Dengan kesaktian Indukmuæ§ããã¯ããããããŸãã
Dengan kesaktian Indukmuæ§ã®æçš¿ã§ããããã¯ãçŽåŸããŸããã
å¿ åã«åŸã£ãŠãç§ãšããŠã¯ãçµããã«ããããšæããŸãã
ããããããšã§ãDD++æ§ãç¡åçããèš±ããã ããã
ããããã¯ã¡ã¹ãããã®ä»°ã
ã0.999ã»ã»ã»=9/10+9/10^2+9/10^3+9/10^4+ã»ã»ã»ã»ã¯ãç¡çæ°ã§ããã
ãçŽæ¥èšŒæããŠããã ããŸãããïŒ
管ç人æ§ããã¯ããããããŸãã
ãã€ãããè¿·æãããããŸãã
ããã¯ãæçæ°ã¯ãååæŒç®ã§æçæ°ã§éããŠãããšããäºå®ã§ãããªããããã®ç¡éåãç¡çæ°ã«ãªããšããããŒãŒã«åé¡ãæ£ãããšããçµè«ãããå°ãåºããããã®ã§ãç§ãããã蚌æã§ããæéã»ãã³ãã¯ãçŸåšæã¡åãããŠãããŸããã
ããããå°æ¥ããããããã£ã³ã¹ã«æµãŸãããšããŸã§ããåŸ
ã¡ãã ããã
ãŸããæçš¿ã®äœèšãªäžæã管ç人æ§ã®ãæ©å«ãæããããšããèš±ããã ããã
ãããšããã¹ãŠã®ç¡éå°æ°ã¯ãç¡çæ°ã«ãªãã®ã§ã¯ãªãããšããçåããçãããšæããŸãã
ãã®çåãçãã¯ã
ã§ã¯ã1/3ã¯ãç¡çæ°ã«ãªããªãã®ããšãããšã1/3ã¯1÷3ã§ãããŸãã埪ç°ããããã埪 ç°ããã®ã§ãã〠ãŸããïŒÃ·3=0.333ã»ã»ã»ïŒïŒïŒïŒïŒã»ã»ã»ã»ïŒã§ãïŒïŒïŒïŒã»ã»ã»ã»ïŒã¯ãããŸãã§ãã
ã€ãŸããæŒç®ãå¯èœãªç¯å²ã§0.333ã»ã»ã»ã䞊ãã§ããã®ã§ãç¡éã§ã¯ãæŒç®ãã§ããªãã®ã§ã1÷ïŒã¯ãæéå°æ°ã«ãªãå¯èœæ§ããããŸãããããã£ãŠãæçæ°ã§ãã
ãã®èª¬æã§ã¯ãâïŒã¯ãç¡çæ°ã§ãããç¡éã«èšç®ããŠããã®ã§ãç¡éã§ã¯ãæŒç®ãã§ããªããªããæéå°æ°ã«ãªãå¯èœæ§ããããŸãããããã£ãŠãæçæ°ã§ããšãªã£ãŠããŸãã§ã¯ãªããïŒ
ããã«ã¯ã埪ç°ããç¡éå°æ°ã¯ãæçæ°ã«å«ãŸããŸããã埪ç°ããªãç¡éå°æ°ã¯ç¡çæ°ã§ããããçãã«ãªããªãã§ããããïŒ
ã€ãŸãã埪ç°ããŠãªããšãããªãã®ã§ãã
ïŒïŒïŒïŒïŒã»ã»ã»ã¯ãæ ¹æ ããªãã«ãã ãïŒã䞊ã¹å€æ°ã§ããããæŒç®ã¯ã©ãã«ããããŸããã
埪ç°å°æ°ã¯æçæ°ãªã®ã§ãåæ°ã«ã§ããŸãããïŒïŒïŒïŒïŒã»ã»ã»ã¯ãåæ°ã«ã§ããŸãããç§ããx=aãšããŠãïŒïŒåããŠåŒããŠãx=aã§ããã
0.333ã»ã»ã»ãšãã埪ç°å°æ°ãåæ°ã«ããæ¹æ³ã§ã¯ã1/3ã«ãªããŸããã1/3ã¯ãïŒïŒïŒïŒïŒã»ã»ã»ãããïŒïŒïŒïŒïŒã»ã»ã»ã»ïŒã§ãïŒïŒïŒïŒã»ã»ã»ã»ïŒã¯ãããŸãã§ããã€ãŸããïŒïŒïŒïŒïŒã»ã»ã»ãã倧ãããªã£ãŠããã®ã§ãããã埪ç°å°æ°ãåæ°ã«ããæ¹æ³ã¯ãééãã§ãã
ããããã¯ã¡ã¹ããããè«çãç Žç¶»ããŠããŸãããïŒ
è«çãç Žç¶»ããŠãŸããïŒã©ã®ãžãã§ããããïŒããã¯ãããŠãããŠãå€åã
ïŒããã¯ãæçæ°ã¯ãååæŒç®ã§æçæ°ã§éããŠãããšããäºå®ã§ãããªããããã®ç¡éåãç¡çæ°ã«ãªããšããããŒãŒã«åé¡ãæ£ãããšããçµè«ãããå°ãåºããããã®ã
ããšããšãæçæ°ã¯ãååæŒç®ã§æçæ°ã§éããŠãããšããäºå®ã§ãããªããããã®ç¡éåãç¡çæ°ã«ãªããšããããŒãŒã«åé¡ãæªããã®ã§ãã
ãããšããã¹ãŠã®ç¡éå°æ°ã¯ãæçæ°ã«ãªã£ãŠããŸããŸããããŒãŒã«åé¡ãæ£ãããã°ããã¹ãŠã®ç¡éå°æ°ã¯ãç¡çæ°ã«ãªã£ãŠããŸããŸãã
ïŒåŸªç°ããç¡éå°æ°ã¯ãæçæ°ã«å«ãŸããŸããã埪ç°ããªãç¡éå°æ°ã¯ç¡çæ°ã§ããã
ãããççŸããŸãã
ããšããšãæçæ°ã¯ãååæŒç®ã§æçæ°ã§éããŠãããšããäºå®ã§ãããªããããã®ç¡éåãç¡çæ°ã«ãªããšããããŒãŒã«åé¡ã¯ãäžé©åãªåœé¡ãªãã§ããããã
ããã§çµããã«ããŸãããã
é·ãéããè¿·æãããããŸããã
âŠâŠé¢ä¿ãããã®ãããããªããšæããŸããŠæçš¿ããããŸãã
ãŸãã¯åèæç®ã®ãæ¡å
ããã
â ãé«æ ¡çã«ããããç¡çæ°ãã®æŠå¿µãïŒå€§å±±æ£ä¿¡ã»ç±³æ²¢å
æŽïŒ
( https://core.ac.uk/download/pdf/144571306.pdf )
ãã®åèæç®ã® p.10 ããåŒçšããŸãã
-----
圌ã®ãã®èª€è§£ã¯,圌ãã1ãã«ãããŠ,ãç¡çæ°ãšã¯ç¢ºå®ããæ°ãååšããªããã®ããšããŠãããšããããçããŠãããšèãããã
-----
åŒçšéšåã«ããçåŸã®èª€è§£ã¯ããç¡éåã®æäœãå¿
èŠãšããã®ã§ãã€ãŸã§ãã£ãŠã確å®ããå€ãåããªãããšãã£ãæ°æã¡ãããããã®ãªã®ã§ããããšæšå¯ãããŸãã
èªåèªèº«ãæ¯ãè¿ããŸããšãå°åŠçãããã®é ãŸã§ã¯åããããªæ°æã¡ã匷ãã£ããšæããŸãã
ç§ã®å Žåã«ã¯äžåŠäžå¹Žã®é ã«åºäŒã£ãé¢æ ¹å
çã®æãæ¹ãäžæã ã£ãã®ãããããŸããããã©ããªããšãªãã§ããããããçåã¯æ¶ããŠããŸããŸããã
é¢æ ¹å
ç㯠確ãã
ãå
šãŠã®æéå°æ°ã¯ç¡éå°æ°ãšããŠãæžãããšãã§ãããæžãæ¹ãéãã ãã§å€ã¯åãã ããšãã€ãã宣èšããŠããã£ããããŸããã
ãããã宣èšã念ä»ãããã¯åŸ¡é¡ç®ã®ããã«ããšããããšã«ããªãã³ã®å£°ã§ç¹°ãè¿ããŠããã£ããããŸããã
é¢æ ¹å
çã奜ããªäŸé¡ã¯ïŒ/ïŒã§ããã
é»æ¿ã«æžãã®ã¯ãã€ã
ïŒ.ïŒïŒïŒïŒ.ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒâŠâŠâŠâŠâŠâŠâŠâŠâŠ
ã§ããããã§ãŒã¯ã§âŠâŠãçŽ æ©ãé»æ¿ã®ç«¯ãã端ãŸã§äžæ°ã«æžãå¿
殺æããæã¡ã§ããŠãäžéšã®çåŸãã¡ãç䌌ããããšå¥®éããŠããããšãæãããæãåºãããŸãã ããããªããªãé£ããã®ã§ãããã©ã
å°»åããã³ãã§ãããã©ããä»åã®æçš¿ã¯ä»¥äžã§ãã
è¿œèšïŒå
çšã®åèæç®ã§ãåæãé¢é£ã®åããããè¡ãªã£ããšãã®çåŸãã¡ã®åå¿ã«ã€ããŠã®ã¢ã³ã±ãŒãçµæãåºãŠããŸããŠå€§å€ã«èå³æ·±ããã®ã§ããã
