ããã«ã¡ã¯ããã€ã楜ããæèŠããŠãããŸãã
以äžã§ïŒïŒ¡ïŒïŒ¢ïŒïŒ£ïŒâŠâŠã¯ïŒä»¥äžïŒä»¥äžã®çžç°ãªãæŽæ°ã§ïŒãããã䞊ã¹ããã®ã¯åé²æ°è¡šèšã§ãããã®ãšããããã ãïŒæé«äœã¯ïŒã§ã¯ãªãããŸãïŒpïŒqïŒrïŒâŠâŠã¯çžç°ãªãçŽ æ°ãšãããïŒåŒãåæã«æºããïŒïŒ¢ïŒïŒ£ïŒâŠâŠããã³pïŒqïŒrïŒâŠâŠã¯äœãã
(1)ãïŒ(p^3)Ã(q^3)
ãã ïŒ(p^4)Ãq
(2)ãïŒ(p^4)Ãq
ãã ïŒ(r^2)Ãq
(3)ãïŒpÃqãããã ïŒãã ãïŒp<qïŒ
ãã ïŒrÃsÃtÃuããïŒãã ãïŒr<s<t<uïŒ
(4)ãïŒpÃqÃrããïŒãã ãïŒp<q<rïŒ
ãã ïŒ(s^2)Ãt
(5)ãïŒ(p^2)Ã(q^2)Ãr
ã ïŒ(p^3)Ã(q^3)ÃrããïŒãã ãïŒp<qïŒ
(6)ãïŒ(p^2)Ãq
ã ïŒ(p^2)ÃqÃ(r^2)
(7)ãïŒp^3
ãã ïŒq^9
(8)ãïŒp^4
ãã ïŒq^8
(9)ãïŒp^4
ãã ïŒq^10
(7)ïœ(9)ã¯ããŸããã»ãã«ãããããªåœ¢ãããããã§ãã
No.221ïŒïŒïŒïŒ2022幎9æ16æ¥ 20:07
é¢çœãåé¡ã§ããã
(1) 216 = 3^3 * 2^3, 162 = 3^4 * 2
(2) 592 = 2^4 * 37, 925 = 5^2 * 37
(3) 901 = 17 * 53, 910 = 2 * 5 * 7 * 13
(4)
(5) 180 = 2^2 * 3^2 * 5, 1080 = 2^3 * 3^3 *5
(6) 175 = 5^2 * 7, 1575 = 5^2 * 7 * 3^2
(7) 125 = 5^3, 512 = 2^9
(8) 625 = 5^4, 256 = 2^8
(9) 2401 = 7^4, 1024 = 2^10
(4) ã ãã¯çè©°ãã§ãåœãŠãã£ãœãã§ãå³ãããâŠâŠã
ããã綺éºã§ãããã
ç¥ããªããé£åã ãšæããŸããã
ABC = p^2 * q^2 (p<q)
ACB = r^2
BCA = s^2
No.223DD++2022幎9æ17æ¥ 05:55
管ç人æ§ãDD++æ§
ããåçããããšãããããŸããæ£è§£ã§ãïŒ
DD++æ§
ãïŒp^4ããã§ããã
ãæ°åã®äžŠã³ãç¥ã£ãŠãããåãããŸãããçè©°ãã§è§£ããªãã°çŽ æ°ã®å¹³æ¹ã3æ¡ã«ãªããã®ãæžãåºããŠçµãããã§ãã
ã(4) ã«ã€ããŠã¯ã
ããããšãã®ã¢ãã°ã©ã ãäºãã«çŽ ã§ããã°çŽ å æ°3ãå«ãŸãªãããšã
ããã7*11*13ïŒ1001ïŒ999ãããpã¯2ãŸãã¯5ã§ããããš
ãããªã©ãçšããã°å€å°çµã蟌ããŸãããæåŸã¯ããã¿ã€ã¶ãããªãšæããŸãã
ïŒè¿œèšïŒ
æçµçã«ã¯ã
ãïŒp*q*rïŒãïŒïŒ¡ïŒ¢ïŒ£ã®ã¢ãã°ã©ã ïŒïŒs*t*u
ã®ãããªãã®ãäœãããã£ãã®ã§ãããç§ãæèšç®ããéãã§ã¯ååšããŸããã§ããã
No.224ïŒïŒïŒïŒ2022幎9æ17æ¥ 12:03
(4) 874 = 2 * 19 * 23, 847 = 11^2 * 7
s ãã2 æ¡ã«ãªãã®ã¯æ³å®ããŠãªãã£ãâŠâŠã
No.228DD++2022幎9æ18æ¥ 14:14
(4)ã®è§£ã¯ããäžã€ãããŸããã
No.229ãããã2022幎9æ18æ¥ 17:06
DD++æ§
ãããããšãããããŸããç§ã®æ³å®è§£ã§ããã
ããããæ§
ãããããšãããããŸãã
ãå¯äžè§£ãšæã£ãŠããŸãããã確ãã« s ãïŒæ¡ã®è§£ãããïŒã€ãããŸãããã
No.235ïŒïŒïŒïŒ2022幎9æ19æ¥ 15:36
管ç人ããã®è§£çã§ãã 174 ãš 147 ã¯ãçŽ å æ°ã® 3 ãéè€ããŠãã®ã§
ãpãqãrãâŠâŠ ã¯ãçžç°ãªã
çŽ æ°ãšãããã
ã«åããŠããŸããã
No.237DD++2022幎9æ19æ¥ 21:35
DD++ããããææããããšãããããŸãã確ãã«ãæ¡ä»¶ã«åããŠããŸãããïŒ
No.238HP管çè
2022幎9æ19æ¥ 23:37 ãšã¯ã»ã«ãã䜿ã£ãŠã7åã®çŽ¯ä¹åãèŠã€ããŸããã
No.202ïœïœ2022幎9æ7æ¥ 15:25
ã²ãã£ãšããŠã以äžã®åŒã§ããããã
1^k+19^k+20^k+51^k+57^k+80^k+82^k ïŒ 2^k+12^k+31^k+40^k+69^k+71^k+85^k
( k = 1, 2, 3, 4, 5, 6 )
