ¬ã«ãç¡éãšããããšã°ããèªç¶ã«åºãŠããŸãã
éããªããšããç¡æ°ãšããèšèããåºãŠããŸãã圢åŒäž»çŸ©ãšå
¬ç䞻矩ã
çŽèŠ³äž»çŸ©ããæ··éããŠããŸãã
No.1074ks2023幎5æ11æ¥ 17:25
https://shayashiyasugi.com/wwwshayashijp/HistoryOfFOM/Axiomatik/axiomatism.html
é·ãã§ãããèå³ããããã®æ¹ãããã£ãããããšããšã
No.1075Dengan kesaktian Indukmu2023幎5æ11æ¥ 22:03
éãªè°è«ã§ãããã°ãããªããšãã§ããŸããã
ç¹ P ãåæèšåãã«ã»ãã®ã¡ãã£ãšåãããŠç¹ Pâ ã«ãããšããç¹ Q ãã»ãã®ã¡ãã£ãšåã㊠Qâ ã«ãªã£ããšããŸãã
åãããã®ãã»ãã®ã¡ãã£ãšãªã®ã§ã匧 PPâ ã匧 QQâ ã¯éåžžã«çãç·åãšã¿ãªããŸãã
é»è²éšåã®é¢ç©ã¯ãåè§åœ¢ PPâQâQ åã ãå¢ããŠãäžè§åœ¢ OQQâ åã ãæžããŸãã
åè§åœ¢ PPâQâQ ã¯äžè§åœ¢ OPPâ ããäžè§åœ¢ OQQâ ãåãèœãšãããã®ã§ããããšã
äžè§åœ¢ OPPâ ãšäžè§åœ¢ OQQâ ã®é¢ç©æ¯ OP*OPâ : OQ*OQâ 㯠OP^2 : OQ^2 ãšã¿ãªããããšã
ãã® 2 ã€ãèãããšã
OQ/OP ã 1/â2 ãã倧ãããã°é»è²éšåã¯æžå°ãå°ãããã°é»è²éšåã¯å¢å ããããšãããããŸãã
ãã£ãŠé»è²éšåã®é¢ç©ãæå°ãšãªãã®ã¯ cos(Ï/2-Ξ)=1/â2 ããªã㡠Ξ=Ï/4 ã®ãšãã
ãã®ãšãã®å€ã¯ãé»è²éšåãããŸãç§»åããŠèããã°ãæå OPB ããäžè§åœ¢ OQB ãåŒãã°ããã®ã§ãÏ/2-1
No.1073DD++2023幎5æ10æ¥ 09:53
å¹³æïŒïŒå¹ŽïŒïŒæïŒïŒæ¥ããïŒïŒæ¥ã«ãããŠã®ããããã»æ»ç¥æ³ããã»ïœïœ ããã»ïŒŠïŒ®ããã®ãããšã ãåç
§ïŒ
å
ã®èšäºã§
ïœïœ ããããã®ã³ã¡ã³ãã§ããïŒå¹³æïŒïŒå¹ŽïŒïŒæïŒïŒæ¥ä»ãïŒ
ãããããã®äž»åŒµïŒè£é¡ïŒã¯æ£ããã§ããããã«äžè¬ã«ã次ã®çåŒãæãç«ã€ããšãç¥ãããŠ
ããŸãã
ãïœã0以äžã®ä»»æã®æŽæ°ãïœ0ãïœ1ãïœ2ãã»ã»ã»ãïœïœ ãä»»æã®å®æ°ãšãããšãã
ããΣk=0ïœn (-1)^ïœ*ïœïŒ£ïœ*(-1)^(ïœ-ïœ)*(ïœ0+ïœ1ïœ+ïœ2ïœ2+ã»ã»ã»+ïœïœïœïœïŒ = ïœïŒ*ïœïœ
ãšããåŒã玹ä»ãããŠããŸãããããã¯ãã®ãŸãŸã§ã¯æç«ããªãã®ã§ã¯ãªãã§ããããïŒ
(-1)^n*Σk=0ïœn (-1)^ïœ*ïœïŒ£ïœ*(ïœ0+ïœ1ïœ+ïœ2ïœ2+ã»ã»ã»+ïœïœïœïœïŒ = ïœïŒ*ïœïœ
ã§ããã°ãããããªæ°ãããŸããããã€ãã®æ§ã«ããåéãããŠããŸãç§ãªã®ã§ã
ã©ãªãã確èªãé¡ããŸãã
No.1071GAI2023幎5æ10æ¥ 06:32
æ£ããææã ãšæããŸãã
No.1072DD++2023幎5æ10æ¥ 06:55
åè§éã®äºé¢ãµã€ã³ããèããŸãã
