H.NaKaoæ§ããã¯ããããããŸãã
ïŒåè¶ãªãããããããã¯ã¡ã¹ãããã«ããããŸããŠã¯ãèªèº«ãæžãã蚌æãæ£ããã®ãã©ããèªåã§å€æã§ããããã«ãªããŸã§ãFLTã®èšŒæ(ãšç§°ãããã®)ã®å
¬è¡šãæ§ããŠããã ããèªèº«ãæžãã蚌æã®æ£ããã»èª€ããæ£ç¢ºã«å€æã§ããããã«ãªã£ãããFLTã®èšŒæãå
¬è¡šããŠããã ããããšæããŸãã
ç§ã¯ããã§ã«ããŒã®æçµå®çãã¿ããªãææŠããã°ãããšæããŸããéåžžã«ãè¯ãææã ãšæããŸãã
ããã«ã¯ãèªåã®ç¿ã£ããã¹ãŠãå©çšããªããã°ã§ããªãããã§ãããŸããèªåãããã£ãŠãªããšããã«ãæ°ã¥ãããããäºã¥ããã§ãã
ãããä»ãŸã§æ°åŠè
ãã§ããªãã£ããããçŠæ¢ãããšãã埡è«ã«ã¯ãå
šãè³åã§ããŸããã
1=0.999ã»ã»ã»ã»ãšããæçæ°ã¯ååæŒç®ã§éããŠããã®ã«ãããŒãŒã«åé¡ã§ã¯ç¡çæ°ã«ãªã£ãŠããŸãã
æ°åŠã§ã¯ã觊ããŠã¯ãªããªãåé¡ããã£ã±ããããŸãã
ãããªäºæ
ã¯ãããããã§ãããã
æ°åŠè
ã¯ãããããããšãã觊ãã¬ç¥ç¥ããªãããšæ±ºããŠããã£ãŠããããã«æãããŸãããã§ã«ããŒã®æçµå®çããã®ãããªæ±ãã§ããã
ããã¯ãããããã§ãããïŒ
ç§ã¯ãããã¯ãæ°åŠã«ãšã£ãŠæ¥µããŠäžå¥å
šã ãšæããŸãã
ã§ãããã
1=0.999ã»ã»ã»
ããŒãŒã«åé¡
ãã§ã«ããŒã®æçµå®çã®åçç蚌æ
ããããã€ããã¯ãããŸããã
æ°åŠã¯ãéãããæ°åŠã§ãªããšãããŸãããããç§ã¯ã確信ããŠãããŸãã
No.602ããããã¯ã¡ã¹ã2023幎3æ11æ¥ 07:07
ïŒãããããããããã¯ã¡ã¹ãããã®FLTã®åçç蚌æ(No.590)ã§ã¯ãn>=3ãšããæ¡ä»¶ãïŒåã䜿ã£ãŠããªãã
ãã䜿ã£ãŠãããšããã®ã§ããã°ãã©ãã§äœ¿ã£ãŠããã®ã§ããïŒ
ä»®ã«ããã®èšŒæãæ£ãããšä»®å®ãããšãn>=2ã§ãFLTãæç«ããããšã«ãªããççŸããã
ããã§ããæ£ããFLTã®èšŒæãšèšããã®ã§ããããïŒ
æåã«ãnã¯3以äžã®èªç¶æ°ãšæžããŠãããŸãã
ãŸããa,b,cãäºãã«çŽ ãªèªç¶æ°ãšæžããŠãããŸãã
ç§ããa,b,cãèªç¶æ°ãã€ãã£ãŠãªããããè² ã®æ°ã¯ã©ãããã®ããšããã®ã¯ãããããã§ãããã
a,b,cãæŽæ°ãªããa^n+b^n=c^nãæãç«ã€ããšã¯ããã®æ²ç€ºæ¿ã§ãåãäžããããŠããŸãã
No.603ããããã¯ã¡ã¹ã2023幎3æ11æ¥ 07:12
ïŒåè¶ãªãããããããã¯ã¡ã¹ãããã«ããããŸããŠã¯ãèªèº«ãæžãã蚌æãæ£ããã®ãã©ããèªåã§å€æã§ããããã«ãªããŸã§ãFLTã®èšŒæ(ãšç§°ãããã®)ã®å
¬è¡šãæ§ããŠããã ããèªèº«ãæžãã蚌æã®æ£ããã»èª€ããæ£ç¢ºã«å€æã§ããããã«ãªã£ãããFLTã®èšŒæãå
¬è¡šããŠããã ããããšæããŸãã
ãããããç§ã¯ãå®å
šã ãšæãããïŒä»äººããèŠãã°äžå®å
šãªããšããããŸããïŒæçš¿ããŠããã®ã§ãã£ãŠããããäžè¬çã«æ£ãããšèšŒæãããŠããã°ãæçš¿ããã¯ãããªãã§ãããïŒ
No.604ããããã¯ã¡ã¹ã2023幎3æ11æ¥ 07:14
> ãããããç§ã¯ãå®å
šã ãšæãããïŒä»äººããèŠãã°äžå®å
šãªããšããããŸããïŒæçš¿ããŠããã®ã§ãã£ãŠããããäžè¬çã«æ£ãããšèšŒæãããŠããã°ãæçš¿ããã¯ãããªãã§ãããïŒ
æ£ãã蚌æã¯ã ããèŠãŠãå®å
šãªãã®ã§ããã®ã§ãããããã¯ã¡ã¹ããããå®å
šã ãšæãã ãã§ãªããä»äººããèŠãŠã(ã ããèŠãŠã)å®å
šã§ãããšå€æã§ãã蚌æãæçš¿ããŠæ¬²ããã®ã§ãã
No.605H.Nakao2023幎3æ11æ¥ 08:04 ïŒæ£ãã蚌æã¯ã ããèŠãŠãå®å
šãªãã®ã§ããã®ã§ãããããã¯ã¡ã¹ããããå®å
šã ãšæãã ãã§ãªããä»äººããèŠãŠã(ã ããèŠãŠã)å®å
šã§ãããšå€æã§ãã蚌æãæçš¿ããŠæ¬²ããã®ã§ãã
ã©ãããŠãèªåãä»äººã«ãªããã®ã§ããïŒ
èªåããå®å
šã§ãããšæã£ããã®ã¯ãã©ããããããªãã§ãããïŒ
No.607ããããã¯ã¡ã¹ã2023幎3æ11æ¥ 08:13
> æåã«ãnã¯3以äžã®èªç¶æ°ãšæžããŠãããŸãã
蚌æ(No.590)äžã§ããã以å€ã«ãn>=3ã䜿ã£ãŠããå Žæã¯ãªãã®ã§ããã
ãã®èšŒæãæ£ãããã®ãšä»®å®ãããšã(ä»ã§ãn>=3ã䜿ã£ãŠããªãã®ã§)
ãã®èšŒæã®ãnã¯3以äžã®èªç¶æ°ãã®éšåããnã¯2以äžã®èªç¶æ°ããšæžãæããŠãæ£ãã蚌æã«ãªããŸãã
ãã£ãŠãFLT(2)ãæç«ããããšã«ãªããççŸããŸãã
No.608H.Nakao2023幎3æ11æ¥ 08:18 > ç§ã¯ããã§ã«ããŒã®æçµå®çãã¿ããªãææŠããã°ãããšæããŸãã
> ãããä»ãŸã§æ°åŠè
ãã§ããªãã£ããããçŠæ¢ãããšãã埡è«ã«ã¯ãå
šãè³åã§ããŸããã
ãã®ç¹ã«é¢ããŠã¯ã¯ã¡ã¹ãããã«åæããŸãã
ããããŸã§äžäŸããªãã£ãã®ã ãããããããå
ããããªäŸã¯ãªãããªããŠçå±ãã²ã©ã誀謬ã§ããã®ã¯æ°åŠããã£ãŠãã人ãªã誰ã§ãããããŸãã
Nakaoããã®èšãåã¯æããã«çãéã£ãŠããŸããã
ããããå®éã®æŽå²äžã§é£åãšèšãããŠããåé¡ãããæ¥çªç¶ãã£ãã解決ããäŸããªããã©ãããããããŸããããïŒãããæ¢ãã°ãããã§ãåºãŠãããïŒã
ãããäžæ¹ã§ãã¯ã¡ã¹ãããã¯ã¯ã¡ã¹ãããã§éåžžã«ç¬åçãªæ±ºãã€ããå€ããçµæãšããŠèšŒæãšã¯ãšãŠãåŒã¹ãªãåŠèšã«è¿ããã®ã®ç¹°ãè¿ãã«ãªã£ãŠããŸã£ãŠããã®ã確ãã§ãã
ãæ£ãããã£ãŠã»ããããšã
ãæ£ãããšèªåãä¿¡ããŠããããšã
ãèªåã蚌æã§ãããšäž»åŒµããããšã
ã蚌æãäžéã§åãå
¥ããããããšã
ã誀ãã§ãã£ãŠã»ããããšã
ã誀ãã ãšèªåãä¿¡ããŠããããšã
ã誀ãã ãšèªåã蚌æã§ãããšäž»åŒµããããšã
ã誀ãã§ãã蚌æãäžéã§åãå
¥ããããããšã
ãããã®éãã¯æ°åŠã§ã¯éåžžã«å€§äºã§ãã
ãšããããããããåºå¥ããããšãæ°åŠãšããäžçã®å¯äžã®ã«ãŒã«ã ãšç§ã¯æã£ãŠããŸãã
ãã®ã«ãŒã«ãéµå®ããŠããéããã1+1=0 ã§ããããšãã䞻匵ãããã®ããæ°åŠã§ã¯èªç±ã§ãã
ïŒã2ãæ³ãšããå°äœé¡ããšããå®éã«ååšãã話ã§ãïŒ
æ°åŠã¯åºãéãããŠãããšæããŸããã
ã¯ã¡ã¹ããããäœãã©ãã ãç±åŒããŠãæ¹å€ã°ãããªã®ã¯ãçå±ã誀ã£ãŠããããã§ããæ°åŠã®äžçãçéã ããã§ããããŸããã
ã¯ã¡ã¹ãããããã®ã«ãŒã«ãç¡èŠããŠããããããã ããã ãã§ãã
æ°åŠçãäžå¥å
šãªã®ã§ã¯ãªããã¯ã¡ã¹ãããã®æ°åŠã«å¯Ÿããæ
床ãäžå¥å
šãªãã§ããã
No.609DD++2023幎3æ11æ¥ 08:20
ïŒã¯ã¡ã¹ãããããã®ã«ãŒã«ãç¡èŠããŠããããããã ããã ãã§ãã
æ°åŠçãäžå¥å
šãªã®ã§ã¯ãªããã¯ã¡ã¹ãããã®æ°åŠã«å¯Ÿããæ
床ãäžå¥å
šãªãã§ããã
DD++æ§ããã¯ããããããŸãã
ãææããããšãããããŸãã
ã§ãããªãŒãã³ãªè°è«ãèš±ãã°ãããããå€æ§æ§ãããããªã«ãåŸããã®ããããšæãã®ã§ããã
ãŸããç§ããç°åžžãªäººéãããããŸãããã»ã»ã»ã»ïŒ
No.611ããããã¯ã¡ã¹ã2023幎3æ11æ¥ 08:28
> ãªãŒãã³ãªè°è«ãèš±ãã°ãããããå€æ§æ§ãããããªã«ãåŸããã®ããããšæãã®ã§ããã
ããããè°è«ã«ãªã£ãŠããã°ãããã§ããããã
ãããç§ã¯ãã¯ã¡ã¹ãããã®è©±ã¯ãããããè°è«ãšåŒã¹ããã®ã«ãªã£ãŠããªãããšèšã£ãŠããã®ã§ããã
No.612DD++2023幎3æ11æ¥ 08:31
> ã©ãããŠãèªåãä»äººã«ãªããã®ã§ããïŒ
> èªåããå®å
šã§ãããšæã£ããã®ã¯ãã©ããããããªãã§ãããïŒ
ä»äººã«ãªããšã¯æžããŠããªãã
ãã ããèŠãŠãå®å
šã§ãããšå€æã§ãã蚌æãæçš¿ããŠæ¬²ããããšæžããã
ããšãèªåã®èšŒæã®æ£ããã«ç¢ºä¿¡ããã£ããšããŠããæçš¿åã«ãä»ã®ã ããã«ãã®èšŒæãã¬ãã¥ãŒããŠããã£ãŠãã¬ãã¥ãŒè
ãæ£ãããšå€æãã蚌æãæçš¿ããã°è¯ãã®ã§ãã
No.613H.Nakao2023幎3æ11æ¥ 08:32 ïŒãã®èšŒæãæ£ãããã®ãšä»®å®ãããšã(ä»ã§ãn>=3ã䜿ã£ãŠããªãã®ã§)
ãã®èšŒæã®ãnã¯3以äžã®èªç¶æ°ãã®éšåããnã¯2以äžã®èªç¶æ°ããšæžãæããŠãæ£ãã蚌æã«ãªããŸãã
ããã¯ããã§ã«ããŒã®æçµå®çã«ãèšããããšã§ã¯ãªãã§ããïŒ
n>=3ãšããåæãããã®ã§ãã
ãããç¡èŠããã°ããã§ã«ããŒã®äž»åŒµã¯ééã£ãŠããŸãã
åææ¡ä»¶ãç¡èŠããã®ã¯ããããããããŸãããïŒ
No.614ããããã¯ã¡ã¹ã2023幎3æ11æ¥ 08:33
ïŒããšãèªåã®èšŒæã®æ£ããã«ç¢ºä¿¡ããã£ããšããŠããæçš¿åã«ãä»ã®ã ããã«ãã®èšŒæãã¬ãã¥ãŒããŠããã£ãŠãã¬ãã¥ãŒè
ãæ£ãããšå€æãã蚌æãæçš¿ããã°è¯ãã®ã§ãã
åœå®¶ã®åæ Œãšããæ¬ãæžããæ°åŠè
ãããæ»èªãããŠãããšç¡çç¢çéµäŸ¿ç©ãéãã€ããŠãããã€ãããããããªãã®ã¯ç¡èŠãããããšèšã£ãŠãŸãã