以äžã§ãã
ãããŠãããããã¯ã¡ã¹ãããã¯ããããããïŒäººã§è¡ãã°ãŒãã§ãããŒã§è¡ããžã£ã³ã±ã³ã¯ïŒåççã«ã¯ïŒå
¬å¹³ã§ãããšãèãã®çã§ãã
ã
ãžã£ã³ã±ã³ãœãã£ã
ãããã§ããã£ã
ãããã§ããã£ã
ãããã§ããã£ã
åã£ããŒïŒè² ãããŒïŒ
ã
ãšããäŸã®ãã€ã§ãã
ã
ããã®ãžã£ã³ã±ã³ã®ã«ãŒã«ã¯å
¬å¹³ã§ãããããšãš
ãïŒé²æ³ã§èšããšãã« ïŒ/ïŒ ïŒ ïŒ.ïŒïŒïŒïŒïŒïŒâŠâŠâŠïŒç¡éå°æ°ïŒã®çåŒãæç«ããã
ããšãšã¯åå€ã§ããããšãææããŠããããæããŸãã
Dengan kesaktian Indukmuæ§ãããã°ãã¯ã
ããããšãããããŸãã
> ãã®ããšããã
> 0.999ã»ã»ã»=9/10+9/10^2+9/10^3+9/10^4+ã»ã»ã»ã»
> ã¯ãç¡çæ°ã§ãããšãªããŸããã
ãªããããªããããªãã§ããã
ç§ã®äž»åŒµãåæã«æ»ãæ²ããªãã§ãã ããã
ç¶ã2ã«å
¥ã£ãŠããã®æçš¿ãèŠãŸããããã¯ã¡ã¹ãããããã£ãŠããããšã¯æ°åŠãšåŒã¹ãªãããã«æããŸãã
ã¯ã¡ã¹ãããã¯ãæ ¹æ ãããããšãªããããšèªåã®äºæ³ãééã£ãŠããããããªããšããåæã«ç«ã£ãŠããããã«æããŸãã
ãã®ãããªèãæ¹ã¯ãè¯ãèšã£ãŠå®æãæªãèšãã°åŠæ³ãšåŒã°ããã¹ããã®ã§ãã
ããã¯æ°åŠã®å Žã§ãã
蚌æãçšæã§ããªãã®ãªãã°ïŒå
¬çãšå®çŸ©ãé€ãïŒã©ããªèšè¿°ãçå®ãã©ããããããªãããšããæ°åŠçç«å Žã§çºèšããŠãã ããã
DD++æ§ããã¯ããããããŸãã
ãææããããšãããããŸãã
ããŠãhttps://ja.wikipedia.org/wiki/0.999...ã«ããã°ã0.999ã»ã»ã»=1ãšããäœç³»ãããã°ã0.999ã»ã»ã»<1ãšããäœç³»ãããããã§ããããã¯ãç¡éå°ã0ãšãããããªããã®éãã ããã§ãã
æšæ¥ã¯ã2æ¥ãæŽæ°ããããããã¯ãDD++æ§ãžã®è¿ä¿¡ããå¿
èŠã§ãããšæ°ã¥ããŠãæçš¿ããã®ã§ããããã®è¡ã¯ãDD++æ§ã®çºèšã®åçã«ã¯ãäžèŠã§ãããšæ°ã¥ããŠããã®è¡ãæ¶ãããšæã£ãæã«ã管ç人æ§ã®æçš¿ããã£ãã®ã§ããããã§ãäžèŠãªäºæ
ãæããŠããŸããŸããã
çæ§ã倧å€ããè¿·æãããããŸããã
ããããã¯ã¡ã¹ãããã¯ã
ãã0.999ã»ã»ã»=1ãšããäœç³»ãããã°ã0.999ã»ã»ã»<1ãšããäœç³»ãããã
ãšããããšãç¥ã£ãäžã§ãã0.999ã»ã»ã»=1ãšããäœç³»ãã¯èª€ãã ãšããç«å Žãªãã§ãããïŒ
管ç人æ§ããã¯ããããããŸãã
ç¡éå°ãâ¿ãšããŸãã
ïŒïŒïŒïŒïŒã»ã»ã»=1ã®èãã§ã¯ãâ¿ïŒïŒã§ãã
äžæ¹ïŒïŒïŒïŒïŒã»ã»ã»ïŒ1ã®èãã§ã¯ãâ¿ïŒïŒã§ãã
ããã§ãååæŒç®ããç¡éã§ãé©çšã§ãããšããŸãã
ïŒïŒããŠãå®æ°ã¯é£ç¶ãªã®ã§ãaïŒâ¿=bãšãããšãa,bã¯é£ãåãã¯ãã§ããã
ãšããããâ¿=0ãªããa=bã§ãåããã®ã§ããå®æ°ã¯ãé£ã³é£ã³ã§ãé£ãåããã®ãã§ããªããé£ç¶ã§ãªããšãªããŸãããïŒ
ïŒïŒæçæ°ã®çš å¯æ§ã§ãa<bãªããa<(a+b)/2<bã§ããã(a+b)/2=cãšãããšã
a<(a+c)/2<c<bã§çš å¯ãªãã§ãããã
ããã§ãïœïŒïŒâ¿+aãšãããšãa<(a+b)/2<bã¯
a<(a+â¿)<a+2â¿
ãšãªããŸãããâ¿=0ã§ã¯ããã®äžçåŒã¯æãç«ã¡ãŸãããã
ãããšãæçæ°ã®çš å¯æ§ãæãç«ã¡ãŸãããšãªããŸãããïŒ
ç§ã¯ãæ®éã®äžè¬äººãªã®ã§ããããªåæ©çãªçåã§ãã
> ããŠãå®æ°ã¯é£ç¶ãªã®ã§ãaïŒâ¿=bãšãããšãa,bã¯é£ãåãã¯ãã§ããã
ãé£ãåãããšã¯äœãæå³ããŠããŸããïŒ
ãããŠããã®æå³ã®äžã§ãaïŒâ¿=bãšãããšãa,bã¯é£ãåããã®èšŒæã¯ïŒ
DD++æ§ãããã«ã¡ã¯ã
aâ bãšãªãb>a>0ãšããŸããc=(b-a)ãšãããšãcã®æå°å€ã¯ãâ¿ã«ãªããŸãããã
aãšbã®è·é¢ã¯ãæå°å€â¿ã§ããããé£ãåããšãªããšæããŸãã
äžæ¬¡å
ã®ã°ã©ãäžã®a,bãšãªããšã話ãéã£ãŠããŸãããæ°çŽç·ã§èãããšãšããããšã§ãã
cã®æå°å€ã¯â¿ãããªãããã§ãããã
ãªãã以äžã®è©±ã¯ããªããã®ãšããŠãããŸãã
ïŒïŒé£ç¶ãªããa<(a+b)/2<bãååšããããæå°å€ã¯â¿/2ã ãïŒç¡éå°ã¯â¿ãªã®ã§ãïŒãšã¯ãªããŸããããã
ïŒïŒåŸ®åã®â¿ïŒâ¿^2>0ããããã§ã¯ãæ±ããªããšããŸãã
(1) ãé£ãåãããšããèšèãæ£ç¢ºã«å®çŸ©ããŠãã ããã
(2) ãã® c=
b-a ã«æå°å€ã¯ååšããŸããã
ãé£ãåããšã¯ã
æå°ç®çãå¹
ãâ¿ã®æ°çŽç·ã§ãç®çãäžã®aã®é£ã®ç®çãäžãbãšããŠãé£ãåãa,bãšèšã£ãŠãŸãã
ãã¹ãŠã®ç¹ã¯ãæå°ç®çãå¹
ã®èªç¶æ°åã«ãããšããŸãã
ãã ããa,bã3ç®çãé¢ããŠãããšãäžç¹cã¯1ïŒ5ç®çããªã®ã§ãç®çãäžãããããŠããŸããŸãã
ãŸããç¹éã¯ãç¡éå°ä»¥äžãå®ããªããšãããªãã®ã§ãé£ç¶ããã«ã¯ããã¹ãŠã®ç¹ã¯ãæå°ç®çãå¹
ã§ãªããã°ãªããªããšæããŸãã
ããžã¿ã«çã ãšæããããããŸããããç¡éå°ééã§ããç®çãã¯å¯ä»çªã§ãã©ãäžã€åããã®ã¯ãããŸããã
ã€ãŸããâ¿=0ã ãšããã¹ãŠã®ç¹ãã座æšã§æ±ºããããŠããã°ãäžç¹ã«éãªããŸãã座æšãšã¯ç¡é¢ä¿ãªãã°ã座æšãïŒç¹ã«ãªãã®ã§ãå€ãã®ç¹ãæ¶ããŠããŸããŸããããã¯ãå
ã«ãâ¿ïŒïŒã§åº§æšã決ãŸã£ãŠãããã®ããâ¿ïŒïŒã«ãããšããåéãã§ããã
c ãç®çãäžãããããŠããŸããšããã®ã¯ã
ã»c=(a+b)/2 ã¯å®æ°ãšã¯èªããªã
ã»ãã®ç¹ã®éåã¯å
šãŠã®å®æ°ãè¡šããŠããªã
ã®ã©ã¡ãã§ããïŒ
ïœã¯ãå®æ°ã§ãã