åºé¢ãã倧ãããšåºé¢ããå°ãããšåŽé¢ã®æ¹ãåºããããªããš
æãããŸããéå¿ãã©ãã«ãšãã°ãé·ãã®æ¯ãã©ã®ããã«ããã°ãããã®ãïŒç©ççãªåé¡ã§ããããïŒ
No.1055ks2023幎5æ6æ¥ 10:32
ã©ãæããŠããåºé¢ãäžã«ãªãããšã¯ãæãåŸãªãã
ããã«ãå
ã
ããµã€ã³ããšããã®ã¯ãã©ã®é¢ãååã§ãªããš
ãµã€ã³ãã®æå³ãæããªããšæããŸãã
No.1062ã«ã«ãã¹2023幎5æ7æ¥ 23:21
> åè§é
挢åã¯ãåè§éãã ãšæããŸãã
> éå¿ãã©ãã«ãšãã°ãé·ãã®æ¯ãã©ã®ããã«ããã°ãããã®ãïŒç©ççãªåé¡ã§ããããïŒ
åè§éã®æè³ªã»åºã®æè³ªã»åçºä¿æ°ãªã©ãé¢ä¿ããããªæ°ãããŸãã®ã§ãç©çã®åé¡ã§ããããäžããããæ¡ä»¶ã§ã¯çããåºããªãæ°ãããŸãã
> ã©ã®é¢ãååã§ãªããšãµã€ã³ãã®æå³ãæããªã
ããã§ããªããšæããŸããäŸãã°ãäž¡åŽãåã£ãå
ã
å
è§æ±ã®éçãã®ãããªåœ¢ãªããåã£ãåéé¢ãäžã«ãªãããšããããŸããã®ã§ãã¡ãããšïŒçè«çã«ã¯ïŒç¢ºç1/6ãã€ã®ãµã€ã³ãã«ãªããšæããŸãã
No.1063ãããã2023幎5æ8æ¥ 01:33
åè§éã®ãµã€ã³ãã¯å€ä»£ã¡ãœãã¿ãã¢ã§å®éã«äœ¿ãããŠããããã§ãããçºæãããŠãããšã®ããšã
ãµãšæã£ãã®ã§ããã
ãã€ã®ååãªæ£äºè§éããåºé¢ã©ããã§è²Œãã€ãã圢ç¶ã®ãã®ãå®éã«ã¯äŸ¿å©ã§ã¯ãªãããšãçŸçã«ã¯åããé¢ãæ£äžè§åœ¢ã®ãã®ãããããã§ããã
No.1064Dengan kesaktian Indukmu2023幎5æ8æ¥ 09:15
ãæ£åäºè§éããšããååãããããã§ããã
https://www.wikiwand.com/ja/%E5%8F%8C%E8%A7%92%E9%8C%90
âããã«ãåäºè§éããšæžãããå³åœ¢ããããŸããã
èŠãæããæ£åäºè§éãã«ãªã£ãŠããããã§ãã
ãã®åœ¢ã ãšå¹³ã¹ã£ãããªã£ãŠãµã€ã³ãã®ããã«æ¯ã£ãæã«ã©ãããªãšæã£ãã®ã§ããã
ã³ãã®ããã«åããŸãã®ã§ããã£ãŠé¢çœãããç¥ããŸãããã
No.1066ãããã2023幎5æ8æ¥ 11:30
æ£ãããåäºè§éã«ãããµã€ã³ããšãããã®ãããã®ã§ãããã
https://ja.m.wikipedia.org/wiki/%E3%81%AD%E3%81%98%E3%82%8C%E5%8F%8C%E8%A7%92%E9%8C%90#/media/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB%3A10-sided_dice_250.png
No.1067Dengan kesaktian Indukmu2023幎5æ8æ¥ 16:10
[DD++ããã®æç€ºãããé¢ä¿åŒ]
gp > for(n=1,10,print(n";",\
sum(k=0,n,binomial(n,k)*(k+1)^(k)*(n-k+1)^(n-k-1)), " VS ",(n+2)^(n)))
1;3 VS 3
2;16 VS 16
3;125 VS 125
4;1296 VS 1296
5;16807 VS 16807