æ»èªãåŒãåããŠããã人ã¯ããã£ãã«ããŸããã
ããã§ã倱瀌ã§ããããã®æ²ç€ºæ¿ãå©çšããŠããŸãã
No.615ããããã¯ã¡ã¹ã2023幎3æ11æ¥ 08:38
ïŒãããç§ã¯ãã¯ã¡ã¹ãããã®è©±ã¯ãããããè°è«ãšåŒã¹ããã®ã«ãªã£ãŠããªãããšèšã£ãŠããã®ã§ããã
DD++æ§ã®ãã£ããããšããã§ãã
æ»èªã§ãæãããªééããææããããããã®ä¿®æ£äœæ¥ã«ãªããŸãããã
ãã®ç¹ã§ãDD++æ§ã®ææã¯ãç§ã¯æãããªééããèªèŠã§ããŸããã
è°è«ãšã¯ãééããšèªããããªããšããèµ·ããã®ã§ã¯ãªãã§ããããïŒ
No.616ããããã¯ã¡ã¹ã2023幎3æ11æ¥ 08:45
ã¯ã¡ã¹ãããã«ãäŒãããŠãããšããã®Nakaoãããšããæ¹ã¯æ§æ²ç€ºæ¿ã§æ°åŠçãªè©±ã£ãœãèŠããããäººæ Œæ»æããæ²ç€ºæ¿ãèãããåç§ããã人ã ãšããã®ãèæ
®ããŠèªãã æ¹ãããã§ãã
ãã®æ²ç€ºæ¿ãã¬ãã¥ãŒã«äœ¿ã£ãŠããããåæã«æ±ºãããªããŠããã£ãšèªåãç¥ã«ã§ããªã£ãŠããã®ç®¡çæš©éãä¹ã£åã£ãã€ããã«ã§ããªã£ãŠãããã§ããããã
ããŠãããã¯ãããšããŠNakaoããã®è©±ããã¡ãããšæ°åŠçã«äŸ¡å€ãããéšåã ãæãåºããšãããããããšã§ããã
ã»ãã§ã«ããŒã®æçµå®çã nâ§3 ã§æãç«ã£ãŠã»ãã
ã»ãã§ã«ããŒã®æçµå®çïŒãšå圢åŒã®æïŒã¯ n=2 ã§ã¯èª€ãã§ããããšã¯èšŒæãããŠããïŒã¯ã¡ã¹ããããåæããŠãããŸããïŒïŒ
ãšããäºã€ããèãããšããã§ã«ããŒã®æçµå®çã®æ£ãã蚌æã«ãªã£ãŠãããææžXãããã£ããšãããšã
ã»nâ§3 ã®å Žåã¯ææžXçå±ã®éã£ãæç« ã«ãªã
ã»nâ§3 ãšããæ¡ä»¶ãç¡èŠã㊠n=2 ãšããå Žåã¯ææžXã¯ã©ããã«èª€ããããæç« ã«ãªã
ãšããããšãèšããã¯ããªãã§ãã
Nakao ããã¯ããã® n=2 ã®ãšãã«èª€ãã§ããç®æã¯ã©ããªã®ãããšåããŠããŸããã
ãŸããããã§èšŒæã誀ãã ãšããã£ããšããŠãã©ããä¿®æ£ãã¹ããªã®ãäœã®æ
å ±ãåŸãããªãã®ã§ãã¬ãã¥ãŒã§ã®ææã®ä»æ¹ãšããŠããŸãããŸãããæ¹ã ãšã¯æããŸããã
ãã蚌æã§ãããšäž»åŒµããåŽããã¯æçš¿åã«èæ
®ããã¹ãç¹ã§ã¯ãã£ãããªãšãæããŸãã
No.617DD++2023幎3æ11æ¥ 08:56
> n>=3ãšããåæãããã®ã§ãã
> ãããç¡èŠããã°ããã§ã«ããŒã®äž»åŒµã¯ééã£ãŠããŸãã
> åææ¡ä»¶ãç¡èŠããã®ã¯ããããããããŸãããïŒ
蚌æã®äžã§äœ¿ã£ãŠããªãåæã¯ã蚌æããé€å»ããŠãã蚌æã®æ£ããã¯ä¿åããã(çµè«ãä¿åããã)ã
FLTã§ã¯n>=3ã®åæã¯å¿
é ãªã®ã§ãFLTã®èšŒæãæ£ãããã°ãå¿
ããã®èšŒæäžã§äœ¿ãããããšã«ãªãã
ããããã¯ã¡ã¹ãããã®FLTã®åçç蚌æ(No.590)ã¯ãn>=3ã®åæãå
šã䜿ã£ãŠããªãã®ã§ã誀ãã§ããã(蚌æçµãã)
No.619H.Nakao2023幎3æ11æ¥ 09:05 n=2ã®ãšãã
a^2=c^2-b^2=(c-b)(c+b)=(c-b)c(1+b/c)
aãšcã¯äºãã«çŽ ã§ãããããaã§a^2=(c-b)c(1+b/c)ã¯å·ŠèŸºãå²ãåãããå³èŸºã¯å²ãåããªãã
ãã£ãŠãa^2+b^2=c^2ã¯ãªããããªãã
ãããããã¿ãŽã©ã¹æ°ãããæããã«ééãã§ããã
ãã®ããã«ãäžèŠnâ§3ã¯äœ¿ãããŠããããã«èŠããŸããããã¡ãããšäœ¿ãããŠããã®ã§ããã
DD++æ§ã®ææã«ãåçã«ãªã£ãããªïŒ
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒåïŒïŒïŒïŒïŒïŒ
ããŠããææã®ãã£ãééããä¿®æ£ããŠãPDFã«ããŸããã
http://y-daisan.private.coocan.jp/html/pdf/felmer-10-2.pdf
ããã§ãã©ãã§ããããïŒ
No.621ããããã¯ã¡ã¹ã2023幎3æ11æ¥ 17:43
> è°è«ãšã¯ãééããšèªããããªããšããèµ·ããã®ã§ã¯ãªãã§ããããïŒ
æ°åŠã®äžçã«éã£ãŠã®è©±ã ãšããŠãè°è«ã«ãªãã®ã¯
ã蚌æäžã§ç¥ããŠãããšããã«ã€ããŠãäžéã§ãã®éšåã®èšŒæãåãå
¥ããããŠããã®ã§ç¥ããŠãããšæã£ãŠãã人 vs äžéã§åãå
¥ããããŠãã蚌æãããã®ãç¥ããªãã®ã§çåãæãããã人ã
ã®æ§å³ãå€ããšæããŸãã
ãã®å Žåã
ã蚌æããåŽããã®éšåã®èšŒæãè¿œå æåºããŠæ±ºçã
ãäžéã§ãã®éšåã®èšŒæãåãå
¥ããããŠãããšããã®ãåéãã ã£ãããšãçºèŠããŠæ±ºçã
ã®ã©ã¡ããã«ãªãã§ããããã
ä»åã ãšç§ã管ç人ããããäžéã§åãå
¥ããããŠãã蚌æãããã®ãç¥ããªãã®ã§çåãæãããã人ãã§ã
ã¯ã¡ã¹ããããææãåããéšåã®è¿œå 蚌æãããªãã®ã§ã
åšå²ã®äººã¯ãäžéã§ãã®éšåã®èšŒæãåãå
¥ããããŠãããšããã®ãåéãã ã£ãããšãçºèŠããŠæ±ºçãããããã ãªãšèŠãŠãããšæããŸãã
ããããå Žåãäž¡è
ãæ°åŠçæ
床ã§ããã°ã蚌æã§ãããšèšã£ãŠããåŽãããããŸããæã蟌ã¿ã§ããããšãªã£ãŠçµãããŸãã
ããããã§ãèªåãæã蟌ã¿ãªããŠããã¯ãããªããã ïŒããšããå§ããå Žåãšãããªããè°è«ãèµ·ããã©ããããããã¯ããæ¢ã«è°è«ãšããèå°ããã¯ã¿åºããŠã®ä¹±éãšåããç¶æ
ã§ãã
No.622DD++2023幎3æ11æ¥ 18:43
PDFã®2ããŒãžç®ã®3è¡ç®ã
ãa^t ã®åæ°ã§ãªããã°ãªããªãã
ã«ããã詳现ãªèšŒæãå¿
èŠã§ãã
çŸç¶ããã¯ã¯ã¡ã¹ãããããæ£ãããã£ãŠã»ãããšæã£ãŠããããšãã§ãããããŸããã
No.624DD++2023幎3æ11æ¥ 19:02
DD++æ§ããã¯ããããããŸãã
ããŠããææã®ãã£ãééããä¿®æ£ããŠãPDFã«ããŸããã
http://y-daisan.private.coocan.jp/html/pdf/felmer-10-2.pdf
ããã§ãã©ãã§ããããïŒ
No.625ããããã¯ã¡ã¹ã2023幎3æ12æ¥ 07:22
äœãå€ãã£ãŠããªãããã«èŠããŸããã
ç§ãæ±ããŠããã®ã¯è«ççãªè£ä»ãã§ãã£ãŠã
決ããŠå£°ã倧ããèšãããšã§ãç¹°ãè¿ããŠäœåºŠãèšãããšã§ããªããã§ããã
ããšãäžçªäžã®ãšããããŸãã§ç§ãããã§å®æã§ããããšã«è³åããŠãããããªèšè¿°ã¯ãããŠãã ããã
ç§ã¯ããã¯èšŒæãšããŠæ¬ é¥ã ããã®ã²ã©ãç¶æ
ã ãšæã£ãŠããŸãã
No.630DD++2023幎3æ12æ¥ 08:58
> n=2ã®ãšãã
> a^2=c^2-b^2=(c-b)(c+b)=(c-b)c(1+b/c)
> aãšcã¯äºãã«çŽ ã§ãããããaã§a^2=(c-b)c(1+b/c)ã¯å·ŠèŸºãå²ãåãããå³èŸºã¯å²ãåããªãã
> ãã£ãŠãa^2+b^2=c^2ã¯ãªããããªãã
> ãããããã¿ãŽã©ã¹æ°ãããæããã«ééãã§ããã
ãa^2+b^2=c^2ã¯ãªããããªããã蚌æã§ããããšã§ããããŸã§ã®èšŒæ(æšè«)ãééã£ãŠããããšã¯æããã
æããã«ééãã§ããã®ã¯ãããããã¯ã¡ã¹ãããã®èšŒæ(No.590)ã§ãã
ã©ããééã£ãŠããã®ãã¯ãåé¡ã§ã¯ãªã(åé¡ã«ããªããªã)ã
> ãã®ããã«ãäžèŠnâ§3ã¯äœ¿ãããŠããããã«èŠããŸããããã¡ãããšäœ¿ãããŠããã®ã§ããã
No.590ã®èšŒæã§ã¯äœ¿ãããŠããªãã(ã©ãã«ãæžããŠããªã)
åççãªèšŒæãšããã®ã§ããã°ããã®äžã§äœ¿ã£ãè£å©å®çã¯ãããããã¯ã¡ã¹ãããã«ãã£ãŠãå
šãŠèšŒæã§ããã¯ãã§ãã蚌æã§äœ¿ãããè£å©å®çã®å°ãªããšãïŒã€ã«ã¯n>=3ã®åæãå«ãŸããã®ã§ãæžããŠããªããŠã䜿ãããŠããã¯è©åŒã§ããã
> DD++æ§ã®ææã«ãåçã«ãªã£ãããªïŒ
å
šããªã£ãŠããªãã
No.632H.Nakao2023幎3æ12æ¥ 09:00 åã®ç¶ãã§ãããçš¿ãæ°ããããŸããã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ãã§ã«ããŒã®æçµå®çã®åçç蚌æãèããã
a^n+b^n=c^nã«ãããŠãa,b,cã¯èªç¶æ°ã§ãããnâ§3ã§ã¯ãæãç«ããªããšããåé¡ã§ããã
a,b,cã¯ãäºãã«çŽ ãªèªç¶æ°ãªã®ã§ãa,b,cçå¶æ°ã§ã¯ãªããa,b,cçå¥æ°ã¯å¥æ°ïŒå¥æ°ïŒå¥æ°ããªãã®ã§ã
ïŒïŒa,b,c:å¶æ°ãå¥æ°ãå¥æ°
ïŒïŒa,b,c:å¥æ°ãå¶æ°ãå¥æ°
ïŒïŒa,b,c:å¥æ°ãå¥æ°ãå¶æ°
ã®å Žåã ããèããã°ãããnãå¶æ°ã®æã¯ãç¡éäžéæ³ã§ããã§ã«ããŒã«ãã£ãŠèšŒææžã¿ã§ãããnãå¥æ°ã®åææ°ãªãã°ãæ§æããæå°ã®çŽ æ°ãèããã°ãããâwikipediaåç
§
ãããã£ãŠãnã¯ãå¥æ°ã®çŽ æ°ã§ããã
ããŠãå
¬åŒããã
c^n-b^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)}
ãŸããc^n-b^n=a^n
ãã£ãŠã
a^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)} ---(a)
ããŠãnã¯ãå¥æ°ã®çŽ æ°ã§ããã®ã§ãïœïœã®äžã¯ãné