ç®çãäžã§ããªããšãããªããšããã®ã§ã¯ãªããŠãç¹ãšç¹ã®å¹
ãâ¿ä»¥äžããã°ããã®ã§ã¯ãªãã§ããããïŒ
æåã«æžããb=a+â¿ã§ãããããç®çãä»ãã®æ°çŽç·ã§ã説æããã»ãããé£ãåããšããããšã説æããããã£ããã®ã§ã»ã»ã»ã»
ã ãããé£ç¶ããç¹ãšç¹ã®å¹
ãâ¿ã§ããã°ãç®çãäžã§ããå¿
èŠã¯ãªããšæžããã€ããã§ãã
ã§ã¯ãa ãš b ã®éã 3 ç®çãã ãšããŠã
c=(a+b)/2 ãš d=(a+2b)/3 ã®è¡šãç¹ã®å¹
ã¯ããã€ã§ããïŒ
ããããã¯ã¡ã¹ããããÎãæã¡åºããŠããããã®ã§ã暪å
¥ãã§ãããã©ãã²ãšããšãã
ããããã¯ã¡ã¹ããããçŸåšå±éãªããããšããŠããç¡éå°ã«ã€ããŠã®ã話ãã®çç«ãŠã«ã¯æªæ¥ããããŸãããæ©æ©ãççŸããã¡ãã¡ããå¹ãåºããŠè¡ãè©°ãŸããŸãããããŠãããã»ããããã§ãã
ããããã¯ã¡ã¹ããããããªãªãžãã«ãªæ¹æ³ã§ãçå£ã«ç¡éå°ãå®æ°ã«çµã¿èŸŒãããšæã£ãŠããã£ãããã®ã§ããã°ã
æ°åŠåºç€è«ãã²ãšãšããå匷ãããªãã§ãã¢ãã«çè«ã«ã€ããŠèªä¿¡ãæãŠãã»ã©ã«ãã£ãããšèº«ã«ã€ãã
ããããæŠåšãé§äœ¿ããäžã§ãªãªãžãã«ã®è¶
å®æ°ã«ã€ããŠäœç³»ãæ§æããŠããã¹ãã§ãã
ç§ãã¡ã¯ãéåžžãæšæºçãªã¢ãã«ã®äžã§æ°åŠã«ã€ããŠèªãåã£ãŠããŸãã
ããŸãããããã¯ã¡ã¹ãããã¯ãæšæºçãªã¢ãã«ã®äžã§ãÎãæã¡åºããŠããã£ããããŸãããããã¯äžæ¯ã§ããæšæºçãªã¢ãã«ã«ã¯ãã£ããããããªæŠå¿µã®ã€ãããéã¯ãããŸããã
ã§ãã®ã§ããç§ã¯ãã®ããã«ç¡éå°ãæãããããšããã®ã§ããã°ã
å
šãæ°ããéæšæºçãªã¢ãã«ã®äžã§ã®æ°ã®äœç³»ãåµé ããªããã°ãªããŸããã
ããã¯ãçŽ äººã«ã¯ç¡çãªè©±ã§ãã
ããããŒã«ããããšãããšå€±æããã®ã§ãå³å¯ãªããæ¹ããŸãã¯åŠã¶å¿
èŠãããã®ã§ãããã¶ãã倧åŠé¢ã¬ãã«ã
ãªããæ°ããã¢ãã«ã®äžã§ç¡éå°ãå®åŒåãå®æ°ã®äœç³»ãè£å®ãæ°ããæ°ã®äœç³»ãçã¿åºããäºäŸã¯æ¢ã«ã*è€æ°*ããååšããŠããŸããã
ãããããªãã«ã¯ã1ïŒïŒ.ïŒïŒïŒâŠãæ¯ãšããäœç³»ãã1ïŒïŒ.ïŒïŒïŒâŠãæ¯ãšããäœç³»ãããšãã«ããã®ã ããã§ããã
ã©ããæ£è§£ã ããšããåãã¯ååšããããããããããããã®ææ³ã§æ°ã®äœç³»ãæ§ç¯ãããããããªã£ããããããããã§ãããªãã®ã§ãã
éããŠç³ãäžããŸãããæšæºçãªã¢ãã«ã§ã®äžã§ã®å®æ°äœãåæãšããŠããã倧æŠã®æ°åŠæ²ç€ºæ¿ã§ã¯ãïŒïŒïŒ.ïŒïŒïŒâŠâŠãçã§ãã
ãããåœã ãšããã¯ããããšãããããäŒè©±ãããŸããããŸããã
ãã ã£ããæ°ããäœç³»ã建èšããŠãã£ãŠããŠããæ°åŠåºç€è«ã®èšèã§åçš®ã®è¿°èªãå®çŸ©ããŠãå
¬çã»å®çã®é£éã§ãã£ãŠãå®æ°äœã®æ¡åŒµãããŠã¿ãŠãã ãããããšãããåå¿ã§ããŸããããã
â»ããããããã³ãœã³æµã®è¶
æºè§£æã§ããïŒïŒïŒ.ïŒïŒïŒâŠâŠã ã£ãæ°ãããŸãããäžå匷ã®ç§ã§ãããçåŸã§ããã
ååšçÏ(3.141592)
ã«çŸããæ°å0ïœ9ãäœååºçŸããã®ãã調æ»ããŠããŠ(å
é ã®3ãå«ãã)
å
šéšã§10^nåäžã®ç¹ã«"6"ã®æ°åã«ã€ããŠã®èª¿æ»çµæã§
n=1->1
n=2->9
n=3->94
n=4->1021
n=5->10028
n=6->99548
n=7->999337

n=12->99999807503
ãŸã§ã®çµæãOEISã®A099297ã«èŒããŠããã
ä»ã«ãæ°å"0","1",,"9"
ãªã©ã®ããŒã¿ãä»ã®é
ç®ã§èŒã£ãŠããã®ã ãããã®"6"ã®n=5ã§ã®æ°åã ãã
èªåã®èª¿æ»ã§ã¯10028ã¯10029ãšãªã£ãŠããŸããããšäžèŽããªãã£ãã
ïŒä»ã®æ°åã¯ãã¿ãªãªã®ã§ããæ¹ã¯ééã£ãŠããªããšæãã®ã§ãã
äœæ¹ãããã®æ°åã確èªããŠé ããŸããã§ããããïŒ)
GAIããã«ãã埡ææã®çåœãå€å®ããã«ã¯è³ããŸããã§ããããã©ããå°ãªããšã OEIS ã«èª€æ€ããããããšã¯ç¢ºå®ãšæãããŸãã
å®éã«æ€ç®ããããŸããšã
A099291[5]+A099292[5]+A099293[5]+A099294[5]+A099295[5]+A099296[5]+A099297[5]+A099298[5]+A099299[5]+A099300[5]=
9999 +10137 +9908 +10025 +9971 +10026 +10028 +10025 +9978 +9902
=99999
ãšãªããŸããŠ
OEISãç¡ççŸã§ãããšãã«æåŸ
ãããå€ã§ãã100000ã«1足ããŸããã
GAIããã«ãã埡æèµ·ã«ç¶æ³èšŒæ ãšãªããããããŸããã
âãã¡ãã§è§£æ±ºæžã¿ã ãšæããŸãã
http://shochandas.xsrv.jp/mathbun/mathbun1309.html
ããïŒ
è¿ããèšæ¶é害ãèµ·ãåºããŠããã®ããã
éååã«èšé²ããŠããããŒãã®ã¡ã¢ãèªã¿è¿ããŠãããããã®éšåã«ã€ããŠã®ãâã©ãããŠéãã®ã ããïŒâ
ãšããã³ã¡ã³ããæ®ããŠå±
ã£ãã®ã§ãã€ã以åæçš¿ããŠããããšãå
šãå¿ããŠããåã³æçš¿ããŠããŸã£ã次第ã§ãã
ãæ¥ããããã(å
é ã®3ã¯ã«ãŠã³ãã«å
¥ããã®ééããç¯ããŠããŸããã3ã¯å
¥ããªããæ£ããã§ããïŒ
ããŒãã«æçš¿æžã¿ãšã¡ã¢ãè¿œå ããŠãããŸããã
ã¹ã¬ããã«è¿œå ã§ããªããšè¡šç€ºãããŸããã®ã§ãæ°èŠã«ããŸããã
DD++æ§ããã¯ããããããŸãã
ïŒã¯ã¡ã¹ãããã¯ãæéåã®èšç®ã§ã¯éããŠããåŠçããç¡éåã§ã¯éããªããªãããšãããããšç解ããŠããããã§ãããã
ç§ãšããŸããŠã¯ãèªç¶æ°ã®2ä¹ã®éæ°ã®åãæ±ããããŒãŒã«åé¡ã¯ãæçæ°ã®ååæŒç®ãªã®ã§ãæçæ°ã§éããŠãããããç¡éã§ãã£ãŠããæçæ°ã®ã¯ãã§ãããªã€ã©ãŒããÏ^2/6ãšæ±ããã®ããééãã§ããããšæããŸãã
