éãªè°è«ã§ãããã°ãããªããšãã§ããŸããã
ç¹ P ãåæèšåãã«ã»ãã®ã¡ãã£ãšåãããŠç¹ Pâ ã«ãããšããç¹ Q ãã»ãã®ã¡ãã£ãšåã㊠Qâ ã«ãªã£ããšããŸãã
åãããã®ãã»ãã®ã¡ãã£ãšãªã®ã§ã匧 PPâ ã匧 QQâ ã¯éåžžã«çãç·åãšã¿ãªããŸãã
é»è²éšåã®é¢ç©ã¯ãåè§åœ¢ PPâQâQ åã ãå¢ããŠãäžè§åœ¢ OQQâ åã ãæžããŸãã
åè§åœ¢ PPâQâQ ã¯äžè§åœ¢ OPPâ ããäžè§åœ¢ OQQâ ãåãèœãšãããã®ã§ããããšã
äžè§åœ¢ OPPâ ãšäžè§åœ¢ OQQâ ã®é¢ç©æ¯ OP*OPâ : OQ*OQâ 㯠OP^2 : OQ^2 ãšã¿ãªããããšã
ãã® 2 ã€ãèãããšã
OQ/OP ã 1/â2 ãã倧ãããã°é»è²éšåã¯æžå°ãå°ãããã°é»è²éšåã¯å¢å ããããšãããããŸãã
ãã£ãŠé»è²éšåã®é¢ç©ãæå°ãšãªãã®ã¯ cos(Ï/2-Ξ)=1/â2 ããªã㡠Ξ=Ï/4 ã®ãšãã
ãã®ãšãã®å€ã¯ãé»è²éšåãããŸãç§»åããŠèããã°ãæå OPB ããäžè§åœ¢ OQB ãåŒãã°ããã®ã§ãÏ/2-1
å¹³æïŒïŒå¹ŽïŒïŒæïŒïŒæ¥ããïŒïŒæ¥ã«ãããŠã®ããããã»æ»ç¥æ³ããã»ïœïœ ããã»ïŒŠïŒ®ããã®ãããšã ãåç
§ïŒ
å
ã®èšäºã§
ïœïœ ããããã®ã³ã¡ã³ãã§ããïŒå¹³æïŒïŒå¹ŽïŒïŒæïŒïŒæ¥ä»ãïŒ
ãããããã®äž»åŒµïŒè£é¡ïŒã¯æ£ããã§ããããã«äžè¬ã«ã次ã®çåŒãæãç«ã€ããšãç¥ãããŠ
ããŸãã
ãïœã0以äžã®ä»»æã®æŽæ°ãïœ0ãïœ1ãïœ2ãã»ã»ã»ãïœïœ ãä»»æã®å®æ°ãšãããšãã
ããΣk=0ïœn (-1)^ïœ*ïœïŒ£ïœ*(-1)^(ïœ-ïœ)*(ïœ0+ïœ1ïœ+ïœ2ïœ2+ã»ã»ã»+ïœïœïœïœïŒ = ïœïŒ*ïœïœ
ãšããåŒã玹ä»ãããŠããŸãããããã¯ãã®ãŸãŸã§ã¯æç«ããªãã®ã§ã¯ãªãã§ããããïŒ
(-1)^n*Σk=0ïœn (-1)^ïœ*ïœïŒ£ïœ*(ïœ0+ïœ1ïœ+ïœ2ïœ2+ã»ã»ã»+ïœïœïœïœïŒ = ïœïŒ*ïœïœ
ã§ããã°ãããããªæ°ãããŸããããã€ãã®æ§ã«ããåéãããŠããŸãç§ãªã®ã§ã
ã©ãªãã確èªãé¡ããŸãã
æ£ããææã ãšæããŸãã
åè§éã®äºé¢ãµã€ã³ããèããŸãã
åºé¢ãã倧ãããšåºé¢ããå°ãããšåŽé¢ã®æ¹ãåºããããªããš
æãããŸããéå¿ãã©ãã«ãšãã°ãé·ãã®æ¯ãã©ã®ããã«ããã°ãããã®ãïŒç©ççãªåé¡ã§ããããïŒ
ã©ãæããŠããåºé¢ãäžã«ãªãããšã¯ãæãåŸãªãã
ããã«ãå
ã
ããµã€ã³ããšããã®ã¯ãã©ã®é¢ãååã§ãªããš
ãµã€ã³ãã®æå³ãæããªããšæããŸãã
> åè§é
挢åã¯ãåè§éãã ãšæããŸãã
> éå¿ãã©ãã«ãšãã°ãé·ãã®æ¯ãã©ã®ããã«ããã°ãããã®ãïŒç©ççãªåé¡ã§ããããïŒ
åè§éã®æè³ªã»åºã®æè³ªã»åçºä¿æ°ãªã©ãé¢ä¿ããããªæ°ãããŸãã®ã§ãç©çã®åé¡ã§ããããäžããããæ¡ä»¶ã§ã¯çããåºããªãæ°ãããŸãã
> ã©ã®é¢ãååã§ãªããšãµã€ã³ãã®æå³ãæããªã
ããã§ããªããšæããŸããäŸãã°ãäž¡åŽãåã£ãå
ã
å
è§æ±ã®éçãã®ãããªåœ¢ãªããåã£ãåéé¢ãäžã«ãªãããšããããŸããã®ã§ãã¡ãããšïŒçè«çã«ã¯ïŒç¢ºç1/6ãã€ã®ãµã€ã³ãã«ãªããšæããŸãã
åè§éã®ãµã€ã³ãã¯å€ä»£ã¡ãœãã¿ãã¢ã§å®éã«äœ¿ãããŠããããã§ãããçºæãããŠãããšã®ããšã
ãµãšæã£ãã®ã§ããã
ãã€ã®ååãªæ£äºè§éããåºé¢ã©ããã§è²Œãã€ãã圢ç¶ã®ãã®ãå®éã«ã¯äŸ¿å©ã§ã¯ãªãããšãçŸçã«ã¯åããé¢ãæ£äžè§åœ¢ã®ãã®ãããããã§ããã
ãæ£åäºè§éããšããååãããããã§ããã
https://www.wikiwand.com/ja/%E5%8F%8C%E8%A7%92%E9%8C%90
âããã«ãåäºè§éããšæžãããå³åœ¢ããããŸããã
èŠãæããæ£åäºè§éãã«ãªã£ãŠããããã§ãã
ãã®åœ¢ã ãšå¹³ã¹ã£ãããªã£ãŠãµã€ã³ãã®ããã«æ¯ã£ãæã«ã©ãããªãšæã£ãã®ã§ããã
ã³ãã®ããã«åããŸãã®ã§ããã£ãŠé¢çœãããç¥ããŸãããã
æ£ãããåäºè§éã«ãããµã€ã³ããšãããã®ãããã®ã§ãããã
https://ja.m.wikipedia.org/wiki/%E3%81%AD%E3%81%98%E3%82%8C%E5%8F%8C%E8%A7%92%E9%8C%90#/media/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB%3A10-sided_dice_250.png
[DD++ããã®æç€ºãããé¢ä¿åŒ]
gp > for(n=1,10,print(n";",\
sum(k=0,n,binomial(n,k)*(k+1)^(k)*(n-k+1)^(n-k-1)), " VS ",(n+2)^(n)))
1;3 VS 3
2;16 VS 16
3;125 VS 125
4;1296 VS 1296
5;16807 VS 16807
6;262144 VS 262144
7;4782969 VS 4782969
8;100000000 VS 100000000
9;2357947691 VS 2357947691
10;61917364224 VS 61917364224
gp > for(n=1,10,print(n";",\
sum(k=0,n,binomial(n,k)*(k+1)^(k-1)*(n-k+1)^(n-k-1)), " VS ",2*(n+2)^(n-1)))
1;2 VS 2
2;8 VS 8
3;50 VS 50
4;432 VS 432
5;4802 VS 4802
6;65536 VS 65536
7;1062882 VS 1062882
8;20000000 VS 20000000
9;428717762 VS 428717762
10;10319560704 VS 10319560704
-------------------------------------------------------
[ããã²ããããæç€ºãããéåºãç·æ°æŒžååŒ]
ãã¡ã¢åããŠåºåãããã®
gp > F(n)=if(n<2,1,\
sum(i=0,n-1,binomial(n-1,i)*memorize(F,i)*(i+1)*memorize(F,n-i-1)));
gp > for(n=0,10,print(n+1";",F(n)," VS ",(n+1)^(n-1)))
1;1 VS 1
2;1 VS 1
3;3 VS 3
4;16 VS 16
5;125 VS 125
6;1296 VS 1296
7;16807 VS 16807
8;262144 VS 262144
9;4782969 VS 4782969
10;100000000 VS 100000000
11;2357947691 VS 2357947691
-------------------------------------------------------
ãã®ä»ã§äŒŒãçåŒãæ§æããããã®ãéããŠã¿ãã
gp > for(n=1,10,print(n";",\
sum(k=1,n,binomial(n-1,k-1)*k^(k-2)*(n-k)^(n-k)), " VS ",n^(n-1)))
1;1 VS 1
2;2 VS 2
3;9 VS 9
4;64 VS 64
5;625 VS 625
6;7776 VS 7776
7;117649 VS 117649
8;2097152 VS 2097152
9;43046721 VS 43046721
10;1000000000 VS 1000000000
gp > for(n=1,10,print(n";",\
-sum(k=1,n+1,(-1)^k*k*binomial(n+1,k)*(n+1)^(n-k)), " VS ",n^n))
1;1 VS 1
2;4 VS 4
3;27 VS 27
4;256 VS 256
5;3125 VS 3125
6;46656 VS 46656
7;823543 VS 823543
8;16777216 VS 16777216
9;387420489 VS 387420489
10;10000000000 VS 10000000000
gp > for(n=1,10,print(n";",\
sum(k=0,n,binomial(n,k)*Derange(k+1)*(n+1)^(n-k)), " VS ",n^(n+1)))
1;1 VS 1
2;8 VS 8
3;81 VS 81
4;1024 VS 1024
5;15625 VS 15625
6;279936 VS 279936
7;5764801 VS 5764801
8;134217728 VS 134217728
9;3486784401 VS 3486784401
10;100000000000 VS 100000000000
ããã«Derange(n)ïŒ1ïœnã®æ°åã§ã®å®å
šé åã®åæ°ã瀺ãã(derangement)
ãããªã«ã䌌ãŠã䌌ã€ãã¬ãã®ãåãæ°åãæ§æãããšã¯é©ãã§ãã
gp > for(n=1,10,print(n";",\
-sum(k=1,n+1,(-1)^k*k*binomial(n+1,k)*(n+1)^(n-k)), " VS ",n^n))
ã«é¢ããŠã¯ã{(n+1)-1}^n ãäºé
å±éããåŸå°ãå€åœ¢ããã ãã§ãããã
nCk ãå«ãç·åå
¬åŒã¯ã
ãåºã k ã«äŸåããªããå Žåã¯äºé
å±éã®åŒã§å€æ°ã®äžèº«ãããŸãéžãã åŒããããšãå€ãã
ãææ°ã k ã«äŸåããªããå Žåã¯äºé
å±éã®åŒã«äœãæãããå²ã£ããããªãã埮ç©åãç¹°ãè¿ããŠäœã£ãåŒã§ããããšãå€ãã§ãã
> ãããããã
ããn=6 ãç§ã®èšç®ã§ãã£ãŠããã¿ããã§ããã
ããããšãããããŸãã
> GAI ãã