â»äžã®åŒã¯æ¬æ¥ãGoogleåŸåŸãããŠããŠå¶ããã«ã¿ã€ããŸããã
â Chen Shuwen's Equal Sums of Like Powers Page http://euler.free.fr/eslp/
ãŸããããªã€ã©ãŒãããžã§ã¯ãã§ãã
ãã®ããã¥ã¡ã³ãã«ã¯ã12åã®çŽ¯ä¹åããäŸç€ºãããŠããŸããâŠâŠ
No.215Dengan kesaktian Indukmu2022幎9æ14æ¥ 19:58
以ååºäŒã£ãçåŒã®äžã«a,b,cãä»»æã®èªç¶æ°ãšã
(6*a-3*b-8*c)^k+(5*a-9*c)^k+(4*a-4*b-3*c)^k+(2*a+2*b-5*c)^k+(a-2*b+c)^k+b^k
=(6*a-2*b-9*c)^k+(5*a-4*b-5*c)^k+(4*a+b-8*c)^k+(2*a-3*b)^k+(a+2*b-3*c)^k+c^k
(äœãk=0,1,2,3,4,5)
ãšãããã®ããããŸããã
ãããªã«ãèªç±åºŠããããªããæç«ã§ãããªããŠãšæã£ãŠããããa,b,cã®ãã©ã¡ãŒã¿ãå€åãããŠã¿ãŠç¢ºããããã§ãã
確ãã«çå·ãæç«ããŠãããŸãã
äžã«ã¯a,b,cã®åãæ¹ã«ãã£ãŠã¯k=6,7,8,9,10,ã§ãçå·OKãšãããã®ãã§ãŠããŸãã
ãããªåŒãããæãã€ããŸãããïœ
No.217GAI2022幎9æ16æ¥ 07:54
貎éãªãã¹ãã·ã£ã«ãªè§£ããèŠã€ããŠãã ãã£ãŠãããããšãããããŸãã
ç§ã®ãæ¢çŽ¢ã®äžã§ã¯ãäºãã以å
ã®èªç¶æ°è§£ã¯ãããŸããã§ããã
èŠã€ããã®ã¯ãäºçµã
ïŒ1ïŒ19ïŒ28ïŒ59ïŒ65ïŒ90ïŒ102ïŒ
â¡ïŒ2ïŒ14ïŒ39ïŒ45ïŒ76ïŒ85ïŒ103ïŒ
ïŒ1ïŒ16ïŒ26ïŒ62ïŒ75ïŒ105ïŒ107ïŒ
â¡ïŒ5ïŒ7ã37ïŒ50ïŒ86ïŒ96ïŒ111ïŒ
No.220ïœïœ2022幎9æ16æ¥ 15:06
ãã¬ããŒã®å®ç
ååšäžã«ãç°ãªãåç¹ããå·Šåãã«
AïŒÎ±ïŒBïŒÎ²ïŒCïŒÎ³ïŒDïŒÎŽïŒããããšãã
ABã»CDïŒACã»BDâ§ADã»BCããæãç«ã€ã
åç幟äœç蚌æããããŸãããè€çŽ å¹³é¢ãå©çšããŠ
ïœïœïœïŒïœïœïœâ§ïœïœïŒïœïœã䜿ã£ãŠ
ïœÎ±ïŒÎ²ïœïœÎ³ãŒÎŽïœïŒïœÎ±ãŒÎŽïœïœÎ²ãŒÎ³ïœ
â§ïœ(αïŒÎ²)(γãŒÎŽ)ïŒ(αãŒÎŽ)(βãŒÎ³)ïœ
ïŒïœÎ±Î³ïŒÎ±ÎŽãŒÎ²Î³ïŒÎ²ÎŽïŒÎ±Î²ãŒÎ±Î³ãŒÎŽÎ²ïŒÎŽÎ³ïœ
ïŒïœÎ±Î²ãŒÎ±ÎŽïŒÎŽÎ³ãŒÎ²Î³ïœ
ïŒïœÎ±(βãŒÎŽ)ïŒÎ³ïŒÎŽãŒÎ²ïŒïœ
ïŒïœïŒÎ±ãŒÎ³ïŒïŒÎ²ãŒÎŽïŒïœïŒïœÎ±ãŒÎ³ïœïœÎ²ãŒÎŽ
ãã£ãŠãäžåŒã瀺ããããïœ
No.213ks2022幎9æ14æ¥ 12:17
æåã®åŒããééããŠãŸããã
ABCDïŒADBCïŒïŒACBDãã§ãã
ãã¬ããŒã®äžçåŒã§ããã
çåŒã®éšåãäžè¶³ããŠãŸãã
No.214ks2022幎9æ14æ¥ 15:30
çå·ãæãç«ã€âïŒÎ±ïŒÎ²ïŒïŒÎ³ãŒÎŽïŒïŒïœïŒÎ±ãŒÎŽïŒïŒÎ²ãŒÎ³ïŒ
âïŒÎ±ïŒÎ²ïŒïŒÎ³ãŒÎŽïŒ/ïŒÎ±ãŒÎŽïŒïŒÎ³ãŒÎ²ïŒ=ãŒkïŒå®æ°ïŒ
âåè§ãåããšãïŒã§ã¯ãªããïŒïŒïŒÂ°ã®å Žåã«ãªã
âïŒïŒÎ±ïŒÎ²ïŒïŒÎ³ãŒÎŽïŒ/ïŒÎ±ãŒÎŽïŒïŒÎ³ãŒÎ²ïŒïŒïŒÏ
âïŒÎ±ïŒÎ²/αãŒÎŽïŒïŒïŒ¡ïŒ²ïŒ§ïŒÎ³ãŒÎŽ/γãŒÎ²ïŒïŒÏ
ââ ïŒâ ïŒÏã察è§ã®åãÏ
âããCãDã¯åäžååšäžã®ç¹
No.218ks2022幎9æ16æ¥ 14:36
ïŒÃïŒã«0ãã35ãŸã§ãäžã€ãã€å
¥ããããšããã
30ãå
¥ãããã®ä»£ãã36ãå
¥ããŠããŸãã
[ 2 1 36 5 0 35]
[ 6 33 20 29 4 13]
[25 7 14 24 31 12]
[21 32 11 15 22 16]
[34 18 23 10 19 9]
[17 8 3 28 27 26]
ãŸãã¯1ãã36ãäžã€ãã€å
¥ããããšããã
34ã䜿ãã代ããã«40ãå
¥ããŠããã
[20 21 9 36 19 14]
[ 5 26 6 33 18 25]
[22 24 35 15 12 11]
[32 3 30 7 27 8]
[ 1 17 23 10 16 40]
[29 28 2 4 31 13]