ã§ããããåœç¶ããªã€ã©ãŒç©ãæçæ°ã§éããŠããŸãããééãã§ããªãŒãã³ã®Î¶é¢æ°ãééãã§ãã
ãšãç§ã¯æã£ãŠããŸãã
ïŒã§æåŸã«9ãä»ã足ããšããåŠçãç¹°ãè¿ãããšãã«ãæéåã®åŠçã§ã¯å°æ°ç¹ã®åã®æ°ãå¿
ã0ã®ãŸãŸä¿ãããã®ã«å¯ŸããŠããããç¡éåãã£ããå°æ°ç¹ã®åã®æ°åã¯0ãšã¯éããªããªãã¯ããªãã§ãããã¯ã¡ã¹ãããã¯äœãè«æ ã«ããã0ã®ãŸãŸãšããŠããã®ã§ãããïŒ
0.999ã»ã»ã»ã®ããšã«ãã©ãã ãïŒãã€ããããŠããå°æ°ç¹ã¯ã移åããŸããããŸããæ«äœã§ã9ã®æ¬¡ã®èšå·ãå¿
èŠã«ãªã£ãããæ¡äžããã®é£éããããŠãïŒã«ãªããŸããå°æ°ç¹ã¯ã移åããŸããã
Dengan kesaktian Indukmuæ§ããã¯ããããããŸãã
ã¯ãããŸããŠã
ãããã£ãŠããããšããã¬ãã«ãé«ãããŠãç解ã§ããŸããã
No.254ã®æçæ°é²æ°ã§ã¯ãç¡çæ°ãè¡šããªããšä¿®æ£ããŸãã
> æçæ°ã®ååæŒç®ãªã®ã§ãæçæ°ã§éããŠãããããç¡éã§ãã£ãŠããæçæ°ã®ã¯ãã§ãã
ãªãã»ã©ãã§ã¯ãã®èšŒæãã©ããã
ååæŒç®äžè¬ã§ãªãåã®å Žåã®ã¿ãããªãã¡ãæçæ°ã®ç·åã¯æçæ°ã§ããããšããåœé¡ã ãã§æ§ããŸããã
DD++æ§ãé
ããŠãã¿ãŸãããïŒïŒæéã«ïŒïŒæçš¿ãšããå¶éããããŸããããã£ããã§ãã
ããã§ãã©ãã§ãããïŒ
æçæ°ãšæçæ°ã®åãæçæ°ã§ããããšã蚌æããã
æ°åŠçåž°çŽæ³ã䜿ãã
a0/b0ãåé
ãšãããæçæ°ã§ããã
ããã«ãa1/b1ããããšã
a0/b0+a1/b1=(b1a0+b0a1)/(b1b0)
ã§ãããå³èŸºã¯æçæ°ã§ããã
a0/b0ããan/bnãŸã§ã足ããŠãæçæ°cn/dnã ã£ããšããã
ããŠãããã«ãa(n+1)/b(n+1)ãå ãããšã
cn/dn + a(n+1)/b(n+1) = {b(n+1) cn+dn a(n+1)}/{dn b(n+1)}
å³èŸºã¯æçæ°ã§ããã
ãã£ãŠãæ°åŠçåž°çŽæ³ã«ãã£ãŠã蚌æãããã
ã¡ãã£ãšãéã§ããããèš±ããã ããã
æ°åŠçåž°çŽæ³ã¯ãä»»æã®èªç¶æ°nã«ã€ããŠããæ¡ä»¶ãæç«ããããšã瀺ã蚌ææ³ã§ãã
ã€ãŸããã¯ã¡ã¹ããããããã§èšŒæããåœé¡ã¯æ£ããã¯ãä»»æã®èªç¶æ°nã«ã€ããŠä»»æã®nåã®æçæ°ã®ç·åã¯æçæ°ãšãªãããšããåœé¡ã§ãã
確ãã«ããã§ãåæ°ã100åã§ãããã1äžåã§ãããããæçæ°ã®ã¿ãããªãç·åã¯æçæ°ã§ããããšãä¿èšŒãããŸããã
ããããæ°åŠçåž°çŽæ³ãçšãã以äžãããã«ã¯ããã®åæ°ãèªç¶æ°ãšããŠè¡šçŸã§ããéãã¯ããšããå¶çŽãã€ããŠããŸãã
ç¡éã¯æ®å¿µãªããèªç¶æ°ã§ã¯ãããŸãããã
ãããã£ãŠãã®èšŒæã§ã¯æçæ°ã®ã¿ãããªãç¡éåãæçæ°ã«ãªããã©ããã¯å®ã¯äžæãªãŸãŸãªãã§ãã
ç¡éåã§ãæçæ°ã ãšäž»åŒµãããã®ã§ããã°ãåæ°ãèªç¶æ°ã§ãªããŠãé©çšã§ãã蚌æãããªããŠã¯ãªããŸããããããŠãã©ãã§ãããïŒ
DD++æ§ããã¯ããããããŸãã
ïŒç¡éåã§ãæçæ°ã ãšäž»åŒµãããã®ã§ããã°ãåæ°ãèªç¶æ°ã§ãªããŠãé©çšã§ãã蚌æãããªããŠã¯ãªããŸããããããŠãã©ãã§ãããïŒ
å°ããŸããã
ããã§ãäžéã§ã¯ãã©ãããŠããã®ã ãããšãã¿ããšã
https://ja.wikipedia.org/wiki/%E3%83%90%E3%83%BC%E3%82%BC%E3%83%AB%E5%95%8F%E9%A1%8C
ã®ãåæããããšã®èšŒæãã§ã¯ãç¡éªæ°ã«ç¡éãŸã§ãªãã®èª¬æããªãããã£ãŠããŸãã
ãŸããåèã«ã¯ãªããŸããããå°ããŸãããããæ¡ãªãã§ãããïŒ
ãšããã§ãæŸé倧åŠã®ãåæ©ããã®æ°åŠãã§ãæçæ°ã«ã¯ã埪ç°ããç¡éå°æ°ã¯ãµããŸãã埪ç°ããªãç¡éå°æ°ã¯ç¡çæ°ã ãšç¿ããŸããã埪ç°ããç¡éå°æ°ã¯ãäŸãã°ã1÷7ã§ãããããŸãã埪ç°ããã®ã§ã埪ç°ããç¡éå°æ°ãšãªãã®ã§ãããšãããã0.999ã»ã»ã»ã¯ãç¡éå°æ°ã§ãããããŸãã¯ãããŸãããã€ãŸããããŸãã埪ç°ãã埪ç°å°æ°ã§ã¯ããªãã®ã§ãããããã£ãŠãç¡çæ°ã§ããïŒã¯æçæ°ã§ã0.999ã»ã»ã»ã¯ãç¡çæ°ã§ãçå·ã§çµã¹ãŸãããšæããŸãã
äžéäžè¬ã§ã¯ãã0.999ã»ã»ã»ãã¯åŸªç°å°æ°ã ãšæãã®ã§ãããããããã¯ã¡ã¹ãããã¯ããèããªãããã§ããïŒ
管ç人ããããã¯ããããããŸãã
ãã€ããè¿·æãããããŸãã
ããŠãïŒïŒïŒïŒïŒã»ã»ã»ã¯ããã ïŒã䞊ã¹ãã ãã§ãïŒãé£ç¶ããïŒåŸªç°ããïŒçç±ããªãã§ããããèŠããã¯ã埪ç°ããŠããããã«èŠããŸãããã¡ãããŸãããã
ïŒÃ·ïŒã¯ãããŸãã埪ç°ããããã埪ç°å°æ°ã«ãªããç¡éå°æ°ã«ãªããŸãã
埪ç°ããæ ¹æ ïŒçç±ïŒã¯ããããŸãããïŒ
ïŒÃ·ïŒãèšç®ããã°ãïŒãé£ç¶ããŸãããïŒ
ïŒÃ·ïŒïŒ1ã§ãé·ãïŒã®æéå°æ°ã§ããããŸãã0ã§ãã
ãããããŠã
0.9999
1)1
ãã10
ãã 9
ãã--------
ããã 10
ãããã9
ããã------
ãããã10
ããããã9
ãããã-------
ããããã10
ãããããïŒ
ãèšã£ãŠãŸãïŒããŸãïŒã§åŸªç°ãããããšãã§ããŸãã»ã»ã»
æã®ååããåŠæ ¡ã®æ°åŠã®å
çããïŒïŒïŒïŒïŒïŒïŒã»ã»ã»ã®èšŒæãšããŠã説æããããšèšã£ãŠãŸããã
ããã§ãïŒïŒïŒïŒïŒïŒïŒã»ã»ã»ã¯ãçµããã«ããŸããïŒ
> å°ããŸãããããæ¡ãªãã§ãããïŒ
ãããŸããããªããªããå®éã«ã¯ç¡éåã®å Žåãã®åœé¡ã¯åœã ããã§ããåäŸã®1ã€ããŸãã«ããŒãŒã«åé¡ã§ãã
åæ§ã«ã亀ææ³åãçµåæ³åçãç¡éåã«ãããŠã¯æç«ãããããã©ãããåãå
容ã®åŒã§ããã°äœåèšç®ããŠãåžžã«åãçãã«ãªãããšããä¿èšŒãããŸããã
ãã¡ããã9ãä»ã足ããŠãããšããæäœã«é¢ããŠããæéåã§ããã°åœããåã®ããšãç¡éåã§æãç«ã€ãã©ããã¯éäžèšŒæãå¿
èŠã§ãã