> n>=8 ã§ãããã§ãããšãã蚌æãå¿
èŠãšããããšã§ããããïŒ
ãããã§ããããã©ãããã©ããŸã§ãæããŠãããããšèšã£ãŠããã®ã倿ãã€ããããŸãããäžè¬ã® n ã«å¯ŸããŠãŸã¡éã®æšã®ç·æ°ãæ±ãããã£ãŠãããšããã®ã¯ãã®éãã§ãã
æåã®æ°é
ãå®éã«æ±ããŠã¿ãã°ç¶ãã®äºæž¬ã¯ç«ã¡ãŸãããå®éã«èšŒæããããšæããšé£ãããé£èªããŠããŸãã
ä»ã«ããŠæãã°ã/n ãã€ããŠããã®ã¯æåã®æ°ã 1 ã«éå®ããŠããããã§ããã
æåã®æ°ãä»»æã«ããŠããã®ã§ããã°ãæé·æ°åã®ç·æ°ã¯ (n!)^n éããšãããšãŠãæŽã£ãçµæã«ãªããŸãã
ãŸããèšç®æ¹æ³ãå
é ã®æ°ã¯ä»»æã§ããæ¹ãããããããã§ãã
ãšããããšã§ãããŸã¡éã®æšãã®æ¹ã§ wikipedia ããæŸã£ãŠããçºæ³ããã®åé¡çšã«æžãçŽãã€ã€ããn ãŸã§äœ¿ããå Žåã®æé·æ°åã®ç·æ°ã¯ (n!)^n éãã§ãããã®èšŒæã以äžã«èšè¿°ããŸãã
No.1041 ã®å
容ãšéè€ããéšåãå«ã¿ãŸãã
ãããã«ãããã°ããã©ã³ãã䜿ã£ãŠå®éã«æãåãããšå©ãã«ãªããšæããŸãã
æ¡ä»¶ãæºãããããªæ°åã以äžã®ãããªæ¹æ³ã§äœãããšãèããŸãã
1 ãã n ãŸã§ã®ã«ãŒãã®çµã n ã»ããçšæããŸãã
ãããããé©åœãªé ã«ç©ã¿éããŠãå山㫠1 çªãã n çªãŸã§ã®çªå·ãã€ããŠãããŸãã
æåã«åé
a[1] ãšã㊠1 ä»¥äž n 以äžã®æ°ãéžã³ãŸãã
a[1] çªã®å±±ã®äžçªäžã®ã«ãŒããæã«åããæžããŠãã£ãæ°åã a[2] ãšããã«ãŒãã¯ç Žæ£ããŸãã
a[2] çªã®å±±ã®äžçªäžã®ã«ãŒããæã«åããæžããŠãã£ãæ°åã a[3] ãšããã«ãŒãã¯ç Žæ£ããŸãã
以äžãåæ§ã«ç¹°ãè¿ããŸãã
a[m] çªã®å±±ã®äžçªäžãæã«åãããšãããæ¢ã«ãã®å±±ã«ã«ãŒãããªãã£ãå Žåãa[m] ãæ«é
ãšããŠæ°åãçµäºããŸãã
[äŸ1] n=3, a[1]=1 ã§åå±±ãäžããé ã«
1 çªã®å±±ïŒ1, 3, 2
2 çªã®å±±ïŒ2, 1, 3
3 çªã®å±±ïŒ2, 3, 1
ã®å Žåãæ°å㯠1, 1, 3, 2, 2, 1, 2, 3, 3, 1 ãšãªããŸãã
[äŸ2] n=3, a[1]=1 ã§ãåå±±ãäžããé ã«
1 çªã®å±±ïŒ1, 3, 2
2 çªã®å±±ïŒ2, 1, 3
3 çªã®å±±ïŒ1, 2, 3
ã®å Žåãæ°å㯠1, 1, 3, 1, 2, 2, 1 ãšãªããŸãã
[äŸ3] n=3, a[1]=1 ã§ãåå±±ãäžããé ã«
1 çªã®å±±ïŒ1, 3, 2
2 çªã®å±±ïŒ2, 1, 3
3 çªã®å±±ïŒ1, 3, 2
ã®å Žåãæ°å㯠1, 1, 3, 1, 2, 2, 1 ãšãªããŸãã
n^2+1 é
ç¶ãæé·æ°åãã§ããå Žåãšããã®ã¯ãn^2 æããå
šãŠã®ã«ãŒããç Žæ£ã§ããå Žåãšããããšã«ãªããŸãã
ãããŠã
ãæé·æ°åã®å
容ã
ãå
šãŠç Žæ£ã§ããããã«ã«ãŒããç©ã¿éã㊠a[1] ãéžã¶æ¹æ³ã
ãäžå¯Ÿäžã«å¯Ÿå¿ããããšã¯æ°åã®äœãæ¹ããããã«ãããã®ã§ãçµå±ã«ãŒããå
šéšç Žæ£ã§ãããããªå Žåã®æ°ãèããã°ããããšã«ãªããŸãã
ã§ã¯ãã«ãŒããå
šãŠç Žæ£ããããšã«é¢ããŠããã€ãèå¯ãè¡ããŸãã
ãŸãããã®æäœã¯ a[1] ãšç°ãªãæ°ã®ã«ãŒãã§çµããããšã¯çµ¶å¯Ÿã«ãããŸããã
ããããçµãã£ããšãã«ã¯å¿
ã a[1] ãšåãæ°ã®ã«ãŒããå
šãŠã®å±±ããç Žæ£ãããŠããŸãã
ãªããªããã©ããã®å±±ã§ã«ãŒããè¶³ããªããªãã®ã¯ãå
šãŠã®å±±ãã a[1] ãšåãæ°ã®ã«ãŒããåŒãããéæããæåã® 1 åãšããã㊠a[1] çªã®å±±ããã«ãŒããåŒãã®ã n+1 åç®ã«ãªããšã以å€ããããªãããã§ãã
ãããŠãa[1] ãšç°ãªãæ°ã®ã«ãŒããå
šãŠç Žæ£ããããã©ããã¯ãa[1] çªä»¥å€ã®å±±ã®äžçªäžã®ã«ãŒãã ãèŠãã°ããããŸãã
äŸãã° [äŸ1] ã®å ŽåããŸããa[1]=1 ãªã®ã§ 1 ã®ã«ãŒãã¯å
šãŠç Žæ£ãããããšãããããŸãã
次ã«ã3 ã®ã«ãŒãã¯å
šãŠç Žæ£ãããããšãããããŸãã
ãªããªã 3 çªã®å±±ã®äžçªäžã« 1 ã®ã«ãŒãããããã3 ã®ã«ãŒããå
šãŠç Žæ£ããããŸã§ 3 çªã®å±±ã® 1 ã®ã«ãŒããç Žæ£ã§ããªãããšããç¶æ
ã«ãªã£ãŠããããã§ãã
çµãããŸã§ã«å¿
ã 1 ã®ã«ãŒããå
šãŠç Žæ£ãããã®ã§ãããããã®åã« 3 ã®ã«ãŒããå
šãŠç Žæ£ãããããšãéæãããªããã°ãªããŸããã
ããã«ã2 ã®ã«ãŒããå
šãŠç Žæ£ãããããšãããããŸãã
ãªããªã 2 çªã®å±±ã®äžçªäžã« 3 ã®ã«ãŒãããããã2 ã®ã«ãŒããå
šãŠç Žæ£ããããŸã§ 2 çªã®å±±ã® 3 ã®ã«ãŒããç Žæ£ã§ããªãããšããç¶æ
ã«ãªã£ãŠããããã§ãã
çµãããŸã§ã« 3 ã®ã«ãŒããå
šãŠç Žæ£ãããããšã¯å
ã»ã©ç¢ºèªããã®ã§ããã®åã« 2 ã®ã«ãŒããå
šãŠç Žæ£ãããããšãéæãããªããã°ãªããŸããã
ãã£ãŠã[äŸ1] ã¯ãå®éã«æ°åãäœã£ãŠã¿ãªããŠãã1 ã 2 ã 3 ãå
šãŠç Žæ£ããããã€ãŸãæé·æ°åãã§ããããšãããããŸãã
äžæ¹ã§ [äŸ2] ã®å Žåã3 ã®ã«ãŒããå
šãŠç Žæ£ãããããšã¯ãããŸããã
ãªããªã 3 çªã®å±±ã®äžçªäžã« 3 ã®ã«ãŒãããããã3 ã®ã«ãŒããå
šãŠç Žæ£ããããŸã§ 3 çªã®å±±ã® 3 ã®ã«ãŒããç Žæ£ã§ããªãããšããç¶æ
ã«ãªã£ãŠããããã§ãã
äžè¬ã«ãa[1]â x ã§ x çªã®å±±ã®äžçªäžã« x ã®ã«ãŒããããå Žåããã®å±±ã¯çµ¶å¯Ÿã«æ®ã£ãŠããŸããŸãã
ãã£ãŠã[äŸ2] ã¯ãå®éã«æ°åãäœã£ãŠã¿ãªããŠããæé·æ°åã«ã¯ãªããªãããšãããããŸãã
ãŸãã[äŸ3] ã®å Žåãã2 ããã³ 3 ã®ã«ãŒããå
šãŠç Žæ£ãããããšã¯ãããŸããã
ãªããªã 2 çªã®å±±ã®äžçªäžã« 3 ã®ã«ãŒãããããåæã« 3 çªã®å±±ã®äžçªäžã« 2 ã®ã«ãŒããããããã
ã2 ã®ã«ãŒããå
šãŠç Žæ£ããããŸã§ 2 çªã®å±±ã® 3 ã®ã«ãŒããç Žæ£ã§ããªãã
ã3 ã®ã«ãŒããå
šãŠç Žæ£ããããŸã§ 3 çªã®å±±ã® 2 ã®ã«ãŒããç Žæ£ã§ããªãã
ãšããç¶æ
ã«ãªã£ãŠããããã§ãã
äžè¬ã«ããã®ãããªäŸåé¢ä¿ã®ã«ãŒããçºçãããšããããã®å±±ã¯çµ¶å¯Ÿã«æ®ã£ãŠããŸããŸãã
ïŒ[äŸ2] ãåç¬ã§ã«ãŒãããŠãããšã¿ãªãããšãã§ããŸãïŒ
ãã£ãŠã[äŸ3] ã¯ãå®éã«æ°åãäœã£ãŠã¿ãªããŠããæé·æ°åã«ã¯ãªããªãããšãããããŸãã
ã«ãŒããååšããªããã°ãå
šãŠã®æ°ã®ã«ãŒãã«ã€ããŠçŽæ¥çãŸãã¯éæ¥çã« a[1] ãšåãæ°ã®ã«ãŒããå
šãŠç Žæ£ããåã«ãã¡ããå
šãŠç Žæ£ããå¿
èŠããããæé·æ°åãã§ããããšã確å®ããŸãã
ãã£ãŠãæé·æ°åã«ãªãã©ããã¯ãç©ã¿éãããšãã« a[1] çªä»¥å€ã®å±±ã®äžçªäžã«æ¥ãã«ãŒãã§ã«ãŒããçºçããªããã©ããã ããèããã°ããããšã«ãªããŸãã
ããŠãã§ã¯ãã«ãŒããç¡äœçºã«ç©ã¿éããŠåé
ãç¡äœçºã«éžãã å Žåã«ãæé·æ°åãäœãã確çãã©ã®ãããã«ãªããèããŸãã
ãŸããç¡äœçºã«ã«ãŒããç©ã¿éãã€ã€åé
ãç¡äœçºã«éžã¶æ¹æ³ãšããŠä»¥äžã®æé ãæ¡çšããŸãã
1 ãã n ãŸã§ã®ã«ãŒã 1 çµãã·ã£ããã«ããŸãããã®åŸã1 çªãã n çªãŸã§ã®çªå·ã 1 ã€ç¡äœçºã«éžã³ããã®å±±ã®çªå·ãšããŸãã
æ¹ããŠå¥ã® 1 ãã n ãŸã§ã®ã«ãŒã 1 çµãã·ã£ããã«ããŸãããã®åŸã1 çªãã n çªãŸã§ã®çªå·ã®ãã¡éè€ããªããã®ã 1 ã€ç¡äœçºã«éžã³ããã®å±±ã®çªå·ãšããŸãã
ããã n åç¹°ãè¿ããšã1 çªãã n çªãŸã§ã®å±±ã宿ããŸãã
ãããŠãæåŸã«äœã£ãå±±ã®çªå·ã a[1] ãšããŠæ¡çšããŸãã
ãã®äœãæ¹ã§ããã°ãn åã®å±±ã®ç©ã¿éãæ¹ (n!)^n éããš a[1] ã®éžã³æ¹ n éãã®çµãå
š n*(n!)^n éãã®èµ·ããããããåæ§ã«ç¢ºãããããšãããŸãã
ããã§ã確ç P[k] (0âŠkâŠn) ãããã®å±±ã®äœãæ¹ã§ k åã®å±±ãäœã£ã段éã§ãæåŸã«æ®ãããšã確å®ããå±±ããŸã ã©ãã«ããªã確çããšå®çŸ©ããŸãã
ãã¡ãã P[0]=1 ã§ãã
ãã®ãšã 1 - P[k+1]/P[k] ã¯ãk åã®å±±ãäœã£ã段éã§æåŸã«æ®ãããšã確å®ããå±±ããŸã ã©ãã«ããªããšããæ¡ä»¶ã®ããšã§ãk+1 åç®ã®å±±ãäœã£ãããã§æåŸã«æ®ãããšã確å®ããå±±ãã§ããŠããŸãæ¡ä»¶ä»ã確çãã§ãã
ããã¯ã0âŠkâŠn-2 ã®å Žåãk+1 åç®ã®å±±ãã·ã£ããã«ãããšãã«äžçªäžã«ããã«ãŒãã x ã ã£ããšããŠã