ãããããããããšã§ãåæ°åãå¹³æ¹ããŠã¿ããš
ã©ã¡ããïŒæ¬¡ã®éæ¹é£ãæ§æããŠãããã
ïŒïŒã€ã®å¯Ÿè§ç·ã®åãå«ãïŒ
ãšããã§ãããæŽã«åºããŠ
7Ã7ã®ãã®ãèããŠäžã«
0ãã48ã®æ°åãäžã€ãã€å
¥ãããïŒäŸå€ãå«ãŸãªããïŒ
[25 45 15 14 44 5 20]
[16 10 22 6 46 26 42]
[48 9 18 41 27 13 12]
[34 37 31 33 0 29 4]
[19 7 35 30 1 36 40]
[21 32 2 39 23 43 8]
[17 28 47 3 11 24 38]
ïŒïŒåè¡ã§ã®åã¯ã©ãã168ã§äžå®ã§ããïŒ
ããããŠãããã®æ°åã®å¹³æ¹ãäœã£ãŠã¿ããš
[ 625 2025 225 196 1936 25 400]
[ 256 100 484 36 2116 676 1764]
[2304 81 324 1681 729 169 144]
[1156 1369 961 1089 0 841 16]
[ 361 49 1225 900 1 1296 1600]
[ 441 1024 4 1521 529 1849 64]
[ 289 784 2209 9 121 576 1444]
ãšãªããèŠäºã«7次ã®éæ¹é£ãåºæ¥äžããããšã«é©æããŸãã
å¹³æ¹æ°ãš7ÃïŒã®çžæ§ã¯æ矀ã§ãã
ãªãå
¥ããæ°åã1ïœ64ã«ããã°ã次ã®8Ã8ã«é
眮ãã
[16 41 36 5 27 62 55 18]
[26 63 54 19 13 44 33 8]
[ 1 40 45 12 22 51 58 31]
[23 50 59 30 4 37 48 9]
[38 3 10 47 49 24 29 60]
[52 21 32 57 39 2 11 46]
[43 14 7 34 64 25 20 53]
[61 28 17 56 42 15 6 35]
ã§ã¯ããèªèº«8次ã®éæ¹é£ïŒå®å260)ã§ãã
ããã«ããã®äœçœ®ã§ãããããå¹³æ¹ããæ°ã§ã
ãã¯ã8次ã®éæ¹é£(å®å11180)ãæ§æããããšãããããè
°ãæãããïŒ
No.216GAI2022幎9æ15æ¥ 09:50
A^3+B^3=C^3
ã«ã¯èªç¶æ°è§£ãååšããªãããšã蚌æãããŸããã
A^4+B^4+C^4=D^4ãã«ã¯
95800^4+217519^4+414560^4=422481^4
2682440^4+15365639^4+18796760^4=20615673^4
ãªã©ç«æŽŸã«èªç¶æ°è§£ãããã
åãã
A^5+B^5+C^5+D^5=E^5 ã§ã¯
27^5+84^5+110^5+133^5=144^5
55^5+3183^5+28969^5+85282^5=85359^5
ãšãã¯ã解ã¯ååšããã
ããã§
A^6+B^6+C^6+D^6+E^6=F^6
ã«ã¯æãããŠèªç¶æ°è§£ã¯ååšããã®ãããªãã®ãïŒ
ããã¯èª¿æ»äžãªã®ããããšãååšã§ããªãããšã蚌æãããŠããã®ãïŒ
è²ã
調ã¹ãŠã¿ãŸãããããã®çåŒã§ã®å®äŸã¯æ¢ããŸããã§ããã
ãªãïŒåã®ïŒä¹æ°ã®åã§
74^6+234^6+402^6+474^6+702^6+894^6+1077^6=1141^6
ã¯èŠã€ããããŠããæ§ã§ãã
ããã«ã€ããŠã®æ
å ±ããç¥ãã®æ¹ã¯ç¥ãããŠäžããã
No.203GAI2022幎9æ9æ¥ 10:24
ãããååšã§ããªãããšã蚌æãããŠããããšããã
âãã¡ãã®ç¬¬5é
ã«ã0ããå
¥ããããã¯ããªã®ã§ã
https://oeis.org/A264764
å°ãªããšãéååšã®èšŒæã¯ãããŠããªããšæããŸãã
No.204ãããã2022幎9æ9æ¥ 12:01
7é
ã®6ä¹æ°ã®ç·åã6ä¹æ°ãšãªãåŒã¯
GAIãããã埡æ瀺é ããåŒã®ä»ã«ããããšãã°
1645^6 = 1560^6 + 1299^6 + 864^6 + 702^6 + 618^6 + 430^6 + 150^6
ãªã©ã幟ã€ããèŠã€ããããŠããããã§ããã
ããããåŒãããŒã¿ããŒã¹åããŠãããµã€ãããããŸããŠãäžèšã¯ããããåŒããŸããã
äžæ¹
ã»6é
ã®6ä¹æ°ã®ç·åã6ä¹æ°ãšãªãåŒ
ã»5é
ã®6ä¹æ°ã®ç·åã6ä¹æ°ãšãªãåŒ
ã¯ããã®ããŒã¿ããŒã¹ã«ã¯ç»é²ãããŠããªãããã§ãã
â 埡åèããŒã¿ããŒã¹
Computing Minimal Equal Sums Of Like Powers
http://euler.free.fr/database.txt