ã§ããã
ïŒïŒa,b,c:å¶æ°ãå¥æ°ãå¥æ°
(a)åŒã¯ã2ã€ã®åææ°ã®ç©ã§ããããã
a^s=c-b---(1)
a^(n-s)=c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(2)
ã§ãªããã°ãªããªãããšããã(2)ã§ã¯ã巊蟺ã¯å¶æ°ãå³èŸºã¯å¥æ°ã®å¥æ°åã®åã§ããããå¥æ°ã
ãããã£ãŠãççŸã
ïŒïŒa,b,c:å¥æ°ãå¶æ°ãå¥æ°
(a)åŒã¯ã2ã€ã®åææ°ã®ç©ã§ããããã
a^s=c-b---(3)
a^(n-s)=c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(4)
ã§ãªããã°ãªããªãã(4)ã§ã¯ã巊蟺ã¯å¥æ°ãå³èŸºã¯c^(n-1)ã®å¥æ°ãé€ããŠãã¹ãŠã®é
ã¯å¶æ°ã§ããããå¥æ°ã
ãããã£ãŠãççŸããªãã
ïŒïŒa,b,c:å¥æ°ãå¥æ°ãå¶æ°
a)åŒã¯ã2ã€ã®åææ°ã®ç©ã§ããããã
a^s=c-b---(5)
a^(n-s)=c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(6)
ã§ãªããã°ãªããªãã(6)ã§ã¯ã巊蟺ã¯å¥æ°ãå³èŸºã¯b^(n-1)ã®å¥æ°ãé€ããŠãã¹ãŠã®é
ã¯å¶æ°ã§ããããå¥æ°ã
ãããã£ãŠãççŸããªãã
ãã£ãŠãïŒïŒãïŒïŒã ããèããã°ããã
a^s=c-b---(3)ããb=c-a^s bã¯èªç¶æ°ãããc > a^s
a^(n-s)=c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(7)
ãšããã§ã(7)ã¯ãåé
c^(n-1)ãé
æ¯b/c,é
æ°nã®çæ¯çŽæ°ã§ããã
ããã§ã
a^(n-s)=c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)}
ããã2ã€ã®åææ°ã®ç©ã§ãããã
a^t=c^(n-1) ---(8)
a^(n-s-t)={1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)} ----(9)
(8)åŒã¯ã䞡蟺ãa^tã§å²ããšãa,cã¯äºãã«çŽ ã§ãããããc^(n-1)/a^tã¯å²ãåãããæãç«ããªãã
ãããšã(7)ã¯ãæãç«ããªãããã(6)åŒã¯æãç«ããªãã
ããã«ã(a)åŒã¯æãç«ãããc^n-b^n=a^nã¯æãç«ããªãã
ãã£ãŠããã§ã«ããŒã®æçµå®çã¯ãåççã«èšŒæãããã
No.579ããããã¯ã¡ã¹ã2023幎3æ8æ¥ 07:49
> nãå¶æ°ã®æã¯ãç¡éäžéæ³ã§ããã§ã«ããŒã«ãã£ãŠèšŒææžã¿ã§ããã
ãã§ã«ããŒã蚌æããïŒãšèããããŠããïŒã®ã¯ n=4 ã®å Žåã®ã¿ã®ã¯ãã§ããã
n=8, 12, 16, âŠâŠã¯ãšããããn=6, 10, 14, âŠâŠã¯ãã§ã«ããŒèªèº«ã®çµæããã¯ç€ºãããªãã¯ãã§ãã
> (a)åŒã¯ã2ã€ã®åææ°ã®ç©ã§ããããã
> a^s=c-b---(1)
ïŒä»¥äžã(6) åŒãŸã§ïŒ
ãããã a ã®çŽ¯ä¹æ°ã§ãªããã°ãªããªããšèããçç±ãæããŠãã ããã
No.580DD++2023幎3æ8æ¥ 08:26
ããšãc-b ãåæã«åææ°ãšãããŠããçç±ãã§ãããã
ãªããããçŽ æ°ã 1 ãããããªããã§ãããïŒ
No.581DD++2023幎3æ8æ¥ 08:28
DD++ããŸããã¯ããããããŸãã
> nãå¶æ°ã®æã¯ãç¡éäžéæ³ã§ããã§ã«ããŒã«ãã£ãŠèšŒææžã¿ã§ããã
ãã§ã«ããŒã蚌æããïŒãšèããããŠããïŒã®ã¯ n=4 ã®å Žåã®ã¿ã®ã¯ãã§ããã
n=8, 12, 16, âŠâŠã¯ãšããããn=6, 10, 14, âŠâŠã¯ãã§ã«ããŒèªèº«ã®çµæããã¯ç€ºãããªãã¯ãã§ãã
äŸãã°ãïœïŒïŒïŒ3x2ã§ãããã
(a^2)^3+(b^2)^3=(c^2)^3
ããã§ãA=a^2,B=b^2,C=c^ïŒãšããã°ã
A^3+B^3=C^3
10=2x5,15=3x5,18=3x3x2,ã»ã»ã»ã»
ãšããããã«ãçŽ å æ°å解ã§ããã°ãå¥æ°ã®çŽ æ°ã«ãªããŸãã®ã§ãå¥æ°ã®çŽ æ°ã蚌æã§ããã°ããã®ã§ããããWikipediaïŒãã§ã«ããŒã®æçµå®çïŒãèŠãŠãã ããã
> (a)åŒã¯ã2ã€ã®åææ°ã®ç©ã§ããããã
> a^s=c-b---(1)
ïŒä»¥äžã(6) åŒãŸã§ïŒ
ãããã a ã®çŽ¯ä¹æ°ã§ãªããã°ãªããªããšèããçç±ãæããŠãã ããã
ã€ãŸãã巊蟺ãa^nã§ããããã巊蟺ã¯aã®çŽ¯ä¹ã§ãªããšãããŸããã
ïŒããšãc-b ãåæã«åææ°ãšãããŠããçç±ãã§ãããã
ãªããããçŽ æ°ã 1 ãããããªããã§ãããïŒ
çŽ æ°ã§ã1ã§ãæ§ããªãã®ã§ãããäžè¬çã«äžçªå€§ããªå¯èœæ§ãåææ°ã§ããããèªç¶æ°ã®æ¹ãããããªïŒ
No.582ããããã¯ã¡ã¹ã2023幎3æ8æ¥ 09:17
ãå¥çŽ æ°ã§ã®èšŒæãã§ããã°ååã§ãããèªäœã¯æ£ããã§ããã
ã§ããæåŸã®äžæã«çµæçã«æ£ããããšãæžããŠãããããšãã£ãŠãéäžã«æžãããã®ãå
šéšæ£ããã£ãããšã«ãªããããããããŸããã
ãã§ã«ããŒã®æçµå®çã®èšŒæããæåŸã®çµæã¯å¥ã®æ¹æ³ã§èšŒæãããŠãããã ãããäœãã©ãæžããã£ãŠæ£ãã蚌æã«ãªããã ããšãæã£ãŠãŸããããïŒ
> 巊蟺ãa^nã§ããããã巊蟺ã¯aã®çŽ¯ä¹ã§ãªããšãããŸããã
æå³ãããããŸããã
> çŽ æ°ã§ã1ã§ãæ§ããªãã®ã§ãããäžè¬çã«äžçªå€§ããªå¯èœæ§ãåææ°ã§ããããèªç¶æ°ã®æ¹ãããããªïŒ
ã»ããåæãªæ±ºãã€ããè¡ãªã£ãŠããã
ããã 1 ã€ã§ããã£ãç¬éãããã¯ãååšããªã蚌æãã§ã¯ãªãããã ã®ãèªåã«ã¯èŠã€ããããªãã£ããšããç¡äŸ¡å€ãªå€±æå ±åãã«ãªããŸãã
蚌æãããšããã®ãªããŸããã®èªèãæã£ãŠãã ããã
No.583DD++2023幎3æ8æ¥ 12:58
DD++ããŸãããã«ã¡ã¯ã
> 巊蟺ãa^nã§ããããã巊蟺ã¯aã®çŽ¯ä¹ã§ãªããšãããŸããã
æå³ãããããŸããã
(a)ã®åŒã
a^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)} ---(a)
(a)ã®åŒã¯ãa^nã¯2ã€ã®èªç¶æ°ã®ç©ã§æ§æãããŠããŸããããã¯ã
c-b---(1)
c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(2)
ã®(1),(2)åŒã§ãããã®2ã€ã®åŒã®ç©ãa^nãªã®ã§ãããã
a^s=c-b---(1)
a^(n-s)=c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(2)
ã§ãªããã°ãªããªããšããããšã§ãã
> çŽ æ°ã§ã1ã§ãæ§ããªãã®ã§ãããäžè¬çã«äžçªå€§ããªå¯èœæ§ãåææ°ã§ããããèªç¶æ°ã®æ¹ãããããªïŒ
a^s=c-bã«ãããŠã巊蟺ã¯aã®çŽ¯ä¹ã®åŒã§ããããc-bã¯ãçŽ æ°ã«ã¯ãªããªãã§ãããã
a^sãs=1ãªããa=c-bãªã®ã§ãaãçŽ æ°ã§ãããããŸãããããã
(c-b)^n+b^n=c^n
c^n-nC1 c^(n-1)b+nC2 c^(n-2) b^2-nC3 c^(n-3)b^3+ã»ã»ã»+nC1 c b^(n-1)-b^n+b^n=c^n
-b^n+b^n=0ã§ãæ¶ãã䞡蟺ããc^nãåŒããšã
-nC1 c^(n-1)b+nC2 c^(n-2) b^2-nC3 c^(n-3)b^3+ã»ã»ã»+nC1 c b^(n-1)=0
ããã¯ãcbã§ããããŸããã
cb{-nC1 c^(n-2)+nC2 c^(n-3) b-nC3 c^(n-4)b^2+ã»ã»ã»+nC1 b^(n-2)}=0
cbã¯0ã§ãªãã®ã§ãå²ããšã
-nC1 c^(n-2)+nC2 c^(n-3) b-nC3 c^(n-4)b^2+ã»ã»ã»+nC1 b^(n-2)=0
nC2 c^(n-3) b+nC4 c^(n-5) b^3+ã»ã»+nC1 b^(n-2)=nC1 c^(n-2)+nC3 c^(n-4)b^2+ã»ã»ã»+nC2 c b^(n-3)
ãšãªãã(a)åŒã«ã¯ãªããã(1),(2)åŒã¯ååšããªããªããŸãã
ãããã£ãŠãa=c-bã§ã¯ããŸããã®ã§ãã
c-b=1ãªãã
a^n+b^n=(b+1)^n
a^n+b^n=b^n+nC1 b^(n-1) +nC2 b^(n-2) +nC3 b^(n-3) +ã»ã»ã»+nC(n-1) b +1
䞡蟺ããb^nãåŒããŠã
a^n=nC1 b^(n-1) +nC2 b^(n-2) +nC3 b^(n-3) +ã»ã»ã»+nC(n-1) b +1
ãšãªãã(a)åŒã«ã¯ãªããã(1),(2)åŒã¯ååšããªããªããŸãã
ãããã£ãŠãc-b=1ã§ã¯ããŸããã®ã§ãã
No.584ããããã¯ã¡ã¹ã2023幎3æ8æ¥ 16:11
DD++ããŸãããã°ãã¯ã
(a)ã®åŒã
a^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)} ---(a)
(a)ã®åŒã¯ãa^nã¯2ã€ã®èªç¶æ°ã®ç©ã§æ§æãããŠããŸããããã¯ã
α=c-b---(1)
β=c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(2)
ãšããŸãã
a^n=αβ
ããã§ãa^n=v^n u^n ãšãããšã
α=v^p
β=v^q u^n
ãããã£ãŠã
v^p=c-b
v^p=v^r(c'-b')
c'-b'=v^(p-r)
c=v^rc'
b=v^rb'
ãšããããa,b,cã¯äºãçŽ ã§ãããããããã¯ããããªãã
No.585ããããã¯ã¡ã¹ã2023幎3æ8æ¥ 18:00
> ãã®2ã€ã®åŒã®ç©ãa^nãªã®ã§ãããã
> a^s=c-b---(1)