ã»x çªã®å±±ã k çªç®ãŸã§ã«ãŸã ãªãããã® x çªãk+1 çªç®ã®å±±ã«ã€ããŠããŸã£ã
ã»x çªã®å±±ã k çªç®ãŸã§ã«ããããããx çªã®å±±ã®äžçªäžã®ã«ãŒã㯠yããy çªã®å±±ã®äžçªäžã®ã«ãŒã㯠z
ãâŠâŠãšèŸ¿ã£ãŠè¡ãçããæªäœ¿çšçªå·ã k+1 çªç®ã®å±±ã«ã€ããŠããŸã£ã
ã®ã©ã¡ãããèµ·ãã確çã§ãããã€ãŸãã¯äžçªäžã®ã«ãŒããäœã§ãããã«é¢ä¿ãªãæ®ã£ãŠãã n-k åã®çªå·ããç¹å®ã® 1 åãåŒããŠããŸã確çã«ãªããŸãã
ãã£ãŠã
1 - P[k+1]/P[k] = 1/(n-k)
ãªã®ã§ã
P[k+1]/P[k] = 1 - 1/(n-k) = (n-k-1)/(n-k)
ã§ããã
P[n-1] = (1/2)*P[n-2] = (1/2)*(2/3)*P[n-3] = âŠâŠ = (1/2)*(2/3)*âŠâŠ*((n-1)/n)*P[0] = 1/n
ãšãªããŸãã
æåŸã«äœãå±±ã¯ãã©ããªé åºã«ãªã£ãŠããa[1] ã®éžã³æ¹ãèããã°ç¢ºçã«åœ±é¿ã¯äžããŸããã
ãã£ãŠã
P[n] = P[n-1] = 1/n
ã§ãã
ããã§ããn åã®å±±ãç¡äœçºã«äœããåé
a[1] ãç¡äœçºã«éžãã å Žåã«ãæé·æ°åãäœãã確ç㯠1/n ã§ãããããšãããããŸããã
ãšããã§ããã®å±±ã®äœãæ¹ã¯ n*(n!)^n éããåæ§ã«ç¢ºããããäœããæ¹æ³ã§ããã
ã€ãŸããæé·æ°åãäœããããã«ã«ãŒãã®ç©ã¿éã㊠a[1] ãéžã¶æ¹æ³ããã®ãã¡ N[n] éãã§ãããšãããšãå€å
žç確çã®å®çŸ©ãã
N[n] / {n*(n!)^n} = 1/n
ãšãªããŸãã
ãããã£ãŠåæ¯ãæã£ãŠ
N[n] = (n!)^n
ãåŸãããŸããã
ãžã£ã³ã±ã³ã¯ã人æ°ããå¢ãããšãåŒãåããå€ããªããŸããã
ïœäººã®å Žåã1ïŒïŒ2ïœãŒ2ïŒ/3^(n-1ïŒ
ããäžåã§åè² ã®ã€ããªã確çã®ããã§ãã®ã§ã
人æ°ãå¢ãããšã確çãäžããã¿ããã§ãã
ããã§ã人æ°ãå¢ããŠããåŒãåããå°ãªãã²ãŒã ã
èããŠã¿ãŸããã衚ãšè£ãåºãåã£ãŠãå€ãã»ããåã¡ã«ããã°ã
奿°äººã§ã¯ãå¿
ããå¶æ°äººã§ãåŒãåãã®ç¢ºçãäžããã
ããã§ãâ äžæä»¥äžã®ãéžæè¢ããããâ¡äººæ°ãæ°ããªãã§ã
äžåã§åææ±ºãŸããããªã人æ°ãå¢ããŠãã
åŒãåããå€ããªããªããã²ãŒã ãäœããã§ããããïŒ
ãæ±ãã«ãªã£ãŠãããã®ãšã¯ç°ãªããŸãããã©ãã
ïŒäººã§ã
ïŒäººã®ãã¡ã²ãšããé€ãïŒäººã
ïŒåãã£ããã®ãžã£ã³ã±ã³ãããŸãã
ãã®ïŒäººã§åè² ãã€ãã°ããã§ãã
åŒãåããªãã°ãžã£ã³ã±ã³ã«åå ããªãã£ã
è
ã®åã¡ãšããŸãã
åçã¯å¹³çã§ãã
n 人㧠n æã ãšãããã§ããããã
åºããæã®ç·åã mod n ã§ã
mod n ã§èãããšãå
šãŠåæ°ã§ããããšãç¥ããŸããã
å
·äœçã«ãåæã¯ãã©ãããã°ããã§ããïŒ
æããŠãã ããã
4人ã§ãžã£ã³ã±ã³ãããŸãã
å人ã«ã¯ãŠããŒã¯ãªèçªå·ãã€ããŸãã
èçªå·ã¯ã0ã1ã2ã3 ããã€ããŸãã
å人ãåºããæã¯ã0ã1ã2ã3 ã®ãã¡ã©ããã²ãšã€ãšããŸãã
ãžã£ã³ã±ã³ãäžåãããªããŸãã
ããšãã°ã
1,0,2,1
ãšããçµæã ãšããŸãã
ç·åã mod 4 ã§æ±ããŸãã
1+0+2+1 â¡ 0 (mod 4)
ããã«ãã
èçªå· 0 ã®ãã®ãåã¡ãšããŸãã
ç§ãæå³ããŠããã®ã¯äžã®ãããªã¢ã«ãŽãªãºã ã§ãã
ããŠãã質åã§ããã
ãmod n ã§èãããšãå
šãŠåæ°ã§ããããšãç¥ããŸãããã
äžã«ãããææ°ã4ã®ãšãã®ã¢ã«ãŽãªãºã ã®è絡ã§èšãã°ã
0,0,0,0
1,1,1,1
2,2,2,2
3,3,3,3
ãšãã4ã€ã®ã±ãŒã¹ã«ã€ããŠãå°ãã«ãªã£ãŠ
ããã£ãããã®ã§ããããïŒ
ã質åã®æå³ãããšãããæŽã¿ãããŸããã
ãšããããããããããè¶£æšã§ããããš
ä»®å®ããããŸããŠã
äžã®4ã€ã®ã±ãŒã¹ã®ã©ãã§ãã£ãŠã
mod 4 ã§ã¯ç·åã 0 ãšååã§ãã®ã§
äºåã«ãããŠãããèçªå·ã 0 ã®è
ã
åã¡ãšãããæããŸãã
ãmod n ã§èãããšãå
šãŠåæ°ã§ããããšãç¥ããŸãããã
ã¯ãïœäººããåºããæãåããŠïœïœïœ n ããšããšã
ïŒïŒïŒãâŠãn-ïŒãŸã§ãåãå Žåã®æ°ã«ãªããšããæå³ã§ãã
æåãïŒäººãïŒäººã§èª¿ã¹ãŸãããå±±ãªã察称ã«ãªããïœäººã§ãã
ã©ã®å Žåã®æ°ããïœ^(n-1)ãšãªãããšãã確èªã§ããŸããã
å人ã«ããã³ããªã³ã°ãããšãããç§éžã§ããã
â äžäººã®åè
ãæ±ºãŸããâ¡åŒãåãããªã
ããããããšéããå
šãŠåãæã®æãïŒçªã®äººãåã€ã®ãæå€ã§ããã
ãã°ãããèããŠã¿ããšãäºåç®ä»¥éã¯ã©ããªããæ°ã«ãªããŸããã
ïœäººããé äœã¥ããããšããç®çã§ããã°ãïŒïœïœã®çªå·ãããåŒãã®ããç°¡æã§ãããããã®æºåããããŸããã
ïŒæïŒã»ïŒæ¥ãèªäž»çã«äŒã¿ã«ããŠããŸãã°ãä¹é£äŒãšãªãä»å¹Žã®ãŽãŒã«ãã³ãŠã£ãŒã¯ããã®é£äŒãåŸåã«å
¥ããããããç²ããåºãŠããããã
次ã®åé¡ã§ãç²ããçããŠãã ããã
é·ãïœã®æ°åïœïœïœïœïŒïœïŒïŒãïŒãã»ã»ã»ãïœïŒããããæ¬¡ã®æ§è³ªãæºããã
ïŒïŒïŒåé
ã¯ãïŒä»¥äžïŒä»¥äžã®æŽæ°
ïŒïŒïŒïœâ ïœã§ãïœïœïŒïœïœããªãã°ãïœ(ïœ+1)â ïœ(ïœ+1)
ãã®æ§è³ªãæã€æ°åã§ãïœãæå€§ãšãªããã®ãæ§æããŠãã ããã
å€åmã®æå€§ã¯17ã§ãããã
é©åœã«èããã®ã§å
šã綺éºã§ã¯ãªãã§ãããäŸãã°
2,1,3,1,4,2,3,2,4,3,3,4,4,1,1,2,2
m=17 ã§äœããš
å³ç«¯ãšå·Šç«¯ãšã¯åããã®ã«ãªãããã§ããã
ã¯ãã䞡端ã¯åãæ°åã«ãªããŸãã
ãŸãç®ãå
¥ã£ãŠãããšã¡ãã£ãšãããããã®ã§ã11,22,33,44ãé€ããm=13ã§èããŸãã
ïŒm=17ã®ãã¿ãŒã³ããåãæ°åã®é£ç¶ã1æåæžããã°ãã®ãã¿ãŒã³ã«ãªããŸããïŒ
ãŸãå
é ã®æ°åã¯2ãšããŸãã
2ã§å§ãŸã2æ¡ã¯21,23,24ã®3å
2ã§çµãã2æ¡ã¯12,32,42ã®3å
ãå¿
èŠã§ãããå³ç«¯ã2ã§ãªããšä»®å®ãããš
2aâŠA2bâŠB2câŠ
ã®ããã«ãªãã2a,2b,2cã®3åã§21,23,24ã¯ãã¹ãŠçµãããŸããã
ãããããš2ã§çµãããã®ãA2,B2ã®2åãããªãã®ã§è¶³ããŸããã
ãã£ãŠ2ã§å§ãŸããã®ãš2ã§çµãããã®ãåæ°ã«ãªãããã«ã¯
2aâŠA2bâŠB2câŠC2
ã®ããã«2ã§å§ãŸã£ãã2ã§çµãããªããã°ãªããŸããã®ã§ã
巊端ãšå³ç«¯ã®æ°åã¯åžžã«åãã«ãªããŸãã
1 ãŸã§ã䜿ãå Žåãæé·ã® 1 ã€ã¯
1,1
2 ãŸã§ã䜿ãå Žåãããã®ã©ããã® 1 ã 1,2,1 ã«å€ããããã«ã©ããã® 2 ã 2,2 ã«å€ãããš
1,2,2,1,1
3 ãŸã§ã䜿ãå Žåãããã®ã©ããã® 1 ã 1,3,1 ã«å€ããããã«ã©ããã® 2 ã 2,3,2 ã«å€ãããããŠã©ããã® 3 ã 3,3 ã«å€ãããš
1,3,3,1,2,3,2,2,1,1
以äžåæ§ã«ç¹°ãè¿ãã°ãn ãŸã§äœ¿ããšãã® n^2+1 é
ã®æ°åã®äžäŸã鬿ã§ããŸããã
m=17 ã§ææã®æéæ°åãæ±ããã«ãããã
ïŒåã®ç¹ããã§ã¯ãªãã
m-1=16 ã®æ°ãããªãåç°ããŸãã¯æ§æããã®ãé¢çœãã§ããã
DD+ããã«ããæ§æãç䌌ããã° n ã 4 ã®ãšãã n^2 ããã¹ããªããã§ããm-1=16ã¯ãããæºãããŠããŸãã
åè²ã®ããŒãºã«ç³žãéããŠã¯ãã«ã«ã
æºã®äžã«ããããšãã«
茪ãå³åãã«æ¹åã€ããŠã
åããŒãºã®å³é£ãå·Šé£ã®è²ã®ãã¿ãŒã³ããããã
茪ã®ãªãã§ããã«ããšããªãããã«ããã«ã¯
(åè²ã§ãããã)
4â4 = 16 ãæå€§ã§ããããšèŠåœãã€ããŸãã
ããŸã䞊ã¹ãããšãã§ãããã
茪ã£ãã®ç³žãäžç®æã§åæã
ããŒãºãïŒåã«äžŠã¶ããã«ããŸãã
ãã®ãšããåæã®ãããã§ã
è²ã®äžŠã³ã®ã²ãšã€ãæ¶å€±ããŸãã
ãããè£åããããã«
ããŒãºãïŒåè£å
ããŠ
å·Šå³ã®ç«¯ã®è²ãåãã«ãªãããã«ããŸãã
ããã«ãŠã17åã§ãå·Šå³ã®ç«¯ãåãã«ãªã
åãã§ãããããŸãã
è«çãé£ãã§ããŸããã容赊ãã ããã
䜿ããæ°åã{1,2}ã{1,2,3}ãªãã©ããªãã®ã ãããšæã£ãã®ã§èª¿ã¹ãã
{1,2}=>[1,2,2,1,1],[1,1,2,2,1] (ãªã1,2ã®æ°åãå
¥ãæ¿ããŠãå¯)ã§<1ã3å;2ã2å䜿çš>
{1,2,3}=>[1, 1, 2, 1, 3, 2, 2, 3, 3, 1] (1,2,3ã®æ°åã¯ãµã€ã¯ãªãã¯ã«å€æŽã§ããã)ã§<1ã4å;2ã3å;3ã3å䜿çš>
ããããããã®äŸã(1->4.2->1,3->2,4->3)ã«èªã¿æ¿ãããš
{1,2,3,4}=>[1,4,2,4,3,1,2,1,3,2,2,3,3,4,4,1,1]ã§<1ã5å;2ã4å;3ã4å;4ã4å䜿çš>