No.205Dengan kesaktian Indukmu2022幎9æ9æ¥ 23:39
ãã®ãµã€ãã§ã®æ
å ±ã¯ç©åãã§ããã
è²ã
ãªäººãäžçåå°ã§èšå€§ãªæéãè²»ãããŠããµãšããçåã«çå£ã«åãçµãã§ããææ§ã¯äœæž¡éå±±ãç³èŠéå±±ã«èŠããããªå°äžã«åŒµãå·¡ããããŠãã
é±èãæã£ãŠçªãé²ãé±å±±åž«ã®å§¿ã圷圿ãšæãèµ·ããããŸãã
çŸä»£ã«ãããŠã¯å人ã§æãé²ããšãããããã©ãã ãä»äººãæã£ãç¹è²ã系統ãç·åçã«èŠ³å¯ãåé¡ããŠãããããéèŠãªããããªãããšæããŠããŸãããããªæ
å ±ãéããããªãã©ã·ãŒãéããã°ãšæããŸãã
ãªããã®ããŒã¿ããœãŒãããŠèŠ³å¯ããŠããã
taxi cab çé ãã§(6,3,3)ã®ãã¿ãŒã³ã1934幎Subba Raoæ°ãèŠã€ãããšãã
3^6+19^6+22^6=10^6+15^6+23^6
ã ãããç»é²ãããŠããªãã£ãã®ã§ãå°ãç¯å²ãåºããŠæ€çŽ¢ããŠã¿ãã
36^6+37^6+67^6=15^6+52^6+65^6
33^6+47^6+74^6=23^6+54^6+73^6
32^6+43^6+81^6=3^6+55^6+80^6
37^6+50^6+81^6=11^6+65^6+78^6
ãªã©ãæ¯èŒçç°¡åã«æ¢ãããšãã§ããŸããã
ããããã°
Degan ããã®ãã³ããŒã ã¯ãã¢ã¹ã©ã®æãããããŠããã®ã§ããïŒ
No.206GAI2022幎9æ10æ¥ 06:49
å
åã®å Žåã
a^6+b^6+c^6+d^6+e^6+f^6+y^6=x^6
a^6+b^6+c^6+d^6+e^6+f^6=x^6-y^6
a^6+b^6+c^6+d^6+e^6+f^6=(x^3+y^3)(x^3-y^3)
a^6+b^6+c^6+d^6+e^6+f^6=(x+y)(x^2-xy+y^2)(x-y)(x^2+xy+y^2)
æ
ã«
a^6+b^6+c^6+d^6+e^6+f^6=x^6-y^6=g^6
ãšãªãgã¯ååšããªãã
ãŸããäºåã®å Žåã
a^6+b^6+c^6+d^6+e^6+y^6=x^6
a^6+b^6+c^6+d^6+e^6=x^6-y^6
a^6+b^6+c^6+d^6+e^6=(x^3+y^3)(x^3-y^3)
a^6+b^6+c^6+d^6+e^6=(x+y)(x^2-xy+y^2)(x-y)(x^2+xy+y^2)
æ
ã«
a^6+b^6+c^6+d^6+e^6=x^6-y^6=f^6
ãšãªãfã¯ååšããªãã
ãšããã®ã¯ãã©ãã§ãããïŒ
No.207ããããã¯ã¡ã¹ã2022幎9æ10æ¥ 11:25
7åã§ãã
a^6+b^6+c^6+d^6+e^6+f^6+g^6+y^6=x^6
a^6+b^6+c^6+d^6+e^6+f^6+g^6=x^6-y^6
a^6+b^6+c^6+d^6+e^6+f^6+g^6=(x+y)(x^2-xy+y^2)(x-y)(x^2+xy+y^2)
æ
ã«
a^6+b^6+c^6+d^6+e^6+f^6+g^6=x^6-y^6=h^6
ãšãªãhã¯ååšããªãã
ãšãªã£ãŠããŸããªã
ã ãã§ããã
No.208ããããã¯ã¡ã¹ã2022幎9æ10æ¥ 11:38
a^3+b^3+y^3=x^3
a^3+b^3=x^3-y^3
a^3+b^3=(x-y)(x^2+xy+y^2)
æ
ã«ã
a^3+b^3=C^3
ãšãªãcã¯ååšããªãã
ãšããå
·åã«ããã§ã«ããŒã®æçµå®çãã§ããŠããŸããªãïŒ
No.209ããããã¯ã¡ã¹ã2022幎9æ10æ¥ 11:49
ããããx^6-y^6ãšãªãå¿
èŠã¯ãªããã ãx^3-y^3ãããªãã
7åã®å Žåãåèšæ°ã®çŽ å æ°å解ãu^6 v^6 z^6ã»ã»ã»ã§ããã°è¯ãã 6åã§ãã5åã§ããããªãã
ãã§ã«ããŒã®æçµå®çãããªãã§ãa^3+b^3+y^3=x^3ã§ãªããŠãa^3+b~3=c^3ã§ããã°ãããã ãªã
ãã£ããã§ããã
No.210ããããã¯ã¡ã¹ã2022幎9æ10æ¥ 13:03
GAIããã埡æå¯ã§ãããã³ããŒã ã¯ãã¢ã¹ã©ã®æãããã§ãã
ãã®æ²ã®ã«ããŒã¯ããã€ãåºãŠããŸããããã¯ã埡å代æ§ã«ãããã®ãäžçªã®å¥œã¿ã§ãã
ããŠã話é¡ãæ»ããŸãããã©ãã
GAI ãããæ¢ããŠãããã (6,1,5)ã®ä»ã (6,2,4)ãããæ¢çŽ¢ãã¹ãããšããããŒãºããã£ãæš¡æ§ã§ããŠã
ããã§äžæäž¡åŸã®æ¢çŽ¢ãšããŠ(6,2,5)ãçµç¹çã«è©Šã¿ããããžã§ã¯ãããã£ãããã§ãã