> a^(n-s)=c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(2)
> ã§ãªããã°ãªããªããšããããšã§ãã
ã ãããããããªãããã§ãªããã°ãããªãã®ããšåããŠããŸãã
ãèªåãæ£ãããšæã£ãŠããããæ£ãããã ãã§ã¯èšŒæã«ãªã£ãŠããŸããã
ãŸãããã解æ¶ãããªãéããã®å
ã®è©±ã¯èªã䟡å€ããªãã®ã§äžæŠçœ®ããšããŸãã
No.586DD++2023幎3æ8æ¥ 18:30
> a^s=c-b---(1)
ïŒä»¥äžã(6) åŒãŸã§ïŒ
ãããã a ã®çŽ¯ä¹æ°ã§ãªããã°ãªããªããšèããçç±ãæããŠãã ããã
ã€ãŸãã巊蟺ãa^nã§ããããã巊蟺ã¯aã®çŽ¯ä¹ã§ãªããšãããŸããã
ïŒåŒçšçµããïŒ
ãããåºæ¥ãã®ã¯ïœãçŽ æ°ã®å Žåã ãã§ããäŸãã°ãïœãåææ°ã§ïœïŒïœ1ïœ2ãšãããšã
a^n=(a1a2)^n=a1^na2^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)}
c-b=a1ãããããªãããc-b=a1a2ãããããŸãããïœïŒïŒãããã ã£ããå
šãŠã®çµã¿åããã調ã¹ãããŸããã
ïŒc-b=1ãªãã
a^n+b^n=(b+1)^n
a^n+b^n=b^n+nC1 b^(n-1) +nC2 b^(n-2) +nC3 b^(n-3) +ã»ã»ã»+nC(n-1) b +1
䞡蟺ããb^nãåŒããŠã
a^n=nC1 b^(n-1) +nC2 b^(n-2) +nC3 b^(n-3) +ã»ã»ã»+nC(n-1) b +1
ãšãªãã(a)åŒã«ã¯ãªããã(1),(2)åŒã¯ååšããªããªããŸãã
ãããã£ãŠãc-b=1ã§ã¯ããŸããã®ã§ãã
ïŒåŒçšçµããïŒ
c-b=1ã®å Žåã¯èšŒæããªããŠã¯ãããŸããã
a^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)} ---(a)
(a)åŒãša^n=nC1 b^(n-1) +nC2 b^(n-2) +nC3 b^(n-3) +ã»ã»ã»+nC(n-1) b +1ã¯åãåŒã§ãã
(a)åŒã«c-b=1ã代å
¥ããŠããã«c=b+1ã代å
¥ãããšã
a^n=(b+1)^(n-1)+(b+1)^(n-2)b+ã»ã»ã»+(b+1)b^(n-2)+b^(n-1)ãšãªããŸããããããäºé
å®çã§å±éããŠ
b^(n-1)ã®ä¿æ°ãèãããš1+1+ã»ã»ã»+1(nå)=nããŸããnC1=nã§ãããäžèŽããŸãã
ãŸããå®æ°é
ãïŒã§äžèŽããŸããããã€ãŸããåãåŒãšããäºã§ããã ãããc-b=1ã®å Žåã蚌æããŠäžããã
No.587éãããã22023幎3æ8æ¥ 19:51
DD++ããŸãéããããïŒæ§ãããã°ãã¯ã
ããäžåºŠã泚æããŠãããããã®ã¯ãåææ¡ä»¶ã§ãã
â a,b,cã¯ãäºãã«çŽ ãªèªç¶æ°
a,bã®æ倧å
¬çŽæ°gcd(a,b)=1
a,cã®æ倧å
¬çŽæ°gcd(a,c)=1
b,cã®æ倧å
¬çŽæ°gcd(b,c)=1
ãšããããšãå®ãããŠãããïŒ
â¡a,b,c:å¥æ°ãå¶æ°ãå¥æ°
â¢a,b,c:å¥æ°ãå¥æ°ãå¶æ°
â£a^n+b^n=c^n
ã§ãã
ããšãã°ãNo.585ã®
*************
(a)ã®åŒã¯ãa^nã¯2ã€ã®èªç¶æ°ã®ç©ã§æ§æãããŠããŸããããã¯ã
α=c-b---(1)
β=c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(2)
ãšããŸãããããã£ãŠãa^n=αβ
a,b,cã¯ãäºãã«çŽ ãªèªç¶æ°ã®ç¢ºèªã¯ã(1)åŒãéœåãè¯ãã®ã§ã
ããã§ãa^n=v^n u^nïŒã€ãŸããaãçŽ å æ°å解ãããa=vuãšãããš) ãšãããšã
ããšãã°ã
α=v^p
β=v^q u^nããïŒãã ããp+q=nïŒ
ãããã£ãŠã
v^p=c-bããåŒãç®ãæç«ããã®ã§å
±éå åv^rããããšããŠã
ãŸããv^p=v^r(c'-b')ãããã«c'-b'=v^(p-r)
ãããšãc=v^rc'ãã€b=v^rb'
ãšããããa,b,cã¯äºãçŽ ã§ãããããããã¯ããããªãã
*********
ã®ããã«ã確èªããªããã°ããªããªãã¯ãã§ãã
éããããïŒããŸã
1=c-bã®å Žåã®æ€èšã¯ãåèã«ãªããŸãããããããšãããããŸãã
No.588ããããã¯ã¡ã¹ã2023幎3æ8æ¥ 22:43
> å
±éå åv^rããããšããŠã
ãŸããv^p=v^r(c'-b')
ãªãã®å
±éå åã§ããïŒ
No.589DD++2023幎3æ9æ¥ 03:02
DD++æ§ããã¯ããããããŸãã
äœèšãªããšãåé€ããã°ããããšã«æ°ã¥ããŸããã
ïŒïŒïŒïŒïŒïŒïŒïŒ
ãã§ã«ããŒã®æçµå®çã®åçç蚌æãèããã
a^n+b^n=c^nã«ãããŠãa,b,cã¯èªç¶æ°ã§ãããnâ§3ã§ã¯ãæãç«ããªããšããåé¡ã§ããã
a,b,cã¯ãäºãã«çŽ ãªèªç¶æ°ã§ãããšããã
ããŠãå
¬åŒããã
c^n-b^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)}
ãŸããc^n-b^n=a^n
ãã£ãŠã
a^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)} ---(a)
ããã§ã{}ã®äžã¯ãåé
c^(n-1)ãé
æ¯b/c,é
æ°nã®çæ¯çŽæ°ã§ããã
a^n=(c-b)c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)} ---(b)
(b)åŒã®äž¡èŸºãa^tã§å²ããšãa,cã¯äºãã«çŽ ã§ãããããc^(n-1)/a^tã¯å²ãåããªãã
ãã ããtã¯t<nã®èªç¶æ°ã§ããã
ãããšã(b)ã¯ã巊蟺ã¯å²ãåããããå³èŸºã¯å°ãªããšãc^(n-1)/a^tãå²ãåããªãã®ã§ãæãç«ããªããããã«ã(a)åŒã¯æãç«ãããc^n-b^n=a^nã¯æãç«ããªãã
ãã£ãŠããã§ã«ããŒã®æçµå®çã¯ãåççã«èšŒæãããã
No.590ããããã¯ã¡ã¹ã2023幎3æ9æ¥ 07:06
ïŒã³ã¡ã³ãïŒãã(b)ã¯ã巊蟺ã¯å²ãåããããå³èŸºã¯å°ãªããšã c^(n-1)/a^t ãå²ãåããªãã®
ããããããã§ãæãç«ããªããããšãããŸãããããã¯èª€éåãã§ã¯ãããŸãããïŒ
ãããåŠå®ããã®ã§ããã°ã
(c-b)c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)}
ã®c^(n-1)ãé€ããéšåããa^tã§å²ãããã€ãŸããa^tã®åæ°ã§ããããšã蚌æããªããã°ãªããŸããã
No.591ããããã¯ã¡ã¹ã2023幎3æ9æ¥ 08:20
éã«ãc^(n-1)ãé€ããéšåããa^tã§å²ããªããšããããšãããããã¯ã¡ã¹ããã
ã®æ¹ã§åæã«ä»®å®ããŠããŸãããïŒ
è«çãç Žç¶»ããŠããã®ã§ãããã§ã«ããŒã®æçµå®çã¯ãåççã«èšŒæããããããšã¯
ãªããªãã®ã§ã¯ïŒ
No.592HP管çè
2023幎3æ9æ¥ 10:19 ïŒïŒã³ã¡ã³ãïŒãã(b)ã¯ã巊蟺ã¯å²ãåããããå³èŸºã¯å°ãªããšã c^(n-1)/a^t ãå²ãåããªãã®
ããããããã§ãæãç«ããªããããšãããŸãããããã¯èª€éåãã§ã¯ãããŸãããïŒ
ãããåŠå®ããã®ã§ããã°ã
(c-b)c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)}
ã®c^(n-1)ãé€ããéšåããa^tã§å²ãããã€ãŸããa^tã®åæ°ã§ããããšã蚌æããªããã°ãªããŸããã
ïŒåŒçšçµããïŒ
ïŒa^n=(c-b)c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)} ---(b)
(b)åŒã®äž¡èŸºãa^tã§å²ããšãa,cã¯äºãã«çŽ ã§ãããããc^(n-1)/a^tã¯å²ãåããªãã
ãã ããtã¯t<nã®èªç¶æ°ã§ããã
ãããšã(b)ã¯ã巊蟺ã¯å²ãåããããå³èŸºã¯å°ãªããšãc^(n-1)/a^tãå²ãåããªãã®ã§ãæãç«ããªããããã«ã(a)åŒã¯æãç«ãããc^n-b^n=a^nã¯æãç«ããªãã
ïŒåŒçšçµããïŒ
ãc^(n-1)/a^tã¯å²ãåããªããã®ã§ãc-bãš1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)ãa^tã§å²ãåããªãäºã瀺ããã°èçæ³ã§èšŒæåºæ¥ãã®ã§ãã
ããããã1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)ãããªãèªç¶æ°ã ãšèšããã®ã§ãïŒ
äŸãã°ãïœ^2ïŒïŒã§1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)ïŒïŒ/ïŒã®å¯èœæ§ã ã£ãŠãããããªãã§ãããïŒçŽ°ãã調æŽã¯ããŠããŸãããïŒ
äŸãã°ãïŒ^2ïŒïŒ^2ïŒïŒ^2ãããïŒ^2ïŒïŒ^2ïŒïŒ^2ïŒ(ïŒïŒïŒ)(ïŒïŒïŒ)ïŒ(ïŒïŒïŒ)ïŒ(ïŒïŒïŒ/ïŒ)ã§ïŒïŒïŒ/ïŒã¯èªç¶æ°ãããªãã§ãããã
No.593ã¢ã«ã³èŠå¯2023幎3æ9æ¥ 10:29
ãc^(n-1)/a^tã¯å²ãåããªããã®ã§ãc-bãš1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)ãa^tã§å²ãåããªãäºã瀺ããã°
ãšã®ããšã§ãããããã¯èšŒæãããã®ã§ããïŒ
No.594HP管çè
2023幎3æ9æ¥ 12:03 HP管çè
æ§ãã¢ã«ã³èŠå¯æ§ãããã«ã¡ã¯ã
ïŒãããåŠå®ããã®ã§ããã°ã
(c-b)c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)}
ã®c^(n-1)ãé€ããéšåããa^tã§å²ãããã€ãŸããa^tã®åæ°ã§ããããšã蚌æããªããã°ãªããŸããã
ã§ããããã¯ãè¡šçŸããŸããã§ãã