ããã§äžè¬ã«
{1,2,3,,n}
ã®æ°åã§æ¡ä»¶ãæºããæé·ã®ãã¿ãŒã³ã¯,<1ãn+1å;2ãnå;3ãnå;4ãnå;,nãnå䜿çš>ããŠæé·n^2+1ã®æ°åãäœãããã§ãã
蚌æã¯æ°åŠçåž°çŽæ³ãæåã ãç€ºãæ¹ãåãããªãã
ãããäœéãæ§æå¯èœãã¯
1ãä»ãã1åå€ã䜿çšãããã¿ãŒã³ã«éã£ãŠèª¿ã¹ãã
n=2;2éãïŒäŸã§æãããã®)
n=3;72éã
1;[1, 1, 2, 1, 3, 2, 2, 3, 3, 1]
2;[1, 1, 2, 1, 3, 3, 2, 2, 3, 1]
3;[1, 1, 2, 2, 1, 3, 2, 3, 3, 1]
4;[1, 1, 2, 2, 1, 3, 3, 2, 3, 1]
5;[1, 1, 2, 2, 3, 1, 3, 3, 2, 1]
6;[1, 1, 2, 2, 3, 2, 1, 3, 3, 1]
7;[1, 1, 2, 2, 3, 3, 1, 3, 2, 1]
8;[1, 1, 2, 2, 3, 3, 2, 1, 3, 1]
9;[1, 1, 2, 3, 1, 3, 3, 2, 2, 1]
10;[1, 1, 2, 3, 2, 2, 1, 3, 3, 1]
11;[1, 1, 2, 3, 3, 1, 3, 2, 2, 1]
12;[1, 1, 2, 3, 3, 2, 2, 1, 3, 1]
13;[1, 1, 3, 1, 2, 2, 3, 3, 2, 1]
14;[1, 1, 3, 1, 2, 3, 3, 2, 2, 1]
15;[1, 1, 3, 2, 1, 2, 2, 3, 3, 1]
16;[1, 1, 3, 2, 2, 1, 2, 3, 3, 1]
17;[1, 1, 3, 2, 2, 3, 3, 1, 2, 1]
18;[1, 1, 3, 2, 3, 3, 1, 2, 2, 1]
19;[1, 1, 3, 3, 1, 2, 2, 3, 2, 1]
20;[1, 1, 3, 3, 1, 2, 3, 2, 2, 1]
21;[1, 1, 3, 3, 2, 1, 2, 2, 3, 1]
22;[1, 1, 3, 3, 2, 2, 1, 2, 3, 1]
23;[1, 1, 3, 3, 2, 2, 3, 1, 2, 1]
24;[1, 1, 3, 3, 2, 3, 1, 2, 2, 1]
25;[1, 2, 1, 1, 3, 2, 2, 3, 3, 1]
26;[1, 2, 1, 1, 3, 3, 2, 2, 3, 1]
27;[1, 2, 1, 3, 2, 2, 3, 3, 1, 1]
28;[1, 2, 1, 3, 3, 2, 2, 3, 1, 1]
29;[1, 2, 2, 1, 1, 3, 2, 3, 3, 1]
30;[1, 2, 2, 1, 1, 3, 3, 2, 3, 1]
31;[1, 2, 2, 1, 3, 2, 3, 3, 1, 1]
32;[1, 2, 2, 1, 3, 3, 2, 3, 1, 1]
33;[1, 2, 2, 3, 1, 1, 3, 3, 2, 1]
34;[1, 2, 2, 3, 1, 3, 3, 2, 1, 1]
35;[1, 2, 2, 3, 2, 1, 1, 3, 3, 1]
36;[1, 2, 2, 3, 2, 1, 3, 3, 1, 1]
37;[1, 2, 2, 3, 3, 1, 1, 3, 2, 1]
38;[1, 2, 2, 3, 3, 1, 3, 2, 1, 1]
39;[1, 2, 2, 3, 3, 2, 1, 1, 3, 1]
40;[1, 2, 2, 3, 3, 2, 1, 3, 1, 1]
41;[1, 2, 3, 1, 1, 3, 3, 2, 2, 1]
42;[1, 2, 3, 1, 3, 3, 2, 2, 1, 1]
43;[1, 2, 3, 2, 2, 1, 1, 3, 3, 1]
44;[1, 2, 3, 2, 2, 1, 3, 3, 1, 1]
45;[1, 2, 3, 3, 1, 1, 3, 2, 2, 1]
46;[1, 2, 3, 3, 1, 3, 2, 2, 1, 1]
47;[1, 2, 3, 3, 2, 2, 1, 1, 3, 1]
48;[1, 2, 3, 3, 2, 2, 1, 3, 1, 1]
49;[1, 3, 1, 1, 2, 2, 3, 3, 2, 1]
50;[1, 3, 1, 1, 2, 3, 3, 2, 2, 1]
51;[1, 3, 1, 2, 2, 3, 3, 2, 1, 1]
52;[1, 3, 1, 2, 3, 3, 2, 2, 1, 1]
53;[1, 3, 2, 1, 1, 2, 2, 3, 3, 1]
54;[1, 3, 2, 1, 2, 2, 3, 3, 1, 1]
55;[1, 3, 2, 2, 1, 1, 2, 3, 3, 1]
56;[1, 3, 2, 2, 1, 2, 3, 3, 1, 1]
57;[1, 3, 2, 2, 3, 3, 1, 1, 2, 1]
58;[1, 3, 2, 2, 3, 3, 1, 2, 1, 1]
59;[1, 3, 2, 3, 3, 1, 1, 2, 2, 1]
60;[1, 3, 2, 3, 3, 1, 2, 2, 1, 1]
61;[1, 3, 3, 1, 1, 2, 2, 3, 2, 1]
62;[1, 3, 3, 1, 1, 2, 3, 2, 2, 1]
63;[1, 3, 3, 1, 2, 2, 3, 2, 1, 1]
64;[1, 3, 3, 1, 2, 3, 2, 2, 1, 1]
65;[1, 3, 3, 2, 1, 1, 2, 2, 3, 1]
66;[1, 3, 3, 2, 1, 2, 2, 3, 1, 1]
67;[1, 3, 3, 2, 2, 1, 1, 2, 3, 1]
68;[1, 3, 3, 2, 2, 1, 2, 3, 1, 1]
69;[1, 3, 3, 2, 2, 3, 1, 1, 2, 1]
70;[1, 3, 3, 2, 2, 3, 1, 2, 1, 1]
71;[1, 3, 3, 2, 3, 1, 1, 2, 2, 1]
72;[1, 3, 3, 2, 3, 1, 2, 2, 1, 1]
n=4; 82944éã
1;[1, 1, 2, 1, 3, 1, 4, 2, 2, 3, 2, 4, 3, 3, 4, 4, 1]
2;[1, 1, 2, 1, 3, 1, 4, 2, 2, 3, 2, 4, 4, 3, 3, 4, 1]
3;[1, 1, 2, 1, 3, 1, 4, 2, 2, 3, 3, 2, 4, 3, 4, 4, 1]

82942;[1, 4, 4, 3, 4, 2, 4, 1, 3, 3, 2, 2, 3, 1, 2, 1, 1]
82943;[1, 4, 4, 3, 4, 2, 4, 1, 3, 3, 2, 3, 1, 1, 2, 2, 1]
82944;[1, 4, 4, 3, 4, 2, 4, 1, 3, 3, 2, 3, 1, 2, 2, 1, 1]
æªããããã°ã©ã ã§æ¢ããŠããã®ã§ã誰ã確èªé¡ãã
2,72,82944ã¯æ£ããã§ãã
ãŸããn=5ã¯4976640000éãã§ãã
ããããããããã€ãããããšãããããŸãã
n=4ã§ã®çµæãåŸããŸã§ã«åªã«ïŒæé以äžã¯èŠããã®ã§
n=5ã§ã¯ææ°é¢æ°çã«æéãå¢å ããèªåã®ããã°ã©ã ã§ã¯ãã¶ãïŒå¹Žä»¥äžããã£ãŠãç¡çãšæãããã®ã«ãªããŸãã
ãããn=5ã¯4976640000éããšãã¡ã©ããã«ç®åºã§ããããããããã®æã«é©ããããŸãã
管ç人ããããåºé¡ãããåé¡ã«ãã©ããªããšãæå³ããŠããã®ããçè§£ãããŸã§ã«ãŸãæéãããããããããããã®è§£çãã¿ãŠ
ãã£ãšãã®æå³ãåããå§ããå§ãã¯é
åãæäœæ¥ã§äœãããšè©Šã¿ããçµå±æ··ä¹±ããŠãããäœãšãèªååã§é
åãæ±ºããããªãããš
ãããããã°ã©ã ã§äœãåºããŸã§ã«ãŸãäœåºŠã詊è¡é¯èª€ãç¹°ãè¿ããŠãããŸããã
å§ãå
šéšã§é
åãäœåã§ããããæ¢ãçåã«ééã£ãèãæ¹ã§ç®åºããŠããããçµæãç¹æ€ããããã®èãéãã«æ°ä»ããŠã³ãŒãã
å
šé¢çã«ä¿®æ£ããŠãã£ãšäœãšãçµæãåŸããããã§ã¯ãªãããšãã顿«ã蟿ããŸããã
èªåãªãã«ãä¿®æ£ãç¹°ãè¿ããªãããããããããšåãçµæãåŸãããããšã«ãšãŠãããããæ°æã¡ã§ãã
ãããããŠ
n=6 㯠23219011584000000
n=7 㯠11800915893414789120000000
n=8 㯠873120530892689265453642547200000000
ã ã£ããããŸãïŒ
ã³ã³ãã¥ãŒã¿ã§ãæµç³ã«ãã®æ¡æ°ã¯å³ããã§ãããïŒ
n=5ã¯æ°åã ã£ãã®ã§ãããn=6ã«ãããæéã¯ãã£ãšèããŠã1å
å以äžããããããªã®ã§ã
ã³ã³ãã¥ãŒã¿ã§ã«ãŠã³ãããæ¹åŒã§ã¯è©ŠããŸã§ããªãå
šãç¡çã§ããã
n ãŸã§äœ¿ããå Žåã«æé·æ°åãäœéãæ§æã§ãããã
ãã®çãã¯å
šãå¥ã®ãããåé¡ãã®çããè¶³ãããã«ãããšããããšãããšãããŸã§æšæ©å°éããå®éã« n=8 ãŸã§ã®è§£ãïŒåã£ãŠãããã©ãããŸã äžæã§ããïŒæ±ããŸããã
ãããããããã®ãããåé¡ããäžè¬ã® n ã§è§£ãããšããŠäžæ©èããŠãæ¹éãå
šãæãæµ®ãã³ãŸããã
ã¿ãªããã®ååãæ±ããã¹ããå¥ã¹ã¬ããã§ããŸã¡éã®æšããšããŠåºé¡ããŠããŸãã
ãã£ã¡ãè§£ããã°ãã£ã¡ãè§£ããã®ã§ãææŠãããããé¡ãããŸãã
ããããã°ãèšäºäžã®
> éããã¿ãŒã³ã§èããŠã¿ããšã
> ïŒãïŒãïŒãïŒãïŒãïŒãïŒãïŒãïŒãïŒãïŒãïŒ
> ã§ã第ïŒïŒé
ç®ã«å
¥ãæ°ã¯ãªãã®ã§ã
ã®äŸã§ã¯ã第 11 é
ã®æç¹ã§ã1, 2ãã 2 åç»å ŽããŠã«ãŒã«éåã«ãªã£ãŠããŸããã
ãããããããæ¢ã«èšŒæããŠããéãããæ°åããã以äžç¶ããããªãããšããçŸè±¡ã¯å¿
ãã¹ã¿ãŒãã«äœ¿ã£ãæ°åã§èµ·ããã¯ãã§ãã
n=9
gp > prod(i=0,8,floor((80+i)/9)!)
%368 = 12123409823952368497816099928432676175872000000000
n=10
gp > prod(i=0,9,floor((99+i)/10)!)
%369 = 39594086612242519324387557078266845776303882240000000000000000000
äžè¬ã«nãªã
prod(i=0,n-1,floor((n^2-1+i)/n)!)