ïŒå€æ°ã®ã²ãšã€ã 0 ã§ããã°ãšããïŒ
ãããŠ(6, 2, 5)ã¯å€éã«ã¿ã€ãããŸãããã(6,1,5)ã (6,2,4)ãèŠã€ãããªãã£ãããã§ãã
ä»åã¯ä»¥äžãèŠãŠæçš¿ããŠãããŸãã
arXiv:1108.0462v1[math.NT]2Aug2011
All solutions of the Diophantine equation
a^6 + b^6 = c^6 + d^6 + e^6 + f^6 + g^6ãfor a, b, c, d, e, f, g < 250000
found with a distributed Boinc project
Robert Gerbicz
Jean-Charles Meyrignac
Uwe Beckert
August, 2011
â»æªæ¥ããèŠããå°ããã¬ã³ãžã§ã®æ¢çŽ¢ãªã®ã§ãããããã©ãâŠ
(6,1,5)ã (6,2,4)ãã²ãšã€ããµãã€èŠã€ãã£ãããŠããä»®å®æ³éå»ãç§ã«ã¯äžæè°ãšã¯æããŸããã
以äžã§ãã
No.212Dengan kesaktian Indukmu2022幎9æ11æ¥ 17:31
ã³ã³ãã¥ãŒã¿ãŒã¯ãç¡éãç解ã§ããã§ããããïŒ
No.211ãã¹ã«ã«2022幎9æ10æ¥ 21:24
åäœåå
ïŒååšãå«ãïŒã«æ²ç·ãããã€ãæããé·ãïŒã®ç·åã
åäœåå
ïŒåïŒã®ã©ãã«ã©ããªåãã§çœ®ããŠããæãããŠããæ²ç·ãšã®
å
±æç¹ãæã€ããã«ããã
ãã®ãšããæ²ç·ã®é·ãã®åã®æå°å€ã¯ïŒ
# 解ã®åè£ã¯ãããŸããããããæ£è§£ãã©ããã¯ããã£ãŠããŸããã
# ãã¡ãããæ²ç·ãã«ã¯ãç·åããå«ã¿ãŸãã
No.191ãããã2022幎9æ1æ¥ 01:37
æå°å€ã£ãœãæ°å€ã¯ç¢ºãã«ããã«åºãŸãããæ¬åœã«æå°å€ããšèšããããšèšŒæã¯é£ããã§ããã
ãŸããã®å€ãåãæ²ç·ã®æžãæ¹ãç¡æ°ã«ååšããŸããâŠâŠã
No.192DD++2022幎9æ1æ¥ 20:27
ããããã®ãæå°å€ã£ãœãæ°å€ãã6ã§ããããããã¯æå°å€ã§ã¯ãããŸããã
6ãªãã°ç¡æ°ã«ååšããŸããã©ãã
No.193ãããã2022幎9æ1æ¥ 21:33
ãªããšã
ããã«ã æ§é ãæ匷ã ãããšæã£ãããã£ãšå¹çããåŒãæ¹ããããã§ããã
ããã¯æå€ã
No.194DD++2022幎9æ2æ¥ 02:23
ç§ããã°ãã6ã®å£ãè¶ããããªãã£ãã®ã§ããã2~3æ¥èããŠããããæãã€ãããšãã§ããŸããã
ã¡ãªã¿ã«ãã®å€ã¯çŽ5.885ã§ãã
æ¡ãæãã€ããŠããæ£ç¢ºãªé·ãã®èšç®ã¯ããªãé¢åã§ãããçŽ5.885ãšããå€ã¯äžéæ ¹å·ãå«ãã§ããŸãã
No.195ãããã2022幎9æ2æ¥ 02:39
2â3+6â2-6 â 5.949
ãšãã解ã¯ã§ããã®ã§ãããããããããããããéã£ãéã§ããããã
ã ãšããã°ãããã¡ãã£ãšçããªãå¯èœæ§ããã£ãŠããã€äžä¹æ ¹ãã§ãŠããŠããããããªãå³åœ¢ã®ã¢ã€ãã¢ãæµ®ãã¶ã®ã§ãããã¡ãã£ãšãããèšç®ããæ°åãçµãåºãã®ã¯å€§å€âŠâŠã
No.197DD++2022幎9æ4æ¥ 15:47
ç§ã¯ãã®è§£ã¯ééããŠããªãã§ããã
ãªã®ã§ãã©ããªå³åœ¢ãªã®ãããããªãã®ã§ç¥ãããã§ãã
ç§ã¯6ãããããªã5.885ã«è¡ããŸããã
ãšã¯ãã£ãŠãã6ããå°ããããæ¡ãæãã€ããŠããæå°ã«ããããã«ã¯ã©ãããã»ã»ã»ãš
ããèããŠå³åœ¢ã決ããŠããèšç®ããŸãããã
ãèšç®ããæ°åãçµãåºãã®ã¯å€§å€ãã®æ¡ã5.885ããç¥ããŸãããã
No.198ãããã2022幎9æ4æ¥ 19:14
O(0,0), A((â3-â2+1)/2,0), B(â3/2,(â6-â3)/2), C(â3/2,-(â6-â3)/2)
ãšããŠãOA, AB, AC ãããããç·åã§çµã³ãŸãã
ããããŠã§ãã Y ååããO ãäžå¿ã« 90 床ãã€åããŠè€è£œããå³åœ¢ã§ãã
å€åŽã®ééã§é·ã 1 ã確ä¿ã§ããªãããã« 45 床ã〠8 ç¹åãçºæ³ã§äœããŸãããã7 ç¹ã ãš cos(2Ï/7) ãšãç»å Žã㊠3 ä¹æ ¹ã«ãªãããªãŒããšã
No.199DD++2022幎9æ4æ¥ 23:53