c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)}
ãšããçæ¯çŽæ°ããa,cãäºãã«çŽ ãªã®ã§ãå²ããªããšããã¹ãã§ããããc^(n-1)ã ããåãåºãããããããããªããŸããããã¿ãŸããã
éã«ãc^(n-1)ãé€ããéšåããa^tã§å²ããªããšããããšãããããã¯ã¡ã¹ããã
ã®æ¹ã§åæã«ä»®å®ããŠããŸãããïŒ
ãããªããšã¯ãæã£ãŠããŸãããéã§ããa^tã®åæ°ã§ãªããã°ãããŸããã
ãc^(n-1)/a^tã¯å²ãåããªããã®ã§ãc-bãš1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)ãa^tã§å²ãåããªãäºã瀺ããã°
ãšã¯ãèšã£ãŠãŸãããéã§ããa^tã®åæ°ã§ãªããšãããªãã®ã§ãã
ã©ãããŠãããªã£ãã®ããªïŒ
ããããã1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)ãããªãèªç¶æ°ã ãšèšããã®ã§ãïŒ
ããã¯ãçæ¯çŽæ°c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)}ã§ãããèªç¶æ°ã§ãã
(c-b)c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)}ããa,cãäºãã«çŽ ã§ããããa^tã§å²ããªããšèšã£ãŠããã ãã§ãã
ãããåŠå®ãããªãã
(c-b)c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)}ããa^tã§å²ãããšããã°ããã®ã§ãã
ããã ãã§ãã
No.595ããããã¯ã¡ã¹ã2023幎3æ9æ¥ 12:50
å±±äžééããã¯ãä»å¹ŽïŒïŒæ³ã®èªçæ¥ãè¿ããŸããããŠãŒãã³ãæ¥å¹ŽïŒïŒæ³ã§ãçããŠããã°ãå®éšãããæ¥å¹ŽïŒïŒæ³ã§ãããç§ãæ¥å¹ŽïŒïŒæ³ã§ãã
ããããã€ããããšã¯ãã§ããŸãããHP管çè
æ§ã¯ããè«çãç Žç¶»ããŠããããšèšããŸããããããç解ã§ããŸããã
ã§ãããã§ã«ããŒã®æçµå®çã¯ãn=3ãšãïœãçŽ æ°ãšããå¶éãä»ãããšãè«ççã«åãå
¥ããããŸãã
ããããnã«ãªããšããšãŠã€ããªãå£ãåã«ãç«ã¡ã¯ã ããã®ã§ãã
ããããªè©±ã§ãã
No.596ããããã¯ã¡ã¹ã2023幎3æ9æ¥ 13:28
ããããªè©±ã§ã¯ãªãã®ã§ã¯ïŒäŸãã°ãå®æšã»ã³ã³ãã¹ãçšããŠãè§ã®ïŒçååé¡
ãèããå ŽåãïŒïŒÂ°ã®è§ãïŒçåã§ãããããäžè¬ã®å Žåãã§ããããšèšã£ãŠ
ãããããªãã®ã§ã¯ãªãã§ããããïŒ
No.597HP管çè
2023幎3æ9æ¥ 16:42 FLTã®èšŒæã«ã€ããŠã§ãããè«ççã«ã¯åççã«èšŒæã§ããå¯èœæ§ã¯ãããŸãã
ãããããããŸã§ãããããªæ°åŠè
ãææŠããŠãå°ãªããšãåççãªèšŒæã¯ã§ããªãã£ãããã§ãã
ããFLTã®ç°¡åãª(äŸãã°100ããŒãžä»¥äžã®)åçç蚌æãååšããã®ã§ããã°ãåã ããæ°åŠè
ã®æã«ãã£ãŠæ¢ã«èšŒæã§ããŠããããšã§ãããã
ãšããããšã¯ãFLTã®åçç蚌æã¯(äžçãããŠãæžããããªãã»ã©ã«)ãšãã§ããªãé·ããã®ã§ããå¯èœæ§ãé«ãã§ããåœç¶ããã®èšŒæãæ£ãããã©ããæ€èšŒããã®ãå°é£ãããããŸããã
åè¶ãªãããããããã¯ã¡ã¹ãããã«ããããŸããŠã¯ãèªèº«ãæžãã蚌æãæ£ããã®ãã©ããèªåã§å€æã§ããããã«ãªããŸã§ãFLTã®èšŒæ(ãšç§°ãããã®)ã®å
¬è¡šãæ§ããŠããã ããèªèº«ãæžãã蚌æã®æ£ããã»èª€ããæ£ç¢ºã«å€æã§ããããã«ãªã£ãããFLTã®èšŒæãå
¬è¡šããŠããã ããããšæããŸãã
No.599H.Nakao2023幎3æ10æ¥ 11:40 ãããããããããã¯ã¡ã¹ãããã®FLTã®åçç蚌æ(No.590)ã§ã¯ãn>=3ãšããæ¡ä»¶ãïŒåã䜿ã£ãŠããªãã
ãã䜿ã£ãŠãããšããã®ã§ããã°ãã©ãã§äœ¿ã£ãŠããã®ã§ããïŒ
ä»®ã«ããã®èšŒæãæ£ãããšä»®å®ãããšãn>=2ã§ãFLTãæç«ããããšã«ãªããççŸããã
ããã§ããæ£ããFLTã®èšŒæãšèšããã®ã§ããããïŒ
(泚æ)
åœé¡FLT(n)ããx^n+y^n=z^nãæºããèªç¶æ°x,y,zã¯ååšããªãããšãããšã
FLT(2)ã¯æç«ããªã(ãªããªãã3^2+4^2=5^2ãªã©ã®åäŸãå€æ°ååšããã®ã§)ã
No.601H.Nakao2023幎3æ10æ¥ 18:44 æ£ã®æŽæ°ã®ç¯å²ã§ã®è©±é¡ã§ãã
ãïŒåã®å¹³æ¹æ°ã®åãå¹³æ¹æ°ã«ã
ãšããã®ã¯ãã¿ãŽã©ã¹ã®äžå¹³æ¹å®çã§ã
ãïŒåã®å¹³æ¹æ°ã®åãå¹³æ¹æ°ã«ã
ãªãããšã¯ããã®ãâŠâŠïŒ
ãšããã®ãå°åŠæ ¡ã®é ã«æ
ä»»ã®
åœèªãåŸæã ã£ã倧ä¹
ä¿å
çã«
èãããŠã
ãããããªããã©ãæ¢ããŠããªãã£ãã
ãšçããããšã ä»å€ æãåºããŸããã
ããã§ã
ã€ã³ã¿ãŒãããã¯åºãäžçã§ãããã©ã
ã°ãŒã°ã«å
çã«ã䌺ããããŠããšãã
ããã®ã§ããâŠâŠâŠ
386678175^2 + 332273368^2 + 379083360^2
=
635318657^2
巚倧ãªâŠâŠ 倧人ã«ãªã£ãŠãã§ããã
倧ä¹
ä¿å
çã«ã¯ãªããèŠèŸŒãŸããŠ
æŸèª²åŸã«
åœèªã®ææ³ã®ç¹èšãåããŸããã
æãããâŠâŠ
No.572Dengan kesaktian Indukmu2023幎3æ6æ¥ 22:04
ïŒåã®å¹³æ¹æ°ã®åãå¹³æ¹æ°ã«ãªãããšã¯ããããªã«å€§ããªæ°ãæã¡åºããªããŠãæ®éã«ãããŸãã
äŸãã°
3^2+4^2=5^2
5^2+12^2=13^2
ã§ããã
3^2+4^2+12^2=13^2
ã§ãã
ããã«
13^2+84^2=85^2
ãªã®ã§
3^2+4^2+12^2+84^2=85^2
ãããŠ
85^2+132^2=157^2
ãªã®ã§
3^2+4^2+12^2+84^2+132^2=157^2
ã®ããã«ãä»»æã®èªç¶æ°nã«å¯ŸããŠãnåã®å¹³æ¹æ°ã®åãå¹³æ¹æ°ããšãªãçµããããŸãã
(è¿œèš)
ãã£ãšå°ããæ°ã®
1^2+2^2+2^2=3^2
ãªããŠã®ããããŸããã
No.574ãããã2023幎3æ7æ¥ 05:03
ããããããŸ
ãæããããããšãããããŸãã
#å°åã®ç§ã«æãããâŠâŠ
No.578Dengan kesaktian Indukmu2023幎3æ7æ¥ 14:38
å€é
åŒã¯ãä¿æ°ã«ãã£ãŠå æ°å解ã§ããã決ãŸããŸããããšãã°ããã¹ã«ã«ã®äžè§åœ¢ãæåã§ããã
ããã§ã¯ãä¿æ°ããã¹ãŠïŒã®å€é
åŒã«ã€ããŠãèããŠã¿ãŸãã
ããšãã°ãx^3+x^2+x+1ã¯ããããåŒã§ãä¿æ°ã ãã䞊ã¹ããš1111ã§ããããã1ã䞊ãã æ°ãããã¯ã¬ãã¥ããããšèšããŸãã
1111ã¯1ã4å䞊ãã æ°ãªã®ã§ã4=2^2ã§ãããã2å䞊ãã æ°ã¥ã€ã«åããããŸããã€ãŸãã
ãã101
11)1111
ããã1111=11x101ã§ãã
ã€ãŸããx^3+x^2+x+1=(x+1)(x^2+1)
ãšãªããŸããããã§æ³šæããŠãããããã®ã¯ä¿æ°ã¯0,1以å€èš±ãããªããšããããšã§ãã
ãŸãã
x^3+x^2+x+1=(x+1)x^2+(x+1)=(x+1)(x^2+1)
ãšåãèšç®ã§ãã
1ã䞊ãã æ°ã¯äžŠãã æ°ãåææ°ã§ãªããšå æ°å解ã§ããŸããããããæ®éã®å æ°å解ãšéããšããã§ãã
ããŠãå®å
šæ°ã«ãããŠã¯ãaãå®å
šæ°ã«ãªãã«ã¯ã2a=Ï(a)ã§ãªããšãããŸãããÏ(a)ã¯çŽæ°ã®é¢æ°ãšèšããŸãã
aãçŽ å æ°å解ãããŠa=xyãªãã°ãçŽæ°ã¯1,x,y,xyã§ãã®ã§ãç·åã¯
1+x+y+xy=(1+x)(1+y)
ãããã£ãŠãçŽæ°ã®é¢æ°ã¯Ï(a)=(1+x)(1+y)ãšãªããŸãã
ãŸããå¥ã«èããŠã¿ããšãxã®çŽæ°ã¯1,xã§ç·åã¯1+xãªã®ã§ãÏ(x)=1+xãåæ§ã«Ï(y)=1+yãªã®ã§ã
ã€ãŸããÏ(xy)=Ï(x)Ï(y)ãªã®ã§ããããã«a=x^ny^mã§ããÏ(a)=Ï(x^n)Ï(y^m)ãšããããšãã§ããŸãã
ãŸããa=x^3ãªãã°çŽæ°ã¯ã1,x,x^2,x^3ã§ãã®ã§ãç·åã¯
1+x+x^2+x^3
çŽæ°ã®é¢æ°ã¯Ï(a)=1+x+x^2+x^3
ãšãªããŸããããã¯ã1ã䞊ãã æ°ã§ãããÏ(x^3)ã¯ïŒã4å䞊ãã æ°ãªã®ã§ãå æ°å解ã§ããŸãã
Ï(a)=x^3+x^2+x+1=(x+1)(x^2+1)ã§ãããã
å®å
šæ°ã«ãªãã«ã¯ã2a=Ï(a)ã§ããããã2x^3=(x+1)(x^2+1)ãšãªããŸãã
ããŸãxãå¥æ°ãªãaã¯å¥æ°ã§ããã(x+1)ã(x^2+1)ãå¶æ°ãªã®ã§ã䞡蟺ã2ã§å²ããšã巊蟺ã¯aã§å¥æ°ã§ãããããã§ãå³èŸºã¯å¶æ°ã§ãaã¯å®å
šæ°ã«ã¯ãªãããªãã®ã§ãã
a=x^4ãªãã°çŽæ°ã¯ã1,x,x^2,x^3,x^4ã§ãã®ã§ãç·åã¯
1+x+x^2+x^3+x^4
çŽæ°ã®é¢æ°ã¯Ï(a)=1+x+x^2+x^3+x^4
ãšãªããŸããããã¯ã1ã䞊ãã æ°ã§ãããÏ(x^4)ã¯ïŒã5å䞊ãã æ°ãªã®ã§ãå æ°å解ã§ããŸããã
å®å
šæ°ã«ãªãã«ã¯ã2a=Ï(a)ã§ããããã2x^4=1+x+x^2+x^3+x^4ãšãªããŸãã
ããŸãxãå¥æ°ãªãaã¯å¥æ°ã§ãããå³èŸºã®xã®é
ã¯4åã§ããããã¹ãŠå¥æ°ã ãããå
šäœã§5åã®å¥æ°ã®åã§å¥æ°ã§ãããªã®ã§å·ŠèŸºã¯å¶æ°ãå³èŸºã¯å¥æ°ã§å®å
šæ°ã«ã¯ãªããŸããã
ãã®ããã«ã1ã䞊ãã æ°ã¯ãå¥æ°ã®å®å
