ããããäžå€
äžæäžæ¥ã¯ã«ã«ãã¹ãåããŠçºå£²ãããæ¥ã§ãã
æãå¹ãã§ããé ããã©ããã§ã§ããæ£åé¢äœã®æ ã®äžã«
çã®æ°Žæ¶ãå
¥ã£ãŠããã¢ã¯ã»ãµãªãŒãè²·ã£ãã
(ãã©ããããã¯ãŒãšæ°Žæ¶ãã¯ãŒã®ããã«ãã¯ãŒ)
ãããæ°Žæ¶ããã©ãããã®å
æ¥çã ã£ããæ£åé¢äœã®æ ã®äžããé£ã³åºããŠããŸãã
ä»ããæ³ãã°ããã®æ°Žæ¶ã¯æ£åé¢äœã®ã蟺æ¥çãã ã£ããã ãšæ°ã¥ããã
ä»ã¯ç¡ãããã®æ°Žæ¶ã¯ç¥ç€Ÿã®ãçãäžãã®çã®äžãžã
ãä»»æã®å¶æ°Aã«å¯ŸããŠãäºã€ã®çŽ æ°PãQãååšãã
AïŒP-Qãšããããšãã§ãããåäŸãããã§ããããïŒ
奿°ã®å Žåã¯ãããã«èŠã€ãããŸããã
å
æ¥æçš¿ãããäžè§åœ¢ã®å
æ¥äºæ¬¡æ²ç·ãšå
±åœ¹ç¹ãã«é¢é£ããŠãããäžåæçš¿ããŠã¿ãŸãã
ãã¡ããåé¡ã¯äœããŸãããèªåã§è§£ããŠã¯ããªãã®ã§è§£çã¯çšæããŠããŸããã
ïŒãã®åé¡ã®å
容ãå«ãããäžè¬çãªåœé¡ãæãç«ã€ããšã¯ç¢ºèªããŠããŸããïŒ
äžè§åœ¢ABCããããç·åBCã®äžç¹ãDãç·åCAã®äžç¹ãEãç·åABã®äžç¹ãFãšããã
äžè§åœ¢ABCã®å€æ¥åãšçŽç·EFã®2ã€ã®äº€ç¹ã«ããã倿¥åã®æ¥ç·ãl,l'ãšããã
çŽç·lãšçŽç·BC,CA,ABã®äº€ç¹ãããããP,Q,Rãšãã
çŽç·l'ãšçŽç·BC,CA,ABã®äº€ç¹ãããããP',Q',R'ãšããã
ãã®ãšãã PD=DP' ã QE=EQ' ã RF=FR' ãæãç«ã€ããšã瀺ãã
ããã²ããããããã«ã¡ã¯ã
ç°¡åãªãã€ïŒã€ã ãã§ãããããã§ããããã
ïŒâ
°ïŒPD=DP' ã®èšŒæ
çŽç·ïœãšåãšã®æ¥ç¹ãïŒçŽç·ïœ'ãšåãšã®æ¥ç¹ããšãããšãïŒç¹ïŒ¥ïŒïŒŠã¯ç·åäžã«ããã
â³ïŒ¡ïŒ¢ïŒ£ã§ã®äžç¹é£çµå®çãã//ãâŽïŒ³ïŒŽ//
ãŸããçŽç·ïœãšïœ'ã®äº€ç¹ããšãããšãåãšæ¥ç·ã®é¢ä¿ããïŒïŒ§ïŒŽ
ãã£ãŠãâ³ïŒ§ïŒ³ïŒŽã¯äºç蟺äžè§åœ¢ã§ããããŸããç¹ïŒ°,'ã¯ïŒ¢ïŒ£ã®å»¶é·äžã«ããã//ãã//'ã§ããã
âŽâ³ïŒ§ïŒ³ïŒŽâœâ³ïŒ§ïŒ°ïŒ°'ããã£ãŠãâ³ïŒ§ïŒ°ïŒ°'ãäºç蟺äžè§åœ¢ã§ããã
ãã£ãŠããã'ã«åç·ãäžãããã®è¶³ããšãããšãïŒïŒšïŒ°'ââââ
ãšããã§ã//ããåè§åœ¢ïŒ³ïŒ¢ïŒ£ïŒŽã¯å°åœ¢ã§åã«å
æ¥ããå°åœ¢ã¯çèå°åœ¢ã§ããŸããâ³ïŒ§ïŒ³ïŒŽã¯äºç蟺äžè§åœ¢ããã
ç¹ïŒšã¯ïŒ¢ïŒ£ã®äžç¹ã§ãããâŽïŒšïŒïŒ€ââââ¡
â¡ãâ ã«ä»£å
¥ãããšãïŒïŒ€ïŒ°'
ãã£ãŠã瀺ãããã
è£è¶³
åã«å
æ¥ããå°åœ¢ã¯çèå°åœ¢ã§ããäºã䜿ããªãå Žåã¯ããçµã¶ãšé¯è§ããâ ïŒâ ãâŽåŒ§ïŒ³ïŒ¢ïŒåŒ§ïŒŽïŒ£
âŽïŒ³ïŒ¢ïŒïŒŽïŒ£ããŸãã//ãããåè§åœ¢ïŒ³ïŒ¢ïŒ£ïŒŽã¯çèå°åœ¢ã§ããã
ãã®åœé¡ã«ã¯ â B ãš â C ãçŽè§ã§ã¯ãªããšããåæãå¿
èŠãªæ°ãããŸãã
ãããã¯ãå¹³è¡ç·ã¯ç¡éé ã§äº€ãã£ãŠãããšã¿ãªããšè£è¶³ãå
¥ãããã
ããã¯ãããšããŠãPD = DPâ ã«ã€ããŠã¯ã蟺 BC ã®åçŽäºçåç·ãåŒããš l ãš lâ ããã®çŽç·ã«é¢ããŠå¯Ÿç§°ã«ãªãããšããããšãèããã°ãããšèªæãªæããããŸããã
DD++ãã
> ãã®åœé¡ã«ã¯ â B ãš â C ãçŽè§ã§ã¯ãªããšããåæãå¿
èŠãªæ°ãããŸãã
> ãããã¯ãå¹³è¡ç·ã¯ç¡éé ã§äº€ãã£ãŠãããšã¿ãªããšè£è¶³ãå
¥ãããã
確ãã«ããã§ããã倱瀌ããŸããã
â B ãš â C ãçŽè§ã§ã¯ãªããšããã®ãããããã§ããã
ïŒå¹³è¡ç·ã¯ç¡éé ã§äº€ãã£ãŠãããšã¿ãªããšè£è¶³ãå
¥ããå Žåã¯ã
亀ç¹ã¯å®çŸ©ãããŠãé·ããå®çŸ©ãããªãã®ã§ã
åé¡æã®æåŸããPãšP'ãDã«é¢ããŠå¯Ÿç§°ãã®ãããªåœ¢ã«ããã®ãããã§ãããïŒ
察称ã®å®çŸ©ãç¡éé ç¹ã«åã¶ãããããªããã埮åŠããªïŒïŒ
ãäžè§åœ¢ã®å
æ¥äºæ¬¡æ²ç·ãšå
±åœ¹ç¹ãã¹ã¬ããã«ç§ãæžã蟌ãã çè§å
±åœ¹ç¹ãšçè·é¢å
±åœ¹ç¹ã®èª¬æãå¹³è¡ç·ãšãªãå ŽåãæããŠããŠäžååã§ããã
ãŠãŒã¯ãªããå¹³é¢ã«ç¡éé ç¹ã®éåã§ããç¡éé çŽç·ãå ããŠå°åœ±å¹³é¢ã®å®çŸ©ãæºããããã«æ¡åŒµããå¹³é¢ã§èããŠãããšããŠãã ããã
ãã®æ¡å€§ãŠãŒã¯ãªããå¹³é¢ã§ã¯å¹³è¡ç·ã¯ç¡éé ç¹ã§äº€ãããŸãã
ããäžåäœããŸããã
äŸã®ããšããåé¡ã¯äœããŸãããèªåã§è§£ããŠã¯ããªãã®ã§è§£çã¯çšæããŠããŸããã
ïŒãã®åé¡ã®å
容ãå«ãããäžè¬çãªåœé¡ãæãç«ã€ããšã¯ç¢ºèªããŠããŸããïŒ
æçš¿No.1202ã®åé¡ãåé¡ãã®ïŒãšããŠãããŸãã
åé¡ãã®ïŒ