ãªãã»ã©ãé¢çœãæ¹æ³ã§ãããç§ã®æ¡ãšã¯æ¹éãéããŸããã
ã§ã¯ããããç§ãæãã€ããæ¡ãæžããŸãã
O(0,0),A(1,0)ãšããŠååšäžã6çåããããã«B,C,D,E,FããšããŸãã
B(1/2,â3/2),C(-1/2,â3/2),D(-1,0),E(-1/2,-â3/2),F(1/2,-â3/2)ã§ãã
Eãäžå¿ãšããååŸ1ã®å£åŒ§FOã«æ¥ãçŽç·OFãšå¹³è¡ãªçŽç·ãšã
Cãäžå¿ãšããååŸ1ã®å£åŒ§OBã®äº€ç¹ãIãšããŸãã
ãŸãå£åŒ§FOãšçŽç·ã®æ¥ç¹ãGãšããŸããFG=GOãšãªããŸãã
座æšã¯
G((â3-1)/2,-(â3-1)/2),
I((â(4â3-3)+2â3-5)/4,(2+â3-â(12â3-9))/4)
ãšãªããŸãã
y軞ã«é¢ããŠIãšå¯Ÿç§°ãªç¹ãJãGãšå¯Ÿç§°ãªç¹ãHãšããŸãã
H(-(â3-1)/2,-(â3-1)/2),
J(-(â(4â3-3)+2â3-5)/4,(2+â3-â(12â3-9))/4)
ã§ãã
ãããŠ
OI,IA,IB,OJ,JC,JD,OH,HE,OG,GFã®åç·åãæããŸãã
ãããšé·ãã®åèšã¯
â(30-16â3+2â(120â3-207))+â(22-4â3-6â(4â3-3))+2(â6-â2)â5.885
ãšãªããŸãã
åçŽç·IGïŒå£åŒ§FOã®æ¥ç·ïŒãšåäœåã®äº€ç¹ãKãšãããšã
åè§åœ¢OFKIã¯å¹³è¡å蟺圢ãªã®ã§IK=1ãšãªããŸãã
ãã®ç·åIKããGãéããªããIåŽã®ç«¯ãç·åIOã«æ²¿ã£ãŠOæ¹åã«ã
KåŽã®ç«¯ã匧FAã«ãã£ãŠAæ¹åã«ç§»åãããšãIåŽã®ç«¯ãOã«å°éããæã«
é·ãã1ãšãªããŸããããã®ç§»åéäžã§ã¯1ãããããã«çããªããŸãã
No.200ãããã2022幎9æ5æ¥ 03:05
äžéæ ¹å·ãäžä¹æ ¹ãšèªã¿ééããŠããâŠâŠã
ãªãã»ã©ãäžåŽã§å
æ¹åãžã®æŸå°ç·ãäžéšå
±æããã°ãäžæ¹åã«çºå¯ããæ¥ãŠããé£ããåºãããšããããšã§ããã
ç§ã®æ¡ã§ã®äžå¿éšåã® 90 床ã¯ãã¹ã«åãã¢ã€ãã¢äœ¿ã£ãããã£ãšçããªãããªïŒ
No.201DD++2022幎9æ5æ¥ 03:44
ãïŒã€ã®ïŒãã®ã«ãŒã«ã«æºããŠããïŒã€ã®ïŒãã§ïŒïŒãäœãããšãè©Šã¿ããšçºãããšæããŸãããããã解ã¯ãããŸãã
No.187Dengan kesaktian Indukmu2022幎8æ29æ¥ 07:53
å€åãã£ãšãã解ããããšæããŸããããšãããã
11=(4!)!!!!!!!!!!!!!/(4!)
ïŒååã¯13ééä¹ïŒ
(è¿œèš)ã¬ãŠã¹èšå·ã䜿ããšãããã
11=[4!!*log4]
11=4-[tan(4!!)]
11=[4+exp(â4)]
11=[-exp(â4)/cos(4)]
11=[(4!)^(-sin(4))]
No.188ãããã2022幎8æ29æ¥ 11:50
(4!)!!!!!!!!!!!!!=24*11ãªã®ã§ã(4!)!!!!!!!!!!!!!/(4!)=11ã§ããïŒããã¯ç¢ºãã«çºããŸããïŒïŒïŒã
No.189HP管çè
2022幎8æ29æ¥ 12:06 ïŒã€ã®ïŒã§ïŒïŒãäœããšãããã¿ã®ããšã¯ããïŒã€ã®ïŒãã®èšäºã«å«ãŸããäžèšã®åŒããå°ãããã®ã§ãã
ïŒïŒïŒïŒÎïŒÎïŒïŒïŒïŒïŒÎïŒâïŒïŒïŒÎïŒâïŒïŒïŒÎïŒâïŒïŒ
ãã®åŒãã¿ãŠäžèšãå°ãã次第ã§ãã
ïŒïŒ = â(ïŒ+ïŒïŒ)= â(Î(â(ïŒ))+Î(Î(ïŒ)))
â»ïŒïŒééä¹ãçšããããããããã«ãã解ã«ã¯ããã¯ãªããŸããâŠâŠ 以äžã§ãã
No.190Dengan kesaktian Indukmu2022幎8æ29æ¥ 23:05
ããããããããïŒã€ã®ïŒãã§ïŒïŒãäœã£ããã¯ããã¯ãå©çšãããšããïŒã€ã®ïŒãã§ãä»»æã®æçæ°ã
äœãããããªæ°ãããããŸãã äžäŸããããŸãã 22/7 ããïŒã€ã®ïŒãã§äœã£ãŠã¿ãŸããã
(((3!)!!)!!!!!!!!!!!!!!!!!!!!!!!!!!)/(((3!)!!)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!)
=(48!!!!!!!!!!!!!!!!!!!!!!!!!!)/(48!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!)