ãšãªããŸãããïŒ
(n!)^n/n ãšåãåŒã§ãããïŒ
n=8 ãŸã§ã¯ç§ãçŽæ¥æ±ããã®ã§ãïŒç§ãèšç®ãã¹ãããŠããªãéãïŒãã®åŒã«äžèŽããçµæã«ãªã£ãŠããŸãã
ãããŠãnâ§9 ã§ãå€åæãç«ã€ãã ãããªãšç§ãæããŸãã
ã§ãããæãç«ã€ãšäºæ³ãããã ãã§ã¯è§£ãããšã¯èšããŸããã
è§£ãããšå®£èšããã«ã¯æãç«ã€èšŒæãŸã§å¿
èŠã§ãã
ãæé·æ°åã®ç·æ°ããšããŸã¡éã®æšãã®é¢ä¿ã«ã€ããŠæ²èŒããŠãããŸãã
äžè¬ã® n ã®ãŸãŸã ãšãããã«ããã®ã§ããæé·æ°åã®ç·æ°ãã® n=4 ãšããå
·äœçãªè©±ã§é²ããæ¢ã«åºãŠãã 82944 éããšããæ°ãå°åºããŠã¿ãŸãã
ãŸãã
ãæ°åã®çŸåšã®æ«å°Ÿã®æ°ã 4 åç®ä»¥å
ã®ç»å Žãªãã°ãæ¬¡ã«æžãããšãã§ããæ°ããŸã æ®ã£ãŠãããã¯æ°åã®äœãæ¹ããæããã§ãã
ãã£ãŠå¯Ÿå¶ãèããã°
ãæ¬¡ã«æžãããšã®ã§ããæ°ããããªããªãã°ãçŸåšã®æ«å°Ÿã®æ°ã¯ 5 åç®ä»¥éã®ç»å ŽãããŠããã
ããšãããããŸãã
ããããæ¡ä»¶
ãsâ t ã§ãa[s]=a[t] ãªãã°ãa[s+1]â a[t+1]ã
ã®å¯Ÿå¶
ãsâ t ã§ãa[s+1]=a[t+1] ãªãã°ãa[s]â a[t]ã
ãããåãæ°ãè€æ°åç»å Žããå ŽåãçŽåã®æ°åã¯å
šãŠç°ãªããªããŠã¯ãããŸããã
ã€ãŸãã5 å以äžç»å Žã§ããæ°ã¯ãå
é ã«ãã 1 ã«éãããŸãã
ã€ãŸããæ¬¡ã«æžãããšã®ã§ããæ°ããããªããªã£ãæ°åã¯ãå¿
ã 1 ããå
é ãã1 ã®æ¬¡ãã2 ã®æ¬¡ãã3 ã®æ¬¡ãã4 ã®æ¬¡ããé äžåã« 1 åãã€èš 5 åç»å ŽããçŽåŸã§çµãã£ãŠããŸãã
ããŠãæé·æ°åã®åæ°ãèããŸãããã
ãŸããn=4 ã®æé·æ°åãå®éã«ããããäœã£ãŠãã1 以å€ã®åæ°ã«ã€ããŠã4 åç®ã®ç»å Žã®æ¬¡ã«äœãæžããããã§åé¡ããŸãã
äŸãã°ãGAI ããã®ãªã¹ãã®å
é ã®ãã®ã¯ã4 åç®ã® 2 ã®æ¬¡ã¯ 4ã4 åç®ã® 3 ã®æ¬¡ã¯ 4ã4 åç®ã® 4 ã®æ¬¡ã¯ 1ããšãªã£ãŠããã®ã§ã
1;[1, 1, 2, 1, 3, 1, 4, 2, 2, 3, 2, 4, 3, 3, 4, 4, 1] -> [2->4, 3->4, 4->1]
ãšåé¡ããŸãã
ããŠãã§ã¯åã [2->4, 3->4, 4->1] ã«åé¡ãããæ°åã¯äœåäœããã§ããããã
å®ã¯ããã¯éåžžã«ç°¡åãªåé¡ã§ãã
å
ã«ç€ºããéãããã®ãããªæ°åã¯æé·ã§ãããã§ãªããŠããè¡ãè©°ãŸãã®ã¯å¿
ã 5 åç®ã® 1 ãç»å Žãããšãã§ãã
ãããŠãããã¯ãå
é ãã1 ã®æ¬¡ãã2 ã®æ¬¡ãã3 ã®æ¬¡ãã4 ã®æ¬¡ããå
šãŠæã£ããšãã«ãªãã¯ãã§ãã
ãšãããã4->1 ãšããé¢ä¿ããã以äžã4 ã 4 åç»å ŽããåŸã§ãªããšã4 ã®æ¬¡ãã¯èµ·ãããŸããã
ãããã£ãŠã4->1 ãšããäŸåé¢ä¿ãããã°ãã©ããªã«éã«æ°åãäœã£ãŠããè¡ãè©°ãŸãåã« 4 ã 4 åç»å Žããããšã¯çµ¶å¯Ÿã«ä¿èšŒãããã®ã§ãã
ããã«ã4 ã 4 åç»å Žããã®ã¯ã1 ã®æ¬¡ãã2 ã®æ¬¡ãã3 ã®æ¬¡ãã4 ã®æ¬¡ããå
šãŠæã£ããšãã«ãªãã¯ãã§ããã2->4, 3->4 ãšããé¢ä¿ãããã®ã§ãåæ§ã« 2 ãš 3 ãã©ããªã«éã«äœã£ãŠã 4 åç»å Žããããšãä¿èšŒãããã®ã§ãã
ã€ãŸãã
ã1 ã®ç»å Ž 4 åç®ãŸã§ã¯æ¬¡ã®æ°ã« 1,2,3,4 ãä»»æã®é ã§äœ¿ãã
ã2 ã®ç»å Ž 3 åç®ãŸã§ã¯æ¬¡ã®æ°ã« 1,2,3 ãä»»æã®é ã§äœ¿ãã
ã3 ã®ç»å Ž 3 åç®ãŸã§ã¯æ¬¡ã®æ°ã« 1,2,3 ãä»»æã®é ã§äœ¿ãã
ã4 ã®ç»å Ž 3 åç®ãŸã§ã¯æ¬¡ã®æ°ã« 2,3,4 ãä»»æã®é ã§äœ¿ãã
ãå®ãéããäœããã£ãŠãèªåçã« [2->4, 3->4, 4->1] ã«åé¡ãããæé·æ°åãã§ããããã®ã§ãã
ãã£ãŠããã®ç·æ°ã¯ 4!*3!*3!*3! = 5184 éãã§ãã
ãã㯠[2->4, 3->4, 4->1] ã«éã£ã話ã§ã¯ãªãã®ã§ãåé¡ããããã®äžã§å¿
ã 5184 åã®æé·æ°åãäœããããšã«ãªããŸãã
ã§ã¯ããã®ãããªåé¡ã¯äœçµã§ããããšããããšãèããŸãã
[2->a, 3->b, 4->c] ã® a, b, c ãé©åœã«éžã¹ã°ããããšãããšããã§ã¯ãããŸããã
äŸãã° [2->4, 3->2, 4->2] ã®å Žåã
2 ãš 4 ã¯ãäºãã« 4 åç®ã®ç»å Žããããšãããçžæã® 4 åç®ããåŸã§ãªããšãããªããšããã«ãŒããçºçããŠããŸãã
ã€ãŸãã©ããªã«ããŸããã£ãŠã 2 ã 4 ã® 4 åç®ãç»å ŽããªããŸãŸ 5 åç®ã® 1 ãæ¥ãŠæ°åãçµãã£ãŠããŸãããšãæå³ããŸãã
ãã£ãŠã[2->4, 3->2, 4->2] ãšããåé¡ã¯ååšããŸããã
ããã㯠[2->1, 3->2, 4->4] ã®å Žåã
2 ãš 3 ã«ã€ããŠã¯ 4 åã®ç»å Žãä¿èšŒãããŸãã
ãããã4 ã«ã€ããŠã¯ 4 åç®ã®ç»å Žããããšããã 4 åç®ã® 4 ããåŸã§ãªããšãããªããšããèªå·±ã«ãŒããçºçããŠããŸãã®ã§ã4 㯠4 åç®ã®ç»å ŽããããŸããã
ãã£ãŠãããæé·æ°åã«ã¯çµ¶å¯Ÿã«ãªããã[2->1, 3->2, 4->4] ãšããåé¡ã¯ã§ããŸããã
ã€ãŸã [2->a, 3->b, 4->c] ãšããåç®ã®åé¡ãååšãããåŠãã¯ãäŸåé¢ä¿ã«ãã®ãããªã«ãŒããçºçããªããåŠããèããã°ããããšã«ãªããŸãã
ãããŠããã¯ãããŸã¡éã®æšãã§ 1 ãšããé山㚠2, 3, 4 ãšãããŸã¡éãçšæããŠã
2 㯠a ã®é ïŒa=1 ãªãéå±±ïŒã«åºã
3 㯠b ã®é ïŒb=1 ãªãéå±±ïŒã«åºã
4 㯠c ã®é ïŒc=1 ãªãéå±±ïŒã«åºã
ãšããæšãååšãããåŠããèããã°ããããšã«ãªããŸãã
3 æ¬ã®ãŸã¡éã§äœãæšã¯ 16 éãã ãšããã£ãŠããŸãã
ãã£ãŠããã®ãããªäŸåé¢ä¿ã®äœãæ¹ã¯ 16 éããããã«ãæé·æ°åã®åé¡ã 16 çµã§ããããšãããããŸãã
ãããã£ãŠãn=4 ã®æé·æ°åã®ç·æ°ã¯ 5184*16 = 82944 ãšãªããŸãã
äžè¬ã® n ã®å Žåãåæ§ã«èããããšãã§ããŠã
ãn-1 æ¬ã®ãŸã¡éã®æšã®ç·æ°ã * n! * (n-1)! * (n-1)! * âŠâŠ * (n-1)! ïŒ (n-1)! ã¯å
šéšã§ n-1 åïŒ
ãšæ±ããããããšãããããŸãã
ããŠãã§ã¯ããŸã¡éã®æšãã®ç·æ°ãæ±ããåŒïŒèšŒæä»ãïŒã¯ïŒããšããã®ãçŸç¶ç§ããã©ãçããŠããæå
端ã§ãã
ã©ããã
de Bruijn sequence
ãšå¯æ¥ãªé¢ããããããããªæ°ãããŠãŸãããŸããã
管ç人ããã«ãããé¡ã¯ïŒåã§ããã
ãã®å·Šç«¯ãšå³ç«¯ãšãç¹ããŠèŒªã«ããŸãã
ç¹ããã«ãããã䞡端ã¯åãã§ããããçæ¹ã¯é€å»ããŸãã
äžåã« n^2+1 ã®èŠçŽ ããã£ããã®ã
n^2 ã®èŠçŽ ã®ãã茪ã«ããŸãã
de Bruijn sequence ã«ã€ããŠã¯ä»¥äžã
埡åç
§ãã ããã
https://en.m.wikipedia.org/wiki/De_Bruijn_sequence
äžã®èšäºäžã§
"The number of distinct de Bruijn sequences B(k, n) is"
ãšãããŸãã
ãã®èšäºã§ã管ç人ããããã®
ãé¡ã調ã¹ãŠããç§éã®ç®çã«ãããŠã¯
n=2
ã§åºå®ã§èããŠããã§ãã
B(k, n)ã§ã¯ãªããB(k, 2)
ãç¥ãããã®ã§ãã
ãŸãããã®èšäºã«ããã k ã¯
ç§éãè§£ãããšããŠããåé¡ã® n ã«çžåœããŸãã
ãã®ããšãæèããŠ
B(k, 2) ãæ±ããåŒãã¿ãŠãã ããã
ããŠãããããŠåŸãããæ°ã¯
茪ã«ããŠãããã®ã«å¯Ÿå¿ããŠæ°ããŠããŸãã
茪ãåæããŠå
ã®äžåã«ããã«ã¯
kåããå¿
èŠããããŸãã
ãšãã£ãâŠâŠâŠ
æµ
ãèªã¿æ¹ãããŠãããŸãã
çæ§ããã®åŸ¡æ¹æ£ããé¡ãããããŸãã
ãªãã»ã©ã坿¥ãªé¢ããã©ããããã»ãŒãã®ãã®ã§ããã
ãããã2 çš®é¡ã® n é£ç¶ã§éè€ãé¿ããæ¹åããçºå±ããŠããéœåäžãn çš®é¡ã® 2 é£ç¶ã§ã®è©±ã¯ãããŸããªãã¿ããã§ããã
ã§ãããšããããäºæ³ããŠããåŒãæ£ãããšããä¿èšŒãã§ããããšã¯å€§ããªäžæ©ã§ãã
ããããšãããããŸãã
ããã®åé¡ã¯ã¡ãããšè§£ããåé¡ã§ããããšããã®ã¯æ°åŠã«ãããŠæå€§ã®ãã³ãã§ããããã
ãã®åŸããã°ã©ã ãäœåºŠãé«éåããŠ
n=5ã®æã®4976640000éããäžç¬ã§æ±ããããããã«ãªãã
ãã®ããã°ã©ã ã§n=6ã«ã€ããŠæ±ãããšãã
çŽ23åã§ã23219011584000000éãããšæ±ãŸããŸããã
ïŒåäžæ°åã®é£ç¶ããªããããã®ãæ°ããŠn(n-1)^(n-1)ãæããããã«ããã®ãäž»ãªé«éåïŒ
ããã§ãn=7ã¯æ°ãæ¹ãæ ¹æ¬ããå€ããªããšç¡çããã§ãã
prod(i=0,n-1,floor((n^2-1+i)/n)!)
ãš
(n!)^n/n
ã®çµæãåããã®ã«ãªãã®ãé¢çœããæ§é ãåæãããš
n=3
3!*2!*2!*(3^1)=3!*3!*2!=3!*3!*(3!/3)=(3!)^3/3
n=4
4!*3!*3!*3!*(4^2)=4!*4!*4!*3!=4!*4!*4!*(4!/4)=(4!)^4/4
n=5
5!*4!*4!*4!*4!*(5^3)=5!*5!*5!*5!*4!=5!*5!*5!*5!*(5!/5)=(5!)^5/5
n=6
6!*5!*5!*5!*5!*5!*(6^4)=6!*6!*6!*6!*6!*5!=6!*6!*6!*6!*6!*(6!/6)=(6!)^6/6
n=7
7!*6!*6!*6!*6!*6!*6!*(7^5)=7!*7!*7!*7!*7!*7!*6!=7!*7!*7!*7!*7!*7*(7!/7)=(7!)^7/7

ïŒã€ç®ã®æãprod(i=0,n-1,floor((n^2-1+i)/n)!)ã§æåŸã®éšåã(n!)^n/n
ã«å¯Ÿå¿ããŠããã
ããã«DD++ããã®èšè¿°ãšéãåããããš
ãn-1 æ¬ã®ãŸã¡éã®æšã®ç·æ°ã * n! * (n-1)! * (n-1)! * âŠâŠ * (n-1)!