äžè§åœ¢ABCããããâ Aã®äºçåç·ãšèŸºBCã®äº€ç¹ãDãâ Bã®äºçåç·ãšèŸºCAã®äº€ç¹ãEãâ Cã®äºçåç·ãšèŸºABã®äº€ç¹ãFãšããã
äžè§åœ¢ABCã®å€æ¥åãšçŽç·EFã®2ã€ã®äº€ç¹ã«ããã倿¥åã®æ¥ç·ãl,l'ãšããã
çŽç·lãšçŽç·BC,CA,ABã®äº€ç¹ãããããP,Q,Rãšãã
çŽç·l'ãšçŽç·BC,CA,ABã®äº€ç¹ãããããP',Q',R'ãšããã
ãã®ãšãã â PAD=â DAP' ã â QBE=â EBQ' ã â RCF=â FCR' ãæãç«ã€ããšã瀺ãã
GeoGebraã§äœå³ããŠã¿ããšãã©ããã â QBE(=â EBQ') ãš â RCF(=â FCR') ãçãããªãããã§ãã
ãã¡ãã¯èšŒæããŠããªãã®ã§æ£ãããã©ããããããŸããã
ãã®åé¡ã®å
ãã¿ïŒããäžè¬çãªåœé¡ïŒãèŒããŠãããŸãã
以äžããŠãŒã¯ãªããå¹³é¢ã«ç¡éé ç¹ã®éåã§ããç¡éé çŽç·ãå ããŠå°åœ±å¹³é¢ã®å®çŸ©ãæºããããã«æ¡åŒµããå¹³é¢ã§èããŸãã
ãã®æ¡å€§ãŠãŒã¯ãªããå¹³é¢ã§ã¯ãä»»æã®ç°ãªã2ç¹ãçµã¶çŽç·ããã 1ã€ååšããä»»æã®ç°ãªã2çŽç·ã¯ãã 1ç¹ã§äº€ãããŸãã
åæç¥èãã®ïŒãçžåå
±åœ¹ç·
äžè§åœ¢ABCã®åé ç¹ãéããªãçŽç·lããšãã
çŽç·lãšçŽç·BC,CA,ABã®äº€ç¹ãããããP,Q,Rãšãã
ç·åBCã®äžç¹ã«é¢ããŠç¹Pãšå¯Ÿç§°ãªç¹ãP'ã
ç·åCAã®äžç¹ã«é¢ããŠç¹Qãšå¯Ÿç§°ãªç¹ãQ'ã
ç·åABã®äžç¹ã«é¢ããŠç¹Rãšå¯Ÿç§°ãªç¹ãR'ãšãããšã
3ç¹P',Q',R'ã¯äžçŽç·äžã«ããã
ãã®çŽç·ã(äžè§åœ¢ABCã«é¢ãã)çŽç·lã®çžåå
±åœ¹ç·ãšããã
åæç¥èãã®ïŒãïŒïŒïŒ (è§åºŠã®å
±åœ¹ç·)
äžè§åœ¢ABCã®åé ç¹ãéããªãçŽç·lããšãã
çŽç·lãšçŽç·BC,CA,ABã®äº€ç¹ãããããP,Q,Rãšãã
è§Aã®äºçåç·ã«é¢ããçŽç·APã®é¡æ ãçŽç·BCãšäº€ããç¹ãP'ã
è§Bã®äºçåç·ã«é¢ããçŽç·BPã®é¡æ ãçŽç·CAãšäº€ããç¹ãQ'ã
è§Cã®äºçåç·ã«é¢ããçŽç·CPã®é¡æ ãçŽç·ABãšäº€ããç¹ãR'ãšãããšã
3ç¹P',Q',R'ã¯äžçŽç·äžã«ããã
ãã®çŽç·ãäœãšããã®ããããã¯ç¥ããŸããããããããåç§°ãããã®ãã©ãããããããŸããã®ã§ã
ãã®æçš¿ã«ãããŠã¯ãã®çŽç·ã(äžè§åœ¢ABCã«é¢ãã)çŽç·lã®è§åºŠã®å
±åœ¹ç·ãšåŒã¶ããšã«ããŸãã
ããšã°ã®å®çŸ©ã倿¥äºæ¬¡æ²ç·
3ç¹A,B,Cãéãäºæ¬¡æ²ç·ãäžè§åœ¢ABCã®å€æ¥äºæ¬¡æ²ç·ãšããã
â»äžéšãäžè§åœ¢ABCã®å
éšãéãåæ²ç·ãå«ããã
ããšã°ã®å®çŸ©ãantiorthic axis
äžè§åœ¢ABCã«å¯ŸããŠãç¹A,B,Cã®å€è§ã®äºçåç·ãšå¯ŸèŸºã®å»¶é·ç·ã®äº€ç¹ãããããD',E',F'ãšãããšããã®3ç¹ã¯äžçŽç·äžã«ããã
ãã®çŽç·ãäžè§åœ¢ABCã® antiorthic axis ãšããã
(æ¥æ¬èªã®åç§°ã¯ããããŸããã)
åé¡ãã®ïŒã®å
ãã¿
äžè§åœ¢ABCããããç·åBCã®äžç¹ãDãç·åCAã®äžç¹ãEãç·åABã®äžç¹ãFãšããã
ç¡éé çŽç·ãšçŽç·EF,FD,DEã®äžããäžè§åœ¢ABCã®å€æ¥äºæ¬¡æ²ç·Îãš2ç¹ã§äº€ããçŽç·ãéžã¶ã
ãã®çŽç·ãšÎã®2ã€ã®äº€ç¹ã«ãããæ¥ç·ã¯äºãã«äžè§åœ¢ABCã«é¢ããçžåå
±åœ¹ç·ã§ããã
åé¡ãã®ïŒã®å
ãã¿
äžè§åœ¢ABCããããç¹A,B,Cã®å
è§ã®äºçåç·ãšå¯ŸèŸºã®äº€ç¹ãããããD,E,Fãšããã
äžè§åœ¢ABCã® antiorthic axis ãšçŽç·EF,FD,DEã®äžããäžè§åœ¢ABCã®å€æ¥äºæ¬¡æ²ç·Îãš2ç¹ã§äº€ããçŽç·ãéžã¶ã
ãã®çŽç·ãšÎã®2ã€ã®äº€ç¹ã«ãããæ¥ç·ã¯äºãã«äžè§åœ¢ABCã«é¢ããè§åºŠã®å
±åœ¹ç·ã§ããã
å
ãã¿ã®å
ãã¿ïŒããäžè¬çãªåœé¡ïŒãèŒããŠãããŸãã
çžåå
±åœ¹ç·ãè§åºŠã®å
±åœ¹ç·ã¯ããã«äžè¬åããããçŽç·ã®å
±åœ¹é¢ä¿ãã®ãã¡ã®ã²ãšã€ã§ãã
äžè¬åãããçŽç·ã«é¢ããå
±åœ¹é¢ä¿ã«ã¯ãèªå·±å
±åœ¹ãªçŽç·ã4ã€æã€ãã®ãš1ã€ãæããªããã®ããããŸãã
å
ãã¿ã®å
ãã¿
äžè§åœ¢ABCã«é¢ããŠãèªå·±å
±åœ¹ãªçŽç·ã4ã€æã€ãçŽç·ã«é¢ããå
±åœ¹é¢ä¿ããã²ãšã€æ±ºããã
ãã®4ã€ã®èªå·±å
±åœ¹ãªçŽç·ã®äžããäžè§åœ¢ABCã®å€æ¥äºæ¬¡æ²ç·Îãš2ç¹ã§äº€ããçŽç·ãéžã¶ã
ãã®çŽç·ãšÎã®2ã€ã®äº€ç¹ã«ãããæ¥ç·ã¯äºãã«æåã«å®ããå
±åœ¹é¢ä¿ã«ããã
ãã®å
ãã¿ã®å
ãã¿ã¯å°åœ±å¹Ÿäœã®ç¯çãªã®ã§å察ãæãç«ã¡ãŸãã
ãã®å察ãããã²ãšã€ã®ã¹ã¬ãããäžè§åœ¢ã®å
æ¥äºæ¬¡æ²ç·ãšå
±åœ¹ç¹ãã®å
ãã¿ã®å
ãã¿ã«ãªããŸãã