9ãä»ã足ããŠããã ãã§ã¯ç¹°ãäžãããèµ·ãããªãâŠâŠæ¬åœã«ç¡éåã§ãããã§ããïŒ
ãšããã®ãæåã«ç§ãææããå
容ã§ãã
ãããŸãïŒã§åŸªç°ãããããšãã§ããŸãã»ã»ã»ããšã®ããšã§ãããã©ãããã®ã§ããããïŒ
å®å®äººãšã®æ¥è§Šã«æåãæžåœã«æåã»åŠåã®äº€æµãè©Šã¿ã¯ãããŠããŸããã
ãã®å®å®äººãšã®ããã ã§ãå°çã®æ°åŠæŠå¿µã»æ°åŠèšå·ã«ã€ããŠå¯Ÿè©±ããŠããŸãã
å®å®äººåŽã¯äžèœç¿»èš³æ©ã«è¿ããã®ãæã£ãŠã¯ããã®ã§ããâŠâŠ
察話ã®ãªãã§
äžçå·ã«ã€ããŠã¯ããã«å®å®äººã«ãç解ããã ããŸããã
ãšãããçå·ã«ã€ããŠã¯ãªããªããç解ããã ããŠããŸããã
å®å®äººåŽã«ãšã£ãŠã
1=0.999999âŠâŠ
ãã©ãããé£é¢ã®ããã§ãã
åé²ã®æéå°æ°ã®ç¯å²ãŸã§ãªãçå·ã®æå³ãç解ã¯ããŠããã£ãŠã¯ããã®ã§ãããã©ãã
ãããªããæ¥ã®ããšãå°çåŽã®å°ããªåã©ãïŒãžã§ã³ïŒããå®å®äººã®åã©ãïŒååäžæïŒãšè©±ã¯ãããŸããã
ãžã§ã³
ããã®ãã
ïŒïŒ¢
ã«ã€ããŠèª¬æãããã
ãã²ãšã€ãªãã§ãããããåé²ã®æéå°æ°ãšãªãããã£ãŠããã
ïŒïŒ£ã
ïŒïŒ£ã
ããšãã«ãªããã€ã
ïŒïŒ£ã
ïŒïŒ£ã
ããšãã«ãªããã€ãã®ã
ã©ã¡ãããã©ããªïŒ£ã«ã€ããŠãå¿
ãããããšã
ïŒïŒ¢
ãšãããã ãã ã
åç¡ãïŒå®å®äººã®åïŒ
ããªããã ãå°çã®çå·ã£ãŠãããããããšãªã®ããæ©ãã§æãããªãã
åã©ããã¡ã®äŒè©±ãèããŠãã倧人ãã¡ã¯åã³ãŸããã
å°çã®åé²ç¡éå°æ°ã®æŠå¿µãäŒãã£ãç¬éã§ããã
â»ããšã§ããã£ãããšã§ããå®å®äººã®æ°åŠã§ã®æ°ã®è¡šçŸã¯é£åæ°å±éãåºèª¿ãšãããã®ã ã£ãã®ã§ããã
âââ
ãšããäŸãã°ãªãã¯ãããã§ããããïŒ
åé²ã®æéå°æ°ã®å
šäœã®éåããããã³ãã£ãœãåæããŠåé²ã®ç¡éå°æ°ïŒåŸªç°å°æ°ãŸãã¯ç¡çæ°ïŒã«æ¡å€§ãããšããã䌜åºã§ãã
DD++æ§ãããã«ã¡ã¯ã
ç¡éã§ã¯ãæ
å ±ã¯ãªããªããšããç解ã§ããã®ã§ããããïŒ
管ç人æ§ãããã«ã¡ã¯ã
ïŒãããŸãïŒã§åŸªç°ãããããšãã§ããŸãã»ã»ã»ããšã®ããšã§ãããã©ãããã®ã§ããããïŒ
管ç人æ§ã®1÷ïŒã®ããšã§ãã
Dengan kesaktian Indukmuæ§ãããã«ã¡ã¯ã
é£ããã話ã§ããããææ°ããããããŠãç³ãããããããŸããã
å ·äœçã«ã©ãèšç®ããã®ããç¥ãããã®ã§ããâŠã
管ç人æ§ãNo.275ã§ãã
ã--------
ïŒïŒïŒ
ã§ãããŸãïŒãšããŠã
ãã0.9
ã--------
ïŒïŒïŒ0
ãããïŒ
ãã-----
ãããïŒ
ãšããŸãïŒã«ããã®ã§ãã
ãã0.9ïŒ
ã--------
ïŒïŒïŒ0
ãããïŒ
ãã-----
ãããïŒïŒ
ããããïŒ
ããã------
ããããïŒ
ãšããŸãïŒã«ããã®ã§ãã
ãã説æäžèŠã§ãããïŒ
ãã¡ããã
ãã1
ã-------
ïŒïŒïŒ
ããïŒ
ãã----
ãã0
ã§ããã©ããã ããã1=0.999ã»ã»ã»ãšãªããŸãã
ãã¡ãããããã¯ãæ¹äŸ¿ã«éããªããšæããŸãããããŸãïŒã§åŸªç°ããç¡éå°æ°ãšãªããŸããæçæ°ã«ãªããŸãã
1÷1ã§ãããŸã1ãç¶ãèšç®ããã0.999âŠã埪ç°å°æ°ã§ããããšã瀺ãããããã§ããã
ãã®ããšã¯ä»ãŸã§èšãããŠããããšã«ççŸããŸãããïŒ
0.999ã»ã»ã»ã¯ãç¡çæ°ã§ãã埪ç°å°æ°ãšããæ ¹æ ããããŸãããããã
ãã®1÷ïŒã¯ããããŸã§ãæ¹äŸ¿ã§ãã0.999ã»ã»ã»ãäœãã®ã«ãã€ã³ããããŠãŸããããã
1=0.999ã»ã»ã»ãçµããããæ¹äŸ¿ã§ãã管ç人æ§ã®çºæ¡ãå©çšããã ãã§ãã
ãã®è°è«ã¯ãçµããã«ããªããšã管ç人æ§ã«ããã€ãŸã§ãè¿·æããããããä»ã®äººã«ãè¿·æã ãšæããŸããã
æ¬åœã¯ãããããã0.999ã»ã»ã»ã¯ã埪ç°å°æ°ããšããè°è«ãããããã£ãã®ã§ããã»ã»ã»ã
https://ja.wikipedia.org/wiki/%E5%BE%AA%E7%92%B0%E5%B0%8F%E6%95%B0
ã«ã¯ã0.999ã»ã»ã»ã¯ã埪ç°å°æ°ãšæžãããŠããŸãã
åæãªè¡åã°ããã§ã管ç人æ§ã«ã¯ãæ¬åœã«ãã¿ãŸããã
ãæ
å ±ã倱ãããããšããæ°åŠççšèªã¯ç§ãç¥ãéãååšããŸããããããããæŒç®ã«ã€ããŠéããªããªãããšåãæå³ã§çšããŠããã®ã§ããã°ãããã§ããç¡éã®å Žåã«ã¯ãããªãããšããããŸãã
ãŸãããããªããªãå Žåã§ããç¡éã®å Žåã§ãé©çšå¯èœãªèšŒæããããŸã§ã¯æèšããããšã¯ã§ããŸããã
DD++æ§ããã¯ããããããŸãã
ïŒãªããªããå®éã«ã¯ç¡éåã®å Žåãã®åœé¡ã¯åœã ããã§ããåäŸã®1ã€ããŸãã«ããŒãŒã«åé¡ã§ãã
ãã®ããšããã
0.999ã»ã»ã»=9/10+9/10^2+9/10^3+9/10^4+ã»ã»ã»ã»
ã¯ãç¡çæ°ã§ãããšãªããŸããã
DD++æ§ã®
ïŒãæ
å ±ã倱ãããããšããæ°åŠççšèªã¯ç§ãç¥ãéãååšããŸããããããããæŒç®ã«ã€ããŠéããªããªãããšåãæå³ã§çšããŠããã®ã§ããã°ãããã§ããç¡éã®å Žåã«ã¯ãããªãããšããããŸãã
ã¯ãç解ã§ããŸããã
>ãŸãããããªããªãå Žåã§ããç¡éã®å Žåã§ãé©çšå¯èœãªèšŒæããããŸã§ã¯æèšããããšã¯ã§ããŸããã
ã¯ã泚æããŠãããŸãã
ããããšãããããŸãã
https://en.wikipedia.org/wiki/Quadratic_residue
å
ã®èšäºã§
Dirichlet's theorem says there are an infinite number of primes of this form. 2521 is the smallest,
and indeed 1^2 â¡ 1, 1046^2 â¡ 2, 123^2 â¡ 3, 2^2 â¡ 4, 643^2 â¡ 5, 87^2 â¡ 6, 668^2 â¡ 7, 429^2 â¡ 8, 3^2 â¡ 9, and 529^2 â¡ 10 (mod 2521).