6;262144 VS 262144
7;4782969 VS 4782969
8;100000000 VS 100000000
9;2357947691 VS 2357947691
10;61917364224 VS 61917364224
gp > for(n=1,10,print(n";",\
sum(k=0,n,binomial(n,k)*(k+1)^(k-1)*(n-k+1)^(n-k-1)), " VS ",2*(n+2)^(n-1)))
1;2 VS 2
2;8 VS 8
3;50 VS 50
4;432 VS 432
5;4802 VS 4802
6;65536 VS 65536
7;1062882 VS 1062882
8;20000000 VS 20000000
9;428717762 VS 428717762
10;10319560704 VS 10319560704
-------------------------------------------------------
[ããã²ããããæç€ºãããéåºãç·æ°æŒžååŒ]
ãã¡ã¢åããŠåºåãããã®
gp > F(n)=if(n<2,1,\
sum(i=0,n-1,binomial(n-1,i)*memorize(F,i)*(i+1)*memorize(F,n-i-1)));
gp > for(n=0,10,print(n+1";",F(n)," VS ",(n+1)^(n-1)))
1;1 VS 1
2;1 VS 1
3;3 VS 3
4;16 VS 16
5;125 VS 125
6;1296 VS 1296
7;16807 VS 16807
8;262144 VS 262144
9;4782969 VS 4782969
10;100000000 VS 100000000
11;2357947691 VS 2357947691
-------------------------------------------------------
ãã®ä»ã§äŒŒãçåŒãæ§æããããã®ãéããŠã¿ãã
gp > for(n=1,10,print(n";",\
sum(k=1,n,binomial(n-1,k-1)*k^(k-2)*(n-k)^(n-k)), " VS ",n^(n-1)))
1;1 VS 1
2;2 VS 2
3;9 VS 9
4;64 VS 64
5;625 VS 625
6;7776 VS 7776
7;117649 VS 117649
8;2097152 VS 2097152
9;43046721 VS 43046721
10;1000000000 VS 1000000000
gp > for(n=1,10,print(n";",\
-sum(k=1,n+1,(-1)^k*k*binomial(n+1,k)*(n+1)^(n-k)), " VS ",n^n))
1;1 VS 1
2;4 VS 4
3;27 VS 27
4;256 VS 256
5;3125 VS 3125
6;46656 VS 46656
7;823543 VS 823543
8;16777216 VS 16777216
9;387420489 VS 387420489
10;10000000000 VS 10000000000
gp > for(n=1,10,print(n";",\
sum(k=0,n,binomial(n,k)*Derange(k+1)*(n+1)^(n-k)), " VS ",n^(n+1)))
1;1 VS 1
2;8 VS 8
3;81 VS 81
4;1024 VS 1024
5;15625 VS 15625
6;279936 VS 279936
7;5764801 VS 5764801