ãããããããã®ããšãèãããã£ããã«ãªã£ãã®ã¯æ¬¡ã®å®çãèŠãããããšã«ãããŸãã
åé¡ãã®ïŒãããã®ïŒããããã®å
ãã¿ã®åœé¡ã¯æ¬¡ã®å®çããã®é£æ³ã§çãŸããŸããã
ãäžè§åœ¢ABCã®çžåå
±åœ¹ç·ãšãªã2çŽç·ã®çµã¯ã3ç¹A,B,Cãéãããåæ²ç·ã®2æ¬ã®æŒžè¿ç·ã§ãããã
äžè¬åããããçŽç·ã«é¢ããå
±åœ¹é¢ä¿ã(èªå·±å
±åœ¹ãªçŽç·ã4ã€ãã€ãã®)ã«ã€ããŠæžã蟌ãã§ãããŸãã
1çŽç·äžã«ãã4ç¹ã®è€æ¯ã [P1,P2;P3,P4] ã®ããã«æžãã
1ç¹ãéã4çŽç·ã®è€æ¯ã [l1,l2;l3,l4] ã®ããã«æžãã
çŽç·dã¯ç¹A,B,Cãéããªããšããã
ãŸããçŽç·dãšçŽç·BC,CA,ABã®äº€ç¹ãããããD1,D2,D3ãšããã
4ã€ã®èªå·±å
±åœ¹ãªçŽç·ãæã¡ãã®äžã®1ã€ãçŽç·dã§ãããããªå
±åœ¹é¢ä¿ã®ããšãd-å
±åœ¹ãšæžãããšã«ãã
ããçŽç·ã«å¯ŸããŠd-å
±åœ¹ã®é¢ä¿ã«ããçŽç·ã®ããšãd-å
±åœ¹ç·ãšæžãããšã«ããã
d-å
±åœ¹ç·
ç¹A,B,CãéããªãçŽç·lãšçŽç·BC,CA,ABã®äº€ç¹ãããããL1,L2,L3ãšããã
ç¹M1ã¯çŽç·BCäžã«ãã [B,C;D1,M1]=1/[B,C;D1,L1] ãšãªãç¹ãšãã
ç¹M2ã¯çŽç·CAäžã«ãã [C,A;D2,M2]=1/[C,A;D2,L2] ãšãªãç¹ãšãã
ç¹M3ã¯çŽç·ABäžã«ãã [A,B;D3,M3]=1/[A,B;D3,L3] ãšãªãç¹ãšããã
ãã®ãšãã3ã€ã®ç¹M1,M2,M3ã¯1çŽç·äžã«ããã
ãã®çŽç·ãçŽç·lã®d-å
±åœ¹ç·ã§ããã
ã¡ãªã¿ã«ã
d-å
±åœ¹ã®4ã€ã®èªå·±å
±åœ¹ãªçŽç·ã®ãã¡çŽç·d以å€ã®3æ¬ã®çŽç·ã¯ã
çŽç·BC,AD1ã«é¢ããçŽç·dã®èª¿åå
±åœ¹ç·,
çŽç·CA,BD2ã«é¢ããçŽç·dã®èª¿åå
±åœ¹ç·,
çŽç·AB,CD3ã«é¢ããçŽç·dã®èª¿åå
±åœ¹ç·ã§ããã
â»èª¿åå
±åœ¹ç·ãšã¯è€æ¯ã-1ãšãªãçŽç·ã®ããšãããã
æšå¹Žããã®ç§ã®å人çãªããŒã ã¯äžè§åœ¢ã«é¢ããããããã§ä»ãç¶ç¶ããŠããŸãã
æ°æ¥åã«ãµãšåé¡ãæãã€ããã®ã§æžããŠã¿ãŸãã
ãã ããåé¡ã¯äœããŸãããèªåã§è§£ããŠã¯ããªãã®ã§è§£çã¯çšæããŠããŸããã
ïŒãã®åé¡ã®å
容ãå«ãããäžè¬çãªåœé¡ãæãç«ã€ããšã¯ç¢ºèªããŠããŸããïŒ
åæç¥èãã®ïŒãçè§å
±åœ¹ç¹ (isogonal conjugate)
äžè§åœ¢ABCã®å蟺ããã³ãã®å»¶é·ç·ã®äžã«ãªãç¹Pããšãã
è§Aã®äºçåç·ã«é¢ããçŽç·APã®é¡æ ãçŽç·lã
è§Bã®äºçåç·ã«é¢ããçŽç·BPã®é¡æ ãçŽç·mã
è§Cã®äºçåç·ã«é¢ããçŽç·CPã®é¡æ ãçŽç·nãšãããšã
3æ¬ã®çŽç·l,m,nã¯1ç¹ã§äº€ããã
ãã®ç¹ã(äžè§åœ¢ABCã«é¢ãã)ç¹Pã®çè§å
±åœ¹ç¹ãšããã
åæç¥èãã®ïŒãçè·é¢å
±åœ¹ç¹ (isotomic conjugate)
äžè§åœ¢ABCã®å蟺ããã³ãã®å»¶é·ç·ã®äžã«ãªãç¹Pããšãã
çŽç·APãšBCã®äº€ç¹ãLãBPãšCAã®äº€ç¹ãMãCPãšABã®äº€ç¹ãNãšãã
ç·åBCã®äžç¹ã«é¢ããŠç¹Lãšå¯Ÿç§°ãªç¹ãL'ã
ç·åCAã®äžç¹ã«é¢ããŠç¹Mãšå¯Ÿç§°ãªç¹ãM'ã
ç·åABã®äžç¹ã«é¢ããŠç¹Nãšå¯Ÿç§°ãªç¹ãN'ãšãããšã
3æ¬ã®çŽç·AL',BM',CN'ã¯1ç¹ã§äº€ããã
ãã®ç¹ã(äžè§åœ¢ABCã«é¢ãã)ç¹Pã®çè·é¢å
±åœ¹ç¹ãšããã
åé¡ãã®ïŒ
äžè§åœ¢ã®å
æ¥åã«å¯ŸããŠããã²ãšã€ã®åå¿ãã2æ¬ã®æ¥ç·ãåŒãããšãã®2ã€ã®æ¥ç¹ã¯äºãã«çè§å
±åœ¹ç¹ã§ããããšã瀺ãã
åé¡ãã®ïŒ
äžè§åœ¢ABCã«å¯ŸããŠãåè§åœ¢ABCDãå¹³è¡å蟺圢ãšãªãããã«ç¹Dããšãã
äžè§åœ¢ABCã®å
æ¥åã«å¯ŸããŠç¹Dãã2æ¬ã®æ¥ç·ãåŒãããšãã®2ã€ã®æ¥ç¹ã¯äºãã«çè·é¢å
±åœ¹ç¹ã§ããããšã瀺ãã
ããã²ããããããã«ã¡ã¯ãã¡ãã£ãšèããŠã¿ãŸããã
åé¡ãã®ïŒ
äžè§åœ¢ã®å
æ¥åã«å¯ŸããŠããã²ãšã€ã®åå¿ãã2æ¬ã®æ¥ç·ãåŒãããšãã®2ã€ã®æ¥ç¹ã¯äºãã«çè§å
±åœ¹ç¹ã§ããããšã瀺ãã
åç
â³ïŒ¡ïŒ¢ïŒ£ã®å
å¿ããšããâ å
ã®åå¿ã'ãšãããšãïŒç¹ïŒ¢ïŒïŒ©ïŒïŒ©'ã¯äžçŽç·äžã«ããã'ããå
æ¥åã«åŒããæ¥ç·ã®ïŒã€ã®æ¥ç¹ã'ã®é¢ããŠç¹ïŒ¡åŽãïŒç¹ïŒ£åŽããšãããšã
ã¯â ã®äºçåç·ã§ïŒ¡ïŒ©'ã¯â ã®å€è§ã®äºçåç·ããâ 'ïŒïŒïŒïŒÂ°Ã·ïŒïŒïŒïŒÂ°
ãŸãã'â¥ïŒ©ïŒ³ããâ 'ïŒïŒïŒÂ°
ãã£ãŠãâ 'ïŒâ 'ãããååšè§ã®å®çã®éã«ããïŒç¹ïŒ³ïŒïŒ©ïŒïŒ©'ïŒïŒ¡ã¯åäžååšäžã«ããã
ãšããã§ãâ³ïŒ©'â¡â³ïŒ©'ããâ 'ïŒâ 'ïŒâãšçœ®ããšãååšè§ããâ ïŒâ 'ïŒâ