šæ°ã®ååšã®èšŒæã«äœ¿ãããšãã§ããŸãã
No.561ããããã¯ã¡ã¹ã2023幎3æ5æ¥ 07:22
å¥æ°ã®å®å
šæ°ã¯ãªããhttp://y-daisan.private.coocan.jp/html/kanzensu.pdf
ã§ãaãçŽ å æ°å解ããçŽ æ°ã®æ°ãããÏ(a)ãæ§æããåææ°ãå°ãªããšã1å以äžå€ãããšã蚌æã§ããŸãããã§ãããããã®åææ°ãçŽ å æ°å解ããŠæŽçãããã巊蟺ãšå³èŸºã®çŽ æ°ã®æ°ã¯çãããªããªãããšããçåãçããŸãããããã§ãè¡ãè©°ã£ãŠããŸãã
ããã§ãÏ(a)ã®çŽæ°ã®çŽ å æ°å解ããã£ãŠã¿ãŸãããhttp://y-daisan.private.coocan.jp/html/2019062801.html
ã§ãããããªããšã§ã¯è§£æ±ºããŸããããã
誰ãããã®åé¡ã解決ããŠãããŸããããïŒ
No.562ããããã¯ã¡ã¹ã2023幎3æ5æ¥ 07:30
a^n+b^n=c^nã«ãããŠãc^n-b^n=a^nãšãªãã
c=x+j,b=x,a=x-kãšããããããšã
c^n-b^n=a^nããã(x+j)^n-x^n=(x-k)^n
ããã§ãå³èŸºãf(x)ã巊蟺ãg(x)ãšããã
ãããã£ãŠãf(x)=g(x)ã§ãªããã°ãªããªãã
ã¬ãŠã¹ã®ä»£æ°åŠã®åºæ¬å®çããã åäžã®éæ ¹kãæã€ãªãã°ã
x=kã®ãšããf(k)=0ãªã®ã§ãg(k)=0ã§ããã¯ãã§ããã
g(k)=(k+j)^n-k^n
n
= â nCi k^(n-i)j^i -k^n
i=0
i=0ã®ãšããnCi k^(n-i)j^i=k^nããã
n
= â nCi k^(n-i)j^i +k^n -k^n
i=1
n
= â nCi k^(n-i)j^i >0
i=1
ãã£ãŠãf(k)â g(k)
ãããã£ãŠãg(x)ã¯ãåäžã®éæ ¹kãæããããªãã
ãã£ãŠãc^n-b^n=a^nã¯ãæãç«ããªãã
ã€ãŸããa^n+b^n=c^nã¯ãæãç«ããªãã
ãã§ã«ããŒã®æçµå®çãåççã«èšŒæã§ããã
ãããã
g(x)=(x+j)^2-(x+k)^2 >0 ïŒãã ããj>k>0ïŒã§ãã
ãã¿ãŽã©ã¹æ°ã§ã¯ãããšãã°ã(13,12,5)ãšããçµã¿åããããããŸãã
13^2-12^2=5^2
(13+12)(13-12)=25=5^2
ãšãªã£ãŠãg(x)>0ã§ãã解ãæã€ã®ã§ãã
ããã¯ãc^2-b^2=(c-b)(c+b)
ãšå æ°å解ã§ããããã§ãã
ãã¡ããc^n-b^nãå
¬åŒã§ã¯ã
c^n-b^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)}
ãããïŒã€ã®åææ°ã®ç©ã§ããããããæŽçãããšãa^nã«ãªããããããŸããã
ããããåææ°ã®ç©ãæŽçãããšããšããåé¡ã§ãã
ãã¡ãããaãçŽ æ°ãªãã°ããã§ã«ããŒã®æçµå®çã®åçç蚌æã¯ã§ããŠããã®ã§ãã
No.563ããããã¯ã¡ã¹ã2023幎3æ5æ¥ 09:04
c=x+j,b=x,a=(x-u)(x-v)ãšããã
ã¬ãŠã¹ã®ä»£æ°åŠã®åºæ¬å®çããã 2ã€ã®éæ ¹u,vãæã€ãªãã°ã
f(x)=(x-u)^n(x-v)^n
ãŸãã
g(x)=(x+j)^n-x^n
ãããã£ãŠãf(x)=g(x)ã§ãªããã°ãªããªãã
x=uã®ãšããf(u)=0ãªã®ã§ãg(u)=0ã§ããã¯ãã§ããã
g(u)=(u+j)^n-u^n
n
= â nCi u^(n-i)j ^i -u^n
i=0
i=0ã®ãšããnCi u^(n-i)j ^i=u^nããã
n
= â nCi u^(n-i)j ^i +u^n -u^n
i=1
n
= â nCi u^(n-i)j ^i >0
i=1
ãã£ãŠãf(u)â g(u)
åæ§ã«ãf(v)â g(v)
ãããã£ãŠãg(x)ã¯ã2ã€ã®éæ ¹u,vãæããããªãã
åæ§ã«ããŠãa=(x-u)(x-v)(x-w)ãšããŠãã¬ãŠã¹ã®ä»£æ°åŠã®åºæ¬å®çããã 3ã€ã®éæ ¹u,v.wãæã€ãªãã°ã
åæ§ã«f(u)â g(u),f(v)â g(v),f(w)â g(w)
ãããã£ãŠãg(x)ã¯ã3ã€ã®éæ ¹u,v,wãæããªãã
åæ§ã«ããŠãa=(x-u)(x-v)(x-w)(x-z)ã»ã»ã»ã»ãšããŠãã¬ãŠã¹ã®ä»£æ°åŠã®åºæ¬å®çããã nåã®éæ ¹u,v.wã»ã»ã»ã»ãæã€ãªãã°ã
åæ§ã«f(u)â g(u),f(v)â g(v),f(w)â g(w)ã»ã»ã»ã»
ãããã£ãŠãg(x)ã¯ãnåã®éæ ¹u,v,wã»ã»ã»ã»ãæããã€ãªãã°ãnåéæ ¹ãæããªãã
以äžãããaãçŽ å æ°å解ããããçŽ æ°Î²1,β2,β3,β4,ã»ã»ã»ã»ã»ã§ãããšããb-α1=β1,b-α2=β2,b-α3=β3,ã»ã»ã»ã»ãšãã ãšã
f(x)=(x-α1)^n(x-α2)^n(x-α3)^n(x-α4)^nã»ã»ã»ã»ã»
ã§ããããã
äžèšããã
f(α1)â g(α1),f(α2)â g(α2),f(α3)â g(α3),f(α4)â g(α4),ã»ã»ã»ã»ã»
ãããc^n-b^nâ a^n
åæ§ã«ã
ãããc^n-a^nâ b^n
ãããã£ãŠã
a^n+b^nâ c^n
ããã«ããã§ã«ããŒã®æçµå®çã蚌æãããã
ãšããã®ãã©ãããªïŒ
No.564ããããã¯ã¡ã¹ã2023幎3æ5æ¥ 10:47
ïŒãã¡ããc^n-b^nãå
¬åŒã§ã¯ãc,b,jãèªç¶æ°ãªãã
ïŒc^n-b^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)}
ïŒãããïŒã€ã®åææ°ã®ç©ã§ããããããæŽçãããšãa^nã«ãªããããããŸããã
ããããb,cãäŸåé¢ä¿ã«ãããšããc=x+j,b=xãšãããšå
ã«ãæžããããã«ãg(x)>0ã«ãªãã®ã§ãã
c^n-b^n=(x+j-x){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)}
c^n-b^n=j{c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)}>0
ãããã¬ãŠã¹ã®ä»£æ°åŠã®åºæ¬å®çã䜿ããªãã®ã§ãã
ã€ãŸãããã®å
¬åŒã¯ééã£ãŠããŸãã®ã§ãã
c,bãç¬ç«ã§ããã°ãc-b=0ãæãç«ã€ã®ã§ãã¬ãŠã¹ã®ä»£æ°åŠã®åºæ¬å®çãã
c^n-b^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)}
ãšãªãã®ã§ãã
ãŸãã次ã®é
ã¯ã{c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)}ïŒïŒ
ãããã¬ãŠã¹ã®ä»£æ°åŠã®åºæ¬å®çãæãç«ã€ã«ã¯ãc-b=0ããããããªãã®ã§ãã
ãããã£ãŠãc,bãç¬ç«ã§ãªããšã
c^n-b^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)}
ãšã¯ã§ããªãã®ã§ãã
ãããã£ãŠãæåã®ãã§ã«ããŒã®æçµå®çã®åçç蚌æã¯ãééã£ãŠãªãã®ã§ãã
No.566ããããã¯ã¡ã¹ã2023幎3æ6æ¥ 07:21
> ãããã£ãŠãf(x)=g(x)ã§ãªããã°ãªããªãã
ããã¯æ¹çšåŒã§ããããããšãæçåŒã§ããïŒ
No.567DD++2023幎3æ6æ¥ 11:26
DDïŒïŒããŸãããã«ã¡ã¯ã
æ¹çšåŒã§ãã
f(x)=g(x)ã§ãh(x)=g(x)-f(x)ã§ãã代æ°åŠã®åºæ¬å®çã§ã¯ãh(k)=g(k)-f(k)=0ã§ãããf(k)=0ã§ãf(x)=g(x)ãªã®ã§ãg(k)=f(k)=0ãšãªããŸãã
ããšããšã
g(x)=c^n-b^n,f(x)=a^nãããc^n-b^n=a^nã€ãŸããa^n+b^n=c^n
ããã§ã
c=x+j,b=x,a=x-kã§ãã
ããã
g(x)=(x+j)^n-x^n,f(x)=(x-k)^n
ãŸãã
g(x)=f(x)
ã§ãã
No.566ã®c,bãåŸå±ã§ã¯ã代æ°åŠã®åºæ¬å®çã¯äœ¿ããŸããããæ®éã«å æ°å解ã§ããããšã«ã¯å€ãããããŸããã
c^2-b^2=(x+j)^2-x^2=x^2+2jx+j^2-x^2=j(2x+j)=j(x+j+x)=(c-b)(c+b)
(13,12,5)ã¯ã(c=x+jãx,x-kïŒãããj=1,2x+j=2x12+1=25ã§ã1x25=5^2
ã§ãåé¡ãããŸããã
c^n-b^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+ã»ã»ã»+cb^(n-2)+cb^(n-1)}
c^n-b^n=j{c^(n-1)+c^(n-2)b+c^(n-3)b^2+ã»ã»ã»+cb^(n-2)+b^(n-1)}
=a^n
ãšãªãããšã¯ãããããªãã§ããããããŸãa=xyzxvwãšçŽ å æ°å解ã§ãããšããŠãa^n=x^n y^n z^n x^n v^n w^nã§ãããc^n-b^nã«ã¯jããããããã»ã»ã»
No.568ããããã¯ã¡ã¹ã2023幎3æ6æ¥ 13:11
æ¹çšåŒãªã®ã ãšãããã
> ãããã£ãŠãg(x)ã¯ãåäžã®éæ ¹kãæããããªã
ïŒãéæ ¹ããããªãåãªããæ ¹ããšãã¹ãããšæããŸããïŒ
ã¯ãx=k 以å€ã®æ ¹ã®ååšã¯å
šãåŠå®ããŠããŸããã
ã€ãŸãã次ã®è¡ã®
> ãã£ãŠãc^n-b^n=a^nã¯ãæãç«ããªãã
ã¯ãæãç«ããªãäŸãååšãããã«èšæ£ãããã¹ãã§ãã
No.569DD++2023幎3æ6æ¥ 15:40
ãšãããããããã
â nCi k^(n-i)j^i >0
ãšããäžçåŒã®æ ¹æ ã¯ã©ãããæ¥ãã®ã§ãããã
n=4, k=-1, j=1 ãªã巊蟺㯠-1 ã«ãªãã®ã§ãäžæç«ã§ããããã«èŠããŸããã
No.570DD++2023幎3æ6æ¥ 15:44
DD++ããŸãããã°ãã¯ã
c>b>aãšããããšã§ãc,b,a,j,k,xãšãèªç¶æ°ã§ãã
c^n=(x+j)^nãªã®ã§ãäºé
å®çãã,
n
ΣnCi x^(n-i) j^i
i=0
ãšãªã£ãŠããŸããi=0ã§ã¯
nCi x^(n-i) j^i=x^n
ãšãªããŸãã