8;134217728 VS 134217728
9;3486784401 VS 3486784401
10;100000000000 VS 100000000000
ããã«Derange(n)ïŒ1ïœnã®æ°åã§ã®å®å
šé åã®åæ°ã瀺ãã(derangement)
ãããªã«ã䌌ãŠã䌌ã€ãã¬ãã®ãåãæ°åãæ§æãããšã¯é©ãã§ãã
No.1057GAI2023幎5æ6æ¥ 12:02
gp > for(n=1,10,print(n";",\
-sum(k=1,n+1,(-1)^k*k*binomial(n+1,k)*(n+1)^(n-k)), " VS ",n^n))
ã«é¢ããŠã¯ã{(n+1)-1}^n ãäºé
å±éããåŸå°ãå€åœ¢ããã ãã§ãããã
nCk ãå«ãç·åå
¬åŒã¯ã
ãåºã k ã«äŸåããªããå Žåã¯äºé
å±éã®åŒã§å€æ°ã®äžèº«ãããŸãéžãã åŒããããšãå€ãã
ãææ°ã k ã«äŸåããªããå Žåã¯äºé
å±éã®åŒã«äœãæãããå²ã£ããããªãã埮ç©åãç¹°ãè¿ããŠäœã£ãåŒã§ããããšãå€ãã§ãã
No.1060DD++2023幎5æ7æ¥ 00:54
> ãããããã
ããn=6 ãç§ã®èšç®ã§ãã£ãŠããã¿ããã§ããã
ããããšãããããŸãã
> GAI ãã
> n>=8 ã§ãããã§ãããšãã蚌æãå¿
èŠãšããããšã§ããããïŒ
ãããã§ããããã©ãããã©ããŸã§ãæããŠãããããšèšã£ãŠããã®ã倿ãã€ããããŸãããäžè¬ã® n ã«å¯ŸããŠãŸã¡éã®æšã®ç·æ°ãæ±ãããã£ãŠãããšããã®ã¯ãã®éãã§ãã
æåã®æ°é
ãå®éã«æ±ããŠã¿ãã°ç¶ãã®äºæž¬ã¯ç«ã¡ãŸãããå®éã«èšŒæããããšæããšé£ãããé£èªããŠããŸãã
No.1050DD++2023幎5æ6æ¥ 08:20
ä»ã«ããŠæãã°ã/n ãã€ããŠããã®ã¯æåã®æ°ã 1 ã«éå®ããŠããããã§ããã
æåã®æ°ãä»»æã«ããŠããã®ã§ããã°ãæé·æ°åã®ç·æ°ã¯ (n!)^n éããšãããšãŠãæŽã£ãçµæã«ãªããŸãã
ãŸããèšç®æ¹æ³ãå
é ã®æ°ã¯ä»»æã§ããæ¹ãããããããã§ãã
ãšããããšã§ãããŸã¡éã®æšãã®æ¹ã§ wikipedia ããæŸã£ãŠããçºæ³ããã®åé¡çšã«æžãçŽãã€ã€ããn ãŸã§äœ¿ããå Žåã®æé·æ°åã®ç·æ°ã¯ (n!)^n éãã§ãããã®èšŒæã以äžã«èšè¿°ããŸãã
No.1041 ã®å
容ãšéè€ããéšåãå«ã¿ãŸãã
ãããã«ãããã°ããã©ã³ãã䜿ã£ãŠå®éã«æãåãããšå©ãã«ãªããšæããŸãã
æ¡ä»¶ãæºãããããªæ°åã以äžã®ãããªæ¹æ³ã§äœãããšãèããŸãã
1 ãã n ãŸã§ã®ã«ãŒãã®çµã n ã»ããçšæããŸãã
ãããããé©åœãªé ã«ç©ã¿éããŠãå山㫠1 çªãã n çªãŸã§ã®çªå·ãã€ããŠãããŸãã
æåã«åé
a[1] ãšã㊠1 ä»¥äž n 以äžã®æ°ãéžã³ãŸãã
a[1] çªã®å±±ã®äžçªäžã®ã«ãŒããæã«åããæžããŠãã£ãæ°åã a[2] ãšããã«ãŒãã¯ç Žæ£ããŸãã
a[2] çªã®å±±ã®äžçªäžã®ã«ãŒããæã«åããæžããŠãã£ãæ°åã a[3] ãšããã«ãŒãã¯ç Žæ£ããŸãã