=(48*22)/(48*7)
=22/7
ããããããã«ããææ³ã¯ãšãŠã匷åã§ãããšæããŸãã
No.196Dengan kesaktian Indukmu2022幎9æ2æ¥ 15:29
ãã¿ãŸããã
ã¿ã€ãã®æã¡ééãããã£ãŠãããäžèšã®åé¡ã§åæçš¿ãçŽããŠããŸãã
ã¿ã€ãã®éœåäž
sqrtn(x,2)=âx
sqrtn(x,3)=âx
sqrtn(x,4)=âx

ãªãèšå·ã§è¡šããšãããšã
f(x):=x*(sqrtn(x,2)*(sqrtn(x,3)*(sqrtn(x,4)*(sqrtn(x,5)*(sqrtn(x,6)*())))))
ã§å®çŸ©ããf(x)ã®äžå®ç©å
â«f(x)dx ã¯ïŒ
No.181GAI2022幎8æ21æ¥ 06:17
> f(x):=x*(sqrtn(x,2)*(sqrtn(x,3)*(sqrtn(x,4)*(sqrtn(x,5)*(sqrtn(x,6)*())))))
ããã¯å
¥ãåã«ãªã£ãŠããããã§ã¯ãªãã®ã§
f(x)=x*sqrtn(x,2)*sqrtn(x,3)*âŠ
=x^(1+1/2+1/3+âŠ)
=0 (0âŠxïŒ1), 1 (x=1), +â (xïŒ1)
ãšåãã§ã¯ïŒ
ïŒåéãããã£ããããããªããïŒ
No.182ãããã2022幎8æ21æ¥ 09:12
2è¡ç®ã®æå³ãããããããªãã®ã§ãããã©ããã«ãåæçš¿ããããã®ã§ããïŒ
ãã®äžã®åŒã¯å€æŽãããŠããŸããããïŒ
No.184ãããã2022幎8æ23æ¥ 00:33
æåæçš¿ãã圢ã
x*sqrtn(x,2)*sqrtn(x,3)*sqrtn(x,4)*sqrtn(x,5)*sqrtn(x,6)*
ã ã£ãã®ã§ãããã¯å
¥ãåã«ãªã£ãŠããªããšæãè¿ãçŽãã«èšæ£ããŠ
x*(sqrtn(x,2)*(sqrtn(x,3)*(sqrtn(x,4)*(sqrtn(x,5)*(sqrtn(x,6)*))))))
ã®æ§ã«ã¿ã€ããçŽããŠãããŸããã
ããã¯å
¥ãåã«ãªã£ãŠããªãã§ãããïŒ
å
¥ãåãã©ãã¿ã€ãã§è¡šçŸãããããã®ãããããªããŸãŸãã€ããã®è¡šçŸãšãªã£ãŠããŸããã
No.185GAI2022幎8æ23æ¥ 08:13
äžèŠãããšå
¥ãåã£ãœãã§ãããã*ãã®èšç®é åºã¯å€ããããŸãã®ã§å®éã¯å
¥ãåãšã¯èšããªãã§ããã
sqrtn(sqrtn(x,4),3)
ã®ããã«ãªã£ãŠããã°å
¥ãåã§ããã
No.186ãããã2022幎8æ23æ¥ 08:50
æãã€ããåé¡ã§ãã
1ãnãŸã§ãã3ã€ã®ã°ã«ãŒãã«åããã(åã°ã«ãŒãã«ã¯å°ãªããšã1ã€ã®æ°ãå
¥ã)
ããããã®2ã°ã«ãŒãããããããã1ã€ãã€æ°ãéžã¶ããããã®æ°ãããéžã°ããªãã£ãã°ã«ãŒãã確å®ãããã
mod 3以å€ã®åãæ¹ã¯ããã§ããããïŒ
æãã€ããã®ã¯...
(2é²æ³ã§1ãå¶æ°æ¡ã ã),(2é²æ³ã§1ãå¥æ°æ¡ã ãã®å¥æ°),(ãã以å€ã®æ°)
ã§ãã...åã£ãŠãŸãããããïŒ
ãŸãããã以å€ã§ã®åãæ¹ã£ãŠãããŸãã§ããããïŒ
No.160ã¹ã¢ãŒã¯ãã³2022幎8æ16æ¥ 00:06
t=(1+sqrt(5))/2
f(n)=floor(n*t^2)
g(n)=floor(t*floor(n*t)
h(n)=floor(t*floor(n*t^2))
ã§
n=1ïœ50ã§f(n),g(n),h(n)ãèšç®ããããš
gp > for(n=1,50,print(n";"f(n) " VS "g(n) " VS " h(n)))
1;2 VS 1 VS 3
2;5 VS 4 VS 8
3;7 VS 6 VS 11
4;10 VS 9 VS 16
5;13 VS 12 VS 21
6;15 VS 14 VS 24
7;18 VS 17 VS 29
8;20 VS 19 VS 32
9;23 VS 22 VS 37
10;26 VS 25 VS 42
11;28 VS 27 VS 45
12;31 VS 30 VS 50
13;34 VS 33 VS 55
14;36 VS 35 VS 58
15;39 VS 38 VS 63
16;41 VS 40 VS 66
17;44 VS 43 VS 71
18;47 VS 46 VS 76
19;49 VS 48 VS 79
20;52 VS 51 VS 84
21;54 VS 53 VS 87
22;57 VS 56 VS 92
23;60 VS 59 VS 97
24;62 VS 61 VS 100
25;65 VS 64 VS 105
26;68 VS 67 VS 110
27;70 VS 69 VS 113
28;73 VS 72 VS 118
29;75 VS 74 VS 121
30;78 VS 77 VS 126
31;81 VS 80 VS 131
32;83 VS 82 VS 134
33;86 VS 85 VS 139
34;89 VS 88 VS 144
35;91 VS 90 VS 147
36;94 VS 93 VS 152
37;96 VS 95 VS 155
38;99 VS 98 VS 160
39;102 VS 101 VS 165
40;104 VS 103 VS 168
41;107 VS 106 VS 173
42;109 VS 108 VS 176
43;112 VS 111 VS 181
44;115 VS 114 VS 186
45;117 VS 116 VS 189
46;120 VS 119 VS 194
47;123 VS 122 VS 199
48;125 VS 124 VS 202
49;128 VS 127 VS 207
50;130 VS 129 VS 210
ã®å€ã
ããããã決ãŸãã®ã§
å
šãŠã®èªç¶æ°ã¯
ãã®ïŒã°ã«ãŒãã«å®å
šã«æ¯ãåããããŠãããŸãã
No.162GAI2022幎8æ16æ¥ 13:49
GAIæ§ãž ^^
æ©éã«ããããšãããããŸãã
åé¡æ
ïŒããããã®2ã°ã«ãŒãããããããã1ã€ãã€æ°ãéžã¶ããããã®æ°ãã
ã
ãããããã®2ã°ã«ãŒãããããããã1ã€ãã€æ°ãéžã¶ããããã®æ°ã®åããã
ã®ã€ããã§ãã... ^^;
ãã®å Žåã§ã¯ã©ããªã®ã§ãããïŒ
No.163ã¹ã¢ãŒã¯ãã³2022幎8æ16æ¥ 17:09
> æãã€ããã®ã¯...