ã®å
容ãèŠãã
ããã§ããã確ãããŠããã
çŽ æ°2351ã«çœ®ããŠ(mod 2351)ã§ã¯
1^2 â¡ 1
480^2 â¡ 2
84^2 â¡ 3
2^2 â¡ 4
97^2 â¡ 5
353^2 â¡ 6
684^2 â¡ 7
960^2 â¡ 8
3^2 â¡ 9
460^2 â¡ 10
898^2 â¡ 11
168^2 â¡ 12
13ã¯ååšããªãã
820^2 â¡ 14
1095^2 â¡ 15
4^2 â¡ 16
17ã¯ååšããªãã
ãŸã10ãŸã§ã®é£ç¶ãšéå®ããŠãçŽ æ°2399ã§ã¯
(mod 2399)ã§ã¯
1^2 â¡ 1
49^2 â¡ 2
541^2 â¡ 3
2^2 â¡ 4
427^2 â¡ 5
120^2 â¡ 6
1157^2 â¡ 7
98^2 â¡ 8
3^2 â¡ 9
668^2 â¡ 10
11ã¯ååšããªãã
1082^2 â¡ 12
ãååšããã®ã§smallest 2521ãã¯çžå¿ãããªãã®ã§ã¯ïŒ
解éãééã£ãŠããããææäžããã
ãpâ¡1 (mod 8), (mod 12), (mod 5), (mod 28)ã®ãšãã»ã»ã»ã§ãããããããæºããæå°ã®çŽ æ°ã¯2521ã
ãšèšã£ãŠããã®ã§ã¯ïŒ
æ°ã®è¡šçŸã«ã€ããŠ
ïŒâ¡ïŒïŒïŒïŒïŒïŒâŠïŒç¡éïŒâ¡ïŒ/2â¡âïŒãªã©ã
log3(4)ãâ3ã¯ãç¡çæ°ã
ç¡çæ°ïŒŸç¡çæ°ïŒâ3log3(4)(åºãïŒ)
ïŒ3^log3(2)â¡2
ç°ãªãã¿ã€ãã®è¡šçŸåéã
æè¿ãã-1ïŒã»ã»ã»ïŒïŒïŒããšããè¡šèšã«è§Šããäžæè°ããæããŸããã
è¡šçŸãšããã®ã¯ãéåæãããŸããããŸã èšç®ã®éäžã¿ãããªã
åçã«ãªããšããããšã§ããã
ïŒsin(pai/4)cos(pai/4) ãåçã§ããã
0.999âŠïŒïŒã¯ãå³å¯ã«ã¯ã極éã®åé¡ã§ããã
ïœãïŒïŒ.ïŒïŒïŒïŒâŠãšãããŠãïŒïŒåããŠ
ïŒ0ïœïŒïŒ.ïŒïŒïŒâŠïŒïŒïŒïŒ.ïŒïŒïŒâŠïŒïŒïŒïœããã
ïŒïœïŒïŒãã€ãŸããïœïŒïŒãæ°ã«å
¥ã£ãŠãŸãã
ã¡ãã£ãšKSæ§ã®èšç®ã«çåã§ããã
x=aãšããã
ãnx=na
-) x= a
(n-1)x=(n-1)a
䞡蟺ã(n-1)ã§ãããšã
x=a
ããŠãããã§ãa=0.9999ã»ã»ã»ã»,n=10ã代å
¥ãããšãã
ã10x=9.999ã»ã»ã»ã»
-) x= 0.999ã»ã»ã»ã»
9x= 9 â 0.9999ã»ã»ã» ãªãå³èŸºã®âã¯æãç®ã®ããããšããèšå·ã§ãã
䞡蟺ã10-1ã§ãããšã
x=0.999ã»ã»ã»ã»
ãšãªããŸãããïŒ
管ç人ããã®ã³ã¡ã³ãã«å¯ŸããŠã§ãããã代æ°åŠçã«ãx=aã¯ã10åããŠãåŒããŠããx=aãªã®ã§ãã
ã§ãããããã説æããã
ã10x=9.999ã»ã»ã»ã»
-) x= 0.999ã»ã»ã»ã»
9x=9
䞡蟺ã10-1ã§ãããšã
x=1
ãªããŠãçã£èµ€ãªåã§ãã
代æ°åŠççµè«ãåŠå®ãããã®èšç®ã¯ããããã®ã§ãã
å¥ã®ã¯ãªãã§èª¬æãããšã
x=1-0.1=0.9 ãšããã
ã10x= 9
-) x= 0.9
9x= 8.1
x=0.9
x=1-0.01=0.99ãšããã
ã10x= 9.9
-) x= 0.99
9x= 8.91
x=0.99
x=1-0.001=0.999ãšããã
ã10x= 9.99
-) x= 0.999
9x= 8.991
x=0.999
å æ§ã«ããŠãx=1-10^(-n)ãšãããšãïœãx=0.9999ã»ã»ã»ã»ã§ãããïœ
ã10x=10{1-10^(-n)}
-) x= 1-10^(-n)
9x= 9-10 10^(-n)+10^(-n)
9x= 9-9 10^(-n)
x= 1-10^(-n)
ãã£ãŠã10^(-n)ïŒ0ã§ããããã{ 10^(-n)ã«ãããŠnã¯ç¡é倧ã§ããããã10^(-n) ã¯ç¡éå°ã§ããã}
x<1
ã€ãŸãã
xâ 1
ããã§ãããã10^(-n)=0ãšãããšãïœããã10^(-n)=0 ã€ãŸããç¡éå°ã¯0ã§ãããªãïœ
x= 1-10^(-n)=1ãã€ãŸããx=1ã§ãããx=0.9999ã»ã»ã»ã»ãšã¯ãªããªãã
ç¡éå°ã䜿ã£ãŠãã ãã§ããã
ç§ã¯ã0.999ã»ã»ã»=1ã¯ãééãã ãšæããŸãã
1/3ã¯ã0.333ã»ã»ã»ã»ãšãªããšããããšãããèãããšã1÷3ã¯ã ãŸããåºãŠããŠã0.333ã»ã»ã»ã»ã»ãšãããŸãïŒïŒïŒã»ã»ã»ã»1ã§ãããç¡éã«ïŒãç¶ããšããããšã¯ãããŸããç¡éã«ç¶ããšããããšã§ããããŸããã㪠ããªã£ãããïŒã¯çµããã§ãããšããããïŒïŒïŒïŒïŒã»ã»ã»ã»ã¯ãããŸãããããªãããªããªããšèšã£ãŠããã®ã§ãã
ãããã£ãŠã1/3â ïŒïŒïŒïŒïŒã»ã»ã»ã§ãã䞡蟺ãïŒåããã«ããŠãã巊蟺ã¯ïŒã§ãããå°æ°èšç®ã¯æ«äœããããã®ããèŠåã§ããããããç¡çãããïŒåããŠãïŒïŒïŒïŒïŒã»ã»ã»ã§ããã1/3â3=1â ïŒïŒ999ã»ã»ã»ãšãªãã1â ïŒïŒ999ã»ã»ã»ã§ãã
ãŸããε-ÎŽæ³ã¯ãå®æ°ãªãã䜿ãããããããªãããïŒïŒé²æ°ã§ã¯äœ¿ããªãã®ã§ããã
æ°çŽç·ã§èãããšãε-ÎŽæ³ã§ã§ãããšãªããã10é²æ°ã§ã0.999ã»ã»ã»ãããã1ã«è¿ã¥ããããš9ãå¢ãããŠãã0.999ã»ã»ã»ã§ãããªã ã®ã§ãã
ãªããªãã0.999ã»ã»ã»ã»ã®9ã䜿ãæãããããæ¡äžããããŠ1ã«ãªãã®ã§ããããã§ãã
9ã䜿ãæãããšããããšã¯ã0.0ã»ã»ã»ã»1ããªããã°ããããªãã®ã§ãããããã£ãŠãε-ÎŽæ³ã§ã¯ãã©ããŸã§è¡ã£ãŠã0.999ã»ã»ã»ã«éã ãªãã®ã§ãã
ïŒïŒïŒïŒïŒã»ã»ã»ïŒïŒã®åé¡ã¯ïŒïŒé²æ°ã®åé¡ã§ãããããæããã«ãïŒïŒïŒïŒïŒã»ã»ã»ïŒïŒãªã®ã§ãã
極éãªããïŒïŒïŒïŒïŒã»ã»ã»ã¯ã»ãŒïŒã§ãããã
ããããçå·ã§ãçµã¶ããšã¯ãã§ããŸããã
100æ©è²ããŸãããã
NHK ã®BSPã§ã¿ããã³ ãºããã¯ãããã³ããçžå¯Ÿè«ïœïœïŒéåè«ãäºè±¡ã®å°å¹³ç·ãšâç°æ¬¡å
ã®ãã³ã¹âãããæããŸããã
è»ããã®å€©æã»ããŒãã³ã°å士ãæ瀺ããããã©ãã¯ããŒã«æ
å ±ãã©ããã¯ã¹ãã§ããã©ãã¯ããŒã«ã¯ç±ãåºããŠãçž®ã¿æ¶æ»
ãããã¹ãŠã®æ
å ±ã¯å€±ããããšãã£ãã® ã«ãéåååŠè
ãã¡ã¯ãæ
å ±ã¯ç¡ããªããªããšãããè«äºã«ãªããäœå¹Žãããã£ãŠãè¶
匊çè«ã§ãæ
å ±ã¯ç¡ããªããªããšçµè«ãåºãã®ã§ãã
ã ãŠãèªç¶æ°ãïŒïŒïŒïŒïŒïŒã»ã»ã»ã»ãšç¡éãŸã§ãããšããŸããå¶æ°ã¯ã2nã§ãå¥ æ°ã¯2n+1ã§ããã§ã¯ãç¡é倧ã¯ãå¶æ°ã§ãããå¥æ°ã§ããïŒãšãšããããšãç¡é倧ã¯ãã©ã¡ããããããªãã®ã§ãå¶æ°ã§ããå¥æ°ã§ããªããšãã説æã§ã¯é éã£ãŠãããšæããŸãã
ç¡éã§ã¯ãããŒãŒã«åé¡ã§ããæçæ°ïŒåæ°ïŒã¯ãååæŒç®ã§ãæçæ°ã§éããŠããã®ã«ãÏ^2/6ãšããç¡çæ°ã«ãªã£ãŠããã®ã§ãã
æçæ°ã§éããŠãããã®ããç¡éã§ãç¡çæ°ã«ãªããšããããšã¯ãæçæ°ãšããæ
å ±ãç¡éã§ãªããªã£ãŠããã®ã§ãã
ç¡éã§ã¯ãæ
å ±ã¯ãªããªãã®ã§ãã
ã§ããããèªç¶æ°ãã掟çããç¡é倧ãèªç¶æ°ãããããæ
å ±ãªã®ã§ãç¡é倧ã¯ãæ
å ±ããªããªã£ãŠãèªç¶æ°ãšããã ãšããããŸãããã ç¡çæ°ãããããªãããèæ°ãããããªãããè€çŽ æ°ãããããªããããããŸã§ã®æŠå¿µãè¶
ãããã®ãããããªããªããšããããšã§ãããããªããšã倧å°é¢ä¿ïŒæ
å ±ïŒããªããªããšããããšã§ãã
ãšããããšã«ããã°ã1/3=0.333ã»ã»ã»ã»ãšãªãã®ã§ãã
ïŒã§ããããã«ã¯æ ¹æ ããããŸãããç¡çæ°ããããã¯è€çŽ æ°ãããããŸããããã»ã»ã»ã»ïŒ
10é²æ°ã«ã€ããŠã泚ææžããããŸãã