以äžãåæ§ã«ç¹°ãè¿ããŸãã
a[m] çªã®å±±ã®äžçªäžãæã«åãããšãããæ¢ã«ãã®å±±ã«ã«ãŒãããªãã£ãå Žåãa[m] ãæ«é
ãšããŠæ°åãçµäºããŸãã
[äŸ1] n=3, a[1]=1 ã§åå±±ãäžããé ã«
1 çªã®å±±ïŒ1, 3, 2
2 çªã®å±±ïŒ2, 1, 3
3 çªã®å±±ïŒ2, 3, 1
ã®å Žåãæ°å㯠1, 1, 3, 2, 2, 1, 2, 3, 3, 1 ãšãªããŸãã
[äŸ2] n=3, a[1]=1 ã§ãåå±±ãäžããé ã«
1 çªã®å±±ïŒ1, 3, 2
2 çªã®å±±ïŒ2, 1, 3
3 çªã®å±±ïŒ1, 2, 3
ã®å Žåãæ°å㯠1, 1, 3, 1, 2, 2, 1 ãšãªããŸãã
[äŸ3] n=3, a[1]=1 ã§ãåå±±ãäžããé ã«
1 çªã®å±±ïŒ1, 3, 2
2 çªã®å±±ïŒ2, 1, 3
3 çªã®å±±ïŒ1, 3, 2
ã®å Žåãæ°å㯠1, 1, 3, 1, 2, 2, 1 ãšãªããŸãã
n^2+1 é
ç¶ãæé·æ°åãã§ããå Žåãšããã®ã¯ãn^2 æããå
šãŠã®ã«ãŒããç Žæ£ã§ããå Žåãšããããšã«ãªããŸãã
ãããŠã
ãæé·æ°åã®å
容ã
ãå
šãŠç Žæ£ã§ããããã«ã«ãŒããç©ã¿éã㊠a[1] ãéžã¶æ¹æ³ã
ãäžå¯Ÿäžã«å¯Ÿå¿ããããšã¯æ°åã®äœãæ¹ããããã«ãããã®ã§ãçµå±ã«ãŒããå
šéšç Žæ£ã§ãããããªå Žåã®æ°ãèããã°ããããšã«ãªããŸãã
ã§ã¯ãã«ãŒããå
šãŠç Žæ£ããããšã«é¢ããŠããã€ãèå¯ãè¡ããŸãã
ãŸãããã®æäœã¯ a[1] ãšç°ãªãæ°ã®ã«ãŒãã§çµããããšã¯çµ¶å¯Ÿã«ãããŸããã
ããããçµãã£ããšãã«ã¯å¿
ã a[1] ãšåãæ°ã®ã«ãŒããå
šãŠã®å±±ããç Žæ£ãããŠããŸãã
ãªããªããã©ããã®å±±ã§ã«ãŒããè¶³ããªããªãã®ã¯ãå
šãŠã®å±±ãã a[1] ãšåãæ°ã®ã«ãŒããåŒãããéæããæåã® 1 åãšããã㊠a[1] çªã®å±±ããã«ãŒããåŒãã®ã n+1 åç®ã«ãªããšã以å€ããããªãããã§ãã
ãããŠãa[1] ãšç°ãªãæ°ã®ã«ãŒããå
šãŠç Žæ£ããããã©ããã¯ãa[1] çªä»¥å€ã®å±±ã®äžçªäžã®ã«ãŒãã ãèŠãã°ããããŸãã
äŸãã° [äŸ1] ã®å ŽåããŸããa[1]=1 ãªã®ã§ 1 ã®ã«ãŒãã¯å
šãŠç Žæ£ãããããšãããããŸãã
次ã«ã3 ã®ã«ãŒãã¯å
šãŠç Žæ£ãããããšãããããŸãã
ãªããªã 3 çªã®å±±ã®äžçªäžã« 1 ã®ã«ãŒãããããã3 ã®ã«ãŒããå
šãŠç Žæ£ããããŸã§ 3 çªã®å±±ã® 1 ã®ã«ãŒããç Žæ£ã§ããªãããšããç¶æ
ã«ãªã£ãŠããããã§ãã
çµãããŸã§ã«å¿
ã 1 ã®ã«ãŒããå
šãŠç Žæ£ãããã®ã§ãããããã®åã« 3 ã®ã«ãŒããå
šãŠç Žæ£ãããããšãéæãããªããã°ãªããŸããã
ããã«ã2 ã®ã«ãŒããå
šãŠç Žæ£ãããããšãããããŸãã
ãªããªã 2 çªã®å±±ã®äžçªäžã« 3 ã®ã«ãŒãããããã2 ã®ã«ãŒããå