ïŒ (n-1)! ã¯å
šéšã§ n-1 åïŒ
ãšæ±ããããããšãããããŸãã
n=3ã§ããå Žåã®DD++ããã®è§£èª¬ã«ãã
ã€ãŸã [2->a, 3->b, 4->c] ãšããåç®ã®åé¡ãååšãããåŠãã¯ã
äŸåé¢ä¿ã«ãã®ãããªã«ãŒããçºçããªããåŠããèããã°ããããšã«ãªããŸãã
ãããŠããã¯ãããŸã¡éã®æšãã§ 1 ãšããé山㚠2, 3, 4 ãšãããŸã¡éãçšæããŠã
2 㯠a ã®é ïŒa=1 ãªãéå±±ïŒã«åºã
3 㯠b ã®é ïŒb=1 ãªãéå±±ïŒã«åºã
4 㯠c ã®é ïŒc=1 ãªãéå±±ïŒã«åºã
ãšããæšãååšãããåŠããèããã°ããããšã«ãªããŸãã
3 æ¬ã®ãŸã¡éã§äœãæšã¯ 16 éãã ãšããã£ãŠããŸãã
ïŒç§ã¯ããŸãã¡çè§£ãåãã§ããŸãããããã®æ°ã4^2ã®éšåã«çžåœããŠããã®ãïŒïŒ
n=5ãŸã§ã¯ã³ã³ãã¥ãŒã¿ã§
[1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5]
ãåæã«äžŠã³å€ãããšããäŸã®æ°åã®æ¡ä»¶ãæºããããé
åç·æ°ã
4976640000
ãŸã§ç¢ºèªãããŠããã®ã§ããããn=5ã§ã®
5!*4!*4!*4!*4!*(5^3)=5!*5!*5!*5!*4!=5!*5!*5!*5!*(5!/5)=(5!)^5/5(=4976640000)
ã«ããã5^3=125ã¯ããŸã¡éã®æšã®ç·æ°ããšè§£éã§ãããã§ãããã
ãã®åœ¢åŒããã©ãã°äžè¬ã«nã§ã®ããŸã¡éã®æšã®ç·æ°ã= n^(n-2)
ãšãªããããªãã§ãããn>=8 ã§ãããã§ãããšãã蚌æãå¿
èŠãšããããšã§ããããïŒ
https://oeis.org/A000272
(1/2)² = (1/3)²+(1/4)²+(1/5)²+(1/7)²+(1/12)²+(1/15)²+(1/20)²+(1/28)²+(1/35)²
ãã¿ãšããŠé¢çœããã§ãã
忝ãçŽ å æ°åè§£ãããšãã«çŸããçŽ æ°ãäžæ¡ã®ã2, 3, 5, 7 ã«æããããŠããã®ãè峿·±ãã§ãã
äžã¯ãç¥äººãè«æããæŸã£ãŠããããã§ãã
ããããã®ã䜿ã£ãŠã³ã³ãã«å¿åããã
ãããšããããã§ãããïŒ
ã³ã³ãâ https://ct-competition-2023.dltcapital.ie/
ã³ã³ãã«å¿åãããšããŠâŠâŠ
äŸãã°ã忝ã 2023 以äžã«æãã€ã€ãé
æ°ãã§ããã ãå€ãããäœæŠãããããŸããã
1 = 1/16
+1/6+1/10+1/12+1/14+1/18+1/20+1/22+1/24+1/28+1/36+1/40+1/44+1/48+1/56+1/66+1/70+1/72+1/80+1/88+1/90+1/110+1/112+1/132+1/140+1/144+1/154+1/176+1/180+1/210+1/220+1/264+1/280+1/308+1/360+1/420+1/440+1/528+1/560+1/616+1/720+1/840+1/880+1/1232+1/1680
äžã¯ 45 é
ã§ãããèŠãã°ãã ã¡ã«ãå€ãã«ãªãããã«ããŸã ãŸã é
æ°ã¯å¢ããããã§ãã
é»åãªã©ãè£å©ã«æèšç®ã§äœããŸããã®ã§æ ¹æ§ãè¶³ããã«éäžã§æ«æããŸããããšã»ã»ã
(1/2)² = (1/3)²+(1/4)²+(1/5)²+(1/7)²+(1/12)²+(1/15)²+(1/20)²+(1/28)²+(1/35)²
ãããæ¢ãããã®ã ãšæå¿ããã®ã§(1/3)^2ã調æ»ããŠã¿ãã
gp > V1=[4,6,9,15,20,36,45,60];
gp > V2=[4,6,12,13,15,20,39,52];
gp > V3=[4,6,12,14,15,20,28,42];
gp > V4=[5,6,7,10,14,15,21,30];
ãã«å¯ŸããŠã¯å
šãŠ
gp > vecsum(apply(i->1/i^2,V1))
%56 = 1/9
gp > vecsum(apply(i->1/i^2,V2))
%57 = 1/9
gp > vecsum(apply(i->1/i^2,V3))
%58 = 1/9
gp > vecsum(apply(i->1/i^2,V4))
%59 = 1/9
ãšãªã(1/3)^2ãæ§æããŠãããããã§ãã
ãªã
(1/2)^2ã§ã¯
M1=[3,4,5,7,12,15,20,28,35]
ã§ã®ãã¿ãŒã³ä»¥å€ã§ã
M2=[3,4,5,6,12,36,45,60,90]
M3=[3,4,5,6,12,30,60,75,100]
M4=[3,4,5,6,14,20,35,84,140]
M5=[3,4,5,6,15,18,36,60,180]
M6=[3,4,5,6,12,28,60,105,210]
M7=[3,4,5,6,12,35,42,60,420]
M8=[3,4,5,6,12,36,45,50,900]
ãªã©ã
gp > vecsum(apply(i->1/i^2,M1))
%60 = 1/4
gp > vecsum(apply(i->1/i^2,M2))
%61 = 1/4
gp > vecsum(apply(i->1/i^2,M3))
%62 = 1/4

ãšãªã(1/2)^2ãæ§æããŠãããããã§ãã
æ€çŽ¢ã§ã¯ãªããäœãšãæ§æåŒãèŠã€ããããšã¯åºæ¥ãªããã§ãããããïŒ
GAI ããã
ããããèšç®ããŠãã ãã£ãŠãŸããšã«ããããšãããããŸããã
èŠãŠããã ãã§äžå¯æè°ãªå¹žããªæ°æã¡ã«ãªããŸãã
ç¥äººã«ããã ãã®è«æã®ããããå°ããŠãããŸããŠãåçãæ¥ãŸããã
An algorithm for Egyptian fraction representations with restricted denominators https://www.semanticscholar.org/paper/An-algorithm-for-Egyptian-fraction-representations-Martin-Shi/a7d01f6936c77be939b0cd7ada41344f0ff81af2
忝ã®å€§ãããæŒãããæ¹åã§
åäœåæ°ã®åãšããã«ã¯ã©ãããã¢ã«ãŽãªãºã ãããã®ãã
ãšãã£ãè«æã®ããã§ãã
颿°åããã°ã©ãã³ã°èšèªã ãšç§»æ€ããããã®ããªããšæããŸããã
(1/n)=(1/a1)+(1/a2)ãã®é¢ä¿åŒãæºããçµåãã®èª¿æ»
2=>
[3, 6]
*1/2=1/3+1/6ã®åŒãæãç«ã€ããšã瀺ãã
3=>
[4, 12]
4=>
[6, 12]
5=>
[6, 30]
6=>
[10, 15]
9=>
[12, 36]
10=>
[15, 30]
--------------------------
(1/n)=(1/a1)+(1/a2)+(1/a3)
2=>
[4, 6, 12]
3=>
[6, 10, 15]
4=>
[10, 12, 15]
5=>
[12, 15, 20]
6=>
[12, 21, 28]
7=>
[15, 21, 35]
9=>
[20, 30, 36]
[21, 28, 36]
10=>
[21, 35, 42]
------------------------------------
(1/n)=(1/a1)+(1/a2)+(1/a3)+(1/a4)
2=>
[4, 10, 12, 15]
3=>
[9, 10, 15, 18]
4=>
[9, 18, 21, 28]
[10, 15, 21, 28]
5=>
[15, 20, 21, 28]
6=>
[20, 21, 28, 30]
7=>
[18, 28, 36, 42]
[20, 28, 30, 42]
9=>
[20, 35, 60, 63]
10=>
[30, 36, 45, 60]
-----------------------------------------------
(1/n)=(1/a1)+(1/a2)+(1/a3)+(1/a4)+(1/a5)
2=>
[6, 9, 10, 15, 18]
3=>
[10, 12, 15, 21, 28]
4=>
[12, 20, 21, 28, 30]
5=>
[18, 21, 28, 30, 36]
6=>
[21, 28, 30, 36, 45]
7=>
[28, 30, 36, 42, 45]
9=>
[35, 36, 45, 60, 63]
10=>
[28, 45, 63, 70, 84]
[30, 42, 60, 70, 84]
[30, 45, 60, 63, 84]
[36, 42, 45, 70, 84]
--------------------------------------------
(1/n)=(1/a1)+(1/a2)+(1/a3)+(1/a4)+(1/a5)+(1/a6)
2=>
[5, 9, 18, 20, 21, 28]
[6, 9, 12, 18, 21, 28]
[6, 10, 12, 15, 21, 28]
[7, 9, 12, 14, 18, 28]
[7, 10, 12, 14, 15, 28]
3=>
[10, 15, 20, 21, 28, 30]
4=>
[18, 20, 21, 28, 30, 36]
5=>
[20, 21, 35, 36, 42, 45]
6=>
[21, 35, 36, 42, 45, 60]
7=>
[28, 35, 42, 45, 60, 63]
9=>
[35, 42, 60, 63, 70, 84]
10=>
[42, 45, 60, 70, 84, 90]
----------------------------------------------------
(1/n)=(1/a1)+(1/a2)+(1/a3)+(1/a4)+(1/a5)+(1/a6)+(1/a7)
2=>
[9, 10, 12, 15, 18, 21, 28]
3=>
[14, 15, 20, 21, 28, 30, 35]
4=>
[15, 21, 30, 35, 36, 42, 45]
5=>
[21, 30, 35, 36, 42, 45, 60]
6=>
[28, 30, 35, 45, 60, 63, 70]
[30, 35, 36, 42, 45, 60, 70]
7=>
[30, 35, 45, 60, 63, 70, 84]
9=>
[42, 45, 60, 63, 84, 90, 105]
10=>
[42, 60, 63, 70, 84, 105, 126]
[45, 60, 63, 70, 84, 90, 126]
ïŒä»ã«ãå€ãã®é¢ä¿åŒãååšã§ããŸããæåŸã«çŸããæ°ããªãã ãå°ãããªã
ãã®ãéžãã§æ²ç€ºããŠããŸãã
-----------------------------------------------------------
å¹³æ¹æ°ã§ã®é¢ä¿åŒã§ã¯
(1/n)^2=(1/a1)^2+(1/a2)^2+(1/a3)^2ãã®é¢ä¿åŒãæºããçµåãã®èª¿æ»
6=>
[7, 14, 21]
*(1/6)^2=(1/7)^2+(1/14)^2+(1/21)^2 ãæç«ããããšã瀺ãã
----------------------------------------------------------
(1/n)^2=(1/a1)^2+(1/a2)^2+(1/a3)^2+(1/a4)^2
4=>
[5, 7, 28, 35]
----------------------------------------------------------
(1/n)^2=(1/a1)^2+(1/a2)^2+(1/a3)^2+(1/a4)^2+(1/a5)^2
4=>
[6, 7, 12, 14, 21]
6=>
[7, 15, 21, 42, 105]
9=>
[12, 14, 60, 252, 420]
10=>
[12, 21, 36, 252, 1260]
-----------------------------------------------------------
(1/n)^2=(1/a1)^2+(1/a2)^2+(1/a3)^2+(1/a4)^2+(1/a5)^2+(1/a6)^2
3=>
[4, 6, 7, 60, 84, 420]
4=>
[6, 7, 14, 15, 20, 21]
5=>
[6, 10, 30, 35, 70, 105]
6=>
[7, 12, 60, 105, 140, 420]
[7, 15, 20, 60, 84, 420]
7=>
[12, 14, 15, 20, 28, 84]
9=>
[10, 30, 35, 70, 90, 105]
10=>
[12, 20, 60, 70, 140, 210]
------------------------------------------------------------