ãŸããâ 'ïŒïŒïŒÂ°ïŒâ 'ïŒïŒïŒÂ°ããåè§åœ¢ïŒ¡ïŒ©ïŒŽïŒ©'ã¯åã«å
æ¥ããåè§åœ¢ã§ããã
ãã£ãŠãååšè§ããâ ïŒâ 'ïŒâãâŽâ ïŒâ 
ãšããã§ãã¯â ã®äºçåç·ããããšïŒ¡ïŒŽã¯â ã®äºçåç·ã«é¢ããŠé¡æ ã§ããã
ãŸããâ³ïŒ©'â¡â³ïŒ©'ããâ 'ïŒâ 'ãâŽâ ïŒâ ããŸããååŸããïŒïŒ©ïŒŽãã¯å
±éããã
äºèŸºæè§ãçããã®ã§ãâ³ïŒ¢ïŒ©ïŒ³â¡â³ïŒ¢ïŒ©ïŒŽãâŽâ ïŒâ 
ãšããã§ãã¯â ã®äºçåç·ããããšïŒ¢ïŒŽã¯â ã®äºçåç·ã«é¢ããŠé¡æ ã§ããã
ãã£ãŠãç¹ïŒ³ãšç¹ïŒŽã¯äºãã«çè§å
±åœ¹ç¹ã§ããããã£ãŠã瀺ãããã
è£è¶³
â 'ïŒâ 'ïŒïŒïŒÂ°ããïŒç¹ïŒ©ïŒïŒŽïŒïŒ£ïŒïŒ©'ã¯åäžååšäžã«ãããååšè§ããâ ïŒâ 'ïŒâ
ãŸããåè§åœ¢ïŒ³ïŒ©ïŒ£ïŒ©'ã¯åã«å
æ¥ããåè§åœ¢ããååšè§ã§ãâ ïŒâ 'ïŒâãâŽâ ïŒâ 
ãšããã§ãã¯â ã®äºçåç·ããããšïŒ£ïŒ³ã¯â ã®äºçåç·ã«é¢ããŠé¡æ ã§ããã
å£ããæãã
çããŠããã ãããããšãããããŸãã
6ã€ã®ç¹ A, C, S, T, I, I' ãåäžååšäžã«ãããã§ããã
åé¡ãã®ïŒã¯ããã»ã©é£ããã¯ãªãã ãããªãšãªããšãªãæã£ãŠããŸããããããªãããããªåœ¢ã§ããã
ã¡ãªã¿ã«ã
ãäžè§åœ¢ã®åæ¥åã«å¯ŸããŠå
å¿ãã2æ¬ã®æ¥ç·ãåŒãããšãã®2ã€ã®æ¥ç¹ã¯äºãã«çè§å
±åœ¹ç¹ã§ããããšã
ãã»ãšãã©åæ§ã«ç€ºããŸãã
管ç人ãã
æçš¿No.1194ãä¿®æ£ããŸããã
ä¿®æ£åïŒãç·åBCã®äžç¹ã«é¢ããç¹Lã®é¡æ ãç¹L'ãä»
ä¿®æ£åŸïŒãç·åBCã®äžç¹ã«é¢ããŠç¹Lãšå¯Ÿç§°ãªç¹ãL'ãä»
çç± âŠ å¹³é¢ã«ãããŠç¹å¯Ÿç§°ã®ããšã顿 ãšã¯èšããªãããã
ããã²ããããããã°ãã¯ã
ãäžè§åœ¢ã®åæ¥åã«å¯ŸããŠå
å¿ãã2æ¬ã®æ¥ç·ãåŒãããšãã®2ã€ã®æ¥ç¹ã¯äºãã«çè§å
±åœ¹ç¹ã§ããããšã
ãã»ãšãã©åæ§ã«ç€ºããŸãã
å
çšãã£ãŠã¿ãŸããããã»ãšãã©åæ§ãã®æå³ãåãããŸãããããè¬ãè§£ããªããšãããŸãããã
ãã®åé¡ã®å
ãã¿ïŒããäžè¬çãªåœé¡ïŒãèŒããŠãããŸãã
以äžããŠãŒã¯ãªããå¹³é¢ã«ç¡éé ç¹ã®éåã§ããç¡éé çŽç·ãå ããŠå°åœ±å¹³é¢ã®å®çŸ©ãæºããããã«æ¡åŒµããå¹³é¢ã§èããŸãã
ãã®æ¡å€§ãŠãŒã¯ãªããå¹³é¢ã§ã¯ãä»»æã®ç°ãªã2ç¹ãçµã¶çŽç·ããã 1ã€ååšããä»»æã®ç°ãªã2çŽç·ã¯ãã 1ç¹ã§äº€ãããŸãã
ããšã°ã®å®çŸ©ãå
æ¥äºæ¬¡æ²ç·
3çŽç·BC,CA,ABã«æ¥ããäºæ¬¡æ²ç·ãäžè§åœ¢ABCã®å
æ¥äºæ¬¡æ²ç·ãšããã
â»äžè§åœ¢ã®å
åŽã«ãã3èŸºã«æ¥ããæ¥åã ãã§ã¯ãªããäžè§åœ¢ã®å€åŽã«ãã1èŸºãšæ®ã2蟺ã®å»¶é·ç·ã«æ¥ããæ¥åã»æŸç©ç·ã»åæ²ç·ãå«ããã
åé¡ãã®ïŒã®å
ãã¿
äžè§åœ¢ABCã®å
å¿ãš3ã€ã®åå¿ã®äžããäžè§åœ¢ABCã®å
æ¥äºæ¬¡æ²ç·Îã«2æ¬ã®æ¥ç·ãåŒããç¹ãéžã¶ã
ãã®ç¹ããÎã«åŒãã2æ¬ã®æ¥ç·ã®æ¥ç¹ã¯äºãã«äžè§åœ¢ABCã«é¢ããçè§å
±åœ¹ç¹ã§ããã
åé¡ãã®ïŒã®å
ãã¿
äžè§åœ¢ABCã«å¯ŸããŠãåè§åœ¢ABA'C,ABCB',AC'BCãå¹³è¡å蟺圢ãšãªãããã«ç¹A',B',C'ãå®ããã
äžè§åœ¢ABCã®éå¿Gãš3ç¹A',B',C'ã®äžããäžè§åœ¢ABCã®å
æ¥äºæ¬¡æ²ç·Îã«2æ¬ã®æ¥ç·ãåŒããç¹ãéžã¶ã
ãã®ç¹ããÎã«åŒãã2æ¬ã®æ¥ç·ã®æ¥ç¹ã¯äºãã«äžè§åœ¢ABCã«é¢ããçè·é¢å
±åœ¹ç¹ã§ããã
å
ãã¿ã®å
ãã¿ïŒããäžè¬çãªåœé¡ïŒãèŒããŠãããŸãã
çè§å
±åœ¹ç¹ãçè·é¢å
±åœ¹ç¹ã¯ããã«äžè¬åããããç¹ã®å
±åœ¹é¢ä¿ãã®ãã¡ã®ã²ãšã€ã§ãã
äžè¬åãããç¹ã«é¢ããå
±åœ¹é¢ä¿ã«ã¯ãèªå·±å
±åœ¹ãªç¹ã4ã€æã€ãã®ãš1ã€ãæããªããã®ããããŸãã
å
ãã¿ã®å
ãã¿
äžè§åœ¢ABCã«é¢ããŠãèªå·±å
±åœ¹ãªç¹ã4ã€æã€ãç¹ã«é¢ããå
±åœ¹é¢ä¿ããã²ãšã€æ±ºããã
ãã®4ã€ã®èªå·±å
±åœ¹ãªç¹ã®äžããäžè§åœ¢ABCã®å
æ¥äºæ¬¡æ²ç·Îã«2æ¬ã®æ¥ç·ãåŒããç¹ãéžã¶ã
ãã®ç¹ããÎã«åŒãã2æ¬ã®æ¥ç·ã®æ¥ç¹ã¯äºãã«æåã«å®ããå
±åœ¹é¢ä¿ã«ããã
ãã®å
ãã¿ã®å
ãã¿ã¯å°åœ±å¹Ÿäœã®ç¯çãªã®ã§å察ãæãç«ã¡ãŸãã
ãã®å察ãããã²ãšã€ã®ã¹ã¬ãããäžè§åœ¢ã®å€æ¥äºæ¬¡æ²ç·ãšå
±åœ¹çŽç·ãã®å
ãã¿ã®å
ãã¿ã«ãªããŸãã
äžè¬åããããç¹ã«é¢ããå
±åœ¹é¢ä¿ã(èªå·±å
±åœ¹ãªç¹ã4ã€ãã€ãã®)ã«ã€ããŠæžã蟌ãã§ãããŸãã