šãŠç Žæ£ããããŸã§ 2 çªã®å±±ã® 3 ã®ã«ãŒããç Žæ£ã§ããªãããšããç¶æ
ã«ãªã£ãŠããããã§ãã
çµãããŸã§ã« 3 ã®ã«ãŒããå
šãŠç Žæ£ãããããšã¯å
ã»ã©ç¢ºèªããã®ã§ããã®åã« 2 ã®ã«ãŒããå
šãŠç Žæ£ãããããšãéæãããªããã°ãªããŸããã
ãã£ãŠã[äŸ1] ã¯ãå®éã«æ°åãäœã£ãŠã¿ãªããŠãã1 ã 2 ã 3 ãå
šãŠç Žæ£ããããã€ãŸãæé·æ°åãã§ããããšãããããŸãã
äžæ¹ã§ [äŸ2] ã®å Žåã3 ã®ã«ãŒããå
šãŠç Žæ£ãããããšã¯ãããŸããã
ãªããªã 3 çªã®å±±ã®äžçªäžã« 3 ã®ã«ãŒãããããã3 ã®ã«ãŒããå
šãŠç Žæ£ããããŸã§ 3 çªã®å±±ã® 3 ã®ã«ãŒããç Žæ£ã§ããªãããšããç¶æ
ã«ãªã£ãŠããããã§ãã
äžè¬ã«ãa[1]â x ã§ x çªã®å±±ã®äžçªäžã« x ã®ã«ãŒããããå Žåããã®å±±ã¯çµ¶å¯Ÿã«æ®ã£ãŠããŸããŸãã
ãã£ãŠã[äŸ2] ã¯ãå®éã«æ°åãäœã£ãŠã¿ãªããŠããæé·æ°åã«ã¯ãªããªãããšãããããŸãã
ãŸãã[äŸ3] ã®å Žåãã2 ããã³ 3 ã®ã«ãŒããå
šãŠç Žæ£ãããããšã¯ãããŸããã
ãªããªã 2 çªã®å±±ã®äžçªäžã« 3 ã®ã«ãŒãããããåæã« 3 çªã®å±±ã®äžçªäžã« 2 ã®ã«ãŒããããããã
ã2 ã®ã«ãŒããå
šãŠç Žæ£ããããŸã§ 2 çªã®å±±ã® 3 ã®ã«ãŒããç Žæ£ã§ããªãã
ã3 ã®ã«ãŒããå
šãŠç Žæ£ããããŸã§ 3 çªã®å±±ã® 2 ã®ã«ãŒããç Žæ£ã§ããªãã
ãšããç¶æ
ã«ãªã£ãŠããããã§ãã
äžè¬ã«ããã®ãããªäŸåé¢ä¿ã®ã«ãŒããçºçãããšããããã®å±±ã¯çµ¶å¯Ÿã«æ®ã£ãŠããŸããŸãã
ïŒ[äŸ2] ãåç¬ã§ã«ãŒãããŠãããšã¿ãªãããšãã§ããŸãïŒ
ãã£ãŠã[äŸ3] ã¯ãå®éã«æ°åãäœã£ãŠã¿ãªããŠããæé·æ°åã«ã¯ãªããªãããšãããããŸãã
ã«ãŒããååšããªããã°ãå
šãŠã®æ°ã®ã«ãŒãã«ã€ããŠçŽæ¥çãŸãã¯éæ¥çã« a[1] ãšåãæ°ã®ã«ãŒããå
šãŠç Žæ£ããåã«ãã¡ããå
šãŠç Žæ£ããå¿
èŠããããæé·æ°åãã§ããããšã確å®ããŸãã
ãã£ãŠãæé·æ°åã«ãªãã©ããã¯ãç©ã¿éãããšãã« a[1] çªä»¥å€ã®å±±ã®äžçªäžã«æ¥ãã«ãŒãã§ã«ãŒããçºçããªããã©ããã ããèããã°ããããšã«ãªããŸãã
ããŠãã§ã¯ãã«ãŒããç¡äœçºã«ç©ã¿éããŠåé
ãç¡äœçºã«éžãã å Žåã«ãæé·æ°åãäœãã確çãã©ã®ãããã«ãªããèããŸãã
ãŸããç¡äœçºã«ã«ãŒããç©ã¿éãã€ã€åé
ãç¡äœçºã«éžã¶æ¹æ³ãšããŠä»¥äžã®æé ãæ¡çšããŸãã
1 ãã n ãŸã§ã®ã«ãŒã 1 çµãã·ã£ããã«ããŸãããã®åŸã1 çªãã n çªãŸã§ã®çªå·ã 1 ã€ç¡äœçºã«éžã³ããã®å±±ã®çªå·ãšããŸãã