10é²æ°ã¯ã10åã®èšå·ãã€ãããŸããïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒã§ãã
èšå·ã䜿ãæãããããæ¡äžããããŸããã€ãŸããïŒã®æ¬¡ãå¿
èŠã«ãªããªããšãæ¡äžããããŸããã
ïŒïŒïŒïŒïŒã»ã»ã»ãšïŒãç¡éã«äžŠã¹ãŠããïŒã®æ¬¡ã®èšå·ãå¿
èŠã«ãªããªãéããæ¡äžããã¯èµ·ãããïŒã«ã¯ãªããŸããã
ãããè¶
匊çè«ã§ã§ãçµè«ã§ãç¡éã§ãæ
å ±ãç¡ããªããªããšãããšã
âïŒã¯ã
â2=1.414213562373095ã»ã»ã»
ãªã®ã§ãæ¡ããšã«è¡šããšã次ã®ããã«ãªããŸãã
=1+4/10+1/10^2-+4/10^3-+2/10^4-+1/10^5-+3/10^6-+5/10^7-+6/10^8-+2/10^9-+ã»ã»ã»ã»
ããŠãå³èŸºã¯ãæçæ°ã®ååæŒç®ãªã®ã§ãæçæ°ã§éããŠããŸããããç¡éã§ãã£ãŠãæçæ°ã®ã¯ãã§ãã
ãããã£ãŠã10é²å°æ°ã¯ãã¹ãŠãæçæ°ãšãªãã¯ãã§ãã
ã€ãŸãã10é²å°æ°ã¯ãç¡çæ°ãå«ãŸãªããããªãã¡ã10é²æ°ã¯ãç¡çæ°ãå«ãŸãªããšãªãã®ã§ã¯ãªãã§ããããïŒ
åœç¶ã2é²æ°ã§ããæ¡ããšã«è¡šãã°ãæçæ°ã®ååæŒç®ãªã®ã§ãæçæ°ã§éããŠããŸããããç¡éã§ãã£ãŠãæçæ°ã®ã¯ãã§ãããããã£ãŠãïŒé²æ°ã¯ãç¡çæ°ãå«ãŸãªããšãªãã®ã§ã¯ãªãã§ããããïŒ
åæ§ã«ããŠãèªç¶æ°é²æ°ã¯ãç¡çæ°ãå«ãŸãªããšãªãã®ã§ã¯ãªãã§ããããïŒ
åæ§ã«ããŠãæçæ°é²æ°ã¯ãç¡çæ°ãå«ãŸãªããšãªãã®ã§ã¯ãªãã§ããããïŒ
çµè«ãšããŠãæçæ°é²æ°ã¯ãç¡çæ°ãå«ãŸãªããšãªãã®ã§ã¯ãªãã§ããããïŒ
ããããã¯ã¡ã¹ãããããæçš¿ããããšãããããŸããããããã¯ã¡ã¹ãããã®èšç®ã§
10x=9.999ã»ã»ã»ã»
-) x= 0.999ã»ã»ã»ã»
ã9x= 9Ã0.9999ã»ã»ã»
ãããåãããŸããã9.999ã»ã»ã»ãã0.999ã»ã»ã»ãåŒãããã9ã«ãªããšæãã®ã§ããããªãã
ã9Ã0.999ã»ã»ã»ããšããæžãæ¹ã«ãªãã®ã§ããããïŒ
管ç人ããããè¿·æãããããŸããé£æããŸããããšããèš±ããã ããã
管ç人ããã®è³ªåã§ãããããã¯ã次ã®ä»£æ°åŒã®èšç®ã«åœãŠã¯ããŠããããã§ãã
x=aãšããã
ãnx=na
-) x= a
(n-1)x=(n-1)a
䞡蟺ã(n-1)ã§ãããšã
x=a
ä»®å®ããx=aãšããããã§ãçµè«ããx=aãã§ã¯ãäœãèšç®ããŠããªãããšã«ãªããªãã§
ããããïŒããããã¯ã¡ã¹ãããã®èšç®ã®çæã¯ïŒ
Komornik-Loreti å®æ° ãšããã®ããããŸããŠãå®çŸ©ããã©ããªæ°å€ã«ãªãã®ãã«ã€ããŠã OEISã®
ãA055060ãã§åç
§ã§ããŸãã
ä»åã¯ãã®å®æ°ã q ã§è¡šãããšãšããŸãã
ããŠã1 ã® qé²è¡šçŸããèããŸããšã1 = 0.11010011001011010010110011010011âŠ
ãšãªããŸããŠããã®æ°ã¯ Thue-Morse å ãšãªããŸãã
Thue-Morse åã«ã€ããŸããŠã¯ãhttp://shochandas.xsrv.jp/mathbun/mathbun1053.html
ã«è²ã
ãªé¢é£äºé
ãèšèŒãããŠããŸãã
ãã管ç人ãããèŠãã®ã¯ãâŠâŠ999=-1ããªãã§ãããïŒ
ããã¯ã0.999âŠâŠ=1ããšã¯å
šãå¥ã®çåŒãªããã§ããè°è«ãæåŸæ¥ã®æ¹åã«ãã£é£ãã§ãŸããããã
ïŒåè
ã¯è§£ææ¥ç¶ã®è©±ãåŸè
ã¯æ¥µéã®è©±ïŒ
ãŸããã¯ã¡ã¹ãããã®è«çã«å¯ŸããŠææã1ã€ã
ã¯ã¡ã¹ãããã¯ãæéåã®èšç®ã§ã¯éããŠããåŠçããç¡éåã§ã¯éããªããªãããšãããããšç解ããŠããããã§ãããã
ã§æåŸã«9ãä»ã足ããšããåŠçãç¹°ãè¿ãããšãã«ãæéåã®åŠçã§ã¯å°æ°ç¹ã®åã®æ°ãå¿
ã0ã®ãŸãŸä¿ãããã®ã«å¯ŸããŠããããç¡éåãã£ããå°æ°ç¹ã®åã®æ°åã¯0ãšã¯éããªããªãã¯ããªãã§ãããã¯ã¡ã¹ãããã¯äœãè«æ ã«ããã0ã®ãŸãŸãšããŠããã®ã§ãããïŒ
管ç人ãããç§ã¯ã
ã10x=9.999ã»ã»ã»ã»
-) x= 0.999ã»ã»ã»ã»
9x=9
䞡蟺ã10-1ã§ãããšã
x=1
ãã®èšç®ã®ã10åãããã®ããåŒããŠã0.999ã»ã»ã»ãæ¶ãããšããèšç®ã«çåããã£ãã®ã§ãã
0.999ã»ã»ã»ãæ¡ç§»åããŠããç¡éã ãããå°æ°éšããå€ãããªããšããããšã代æ°èšç®ã§ãåŠå®ããã®ã§ãã
å°ãªããšããå°æ°èšç®ã¯ãååãšããŠæ«äœããè¡ããã®ã§ãç¡éã ãããæ«äœã¯ããããªãã®ã§ããã®èšç®ã¯ã§ããªããšææããŠããWebããããŸãã
ããããã£ãã®ã§ã代æ°èšç®ã§ãã£ãŠã¿ãããx=aã¯ãnåããŠåŒããŠããx=aã§ãããaã®å°æ°èšç®ãäžèŠã§ããããšãã瀺ãããŸããã
DD++æ§ãã¯ãããŸããŠã
ïŒã¯ã¡ã¹ãããã¯ãæéåã®èšç®ã§ã¯éããŠããåŠçããç¡éåã§ã¯éããªããªãããšãããããšç解ããŠããããã§ãããã
ããã¯ãã©ãã®è©±ã§ããããïŒããããé£æãããã®ã§ããã¿ãŸããã
ããŒãŒã«åé¡ã§ããããïŒ
ïŒã§æåŸã«9ãä»ã足ããšããåŠçãç¹°ãè¿ãããšãã«ãæéåã®åŠçã§ã¯å°æ°ç¹ã®åã®æ°ãå¿
ã0ã®ãŸãŸä¿ãããã®ã«å¯ŸããŠããããç¡éåãã£ããå°æ°ç¹ã®åã®æ°åã¯0ãšã¯éããªããªãã¯ããªãã§ãããã¯ã¡ã¹ãããã¯äœãè«æ ã«ããã0ã®ãŸãŸãšããŠããã®ã§ãããïŒ
ããããã©ãã®è©±ã§ããããïŒã²ããããæªããŠãã¿ãŸããã
äžã¯ããŒãŒã«åé¡ã®ãšããã®è©±ã§ããã
åãªãã¯ã¡ã¹ãããã®ç解ã®ç¢ºèªçšåºŠã§ãã
äžã¯No253ã®è©±ã§ãã
1 ã®å€ã«ã€ããŠã®åé²è¡šçŸãšããŠèªæ㪠1 ãšéèªæ㪠0.99999⊠ãšãããããšã«ã€ããŠè©±é¡ã«ãªã£ãŠããããã§ããã
å®ã®ãšããã1 ã®å€ã«ã€ã㊠2 éãã®åé²è¡šçŸã蚱容ããããšãæšæºçãªã¢ãã«ãšãªã£ãŠããŸãã®ã§ãªããåé¡ãªããšããããšããã§ã¯ãããŸãã
åé²ã«éããªããã°ããã£ãã®2éãã§ã¯æžãŸãªãããšãããããŸãã
é»éæ¯ã q ã§è¡šãããšãšããŸãã
ããã§ã1 ã® qé²è¡šçŸãã«ã€ããŠããŸããŸãªè¡šçŸãåæãããåããŸãã
ããŸãè¡šçŸã®åŸªç°éšã()ã§å²ãããšãšããããŸãã
泚:10é²è¡šçŸã§()ã®äœ¿ãæ¹ãäŸç€ºããŸããšã
1/3=0.(3)
ã§ããã
1/7=0.(142857)
ãšããŸãã
æ¬åœã¯åŸªç°éšã®å§ããšçµããã®æ¡ã®æ°åã®äžã«ãã»ããæžãããã®ã§ãããä»åã¯è«Šããããšãšãã()ã§ä»£çšããŸãã
話ãæ»ããŸãã1ã®é»éæ¯é²è¡šçŸãããã€ã䞊ã¹ãŸãã
1
1.(0) âç¡éå°æ°
0.(10) âç¡éå°æ°
0.11
0.1011
0.101011
ãã®ä»ã«ãå€æ°ãããŸãã(äžã®äŸã§ã¯å¯ç®ç¡éåã®è¡šçŸããããŸããïŒ
以äžãåé²ã«éããªããã°ããã£ãã®2éãã§ã¯æžãŸãªãããšãããããããšããã話ãããŸããã
ãªããååã«æçš¿ãã Komornik-Loreti å®æ°ãåºæ°ãšããè¡šçŸãåããŸããšã1 ã®å€ã®è¡šçŸãšããŠéèªæãªãã®ã¯ãæçš¿æžã¿ã®ãã®è¡šçŸã®ãã£ãã®ïŒåãããªãããã§ãã
ãã£ãšé©ãã¹ãã¯ã åºæ°ãäžæã«éžã¹ã°ã1ã®å€ã®è¡šçŸããéãå¯ç®ç¡éåååšããããšãããããšããâŠâŠ
以äžã¯
https://ja.wikipedia.org/wiki/0.999...