i=nã§ã¯ã
nCi x^(n-i) j^i=j^n
ãšãªããŸãã
äºé
å®çããã®ãŸãŸæžããš
c^n=nCo x^n j^0+nC1 x^(n-1) j +nC2 x^(n-2) j^2+ã»ã»ã»ã»+nC(n-1) x^1 j^(n-1)+nCn x^0 J^n
ã€ãŸãã
n
ΣnCi x^(n-i) j^i=nC0 x^n j^0+nC1 x^(n-1) j +nC2 x^(n-2) j^2+ã»ã»ã»ã»+nC(n-1) x^1 j^(n-1)+nCn x^0 J^n
i=0
ãšããããšã§ããã
g(x)=c^n-b^n
n
=ΣnCi x^(n-i) j^i - x^n
i=0
n
=ΣnCi x^(n-i) j^i +x^n-x^n
i=1
n
=ΣnCi x^(n-i) j^i > 0
i=1
ãšãªããŸãã
No.571ããããã¯ã¡ã¹ã2023幎3æ6æ¥ 18:33
å
«å
µè¡ããæçš¿ãèªãéããã©ããèªãã§ã c>b>a ãšããå¶éã¯èª²ãããŠããªãããèŠããŸããã
ãŸããa ãèªç¶æ°ã ãšããã®ãªãã x=k ãšã¯ã§ããªãã¯ãã§ãã
åéšåããšã§åæãªæ¡ä»¶ãæé»çã«ä»ã足ããŠè©±ãããŠããŠãçãå
šãéã£ãŠããªãããã«èŠããŸãã
No.573DD++2023幎3æ7æ¥ 00:59
DD++ããŸããã¯ããããããŸãã
ïŒå
«å
µè¡ããæçš¿ãèªãéããã©ããèªãã§ã c>b>a ãšããå¶éã¯èª²ãããŠããªãããèŠããŸããã
ãã¿ãŸããããã§ã«ããŒã®æçµå®çã¯ãa^n+b^n=c^nã§ããããa,b,cã¯èªç¶æ°ã§ãããc>a,bã§ããa,bã¯ãc^n-b^n=a^nãããb>aãšããŸããã
ïŒãŸããa ãèªç¶æ°ã ãšããã®ãªãã x=k ãšã¯ã§ããªãã¯ãã§ãã
代æ°åŠã®åºæ¬å®çãå©çšããã«ã¯ãx=kã§ãªããšãŸããã®ã§ãããææã®ãšãããaã¯èªç¶æ°ãªããããã¯ã§ããŸãããããªãã»ã©ã
ïŒåéšåããšã§åæãªæ¡ä»¶ãæé»çã«ä»ã足ããŠè©±ãããŠããŠãçãå
šãéã£ãŠããªãããã«èŠããŸãã
ãã¿ãŸãããé
æ
®ã足ããŸããã§ããã
ãŸããå
Œ΋
c^n-b^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)}
ãããã®ã§ã
c^n-b^n=a^n
ã«ã¯ãªããªãã®ã§ãã,ããŸããŸã2ã€ã®åææ°ã®ç©ãa^nã«ãªãããšãã話ã«æã£ãŠããããšã»ã»ã»ïŒ
No.575ããããã¯ã¡ã¹ã2023幎3æ7æ¥ 07:17
ãèªåã¯æ£ãããšæãããšã確ãã«æ£ãããã®éã«ã¯é²æ³¥ã®å·®ããããŸãã
ã ãããã蚌æãšãããã®ãå¿
èŠã«ãªãã®ã§ãã
ãããã¯èªåãæ£ãããšå€æããããæ£ãããã ïŒããšåãã®ã¯æ°åŠçãªæ
床ã§ã¯ãããŸããã
ç§ã¯
> ãŸããå
Œ΋
> c^n-b^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)}
> ãããã®ã§ã
> c^n-b^n=a^n
> ã«ã¯ãªããªãã®ã§ããïŒ
ã¯äœãæ ¹æ ã«ãªã£ãŠããªããšæããŸãã
䜿çšããæåã®å®çŸ©ãèšè¿°ããåŒã®æå³ãäžå¯§ã«æ瀺ããäžã§ãè«æ ãã¯ã£ããããã蚌æããé¡ãããŸãã
No.576DD++2023幎3æ7æ¥ 07:30
DDïŒïŒããŸããææããããšãããããŸãã
ããŠãc^2-b^2=a^2ã§ã¯ãªããŠc^2-b^2=(c-b)(c+b)ã§ãã
(c,b,a)=(13,12,5)ã§ã¯ã
c^2-b^2=(13-12)(13+12)=1x25=5^2
ãšãªã£ãŠãc^2-b^2=a^2ã§ããã
ã ããã
> ãŸããå
Œ΋
> c^n-b^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)}
> ãããã®ã§ã
> c^n-b^n=a^n
> ã«ã¯ãªããªãã®ã§ããïŒ
ã¯ããææã®éãæ£ãããããŸããã
c^n-b^n=2ã€ã®åææ°ã®ç©
ã§ãããã2ã€ã®åææ°ã®ç©ãa^nã«ãªãããšãããæ¹åã§ãé²ããªããšãŸããã§ããã
ãææããããšãããããŸãã
No.577ããããã¯ã¡ã¹ã2023幎3æ7æ¥ 08:22
以åã®çæ§ããã®ãæçš¿ããµãããããŸããŠã
æ¬ç©ã®é貚ãåœç©ã®é貚ã n æã§
倩秀ã m å䜿ã£ãŠãããããäºå®ã§ããããšãä»è
ã«ç€ºãããšããããºã«ã«æããããããŸããã
http://shochandas.xsrv.jp/falsecoin.htm
ãŸãã¯ãããã²ãããã«ããã以äžã®èšè¿°ã
ã芧ãã ããã
ïŒïŒïŒ
ããã²ãããããã®ã³ã¡ã³ãã§ããïŒå¹³æïŒïŒå¹ŽïŒïŒæïŒæ¥ä»ãïŒ
ãïŒæ¬ã®äžçåŒã«ãªããšãèšç®éãè·³ãäžãã£ãŠãExcelãããåºãŸã£ãŠããŸããŸããéäžã§
æ¢çŽ¢ãäžæ¢ããŸãããããããŸã§ã®éã«åŸããããã®ãæžã蟌ãã§ãããŸãã
ãæ¬ç©ãèŽç©å95æãã8ã14ã18ã25ã30ãã€ã«åããã
ïŒïŒïŒ
åŒçšããããŸãã
8 14 18 25 30
ãªã®ã§ããã次ã®ãããªæ§è³ªããããŸãã
(x^8+1)*(x^14+1)*(x^18+1)*(x^25+1)*(x^30+1)
=
x^{95}+x^{87}+x^{81}+x^{77}+x^{73}+x^{70}+x^{69}+x^{65}+x^{63}+x^{62}+x^{57}+x^{56}+x^{55}+x^{52}+x^{51}+x^{48}+x^{47}+x^{44}+x^{43}+x^{40}+x^{39}+x^{38}+x^{33}+x^{32}+x^{30}+x^{26}+x^{25}+x^{22}+x^{18} +x^{14}+x^8+1
ãå±éããããåé
ã®ä¿æ°ã 1ã
ãšãªããŸããã
å¶ç¶ãªã®ããšçããŸããŠãåœæã®
çæ§ããã®ããŸããŸãªåŸ¡æçš¿
ã«ã€ããåæ§ã«æ€æ»ããŸãããšãã
å
šãŠãåãæ§è³ªãã¿ãããŸããã
èæ¯ã«ã¯ãé ããæ°çãããã®ãããããªããšæ©ãã§ãããŸãã
No.544Dengan kesaktian Indukmu2023幎2æ28æ¥ 18:34
æ°ççèæ¯ãšããã®ã§ããã°ã
(x^8+1+x^(-8))*(x^14+1+x^(-14))*(x^18+1+x^(-18))*(x^25+1+x^(-25))*(x^30+1+x^(-30))
ã® x ã x^(-1) ã®ä¿æ°ãäœãããæ¹çšåŒã®æ°ä»¥äžã«ãªãããšã«æå³ããããŸãã
ãã®å Žåãdengan ããã®åŒã®äœãæ¹ã§ã¯é£æ¥æ¬¡æ°ã®é
ã®çµã倧éã«åºãŠããããšã«ãªããŸãã
ãã®å¶çŽã®äžã§æé«æ¬¡ã®æ¬¡æ°ãäžããããšæããšãçµæãšããŠåã次æ°ã®é
ãè€æ°åºãŠãããããªãã®ã§ã¯åªããçµæã«ç¹ãããªããšããããšã«ãªããŸãã
No.551DD++2023幎3æ1æ¥ 23:17
DD++ ããã
æ©éã®åŸ¡æ瀺ãããããšãããããŸãã
æ¯ããããããããã§ããâŠâŠ
ããã€ãã²ã©ãããªã®ãäœã£ãŠã¿ãŸããã
ããšãã°
14,19,21,22
ã§ã¯ç®žã«ãæ£ã«ãã
å
šç¶ã ããããªã®ã§ããã
Dengan è©äŸ¡ã§ã¯
(x^14+1)*(x^19+1)*(x^21+1)*(x^22+1) =
x^76+x^62+x^57+x^55+x^54+x^43+x^41+x^40+x^36+x^35+x^33+x^22+x^21+x^19+x^14+1
ã§ãããåè£ãªã®ããšæããã
DD++ è©äŸ¡ã§ã¯
(x^14+1+x^(-14))*(x^19+1+x^(-19))*(x^21+1+x^(-21))*(x^22+1+x^(-22)) =
(x^152+x^138+x^133+x^131+x^130+x^124+x^119+x^117+x^116+x^114+x^112+x^111+x^110+x^109+x^108+x^105+x^103+x^102+x^100+x^98+x^97+x^96+x^95+x^94+x^93+x^92+x^91+x^90+x^89+x^88+x^87+x^86+x^84+x^83+x^82+x^81+x^80+x^79+x^78+x^77+x^76+x^75+x^74+x^73+x^72+x^71+x^70+x^69+x^68+x^66+x^65+x^64+x^63+x^62+x^61+x^60+x^59+x^58+x^57+x^56+x^55+x^54+x^52+x^50+x^49+x^47+x^44+x^43+x^42+x^41+x^40+x^38+x^36+x^35+x^33+x^28+x^22+x^21+x^19+x^14+1)/x^76
ãšãªãã
x ã®é
ã1/x ã®é
ã®ä¿æ°ã 1 ã§ãã
å¿
èŠãªäžçåŒã®æ°ã«é ãå±ããŸããã
No.552Dengan kesaktian Indukmu2023幎3æ2æ¥ 18:29
GAI ããã«ããè©Šã¿ã§ãããã£ããã®ã«ã€ããŠãDD++ããã«ããå€å¥åŒãé©çšããŠã¿ãŸããã
ïŒåã®äžçåŒã欲ããã336æãžã®ææŠã§ãã
(x^46+x^(-46)+1)*(x^51+x^(-51)+1)*(x^53+x^(-53)+1)*(x^57+x^(-57)+1)*(x^63+x^(-63)+1)*(x^66+x^(-66)+1)
ãããå±éããŠãxããã³ã«1/xã®é
ã®
ä¿æ°ãããã¹ãŸãããã
5
ãšãªã£ãŠããŠã
欲ãã6ã«ã¯å±ããŠããŸããã§ããã
ãªãã»ã©âŠâŠâŠ
åŒçš===
C[46]â§46ãåãåºããããã®ç¬¬
ïŒã®åŒãå
šç¶åãããªããŠã»ã»ã»
===
ãšããããšãªã®ã§ããâŠâŠïŒïŒ
No.565Dengan kesaktian Indukmu2023幎3æ5æ¥ 13:43
ã¡ã«ã»ã³ãæ°ã¯çŽ æ°ã§ããã®ã§ãçŽ æ°åè£åŒ30n+Pã«å«ãŸããã
å®éã4çªç®ä»¥éã®ã¡ã«ã»ã³ãæ°ã¯30n+1ã30n+7ã§ããã
ãŸããã¡ã«ã»ã³ãæ°ã¯ã2^a-1ã§ãããçæ¯çŽæ°ã®åã®å
¬åŒããã
2^a-1
------=1+2+2^2+2^3+2^4+ã»ã»ã»+2^(a-1)
2-1
2^a-1=1+2+2^2+2^3+2^4+ã»ã»ã»+2^(a-1)