æ¹ããŠå¥ã® 1 ãã n ãŸã§ã®ã«ãŒã 1 çµãã·ã£ããã«ããŸãããã®åŸã1 çªãã n çªãŸã§ã®çªå·ã®ãã¡éè€ããªããã®ã 1 ã€ç¡äœçºã«éžã³ããã®å±±ã®çªå·ãšããŸãã
ããã n åç¹°ãè¿ããšã1 çªãã n çªãŸã§ã®å±±ã宿ããŸãã
ãããŠãæåŸã«äœã£ãå±±ã®çªå·ã a[1] ãšããŠæ¡çšããŸãã
ãã®äœãæ¹ã§ããã°ãn åã®å±±ã®ç©ã¿éãæ¹ (n!)^n éããš a[1] ã®éžã³æ¹ n éãã®çµãå
š n*(n!)^n éãã®èµ·ããããããåæ§ã«ç¢ºãããããšãããŸãã
ããã§ã確ç P[k] (0âŠkâŠn) ãããã®å±±ã®äœãæ¹ã§ k åã®å±±ãäœã£ã段éã§ãæåŸã«æ®ãããšã確å®ããå±±ããŸã ã©ãã«ããªã確çããšå®çŸ©ããŸãã
ãã¡ãã P[0]=1 ã§ãã
ãã®ãšã 1 - P[k+1]/P[k] ã¯ãk åã®å±±ãäœã£ã段éã§æåŸã«æ®ãããšã確å®ããå±±ããŸã ã©ãã«ããªããšããæ¡ä»¶ã®ããšã§ãk+1 åç®ã®å±±ãäœã£ãããã§æåŸã«æ®ãããšã確å®ããå±±ãã§ããŠããŸãæ¡ä»¶ä»ã確çãã§ãã
ããã¯ã0âŠkâŠn-2 ã®å Žåãk+1 åç®ã®å±±ãã·ã£ããã«ãããšãã«äžçªäžã«ããã«ãŒãã x ã ã£ããšããŠã
ã»x çªã®å±±ã k çªç®ãŸã§ã«ãŸã ãªãããã® x çªãk+1 çªç®ã®å±±ã«ã€ããŠããŸã£ã
ã»x çªã®å±±ã k çªç®ãŸã§ã«ããããããx çªã®å±±ã®äžçªäžã®ã«ãŒã㯠yããy çªã®å±±ã®äžçªäžã®ã«ãŒã㯠z
ãâŠâŠãšèŸ¿ã£ãŠè¡ãçããæªäœ¿çšçªå·ã k+1 çªç®ã®å±±ã«ã€ããŠããŸã£ã
ã®ã©ã¡ãããèµ·ãã確çã§ãããã€ãŸãã¯äžçªäžã®ã«ãŒããäœã§ãããã«é¢ä¿ãªãæ®ã£ãŠãã n-k åã®çªå·ããç¹å®ã® 1 åãåŒããŠããŸã確çã«ãªããŸãã
ãã£ãŠã
1 - P[k+1]/P[k] = 1/(n-k)
ãªã®ã§ã
P[k+1]/P[k] = 1 - 1/(n-k) = (n-k-1)/(n-k)
ã§ããã
P[n-1] = (1/2)*P[n-2] = (1/2)*(2/3)*P[n-3] = âŠâŠ = (1/2)*(2/3)*âŠâŠ*((n-1)/n)*P[0] = 1/n
ãšãªããŸãã
æåŸã«äœãå±±ã¯ãã©ããªé åºã«ãªã£ãŠããa[1] ã®éžã³æ¹ãèããã°ç¢ºçã«åœ±é¿ã¯äžããŸããã
ãã£ãŠã
P[n] = P[n-1] = 1/n
ã§ãã
ããã§ããn åã®å±±ãç¡äœçºã«äœããåé
a[1] ãç¡äœçºã«éžãã å Žåã«ãæé·æ°åãäœãã確ç㯠1/n ã§ãããããšãããããŸããã
ãšããã§ããã®å±±ã®äœãæ¹ã¯ n*(n!)^n éããåæ§ã«ç¢ºããããäœããæ¹æ³ã§ããã
ã€ãŸããæé·æ°åãäœããããã«ã«ãŒãã®ç©ã¿éã㊠a[1] ãéžã¶æ¹æ³ããã®ãã¡ N[n] éãã§ãããšãããšãå€å
žç確çã®å®çŸ©ãã
N[n] / {n*(n!)^n} = 1/n
ãšãªããŸãã
ãããã£ãŠåæ¯ãæã£ãŠ
N[n] = (n!)^n
ãåŸãããŸããã
No.1059DD++2023幎5æ7æ¥ 00:42