1ç¹ãéã4çŽç·ã®è€æ¯ã [l1,l2;l3,l4] ã®ããã«æžãã
1çŽç·äžã«ãã4ç¹ã®è€æ¯ã [P1,P2;P3,P4] ã®ããã«æžãã
ç¹Dã¯çŽç·BC,CA,ABäžã«ãªããšããã
4ã€ã®èªå·±å
±åœ¹ãªç¹ãæã¡ãã®äžã®1ã€ãç¹Dã§ãããããªå
±åœ¹é¢ä¿ã®ããšãD-å
±åœ¹ãšæžãããšã«ãã
ããç¹ã«å¯ŸããŠD-å
±åœ¹ã®é¢ä¿ã«ããç¹ã®ããšãD-å
±åœ¹ç¹ãšæžãããšã«ããã
D-å
±åœ¹ç¹
çŽç·BC,CA,ABäžã«ãªãç¹Pã«å¯ŸããŠã
çŽç·m1ã¯ç¹Aãéã [AC,AB;AD,m1]=1/[AC,AB;AD,AP] ãšãªãçŽç·ãšãã
çŽç·m2ã¯ç¹Aãéã [BA,BC;BD,m2]=1/[BA,BC;BD,BP] ãšãªãçŽç·ãšãã
çŽç·m3ã¯ç¹Aãéã [CB,CA;CD,m3]=1/[CB,CA;CD,CP] ãšãªãçŽç·ãšããã
ãã®ãšãã3æ¬ã®çŽç·m1,m2,m3ã¯1ç¹ã§äº€ããã
ãã®ç¹ãç¹Pã®D-å
±åœ¹ç¹ã§ããã
ã¡ãªã¿ã«ã
çŽç·BCãšADã®äº€ç¹ãA',CAãšBDã®äº€ç¹ãB',ABãšCDã®äº€ç¹ãC'ãšãããšã
D-å
±åœ¹ã®4ã€ã®èªå·±å
±åœ¹ãªç¹ã®ãã¡ç¹D以å€ã®3ã€ã®ç¹ã¯ã
ç¹A,A'ã«é¢ããç¹Dã®èª¿åå
±åœ¹ç¹,
ç¹B,B'ã«é¢ããç¹Dã®èª¿åå
±åœ¹ç¹,
ç¹C,C'ã«é¢ããç¹Dã®èª¿åå
±åœ¹ç¹ã§ããã
â»èª¿åå
±åœ¹ç¹ãšã¯è€æ¯ã-1ãšãªãç¹ã®ããšãããã
> ã¯ã¡ã¹ããã
ãççŸããããšããèšèã¯ãïŒæ°åŠçæèã§ã¯ç¹ã«ïŒéåžžã«å®¢èгçãªèšèã§ãã
æ®éã¯ææ³ãšãã䞻芳çãªè¡šçŸã®äžã§äœ¿ãèšèãããããŸãããããã®èšèã䜿ã£ãæãææ³ã ãšåãåã人ãããããã»ãšãã©ããªãã§ãããã
ç§ã«ã¯ãæ°åŠè
ã®æ¥çžŸãåéãã§æ¹å€ããæå¥çºèšã®è²¬ä»»ãè² ããããªããŠèšãèš³ãããŠããããã«ããèãããŸããã
> dengan ãã
p ãš q ã¯çŽæ¥ã«éµãšãªã£ãŠããã®ã§ã¯ãªãã
a*b â¡ 1 ( mod(p-1) )
a*b â¡ 1 ( mod(q-1) )
ãäž¡æ¹æºãã b ãèŠã€ããã®ã«çšããããã ããªã®ã§ã
b ãçŽæ¥ãã«ãŒããã©ãŒã¹ããã° p ã q ãæ±ããªããŠããããå¹³æãæã«å
¥ããšãããã®ããšèªäœã¯è³æ¥µåœç¶ã®è©±ãšããæ°ãããŸãã
ãããããããã§ããªãã£ããç§å¯éµãæã£ãŠããŠã埩å·ã§ããªãããã§ãããããã®æ¹ãããããã§ãã
ãã æ°ã«ãªãã®ã¯ãb ã 1,2,3,4,âŠâŠ ãšè©Šãã a,a^2,a^3,a^4,âŠâŠ ãšè©Šããã§äœããå€ããã®ããšããç¹ã§ããã
åœãããåŒããŸã§ã®åæ°ã®æåŸ
å€ãå°ãããšããäžå®åæ°ä»¥å
ã«åœãããåŒã確çãé«ããšãããã®ããªïŒ
ããã«ããŠããç¹èš±ã£ãŠãªãã®ç¹èš±ãªãã§ããããã
a,a^2,a^3,a^4,âŠâŠ ãšããé ã«ã ãèæ§ãããæ¹æ³ã ãšããããæå³ãªãã§ãããã
è©Šãæ¹ãªã㊠1,2,4,8,âŠâŠ ãšè©Šããšã 1,2,3,5,8,13,21,âŠâŠ ãšè©Šããšãç¡æ°ã«ããããã§ãããã
ããããã©ãããæ¹æ³ã«å¯ŸããŠå¯ŸçããŠããããè¿°ã¹ãã»ã©ãããã«ãªãæ¹æ³ã«ã¯å¯ŸçããŠããªããšè¿°ã¹ãŠããã ããªããã«æããŠããŸãã®ã§ããâŠâŠã
ã§ãæªç¥ã®æ¹æ³ãå«ããŠå
šãŠã®è©Šãæ¹ã«èæ§ããããªããŠå€¢ã®ãããªæ¹æ³ã¯ãªãã§ããããã
ããŒãïŒ
DD++æ§ããã¯ããããããŸãã
ã¡ãã£ãšç§ãã誀解ããŠããã®ãããããŸããã
ïŒçŽ æ°çæå€é
åŒã¯ååšããªãããšã蚌æãããŠããããã§ãã
ãªã€ã©ãŒã®çŽ æ°çæåŒã®ãããª
ïŒïŒïŒïœïŒïœ^2ïŒãã®ïŒïŒ
hïŒttps://ikuro-kotaro.sakura.ne.jp/koramu2/25000_k9.htm
ããçŽæ¥çŽ æ°ãçæããåŒãååšããªããŠã
ïŒããããããã£ã»ãããã®å€é
åŒã¯ã蚌æãããŠããããã§ãã
ã¯ãããã£ã»ãããã®å€é
åŒãæãç«ã¡ãçµæãæ£ã§ããã°ãçŽ æ°ã§ãããšããã®ã§ãã£ãŠãã¡ãã£ãšçŽæ¥çŽ æ°ãçæããåŒãšã¯éãããã«æããŸãã
ã ããã
hïŒttps://enpedia.rxy.jp/wiki/%E7%B4%A0%E6%95%B0
ã§ã¯ãççŸããªãã®ã§ãããã
ãªããhïŒttpsã¯httpsã«æžãæããŠãã ããã
ããããããšã§ãã
ããããã®ãã®ãäœã䞻匵ããŠããã®ãæ£ç¢ºã«çè§£ããããšã¯å€§åã§ãã
DD++ãã
https://patents.google.com/patent/JP3835896B2/ja
ãåœè©²ç¹èš±ã§ãã
åãæ¥ãã
2 7 61 211
åšèŸºã調ã¹ãŠã㊠ãè¿äºãé
ããŸããŸããã
ç³ãèš³ãããŸããã§ããã
ãããããè¿äºãæ¥ãã§ãããã§ã¯ãªãã®ã§ãæ°ã«ãªãããã
ãªãã»ã©ãç¹°ãè¿ãæå·åæ»æã«åŒ·ãçŽ æ°ãéžã¶ãšãããšå°ãèªåŒãããæããããŸããã