> (2é²æ³ã§1ãå¶æ°æ¡ã ã),(2é²æ³ã§1ãå¥æ°æ¡ã ãã®å¥æ°),(ãã以å€ã®æ°)
>
> ã§ãã...åã£ãŠãŸãããããïŒ
ããã¯äŸãã°
2é²æ³ã§1ãå¶æ°æ¡ã ã: 10100010(2)
2é²æ³ã§1ãå¥æ°æ¡ã ãã®å¥æ°: 1000001(2)
ãã以å€ã®æ°: 2é²æ³ã§1ãå¥æ°æ¡ã ãã®å¶æ°ãšå¶æ°æ¡å¥æ°æ¡ã®äž¡æ¹ã«1ãããæ°
ãšããæå³ã§ããããïŒ
ããããã ãšããã
1001(2)=9(10)ãšããåããã£ããšãã«
第1ã°ã«ãŒããšç¬¬2ã°ã«ãŒãã®å: 1000(2)+1(2)=1001(2)
第1ã°ã«ãŒããšç¬¬3ã°ã«ãŒãã®å: 10(2)+111(2)=1001(2)
ã®ã©ã¡ããªã®ãåºå¥ãã€ããªããšæããŸãã
解éãéã£ãŠãããããããªããã
No.170ãããã2022幎8æ18æ¥ 22:22
ããããæ§ãž
èããŠãã ãã£ãŠããããšãããããŸã Orz
å¶æ°æ¡ã ãã1ã®æ°ïŒ10, 1010,101010,...
å¥æ°æ¡ã ãã1ã®æ°ïŒ1,101,10101,1010101,...
ã®ã€ããã§ãã ^^;...
ã¡ãªã¿ã«ã
ããæ¹ããã{1,n,ãã®ä»ã®æ°}
ã®3ã°ã«ãŒãã«åããŠãå¯èœãšæããŠããã ããŸãã...
No.176ã¹ã¢ãŒã¯ãã³2022幎8æ20æ¥ 16:46
ãªãã»ã©ã
ããã ãšããŠã
1111(2)=15(10)ãšããåããã£ããšãã«
第1ã°ã«ãŒããšç¬¬2ã°ã«ãŒãã®å: 1010(2)+101(2)=1111(2)
第2ã°ã«ãŒããšç¬¬3ã°ã«ãŒãã®å: 1(2)+1110(2)=1111(2)
ã®ã©ã¡ããªã®ãåºå¥ãã€ããªããšæããŸãã
No.177ãããã2022幎8æ20æ¥ 20:48
ããããæ§ãž
ãã£ã...!!
æµ
ã¯ãã§ãã ^^;
ããããšãããããŸãã Orzãâ
No.178ã¹ã¢ãŒã¯ãã³2022幎8æ20æ¥ 22:31
1,2,3ãã©ã®ã°ã«ãŒãã«å
¥ããããå ŽååãããŠçŽ°ãã調ã¹ãããšã«ããã
æ¡ä»¶ãæºããåãæ¹ã¯
ãmod3ã§åããã
ã1ãšnãšãã®ä»ã«åããã
ã®2éããããªãããšã蚌æã§ããŸããã
蚌æã¯é·ããªããŸãã®ã§ãšããããçç¥ããŸãã
No.180ãããã2022幎8æ21æ¥ 01:02
ããããæ§ãž
é¢çœãã§ãã ^^
ã©ã®ããã«èšŒæã§ããã®ãåãããŸããã ^^;
äžè¬ã«ãmod (m: 3以äžã®å¥æ°) ã§ã°ã«ãŒãåã(mã°ã«ãŒã)ããã°ããã¹ãŠã®ã°ã«ãŒãããã®å㯠mod mã§0ã«ãªãã®ã§ã
mã°ã«ãŒãã«åããŠãm-1ã°ã«ãŒãããåãåºããåâ¡r (mod m) ãªããåãåºããªãã£ãã°ã«ãŒãã¯m-rã®ã°ã«ãŒããšãããã
mod(m: 4以äžã®å¶æ°)ã§ã°ã«ãŒãåãããã°ãå
šãŠã®ã°ã«ãŒãããã®å㯠mod m㧠m/2 ã®ãªãã®ã§ãåãåºããªãã£ãã°ã«ãŒãã¯m/2-rã®ã°ã«ãŒããšãããã®ã§ãäžè¬åã§ããŸããã
ãŸãã1,n,ãã®ä»ã...
k,n,ãã®ä»ã§ããå
šéšã®åãn(n+1)/2 ãªã®ã§ã2ã°ã«ãŒãã®åãåŒãããã®ãk or n以å€ãªãããã®ä»ãšãããã®ã§å¯èœã§ããã
åæ§ã«ãmã°ã«ãŒãã®æã...
äŸãã°...
1,2,...,(m-2),n,ãã®ä»
ã«åããŠããã°ãå
šäœã®åãäžå®ãªã®ã§åãããšãèšããã®ã§ãäžè¬åã§ããŸããã
No.183ã¹ã¢ãŒã¯ãã³2022幎8æ21æ¥ 11:34