ãåèã«ããŠãããŸãã
ãååOã«å
æ¥ããåè§åœ¢ABCDã§ACâ¥BDã®ãšãã察è§ç·ã®äº€ç¹ïŒ°ãéãç·åããšåçŽã®ãšãããšïŒ¡ïŒ¢ãšã®äº€ç¹ïŒã¯ïŒ¡ïŒ¢ã®äžç¹ã§ãããã
ãã©ãã°ãã¿ã®å®çãšåã«å
æ¥ããŠãªããŠã䌌ãå®çãæãç«ã€ã
ãPAïŒPD,PBïŒPCã®ãšããåè§åœ¢ABCDã§ACâ¥BDã®ãšãã察è§ç·ã®äº€ç¹ïŒ°ãéãç·åããšåçŽã®ãšãããšïŒ¡ïŒ¢ãšã®äº€ç¹ïŒã¯ïŒ¡ïŒ¢ã®äžç¹ã§ãããã
Pãåç¹ãšããAïŒÎ±ïŒãBïŒÎ²ïŒãšãããšãPA,PBãå転ãã
CïŒÎ²iïŒãDïŒ-αiïŒãMïŒïŒÎ±ïŒÎ²ïŒ/2ïŒãšçœ®ãããšãã§ããã
CDæ¹åã¯ãïŒÎ²ïŒÎ±ïŒiãªã®ã§ãPMã¯ãCDã®åçŽã§ããã
ãã®çµæãã䜿ã£ãŠãABCDãåã«å
æ¥ããå Žåã¯ã
PA,PBã®çŽç·äžã«ãPAâïŒPD,PBâïŒPCãšãªãããã«AâãBâããšãã°ã
AâãBâã®äžç¹Mâãšããã°ãPMâã¯ãCDãšåçŽã«ãªãã
äžæ¹ãâ³PABâœâ³PDCãªã®ã§ãPAïŒPDïŒPBïŒPC
PA/PAâïŒPB/PBâã§ããã
â³PABâœâ³PAâBâãã€ãŸããABãšAâBâå¹³è¡ã§ããã®ã§ã
çŽç·PMâã¯ãABã®äžç¹Mãéãã
ããããšãããããŸãã
çŽ æ°ã®åã®åé¡ã¯ãåäŸãããŸã ãèŠã€ãããŸããã
ããŸãæ¢çŽ¢æ³ããèŠã€ããã°ãããã§ããã©ã
ä»ã«ããçŽ æ°PãšïŒPã®éã«ãããçŽ æ°ã®åæ°ã¯ãå¢å é¢æ°ã§ãããã
ã¯çŽãã«èŠã€ãããŸããã
ãPïŒïŒã®çŽ å æ°ã®çš®é¡ã¯ãïŒãé€ããšãããã ããïŒçš®é¡ä»¥äžã§ããã
ããããä»ãèŠã€ãããŸããã
ïŒä»¥äžã®çŽ æ°ã¯ãäºã€ã®çŽ æ°ã®å¥çŽ æ°ã®åãããïŒãåŒããŠè¡šããã
äŸãã°ãïŒïŒïŒïŒïŒïŒïŒãïŒïŒïŒïŒïŒïŒïŒãªã©
åäŸãã¿ã€ãããŸããïŒ
ã3以äžãã§ãããšæããŸãã
ãçŽ æ°ã®å¥çŽ æ°ãã®æå³ãããããããŸããïŒçŽ æ°çªç®ã®å¥çŽ æ°ãšãã®ã¿ã€ãããªããšæããŸããïŒãã
ä»®ã«å¥çŽ æ°ãå
šéšäœ¿ã£ãŠããå Žåã§ããã3以äžãã ãš3ãåäŸã«ãªãã®ã§ã¯ïŒ
ããå¥çŽ æ°ã ã£ããã§ããã倱瀌ããŸããã
# ãšããããå¥çŽ æ°ã«éãå¿
èŠã¯ãªããšæããŸããã©ãã
ksããã®åé¡ã®ä»®å®ã«å ããŠãããã®äºã€ã®å¥çŽ æ°ã®ãã¡ãå°ãªããšãäžã€ãã¯ãååçŽ æ°ã®çå²ãããšããããšãã§ãããã
ãã¡ãã«ã¯åäŸãããã§ããããã
ïŒïŒïŒïŒïŒïŒïŒ
ïŒïŒïŒïŒïŒïŒïŒ
ïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
âŠâŠ
ãã®ããããŸã§ã¯ååçŽ æ°ã®çå²ããªããäž¡æ¹ãå³èŸºã«é¡ãåºãããã«ã§ããããã§ãã
ãã£ãšå·ŠèŸºã倧ããå Žåã«ã¯ã©ãã§ããããïŒ
確ãã«ãïŒïŒïŒïŒïŒïŒïŒãªã®ã§ãããïŒã¯ãå¯äžå¶æ°ã®çŽ æ°ã§ã
ç¹å¥ãã®æ以å€ã¯ã䜿ããªãã®ã§ãå¥çŽ æ°ïŒå¥çŽ æ°ãŒïŒã®å Žåã ãã«ããŸãããããšåæã«ã
å§åŠ¹ç·šãïŒä»¥äžã®å¥çŽ æ°ã¯ãå¥çŽ æ°ïŒïŒã®ã¹ãä¹æ°ã§è¡šãã
ãã¡ãã¯ãããã«èŠã€ãããŸãããæå°æ°ã¯ïŒ
è¬ã®å€ãçŽ æ°ããç°¡åãªåŒã§è¡šããã»ã©ãçãã¯ãªããšã
åçŽãªåŒã§ã¯ãããŸãåäŸããããšã¯æããŸããã
åäŸãšãªãæå°ã®å¥çŽ æ°ã¯ãïŒïŒïŒã§ããïŒ
ïœïœããããã®ã³ã¡ã³ã:
ãïŒä»¥äžã®çŽ æ°ã¯ãäºã€ã®å¥çŽ æ°ã®åãããïŒãåŒããŠè¡šããããã«ã€ããŠãããã«åäŸããããã©ããã«ã€ããŠã¯
ãŽãŒã«ããããäºæ³ã«ã€ããŠåç
§ããã°åèã«ãªããããšåããŸãã
ããã®äºã€ã®å¥çŽ æ°ã®ãã¡ãå°ãªããšãäžã€ãã¯ãååçŽ æ°ã®çå²ãããšããããšãã§ããããã«åäŸããããã©ã
ãã«ã€ããŠã¯ ãOEISã®ãA295424ãïŒ Number of distinct twin primes which are in Goldbach partitions of 2n
ãåèã«ãªããŸãã
åŒçšããŸãã
âConjecture. Further empirical examinations lead to a hypothesis that all even numbers n ïŒ 4 have at least 1 twin prime in GP(n).â
以äžãšãªããŸãã
æŽæ°Zã§ã¯ãäžæçã«çŽ æ°ã®ç©ã«å解ãããŸãã
æ¡å€§ãããZïŒâãŒïŒïŒÏïŒâãŒ5ãšããã
ïŒïŒïŒÃïŒïŒïŒïŒïŒÏïŒïŒïŒïŒÏïŒäºéãã®å解ã«ãªãã
è«Šããªãã§ãïŒïŒPPâãïŒïŒQQâãšçŽ ã€ãã¢ã«ã§å解ãããšã
ïŒ1ïŒÏïŒïŒPQãïŒïŒïŒÏïŒïŒPâQâãšãªãã
ïŒïŒPQPâQâããšäžæçã«å解ããããã¢ã¡ãŒãžã³ã°ïŒ
PïŒïŒïŒïŒïŒïŒÏïŒãPâïŒïŒïŒïŒïŒïŒÏïŒ
QïŒïŒ3ïŒïŒïŒÏïŒãQâïŒïŒïŒïŒïŒïŒÏïŒ
PPâïŒïŒ2ïŒïŒïŒÏïŒïŒ2ïŒïŒïŒÏïŒ
ïŒïŒ4ïŒïŒãŒïŒÏãïŒïŒïŒÏãïŒïŒ
=ïŒ2ïŒïŒïŒãïŒïŒÏãïŒïŒÏã3ïŒ
ïŒïŒ2ïŒïŒ1ïŒïŒïŒ2ïŒãä»ãåæ§
ä»ã®äºæ¬¡äœã§ãZã§çŽ æ°ã®ãçŽ ã€ãã¢ã«å解ã®äŸããææãã ããã