ããæ£ç¢ºã«ã¯ããã©ããªçŽ æ°ãéžãã§ãäžéšã®ç¹å®ã®å¹³æãç¹°ãè¿ãæå·åæ»æã§ç°¡åã«çªç ŽãããŠããŸãã®ã¯é¿ããããªãããçŽ æ°ã®éžã³æ¹æ¬¡ç¬¬ã§éæªãããããå¹³æã«åœãã£ãŠããŸã確çãäžãããããã®ããšã¯ã§ããããšããæãã®ããã§ãã
çŽ æ°ã®éžã³æ¹ãå
¬éããããšã§éã«çªç Žã®æããããäžããŠããå¯èœæ§ã¯ãªãã®ãããšããæ°æããã¯ãã¯ãæããããªãæ°ãããŸããã
ãããããé©ããããšãã
ãã®ç¹èš±ãPocklington ã®æ¹æ³ãçšããŠç¢ºå®ã«çŽ æ°ãçã¿åºããããšã匷ã¿ã«äžããŠããã§ããâŠâŠã
ãŸããäžã®äžã® RSA æå·ã£ãŠç¢ºçççŽ æ°ã§æå·åããŠãããããã§ããïŒ
ããæ¬åœã«ïŒ
çŸBIPROGYãæ§æ¥æ¬ãŠãã·ã¹ã2000幎é ã«å
¬çã«åºããŠãããè«æãã§ã¯ã確çççŽ æ°ã§éçšããŠãããã·ããããŸããå瀟ã¯éèç³»åžå Žã§å€§æã§ãããå¿é
ã§ããã
RSA å
¬é鵿巿¹åŒã®å®çŸ
https://www.biprogy.com/pdf/tec_info/6403.pdf
ãã®ãè«æãã誀ãããããŸããã
54 ããŒãž
ãã€ãŸã j åã®åææ°ãã¹ãã«ãã£ãŠåææ°ã§ãããšå€å®ãããªããã°ããã®æ°ã¯ u^j ã®ç¢ºçã§åææ°ã§ãããšèããããšãã§ããã
ãšãããŸããã©ãããã¯ãªããŸããããã
u^j ã¯
ãéžãã æ°ããåææ°ã§ãã£ããšããæ¡ä»¶ã®ããšã§ãj åå
šãŠã§çŽ æ°ãšå€å®ããã確çã
ã§ãã£ãŠã
ãéžãã æ°ããj åå
šãŠã§çŽ æ°ãšå€å®ããããšããæ¡ä»¶ã®ããšã§ãåææ°ã§ãã確çã
ã§ã¯ãªãã¯ãã
仿¥ãNHKã®Eãã¬ã§ååŸ9:30ãããç¬ããªãæ°åŠãABCäºæ³ããæŸéãããŸãã
ããã¯ããããããããšæããŸãã
ABCäºæ³ã®äž»åŒµã®è§£èª¬
https://manabitimes.jp/math/2030
ãã§ã«ããŒã®æçµå®çãç°¡åã«èšŒæãããŠãŸããã
仿¥ãNHKã®Eãã¬ã§ååŸ9:30ãããç¬ããªãæ°åŠã確çããæŸéãããŸãã
Wikipediaãã¢ã³ãã£ã»ããŒã«åé¡ããã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒåŒçšéå§ïŒïŒïŒïŒïŒïŒ
ïŒæçš¿ãããçžè«ïŒ
ãã¬ãŒã€ãŒã®åã«éãã3ã€ã®ãã¢ããã£ãŠã1ã€ã®ãã¢ã®åŸãã«ã¯æ¯åã®æ°è»ãã2ã€ã®ãã¢ã®åŸãã«ã¯ãã¯ãããæå³ããã€ã®ãããããã¬ãŒã€ãŒã¯æ°è»ã®ãã¢ãåœãŠããšæ°è»ãããããããã¬ãŒã€ãŒã1ã€ã®ãã¢ãéžæããåŸãåžäŒã®ã¢ã³ãã£ãæ®ãã®ãã¢ã®ãã¡ã€ã®ããããã¢ãéããŠã€ã®ãèŠããã
ããã§ãã¬ãŒã€ãŒã¯ãæåã«éžãã ãã¢ããæ®ã£ãŠããéããããŠããªããã¢ã«å€æŽããŠããããšèšãããã
ããã§ãã¬ãŒã€ãŒã¯ãã¢ã倿Žãã¹ãã ãããïŒ
ïŒïŒïŒïŒïŒïŒïŒåŒçšçµäºïŒïŒïŒïŒïŒïŒïŒ
çããå·¡ã£ãŠå€§éšåã«ãªã£ãããã§ãã
åçŽã«èãããšå€ããªããã°ã3ã€ãã1ã€éžãã ã®ã ãã確ç1/3ãå€ãããš2ã€ããïŒã€éžãã ã®ã ããã確ç1/2ã§ãå€ããã»ãã確çãããããŸããã
ã¯ã¡ã¹ãããã
>åçŽã«èãããšå€ããªããã°ã3ã€ãã1ã€éžãã ã®ã ãã確ç1/3ãå€ãããš2ã€ããïŒã€éžãã ã®ã ããã確ç1/2ã§ãå€ããã»ãã確çãããããŸããã
å€ãããšãã®ç¢ºçãšå€ããªããšãã®ç¢ºçãšãå ãããšã1 ã«ãªãã¯ãã§ãã
1/3+1/2 㯠1 ã«ã¯ãªã£ãŠããŸããããâŠâŠ
Dengan kesaktian Indukmuæ§ããã¯ããããããŸãã
æ£è§£ã¯ãWikipediaãã¢ã³ãã£ã»ããŒã«åé¡ãèŠãŠãã ããã
å€ããã»ããæå©ãšãªããŸãã
åžäŒè
ã¯ãçããç¥ã£ãŠããããããããæ£è§£ã ãããå€ããŠãè¯ããšãããã ãªïŒäžã®äžã¯ãæå°æªãªãã ãªã
ãããã¯ãããªãã¯ééã£ãŠãããããããäžåºŠãã£ã³ã¹ãããããšæããã§ããè¯ãäžã®äžã§ããããšããããšã§ãã
çãã¯ãå€ããã»ãã2/3ã§è¯ãã®ã§ããã®äžã¯è¯ãäžçã§ãããšããããšã§ããã
ã¯ã¡ã¹ãããã
ç·šéã®çµæãšããŠãæ°åŠè
ã¯éè«ççããšããããªãã®åŸ¡çºèšãæ¶ããã®ã¯ããã£ãã§ãã
ãã¡ããå€éã®èå¯ãçšæããŸããããç¡é§ã«çµãã£ãããšã幞ãã§ãã
çµè«ã ãç³ãäžããã°ãããªããããã€ãã£ãããããªåé¡ãééããããéè«ççãªãæ°åŠè
ã®å€§éšåã¯ãåé¡ãåèããããªã©ããŠãåé¡ã®èšå®ã誀ã£ãŠèããã誀ã£ãŠè§£éããããã«èª€çãããŠããŸã£ãŠããã®ã§ãã
ç¹ã«ãšã«ãã·ã¥ãªã©ãå
žåã§ãã
ãªãªãžãã«ãšã¯ç°ãªãåé¡ã«å¯ŸããŠè«ççã«æ£çããŠããã®ã§ããã
以äžãæ°åŠè
ã®åèªã®ããã«ç³ãæ·»ããŠãããŸãã
ãã®æ¬ããå§ãããŠãããŸãã