(1/n)^2=(1/a1)^2+(1/a2)^2+(1/a3)^2+(1/a4)^2+(1/a5)^2+(1/a6)^2+(1/a7)^2
3=>
[4, 6, 9, 12, 36, 45, 60]
[4, 6, 10, 12, 20, 30, 60]
4=>
[5, 10, 14, 15, 28, 30, 42]
5=>
[6, 12, 20, 21, 60, 84, 105]
6=>
[9, 12, 15, 20, 36, 45, 60]
7=>
[9, 14, 28, 36, 45, 60, 84]
[10, 14, 20, 28, 30, 60, 84]
9=>
[12, 20, 21, 60, 84, 90, 105]
10=>
[12, 28, 35, 42, 70, 84, 140]
[14, 20, 30, 35, 60, 84, 140]
----------------------------------------------------------
ãŸãç«æ¹æ°ã§ã®é¢ä¿åŒã§èª¿æ»ããŠã¿ãŸããã
(1/n)^3=(1/a1)^3+(1/a2)^3+(1/a3)^3
10=>
[12, 15, 20]
*(1/10)^3=(1/12)^3+(1/15)^3+(1/20)^3 ãæç«ããããšã瀺ãã
----------------------------------------------------------------------
(1/n)^3=(1/a1)^3+(1/a2)^3+(1/a3)^3+(1/a4)^3+(1/a5)^3+(1/a6)^3+(1/a7)^3
5=>
[6, 7, 15, 21, 30, 42, 210]
6=>
[7, 10, 14, 15, 30, 42, 70]
9=>
[10, 15, 30, 36, 45, 60, 90]
10=>
[12, 14, 30, 42, 60, 84, 420]
--------------------------------------------------------------------
(1/n)^3=(1/a1)^3+(1/a2)^3+(1/a3)^3+(1/a4)^3+(1/a5)^3+(1/a6)^3+(1/a7)^3+(1/a8)^3
7=>
[9, 10, 14, 18, 63, 70, 105, 315]
9=>
[10, 14, 70, 84, 90, 105, 140, 210]
--------------------------------------------------------------------
(1/n)^3=(1/a1)^3+(1/a2)^3+(1/a3)^3+(1/a4)^3+(1/a5)^3+(1/a6)^3+(1/a7)^3+(1/a8)^3+(1/a9)^3
4=>
[5, 6, 7, 28, 35, 45, 252, 630, 1260]
5=>
[6, 7, 14, 30, 36, 42, 45, 60, 70]
6=>
[7, 10, 14, 15, 36, 42, 45, 60, 70]
9=>
[10, 15, 28, 36, 63, 70, 90, 180, 1260]
[10, 18, 20, 28, 36, 63, 70, 90, 1260]
10=>
[12, 14, 30, 42, 63, 84, 140, 180, 210]
ãªã©ãæ§æå¯èœã«ãªãããã§ãã
(1/n)=(1/a1)+(1/a2) ã§
7â[8,56] ãšã 8â[9,72] ã¯ãªãæžãããŠããªãã®ã§ãããïŒ
äžè¬ã« nâ[n+1,n(n+1)] ã§ããã
7â[8,56] ãšã 8â[9,72] ããèŠéãããçç±
N=2^a*3^b*5^c*7^d
(a=0,1,2;b=0,1,2;c=0,1;d=0,1)
ãªãå åã«éå®ããïŒïŒã¿ã€ãã®æ°ã®çµã¿åãããããæ¡ä»¶ãæºããçµåãã
æ¢ãåºããŠããã®ã§ãäžèšã®æ°ã§ã®çµã¿åãããé¡ãåºããªãçµæãšãªã£ãŠããŸããã
ã§ããã8=>ã«å¯Ÿãããã¿ãŒã³ãã©ã®åéã§ãèŠéãããçµæãæããŠããŸãã
æ¢ãæ°ã®ææã
N=2^a*3^b*5^cïŒ7^d
(a=0,1,2,3;b=0,1,2;c=0,1;d=0,1)
48ãã¿ãŒã³ã§ãã£ãŠã¿ãŸããã
2=>
[3, 6]
3=>
[4, 12]
4=>
[5, 20]
[6, 12]
5=>
[6, 30]
6=>
[7, 42]
[8, 24]
[9, 18]
[10, 15]
7=>
[8, 56]
8=>
[9, 72]
[10, 40]
[12, 24]
9=>
[10, 90]
[12, 36]
10=>
[12, 60]
[14, 35]
[15, 30]
ããã§ãã£ãšå§¿ãçŸããŠããŸãã
(1/n)=(1/a1)+(1/a2)+(1/a3)+(1/a4)+(1/a5)+(1/a6)+(1/a7) ã§æ¬ æããŠããéšåã§ã
8=>
[35, 42, 60, 63, 70, 72, 84]
[40, 42, 56, 60, 63, 72, 84]
ãã®ä»å€ããçºèŠã§ããŸããã
> bâ 0ãšãããa/bã»ã»ã»
> ã¯ãã©ããªããã ããïŒ
èšã£ãŠããæå³ãããããããŸãããããã©ããªãããšã¯ã©ãããæå³ã§ãããïŒ
ãã®åã®äžè§æ¯ãšè©±ã®ãšããããã§ããããã¯ã¡ã¹ããããè«ç¹å
åã«ã€ããŠããããã£ãŠããªãããŸãã¯åéãããŠãããããªã®ã§ã
以äžã®ããã«æžãã人ããããšããŸãããã
-------
ãã§ã«ããŒã®æçµå®çã®èšŒæ
nâ§3 ã®ãšãã
ãã§ã«ããŒã®æçµå®çããã
a^n + b^n = c^n
ã«èªç¶æ°è§£ã¯ååšããªãã
c^n ãç§»é
ãããšã
a^n + b^n - c^n = 0
ãèªç¶æ°è§£ã¯ååšããªãã
ãã£ãŠããããã c^n ãç§»é
ããã
a^n + b^n = c^n
ã«èªç¶æ°è§£ã¯ååšããªãã
ãããã£ãŠããã§ã«ããŒã®æçµå®çã¯ç€ºãããã
-------
ããã蚌æã«ãªã£ãŠããªãããšã¯ããããŸããïŒ
ãã®äººã¯ãã§ã«ããŒã®æçµå®çããããã蚌æããããšããŠããŸãã
ãªã®ã«ãããã§ã«ããŒã®æçµå®çããããšæ¢ã«èšŒæãæžãã§ããåæã§è©±ãå§ãŸãã®ã¯ããããã§ãããã
ããããã®ãè«ç¹å
åãšèšã£ãŠããã®åŸã©ã話ãå±éããããæ£ãã蚌æã«ãªãããšã¯çµ¶å¯Ÿã«ãããŸããã
ãçµè«ãã¿ããªãçŽåŸããŠããããªããçµè«ãã¿ããªãçŽåŸããŠãããããšèšã£ãŠãã ããªããã§ããããã
ãããçè§£ããŠãããããæ¬¡ãèŠãŠãã ããã
--------
( a^n + b^n )^2 â§ (a+b)^n ã®èšŒæ
ïŒäžéšç¥ïŒ
以éãaâ§2, bâ§2 ãšããã
( a^n + b^n )^2 â§ (a+b)^n ããã
ïŒä»¥äžãã°ããç¥ïŒ
ãã£ãŠ ( a^n + b^n )^2 â§ (a+b)^n
-------
ãããã©ãæããŸããïŒ
ããã¯ãããããã§ãããã
ã§ããè£é¡ã¯ããããªã£ãŠããŸãããã¡ãããšèªãã§ããã ããã°ããããã¯ãã§ãã
以éaâ§2,ïœâ§2ãšããã
ã®äžã¯ãã¡ãã£ãšè¡šçŸã¯ãŸããã£ãã®ã§ããã(a^n+b^n)^2-(a+b)^nãšããŠã
(a^n+b^n)^2-(a+b)^n=a^2n+2a^nb^n+b^2n-(a+b)^n
ãšæžãã¹ãã ã£ãã®ã§ãã(a^n+b^n)^2ïŒ(a+b)^nãå©çšããŠããç®æã¯ãããŸããã
> bâ 0ãšãããa/bã»ã»ã»
> ã¯ãã©ããªããã ããïŒ
ã¯ããbâ 0ãšããããã¯è«ç¹å
åãã«åœãããŸãããïŒ
ãïŒ
䜿ã£ãŠãªããã§ããïŒ
ããããããã®è¡ãåé€ããããšæã£ãŠèªãã§ã¿ãŸãã
bâ 0 ã®è©±ã¯ããã蚌æãããå
容ã bâ 0 ãããã«é¡ããå
容ãªã®ã§ããã°ãè«ç¹å
ååé¡ããããŸãã
ãããã¯ãb=0 ãæ³å®ããŠããã¯ãã®èšŒæã§ bâ 0 ãåæã«ä»ãå ãããšããåé¡ã§ãã
ãã以å€ãã€ãŸã b=0 ãš bâ 0 ã§å Žååãããã ããšããbâ 0 ã§ããããšã蚌æããåŸãªãåé¡ãªããšæããŸããã
è£é¡ãçŽããŸãããç·è²ã®ããããã¯ã¡ã¹ããã¯ãªãã¯ããŠãã ããã
ïŒbâ 0 ã®è©±ã¯ããã蚌æãããå
容ã bâ 0 ãããã«é¡ããå
容ãªã®ã§ããã°ãè«ç¹å
ååé¡ããããŸãã
ãããã¯ãb=0 ãæ³å®ããŠããã¯ãã®èšŒæã§ bâ 0 ãåæã«ä»ãå ãããšããåé¡ã§ãã
ãã以å€ãã€ãŸã b=0 ãš bâ 0 ã§å Žååãããã ããšããbâ 0 ã§ããããšã蚌æããåŸãªãåé¡ãªããšæããŸããã
蚌æã«å
ç«ã£ãŠãa/bãåºãŠããã®ã§ãbâ 0ãšãããšããããšã¯ããã®ã§ããã
ã§ã¯ãèçæ³ã®å Žåã¯ãè«ç¹å
åãã«ã¯ãªããªããšããªããšãŸããã§ãããïŒ
ãã§ã«ããŒã®æçµå®çã§ããa,b,cã¯äºãã«çŽ ãªèªç¶æ°ãšããããšãã
âïŒã¯ç¡çæ°ã§ã¯ããa/bã®a,bã¯äºãã«çŽ ã§ããããšããŠããa/bã¯äºãã«çŽ ã§ãªããççŸã
ãšãªã£ãŠããŸãã
ã©ãæããŸãïŒ
ä¿®æ£åŸã®ãèªã¿ãŸããã
âŠâŠãªãã§å
ã®ãã€ã«ã¯å
šéšãå°ç¡ãã«ããäžæãçªã£èŸŒãã§ãã£ããã§ããããã
æ°ã«ãªã£ãç¹ã 2 ã€ã
1 ã€ãã
b = a + j ã§ jâ§0 ãšããŠããŸãããäœãæ°å€ãæ°ããæåã§ãããšãã«ã¯ãããããæ¡ä»¶ãæºããæ°ãååšããä¿èšŒãå¿
èŠã§ãã
j ã«å¶éããªããã°ãããã j ãååšããããšã¯æããã§ããã0 以äžã®ç¯å²ã§ååšããä¿èšŒã¯ãããŸããã
æåã® aâ§2, bâ§2 ã bâ§aâ§2 ã«ããäžã§ãa>bâ§2 ã®å Žåã®èšŒæãæžãè¶³ãïŒåæ§ã«ã§ååã§ããããã©ïŒçã®ä¿®æ£ãå¿
èŠã ãšæããŸãã
2 ã€ãã
bâ§a ãšããæ¡ä»¶ãä»ãè¶³ããåæã§ã®è©±ã«ãªããŸãã
ãã®èšŒæã£ãŠ
b^2n = b^n*b^n â§ 2^n*b^n = (2b)^n â§ (a+b)^n
ãšããäžè¡ããããããäºé
å®çã§å±éãããéã®äžçåŒãå¢ããããããŠè©±ããããããããŠããã ãã«èŠãããã§ããããã®çè§£ã¯ééã£ãŠããã§ããããïŒ
> 蚌æã«å
ç«ã£ãŠãa/bãåºãŠããã®ã§ãbâ 0ãšãããšããããšã¯ããã®ã§ããã
å
ç«ã£ãŠãšããããããããåœé¡ã bâ 0 ãåæã«æžãããŠãããã©ããã§ããã
ã»åœé¡èªäœã« bâ 0 ãšæèšãããŠãã
ã»b ã蟺ã®é·ããªã©éåžž 0 ã«ãªãããšããªãéã衚ãæåã§ãã
ã»åœé¡ã®äžã« b ã忝ã«ããåæ°ãååšãã
ã»åœé¡ã®äžã« b ãçæ°ã«ãã察æ°ãååšãã
ãªã©ã®å Žå㯠bâ 0 ãšããŠããŸã£ãŠå€§äžå€«ã§ãã
ïŒbâ 0 ããšãããããã bâ 0 ãã§ããããšæžãæ¹ããèªåãåæã«æ±ºãããšèª€è§£ãããªãã®ã§ãããè¯ããšæããŸãïŒ
> èçæ³ã®è©±
èçæ³ã®å Žåã¯ãè«ç¹å
åã«ã¯ãªããŸããã
èçæ³ã¯ãåœé¡ A ã蚌æããã®ã«ãåœé¡ A ã®åäŸã®ååšãä»®å®ãããã®ã§ãã
ãåœé¡ A ãä»®å®ããããããããããŸããã
確ãã«ã±ã£ãšèŠã¯è«ç¹å
åã£ãœããèŠããè¡çºã§ã¯ããã®ã§ããããããã¯ããã®ã§ããã
ãªããæªèšŒæã®ãŸãŸæ ¹æ ã«çšããŠããã®ã¯ãåœé¡ A ã®åäŸã®ååšãä»®å®ããããšããéšåã®ã¿ã§ããããšã«æ³šæãå¿
èŠã§ãã
ãã§ã«ããŒã®æçµå®çã§ããã°ãåœé¡ããçåŒãæºãã x, y, z ã¯ååšããªããã§ãã
ã ãããçåŒãæºãã x, y, z ãååšãããšä»®å®ãããã¯æ ¹æ ãªãä»®å®ããŠãä»ã®å
å®¹ã®æ ¹æ ã«çšããŠå€§äžå€«ã§ãã
ã§ãããã以å€ã¯æ ¹æ ãªãçšããŠã¯ãããŸããã
ãã® x, y, z ãäºãã«çŽ ãã©ããã¯ãåäŸã®ååšãä»®å®ããã ãã§ã¯äœãèšããŸããã®ã§ãå¥é蚌æãå¿