https://www.amazon.co.jp/%E3%83%A2%E3%83%B3%E3%83%86%E3%82%A3%E3%83%BB%E3%83%9B%E3%83%BC%E3%83%AB%E5%95%8F%E9%A1%8C-%E3%83%86%E3%83%AC%E3%83%93%E7%95%AA%E7%B5%84%E3%81%8B%E3%82%89%E7%94%9F%E3%81%BE%E3%82%8C%E3%81%9F%E5%8F%B2%E4%B8%8A%E6%9C%80%E3%82%82%E8%AD%B0%E8%AB%96%E3%82%92%E5%91%BC%E3%82%93%E3%81%A0%E7%A2%BA%E7%8E%87%E5%95%8F%E9%A1%8C%E3%81%AE%E7%B4%B9%E4%BB%8B%E3%81%A8%E8%A7%A3%E8%AA%AC-%E3%82%B8%E3%82%A7%E3%82%A4%E3%82%BD%E3%83%B3%E3%83%BB%E3%83%AD%E3%83%BC%E3%82%BC%E3%83%B3%E3%83%8F%E3%82%A6%E3%82%B9/dp/4791767527
Dengan kesaktian Indukmuæ§ãã玹ä»ããããšãããããŸãã
ïŒçµè«ã ãç³ãäžããã°ãããªããããã€ãã£ãããããªåé¡ãééããããéè«ççãªãæ°åŠè
ã®å€§éšåã¯ãåé¡ãåèããããªã©ããŠãåé¡ã®èšå®ã誀ã£ãŠèããã誀ã£ãŠè§£éããããã«èª€çãããŠããŸã£ãŠããã®ã§ãã
ç¹ã«ãšã«ãã·ã¥ãªã©ãå
žåã§ãã
ãªãã»ã©ãããã§ãããã»ã»ã»ã»ã»
仿¥ãNHKã®Eãã¬ã§ååŸ9:30ãããç¬ããªãæ°åŠãã¬ãã¢çè«ããæŸéãããŸãã
ããã§ã第äžã·ãªãŒãºã¯çµããã§ãã
ããããç¬ããªãæ°åŠãã¯çµãããªã®ããªã»ã»ã»ã»ïŒ
ãããšãã第2ã·ãªãŒãºãå§ãŸãã®ã§ããããïŒ
https://natalie.mu/owarai/news/530022
ã«ããã°ã10æãã第2ã·ãªãŒãºãå§ãŸãããã§ãã
å¹³é¢ã«7åã®ç¹ã倧ãŸãã«åãæãããã«ãšã(é£ã®ç¹ãšã®è·é¢ã¯ä»»æ)ã
ããç¹ãã2ã€é£ã°ãã§ã次ã®ç¹ã次ã
ãšçµãã§ãããšãäžã€ã®éãã
éè·¯ãåºæ¥äžããã(æãèŒããŠãããããªå³åœ¢)
ãã®æãç¹ãããäœçœ®P1,P2,P3,P4,P5,P6,P7
ã«ã§ããç·ãåŒããçŽç·ã§äœããã7ã€ã®éšåãäœãããããã®è§åºŠã
Ξi(i=1,2,3,,7)ãšããã°ãå¿
ã
â[i=1,7]Ξi=180°
ãèµ·ãããïŒäžå¿ããã¯èšŒæã§ãããšèªåã§ã¯æããŠããŸãã)
ãšããã§åãèšå®ã§
ããç¹ãã1ã€é£ã°ãã§ã次ã®ç¹ã次ã
ãšçµãã§ãããšãåãããã«
äžã€ã®éããéè·¯ãåºæ¥äžããã(ãŽããŽããã岩ã®ãããªå³åœ¢)
ãã®å³åœ¢ã«å¯ŸããΞiã«ãããŠã¯
â[i=1,7]Ξi=540°
ãèµ·ãããããªãã§ãã
ãããšããèšããªãã®ã¯ãå®éšãããŠå床åã§èšæž¬ããŠäºæ³ããŠããã ãã§
蚌æãããããªãã®ã§ãã
äœæ¹ããŠãœãçãæ±ºçãé¡ããŸãã
çã§ãã
åè§åœ¢ã®å€è§ã®å€§ããã¯ãæ®ã 3 ã€ã®å
è§ã®åãã 180° ãåŒããå€ã«ãªããŸãã
ãããçšãããšãP7 ã®ãšããã«ã§ããäžè§åœ¢ã® 3 ã€ã®å
è§ã
Ξ1+Ξ3+Ξ5-180°
Ξ2+Ξ4+Ξ6-180°
Ξ7
ãšè¡šããããããã®åã 180° ã§ããããšãã瀺ãããŸãã
ãïœïŒ
ãªãã»ã©
äžè§åœ¢ã®å€è§ãæ¡åŒµãããŠèããã°ãã¹ãŒãšè§£ãã¡ãããã§ããã
é ã®äžã«ã¯å€è§ãšèšãã°ãŠã£ããäžè§åœ¢ããçµã³ã€ããããŠããªãããšã«çžãããŠããããšã«æ°ä»ããããŸããã
GAIãããããã«ã¡ã¯ã
çã§ããã
ç°¡æçã«ã¯ãååšäžã«P1ïœP7ãŸã§é©åœã«ç¹ãåããšã
Ξ1ïŒâ P1ïŒåŒ§p3p4ã®ååšè§ïŒåŒ§p4p5ã®ååšè§ïŒåŒ§p5p6ã®ååšè§
Ξ2ïŒâ P2ïŒåŒ§P4P5ã®ååšè§ïŒåŒ§P5P6ã®ååšè§ïŒåŒ§P6P7ã®ååšè§
ã»
ã»
ã»
Ξ6ïŒâ P6ïŒåŒ§P1P2ã®ååšè§ïŒåŒ§P2P3ã®ååšè§ïŒåŒ§P3P4ã®ååšè§
Ξ7ïŒâ P7ïŒåŒ§P2P3ã®ååšè§ïŒåŒ§P3P4ã®ååšè§ïŒåŒ§P4P5ã®ååšè§
âŽâ[i=1,7]ΞiïŒïŒ(匧P1P2ã®ååšè§ïŒåŒ§P2P3ã®ååšè§ïŒåŒ§P3P4ã®ååšè§ïŒåŒ§P4P5ã®ååšè§ïŒåŒ§P5P6ã®ååšè§ïŒåŒ§P6P7ã®ååšè§ïŒåŒ§P7P1ã®ååšè§)ïŒïŒÃå
šåã®ååšè§ïŒïŒÃïŒïŒïŒÂ°ïŒïŒïŒïŒÂ°
å³å¯ã«ã¯DD++ããã®è§£æ³ã䜿ãã°è¯ãã§ãããïŒä»¥åã«è§£èª¬ããŠãããåºçŠã«ãªã£ãäºãããã®ã§æ¢ããŠãããŸããïŒ
ãŸããïŒã€é£ã°ãã®æ¹ã¯ãïŒã€ã®äžè§åœ¢ã®å
察è§ã®åãšããŒã¡ã©ã³ã®å®çã䜿ããšç°¡åã«ç€ºããŸããã
äžã€ã®åæ°
ïœïŒïœ/a,ãïœïŒïœ/ïœ,ãz=(b+d)/(a+c)
ïœïŒïœïŒïœã®ãšããïœã, xããããïœãããïŒè¿ãïŒ
倿ããæ¡ä»¶ããããŸããïŒ
a,b,c,dïŒ0ãšããŸãã
(x+y)/2=b/(2a)+d/(2c)=(ad+bc)/(2ac)
z-(x+y)/2ïŒ0ãæŽçãããš
(ad-bc)(c-a)ïŒ0
xïŒyããad-bcïŒ0ãªã®ã§
z-(x+y)/2ïŒ0 â cïŒa
åŸã£ãŠaãšcãæ¯èŒããŠ
aã®æ¹ã倧ãããã°xå¯ã
cã®æ¹ã倧ãããã°yå¯ã
ãšãªããŸãã
ãããããããããããšãããããŸãã
ã©ã®äœã®äœçœ®ã«ããããèããŸããã
b/a+(d/c -b/a)Ãïœ/(a+c)=(b+d)/(a+c)
ãªã®ã§ãïœãšïœããïœïŒïœãã«å
åããç¹
ã§ããããšããåãããŸããã
ååã¯åœ±é¿ããªãã®ãé¢çœãã§ããã
b/a< x/(a+c) <d/c (a<c)ãæºããïœã®å¿
èŠæ¡ä»¶ã調ã¹ãã
ïŒïœïŒïœïŒïŒïœã§ãb+ïœã¯ãã»ãŒäžéã§ããããšãåãããŸããã
äŸãã°ã3/7<x/18<6/11ãã®ãšãã
ïœïŒ7ïŒ8ïŒïŒïŒïŒ0ïŒïŒïŒã§ããã
n人ã§ãžã£ã³ã±ã³ã1åãããšããk人ïŒkâŠn)ãåã¡æ®ã確çãP(n,k)ãšãããšã
ïŒã€ã®nãç°ãªã£ã人æ°ã§ãåãk人æ®ãã§ãã確çãåãããšãèµ·ããå Žåãããäºãé¢çœããäžæè°ã«æããã
nãæå€§20ãšããç¯å²ã§èŠã€ããŠäžããã
ã§ã¯ãã®2ã€ã®nãšããã«å¯Ÿããkã®å€ã¯åŠäœã«ïŒ
1以äžã®ãæ¢çŽåæ°ã«ã€ããŠã忝ãN以äžã®å
šãŠã«ã€ããŠã
ååå士ã®åãšåæ¯å士ã®ã®æ¯ããïŒïŒïŒã«ãªãã
æå³ããããããªïŒ
äŸãã°ã忝ããNïŒïŒä»¥äžã®æ¢çŽåæ°ã¯ã
1/5,1/4,1/3,2/5,1/2,3/5,2/3,3/4,4/5 ã§
ååã®åïŒïŒïŒïŒåæ¯ã®åãïŒïŒïŒãšããæå³ã§ãã
a/bãæ¡ä»¶ãæºããæ¢çŽåæ°ãªã(b-a)/bãæ¡ä»¶ãæºããæ¢çŽåæ°ã§ããã
ãã®2ã€ã®åå忝ããããã®åã¯ååãbã忝ã2bãšãªããŸãã®ã§ã
1ïŒ2ã«ãªããšèšããŸããã
åæçš¿ã§ããc(n)ãnçªç®ã®ã«ã¿ã©ã³æ°ãšããæã
c(n)=Σ[k=1,floor((n+1)/2)] (-1)^(k-1)*c(n-k)*C(n+1-k,k)
(floor(x)ã¯åºé¢æ°ã§ãC(n,k)ã¯äºé
ä¿æ°)
ã®çå·ãæç«ããããšãã蚌æããããšã¯å¯èœã§ããããïŒ
äžå¿ã³ã³ãã¥ãŒã¿ã§n=100è¿æãç«ã€ããšã¯æ€èšŒæžã¿ã§ãã
å¶ç¶äžèšã®æç«ããããªé¢ä¿ãèŠã€ããã®ã§ããã
蚌æããæç«ãŠãå®åããªãã軜ã調ã¹ãéãã
ãã®ãããªç·åã§èšããæç®ãèŠåœãããªãã£ãããã
質åããæ¬¡ç¬¬ã§ãã
https://mathworld.wolfram.com/CatalanNumber.html
ã«ã¿ã©ã³æ°C(n)ã®ååž°çæŒžååŒãšããŠ(ãã ãC(0)=1 ãšããã)
C(n)=â[k=0,n-1]C(k)*C(n-1-k)
C(n)=â[k=0,n-1]binomial(n-1,2*k)*2^(n-1-2*k)*C(k)
C(n)=â[k=1,floor((n+1)/2)](-1)^(k-1)*binomial(n+1-k,k)*C(n-k)
ãªã©ãããããã§ãã
https://oeis.org/A000108
ã®ãµã€ãã§ã®
FORMULA
ã®éšåã«æ²èŒãããŠããŸãã
ããã«æ²èŒãããŠãããšããããšã¯æ£ãããšããããšãªãã§ããããã©ãOEIS ã«ã¯èšŒæãŸã§ã¯èŒã£ãŠããŸãããã
ã«ã¿ã©ã³æ°ãé¢ä¿ãããªãçµã¿åããã§èšŒæããããšããã§ããã(-1)^k ãå
¥ã£ãåŒã§ããããã®ãé£ãããã§ããããã
åŒã®æå³ãç¡èŠããŠåŒå€åœ¢ã§ãããªããã«ã¿ã©ã³æ°ãäºé
ä¿æ°ãéä¹ã«çŽãæ¹éã«ãªããã§ããããïŒ
ãŸã ãã£ãŠã¿ãŠããŸãããã©ã
Σ[k=0ïœfloor((n+1)/2)]((-1)^(k-1))*C[n-k]*comb(n+1-k,k)=0
ã瀺ãã°ããã§ããã
tã®é¢æ° f(t) ãã¹ãçŽæ°å±éãããšãã® t^n ã®ä¿æ°ãã
[t^n]f(t)ãšæžãããšã«ããŸãã
Σ[k=0ïœfloor((n+1)/2)]((-1)^(k-1))*C[n-k]*comb(n+1-k,k)
=Σ[p=floor((n-1)/2)ïœn]((-1)^(n-p-1))*C[p]*comb(p+1,n-p)
=Σ[p=0ïœâ]((-1)^(n-p-1))*C[p]*comb(p+1,n-p)
=Σ[p=0ïœâ]((-1)^(n-p-1))*C[p]*[t^n]( (1+t)*(t*(1+t))^p )
=((-1)^(n-1))*[t^n]( (1+t)*Σ[p=0ïœâ]C[p]*(-t*(1+t))^p )
=((-1)^(n-1))*[t^n]( (1+t)*(1-sqrt(1-4*(-t*(1+t))))/(2*(-t*(1+t))) )
=((-1)^(n-1))*[t^n]( (1-sqrt((1+2*t)^2))/(2*(-t)) )
=((-1)^(n-1))*[t^n](1)
=((-1)^(n-1))*0
=0.
ãªãã»ã©ãã«ã¿ã©ã³æ°ã¯æ¯é¢æ°ã§æ±ãæ¹éããããŸãããã
现ããã§ããã2è¡ç®ã®
> Σ[p=floor((n-1)/2)ïœn]
ã¯
Σ[p=n-floor((n+1)/2)ïœn]
ã§ãããã
äžè¬ã« a-floor(b) â floor(a-b) ã§ãã®ã§ã
次ã®è¡ä»¥éã«ã¯åœ±é¿ããªãã®ã§ã2è¡ç®ã ãä¿®æ£ããã°3è¡ç®ä»¥éã¯åã³æ£ãããªããŸãã
> Σ[p=floor((n-1)/2)ïœn]
>ã¯
>Σ[p=n-floor((n+1)/2)ïœn]
>ã§ãããã
ãã®éãã§ããã
ãææããããšãããããŸãã
Σ[p=ceil((n-1)/2)ïœn] ãšæžããªããã°ãããªããšãããã
ééã£ãŠãΣ[p=floor((n-1)/2)ïœn]
ãšæžããŠããŸã£ãŠããŸããã
倱瀌ããŸããã