èŠã§ãã
â2 ã®èšŒæããåœé¡ããç¡çæ°ã§ããããªã®ã§ããæçæ°ã§ããããæ ¹æ ãªãä»®å®ããä»ã®å
å®¹ã®æ ¹æ ã«çšããŠæ§ããŸããã
ã§ãããã以å€ã¯æ ¹æ ãªãçšããŠã¯ãããŸããã
ã ããã
ã»æçæ°ã§ãããªãã°ãäºãã«çŽ ãªæŽæ° a, b ïŒãã ã bâ 0ïŒãçšããŠããã®æ°ã a/b ãšæžãã
ã»â2 ã¯æçæ°ã§ãã
ã»ãã£ãŠäºãã«çŽ ãªæŽæ° a, b ïŒãã ã bâ 0ïŒãçšã㊠â2 = a/b ãšæžãã
ãšãã話ããããšãã«ã1 ã€ãã®æãæ¬åœã«æ£ãããã©ããã¯ãã¡ããšç¢ºèªããªããã°ãããŸããã
ïŒã€ã
ãªãã»ã©ãaâ§2, bâ§2 ãšæžããŠããããb=a+jã ãã§æžã¿ãŸããã
ïŒã€ã
ãªãã»ã©ãã·ã³ãã«ã§ããã
ãã§ã«ããŒã®æçµå®çãåççã«èšŒæããŸããã
ãè¿·æãããããŸãããçããã®ãæèŠããèãããã ããã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
äºé
å®çããã{http://y-daisan.private.coocan.jp/html/felmer-7-2.pdfãããç·è²ã®ããããã¯ã¡ã¹ããã¯ãªãã¯ããŠãã ããã}
ãããn
a^n-1=Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(a-1)^(n-i)}----(a)
ãããi=1
ãããn
b^n-1=Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(b-1)^(n-i)}----(b)
ããã i=1
ãããn
c^n-1=Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(c-1)^(n-i)}----(c)
ããã i=1
a^n+b^n=c^nãšãããšã{ãã ãa<b<cãšãã}
a^n-1+b^n-1+1=c^n-1
(a^n-1)+(b^n-1)+1=(c^n-1)
(a^n-1)+1=(c^n-1)-(b^n-1)
åŒ(a),(b),(c)ããã
n
Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(a-1)^(n-i)}ïŒïŒ
i=1
ãn
ïŒÎ£ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(c-1)^(n-i)}
ãi=1
ãn
ãŒÎ£ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(b-1)^(n-i)}
ãi=1
ããããn
a^n-1+1ïŒÎ£ nCi{b^(n-i)+(b+1)^(n-i)+(b+2)^(n-i)+ã»ã»ã»+(c-1)^(n-i)}
ããããi=1
n
Σ [nCi{b^(n-i)+(b+1)^(n-i)+(b+2)^(n-i)+ã»ã»ã»+(c-1)^(n-i)}-(a)åŒã®nCi{ã»ã»ã»}]-1----(d)
i=1
ãšãããšã(d)åŒã®
(c-1)^(n-i)-(a-1)^(n-i)
ã®å€§å°é¢ä¿ã調ã¹ãã°ããã
å
Œ΋
x^n-y^n=(x-y){x^(n-1)+x^(n-2)y+x^(n-3)y^2+ã»ã»ã»+xy^(n-2)+y^(n-1)}
ããã
x,yãèªç¶æ°ãªãã{}ã®äžã¯ãæ£ã®èªç¶æ°ããããã£ãŠã(x-y)ãæ£ãè² ã§x^nãšy^nã®å€§å°é¢ä¿ããããã
ïŒïŒ
(c-1)^(n-i)-(a-1)^(n-i)
ã«ãããŠãc>b>aãããc-1>a-1ããã
c-bã®é
æ°ãšaã®é
æ°ãåé¡ãšãªããæ¡ä»¶ã¯c-b>aãã€ãã
(c-1)^(n-i)-(a-1)^(n-i)>0
ãšãªãããã£ãŠ(d)åŒã¯>0----(g)
ïŒïŒ
ãŸãã
c-1)^(n-i)-(a-1)^(n-i)
ã«ãããŠãc>b>aãããc-1>a-1ããã
c-bã®é
æ°ãšaã®é
æ°ãåé¡ãšãªããæ¡ä»¶ã¯c-bïŒaãã€ãã
(c-1)^(n-i)-(a-1)^(n-i)<0
ãšãªãããã£ãŠ(d)åŒã¯<0----(h)
ããããæºè¶³ããã°ããã§ã«ããŒã®æçµå®çã¯èšŒæã§ããã
ïŒïŒ
ãã ãã(d)åŒ=0ã®å ŽåãèããŠã¿ããi=1ãnã«ãããŠ
(c-1)^(n-i)-(a-1)^(n-i)
c>b>aãããc-1>a-1ããã(c-1)^(n-i)-(a-1)^(n-i)â§0----(f)
c-bã®é
æ°ãšaã®é
æ°ãåé¡ãšãªããæ¡ä»¶ã¯c-b=aãã€ãã
ïŒâïŒïŒi=nã®ãšãã
nCn{b^(n-n)+(b+1)^(n-n)+(b+2)^(n-n)+ã»ã»ã»+(c-1)^(n-n)}
-{nCn{1^(n-n)+2^(n-n)+3^(n-n)+ã»ã»ã»+(a-1)^(n-n)+1}
=c-b-a=0
ïŒâïŒïŒi=n-1ã®ãšãã
nC1{b+(b+1)+(b+2)+ã»ã»ã»+(c-1)}-{nC1{1+2+3+ã»ã»ã»+(a-1)}
=n{(c-1)c/2-(b-1)b/2-(a-1)a/2}
=n{(c-1)c-(b-1)b-(a-1)a}/2
=n{c^2-c-b^2+b-a^2+a}/2
=n{c^2-b^2-a^2-(c-b-a)}/2
c-b=aããã
=n{(c-b)(c+b)-a^2}/2
=n{a(c+b)-a^2}/2
=n{a(a+2b)-a^2}/2
=n{a^2+2ab-a^2}/2
=abn
ããã§ãa,b,nã¯èªç¶æ°ããã
nC1{b+(b+1)+(b+2)+ã»ã»ã»+(c-1)}-{nC1{1+2+3+ã»ã»ã»+(a-1)}=abn>0----(e)
ïŒâïŒïŒ
(d)åŒ=0ã§ããã«ã¯ã(f)ã§ãããããi=1ãnãŸã§ã
n
Σ [nCi{b^(n-i)+(b+1)^(n-i)+(b+2)^(n-i)+ã»ã»ã»+(c-1)^(n-i)}-(a)åŒã®nCi{ã»ã»ã»}]-1----(d)
i=1
ã®[nCi{b^(n-i)+(b+1)^(n-i)+(b+2)^(n-i)+ã»ã»ã»+(c-1)^(n-i)}-(a)åŒã®nCi{ã»ã»ã»}]=0ã§ãªããã°ãªããªãã
ãšããããi=n-1ã§(e)åŒã¯abn>0ã§ããã0ã§ãªãã---(j)
ãããã£ãŠã(d)åŒ=0ã«ã¯ãªããªãã
ããã«ã(g)ãš(h)ãš(j)ãã(c)åŒãŒ(b)åŒããŒïœïŒïœïŒåŒïŒïŒïœâ ãïŒ
ã€ãŸããa^n+b^nâ c^n
ãã£ãŠããã§ã«ããŒã®æçµå®çã¯åççã«èšŒæãããã
> æ¡ä»¶ã¯c-b>aãã€ã
> æ¡ä»¶ã¯c-bïŒaãã€ã
> æ¡ä»¶ã¯c-b=aãã€ã
æ¡ä»¶ãã€ãããšããèšèã®æå³ãããããªããã§ããã
ããã¯ã©ããã䞻匵ã§ãããïŒ
DDïŒïŒæ§ãããã°ãã¯ã
ïŒc-bã®é
æ°ãšaã®é
æ°ãåé¡ãšãªã
ã®ã§ã(d)åŒãïŒïŒãããã¯ãïŒïŒãããã¯ïŒïŒã§ããã«ã¯ãé
æ°ã®å€§å°é¢ä¿ãšããåé¡ãããã®ã§ãæ¡ä»¶ãã€ããšããããšã§ãã
ããããããšã§ã¯ãªãåé¡ããããšãææã§ããããïŒ
çŽç²ã«æ¡ä»¶ããã€ãããšããæ¥æ¬èªã®æå³ãããããŸãããšãã話ã§ãã
æ¡ä»¶ããåŸãããããšããæ¡ä»¶ããäžããããããšããæ¡ä»¶ããå¿
èŠã«ãªãããšããªãããããŸãã
æ¡ä»¶ããã€ãããšã¯äžäœïŒ
ãªãã»ã©ããå¿
èŠã«ãªããæå³ã§ããã
ã§ã¯ãå¿
èŠã«ãªã£ããã®æ¡ä»¶ã¯ã©ãã§èšŒæãããŠããã®ã§ãããïŒ
ïŒïŒ
ïŒc-1)^(n-i)-(a-1)^(n-i)----(ã¢ïŒ
ã«ãããŠãc>b>aãããc-1>a-1ããã
c-bã®é
æ°ãšaã®é
æ°ãåé¡ãšãªããæ¡ä»¶ã¯c-b>aãã€ãã
(c-1)^(n-i)-(a-1)^(n-i)>0
ãšãªãããã£ãŠ(d)åŒã¯>0----(g)
(ã¢ïŒãšc>b>aãšå
¬åŒããã(c-1)^(n-i)-(a-1)^(n-i)>0
ãšãªãã«ã¯ãæ¡ä»¶ã¯c-b>aãå¿
èŠã«ãªããŸãã
ã©ãããã«ãïŒïŒïŒïŒãåæ§ã§ãã
è«çã®é åºãšããŠäžé©åãªè¡šçŸã ã£ããããããŸããã
é çªã®åé¡ãããªãããå¿ èŠã ããšèšã£ãŠãããã®ããã©ãã«ãååšããŠããªãã§ãããïŒ
ïŒïŒïŒ
ãã ãã(d)åŒ=0ã®å ŽåãèããŠã¿ããi=1ãnã«ãããŠ
(c-1)^(n-i)-(a-1)^(n-i)
c>b>aãããc-1>a-1ããã(c-1)^(n-i)-(a-1)^(n-i)â§0----(f)
c-bã®é
æ°ãšaã®é
æ°ãåé¡ãšãªããæ¡ä»¶ã¯c-b=aãã€ãã
ããã®æå³ãããåãããªãã®ã§ããã
n
Σ [nCi{b^(n-i)+(b+1)^(n-i)+(b+2)^(n-i)+ã»ã»ã»+(c-1)^(n-i)}-(a)åŒã®nCi{ã»ã»ã»}]-1----(d)
i=1
c-bã®é
æ°ãšã¯b^(n-i)+(b+1)^(n-i)+(b+2)^(n-i)+ã»ã»ã»+(c-1)^(n-i)ã®é
æ°ã§aã®é
æ°ãšã¯(a)åŒã®nCi{ã»ã»ã»}ã®é
æ°ã®äºã§ããããã
ããã ãšãããšãå·Šã¯c-1-b+1=c-båã§å³ã¯a-1åã§c-b=a-1ãªã®ã§ã¯ãªãã§ããããã
>ïŒâïŒïŒ
(d)åŒ=0ã§ããã«ã¯ã(f)ã§ãããããi=1ãnãŸã§ã
n
Σ [nCi{b^(n-i)+(b+1)^(n-i)+(b+2)^(n-i)+ã»ã»ã»+(c-1)^(n-i)}-(a)åŒã®nCi{ã»ã»ã»}]-1----(d)
i=1
ã®[nCi{b^(n-i)+(b+1)^(n-i)+(b+2)^(n-i)+ã»ã»ã»+(c-1)^(n-i)}-(a)åŒã®nCi{ã»ã»ã»}]=0ã§ãªããã°ãªããªãã
ããã§ã¯(d)åŒã¯-1ã§ã¯ãªãã®ã§ããããã
å¿
èŠæ§ã§ãããªãã®ã ãããc-b ãš a ã®å€§å°é¢ä¿ã決ãŸã£ãŠãã¢ã®å€§å°é¢ä¿ã¯æ±ºãŸããŸãããã©ã
æ£çŽãå¿
èŠæ§ååæ§ããã¡ããã¡ãã§ããŸãšãã«ãã¿ãªããã®ãæèŠããåºããªããããã²ã©ãã§ãã
æèŠãããã«ã¯ãééã£ãŠãããã ãã©ãäœããããã£ãã®ãã¯ããããçšåºŠã«ã¯ãã¡ããšæŽçãããŠããªããã°ãªããŸãããããã®æç« ã¯ãŸããã®æšæž¬ããäžå¯èœã§ãã
KYæ§ããã¯ããããããŸãã
ïŒc-bã®é
æ°ãšaã®é
æ°ãåé¡ãšãªããæ¡ä»¶ã¯c-b=aãã€ãã
ãããn
b^n-1=Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(b-1)^(n-i)}----(b)
ããã i=1
ãããn
c^n-1=Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(c-1)^(n-i)}----(c)
ããã i=1
ãããc-n-1ãšb^n-1ã®å·®ã¯ãc>bãªã®ã§ãïŒãb-1ãåŒãããŠã
n
Σ [nCi{b^(n-i)+(b+1)^(n-i)+(b+2)^(n-i)+ã»ã»ã»+(c-1)^(n-i)}
i=1
ãšãªããŸãã®ã§ãïœãc-1é
ã§b=10,c=20ãšãããšã10ã19ãªã®ã§ã10é
ã§ããããé
æ°ã¯c-bã«ãªããŸãããïŒaã1ããa-1ãªã®ã§ããããé
æ°ã¯a-1ã§ããã
ïŒããã ãšãããšãå·Šã¯c-1-b+1=c-båã§å³ã¯a-1åã§c-b=a-1ãªã®ã§ã¯ãªãã§ããããã
ãŸã£ãããããã§ããããã£ããããŠãŸããã
ïŒïŒâïŒïŒ
ïŒããã§ã¯(d)åŒã¯-1ã§ã¯ãªãã®ã§ããããã
ïŒã®[nCi{b^(n-i)+(b+1)^(n-i)+(b+2)^(n-i)+ã»ã»ã»+(c-1)^(n-i)}-(a)åŒã®nCi{ã»ã»ã»}]=0ã§ãªããã°ãªããªãã
ããã§ã¯ãé
æ°ãäžèŽããŠãããšæå³ã§ãã£ãã®ã§ããã(d)åŒ=0ãšããåæããããšããŠããããããã§ããã
ããããšãããããŸãã
DD++æ§ããã¯ããããããŸãã
ãã®KYæ§ãžã®åçããåèã«ãªããšãããŸãã
ãªããæçš¿å¶éã®ãããéå»ã®æçš¿ã®ãã¡ïŒã€æçš¿ãæ¶ããŸããã