ãããããã¡ã«ã»ã³ãæ°ã¯2é²æ°ã§ã¯1ã䞊ãã æ°ã§ããã
ããšãã°ã1ã䞊ãã æ°ã¯ã
ããã1001001
ãã____________
111)111111111ãã9å䞊ãã æ°
ããã111111111=111x1001001ãšãªãã
äžè¬ã«1ããnå䞊ãã æ°ã«ãããŠãnãçŽ å æ°å解ã§ããã°ãããšãã°ãn=15=3x5ããã
ããã1 001 001 001 001
ãã ______________________
111)111 111 111 111 111ãã15å䞊ãã æ°
ãã111(3å)ã§å²ãåããããŸãã
ãããããã1 00001 00001
ããã ______________________
11111)11111 11111 11111 ãã15å䞊ãã æ°
ãã11111(5å)ã§ãå²ãåããã
ããŠãã¡ã«ã»ã³ãæ°ãš30n+1ã¯ã
2^a-1=30n+1
2^a-2=30n
2^(a-1)-1=15n
ã¡ã«ã»ã³ãæ°ã¯aãçŽ æ°ã§ããã®ã§ãa-1ã¯å¶æ°ã®åææ°ã§ããã
2^(a-1)-1=1+2+2^2+2^3+2^4+ã»ã»ã»+2^(a-2)
ããã2^(a-1)-1ã¯ã1ãå¶æ°å䞊ãã æ°ã§ããããã®æ°ã¯åææ°ã§ããã
ããã§ã15ã¯2é²æ°1111ã§ããããã2^(a-1)-1ã¯ã1ãå¶æ°å䞊ãã æ°ã§ããã4å䞊ãã æ°ã§å²ãåããã
ã€ãŸããa-1ã¯ã4ã®åæ°ã§ããã
ãŸããã¡ã«ã»ã³ãæ°ãš30n+7ã¯ã
2^a-1=30n+7
2^a-8=30n
2^(a-1)-4=15n
2^(a-1)-4=15n
2^2{2^(a-3)-1}=15n
ããnã¯4ã®åæ°ã§ããã
2^(a-3)-1=1+2+2^2+2^3+2^4+ã»ã»ã»+2^(a-4)
ããã2^(a-3)-1ã¯ã1ãå¶æ°å䞊ãã æ°ã§ããããã®æ°ã¯åææ°ã§ããã
ããã§ã15ã¯2é²æ°1111ã§ããããã2^(a-3)-1ã¯ã1ãå¶æ°å䞊ãã æ°ã§ããã4å䞊ãã æ°ã§å²ãåããã
ã€ãŸããa-3ã¯ã4ã®åæ°ã§ããã
ããŠã30n+Pã«ã¯ãP=11,13,17,19,23,29ããããã
2^a-1=30n+P
P+1=2qãšããŠã
2^a-2q=30n
2^(a-1)-q=15n
P=11,13,17,19,23,29ã®ãšããq=6,7,9,12,15ã§ã
2^(a-1)-q=15n
ãæãç«ãããããšã¯ã§ããªãã
No.554ããããã¯ã¡ã¹ã2023幎3æ3æ¥ 14:58
ã¡ã«ã»ã³ãæ°ã¯ã1ã䞊ãã æ°ã§ããããwikipediaããã
7以äžã®
2^3-1=30n+7
2^5-1=30n+1
2^7-1=30n+7
2^13-1=30n+1
2^17-1=30n+1
2^19-1ïŒ30n+7
2^31-1=30n+7
2^61-1=30n+1
2^89-1=30n+1
2^107-1=30n+7
2^127-1=30n+7
2^521-1=30n+1
2^607-1=30n+7
2^1279-1=30n+7
2^2203-1=30n+7
2^2281-1=30n+1
2^3217-1=30n+1
2^4253-1=30n+1
2^4423-1=30n+7
2^9689-1=30n+1
2^9941-1=30n+1
2^11213-1=30n+1
2^19937-1=30n+1
2^21701-1=30n+1
2^23209-1=30n+1
2^44497-1=30n+1
2^86243-1=30n+7
2^110503-1=30n+7
2^132049-1=30n+1
2^216091-1=30n+7
2^756839-1=30n+7
2^859433-1=30n+1
2^1257787-1=30n+7
2^1398269-1=30n+1
2^2976221-1=30n+1
2^3021377-1=30n+1
2^6972593-1=30n+1
2^13466917-1=30n+1
2^20996011-1=30n+7
2^24036583-1=30n+7
2^25964951-1=30n+7
2^30402457-1=30n+1
2^32582657-1=30n+1
2^37156667-1=30n+7
2^42643801-1=30n+1
2^43112609-1=30n+1
2^57885161-1=30n+1
2^74207281-1=30n+1
2^77232917-1=30n+1
2^82589933-1=30n+1
以äžããããŠã7以äžã®ã¡ã«ã»ã³ãæ°ã¯ã30n+Påã®çŽ æ°ã§ã30n+1ã30n+7ãããšããªãã
No.556ããããã¯ã¡ã¹ã2023幎3æ3æ¥ 15:14
ïŒããŠã30n+Pã«ã¯ãP=11,13,17,19,23,29ããããã
2^a-1=30n+P
P+1=2qãšããŠã
2^a-2q=30n
2^(a-1)-q=15n
P=11,13,17,19,23,29ã®ãšããq=6,7,9,12,15ã§ã
2^(a-1)-q=15n
ãæãç«ãããããšã¯ã§ããªãã
P=11,13,17,19,23,29ã®ãšããP+1=2qã«ä»£å
¥ãããšãq=6,7,9,10,12,15ã§ã
2^(a-1)-q=15nã«ä»£å
¥ãããšã2^(a-1)ïŒ15nïŒ6,9,10,12,15ã®å Žåã¯ïŒãŸãã¯ïŒã§ããããã®ã§ããåŸãŸãããã
2^(a-1)ïŒ15nïŒ7ã®å Žåã¯ã2^(a-1)-q=15nãæãç«ãããããšã¯ã§ããªãã蚌æã¯ãããã®ã§ããããã
äžå¿ãn=1000ããããŸã§ã¯ããã°ã©ãã³ã°ãçµãã§ãããŸããã§ãããã
for n in range(1,1001):
expr = 15*n + 7
if list(bin(expr)).count('1') == 1:
print('OK')
else:
print('NG')
No.558éãããã2023幎3æ4æ¥ 20:23
2^1,2^2,2^3,2^4,âŠã15ã§å²ã£ãäœãã¯
2,4,8,1,2,4,8,1,âŠãšãªããŸãã®ã§
15n+7ã«ãªãããšã¯ãªãã§ããã
ãŸããå
ã®åé¡ã¯æåããmod30ã§èãããšç°¡åã§ãã
2^1,2^2,2^3,2^4,âŠã30ã§å²ã£ãäœãã¯
2,4,8,16,2,4,8,16,âŠ
ã®ããã«ãªããŸãã®ã§ã2^a-1=30n+1,3,7,15ããããåŸãŸããã
ãã£ãŠçŽ æ°ã«ãªãå Žåã¯30n+1,7ã®ã¿ã§ãã
No.559ãããã2023幎3æ4æ¥ 23:11
ãããããããããããšãããããŸããå匷ã«ãªããŸããã
ïŒããŠãã¡ã«ã»ã³ãæ°ãš30n+1ã¯ã
2^a-1=30n+1
2^a-2=30n
2^(a-1)-1=15n
ã¡ã«ã»ã³ãæ°ã¯aãçŽ æ°ã§ããã®ã§ãa-1ã¯å¶æ°ã®åææ°ã§ããã
2^(a-1)-1=1+2+2^2+2^3+2^4+ã»ã»ã»+2^(a-2)
ããã2^(a-1)-1ã¯ã1ãå¶æ°å䞊ãã æ°ã§ããããã®æ°ã¯åææ°ã§ããã
ããã§ã15ã¯2é²æ°1111ã§ããããã2^(a-1)-1ã¯ã1ãå¶æ°å䞊ãã æ°ã§ããã4å䞊ãã æ°ã§å²ãåããã
ã€ãŸããa-1ã¯ã4ã®åæ°ã§ããã
ïŒé²æ³ã䜿ããªãå Žåã¯ã
2^a-1=30n+1
2^a-2=30n
2^(a-1)-1=15n
2^(a-1)-1=(2^4-1)n
å æ°å解ã®å
¬åŒããã2^4m-1=(2^4)^m-1=(2^4-1){(2^4)^(m-1)+(2^4)^(m-2)ïŒâŠïŒïŒ}
ãã£ãŠãa-1ã¯ïŒã®åæ°ã§ããã
No.560éãããã2023幎3æ5æ¥ 07:12
ä»»æã®Nå€è§åœ¢ã®å
è§ã®ç·åã¯ãïŒN-2ïŒÏ
ä»»æã®äžè§åœ¢ã¯ããã®é ç¹ããååšäžã«ä¹ããããšãå¯èœã
ããããåã«åã蟌ãããšãå¯èœãšããããšã«ããã
åè§åœ¢ã®å Žåã¯ã察è§ã®åããÏã§ããã°ãå¯èœã
äºè§åœ¢ã®å Žåã¯ãæ¡ä»¶ãã©ã®ããã«ããã°ãå¯èœã§ããããïŒ
ãã®ãããªãæ¡ä»¶ã¯ãäžå¯èœã§ããããïŒ
No.395ïœïœ2022幎11æ17æ¥ 11:20
åžäºè§åœ¢ABCDEã¯
AC/sinâ B=BD/sinâ C=CE/sinâ D=DA/sinâ E=EB/sinâ A
ãæãç«ã£ãŠããã°å€æ¥åãååšãããšæããŸãã
ãè§åºŠã ãããã蟺ã®é·ãã ããã®æ¡ä»¶ã§ã¯ãã¡ã§ãã
ãŸãããäžè¬ã«ã¯
nè§åœ¢ã®n蟺ããããã®åçŽäºçåç·ïŒå
šéšã§næ¬ïŒã®
ãã¹ãŠã1ç¹ã§äº€ããã°å€æ¥åãååšããŸãã
(è¿œèš)
äžã®ãè§åºŠã ããã¯ãå
è§ã ããã®ã€ããã§ããããå
è§ã«éããªããã°ãè§åºŠã ããã§ãè¡ããŸããã
äºè§åœ¢ABCDEã§
â BCEïŒâ BDEïŒÏ-â A
ã§ããã°å€æ¥åãååšãããšæããŸãã
No.396ãããã2022幎11æ17æ¥ 13:25
> "ãããã"ãããæžãããŸãã:
> åžäºè§åœ¢ABCDEã¯
> AC/sinâ B=BD/sinâ C=CE/sinâ D=DA/sinâ E=EB/sinâ A
> ãæãç«ã£ãŠããã°å€æ¥åãååšãããšæããŸãã
> ãè§åºŠã ãããã蟺ã®é·ãã ããã®æ¡ä»¶ã§ã¯ãã¡ã§ãã
> ãŸãããäžè¬ã«ã¯
> nè§åœ¢ã®n蟺ããããã®åçŽäºçåç·ïŒå
šéšã§næ¬ïŒã®
> ãã¹ãŠã1ç¹ã§äº€ããã°å€æ¥åãååšããŸãã
> (è¿œèš)
> äžã®ãè§åºŠã ããã¯ãå
è§ã ããã®ã€ããã§ããããå
è§ã«éããªããã°ãè§åºŠã ããã§ãè¡ããŸããã
> äºè§åœ¢ABCDEã§
> â BCEïŒâ BDEïŒÏ-â A
> ã§ããã°å€æ¥åãååšãããšæããŸãã
ãªãã»ã©ã§ãã綺éºãªæ¡ä»¶ã§ããã
ãããªããäžè¬åãã§ãããã§ããã©
çŽèŠ³çã«ã¯æãç«ã€ãšæããŸãã
æåå³åœ¢ïŒåžå€è§åœ¢ã®å¯Ÿè§ç·ãçµã³ãéããå³åœ¢
æåå³åœ¢ã®å
è§ïŒé£ãåã察è§ç·ã§å²ãŸããè§
äŸãã°ãäºèæã®å
è§ã®ç·åã¯ãÏã§ããã
蚌æã¯ãè²ã
ãããšæããŸãã
ä»»æã«æãããäºèæã¯ãåã«åã蟌ãããšãå¯èœã
ãã®ãŸãŸã§ã¯ãç¡çã§ãããããåã蟌ã¿ãå¯èœã®æå³ãç·©ãããŠã
è§ããåæèšåãã«ÎïŒãÎïŒïŒâŠãÎïœãšããŠã
åãé åºã§åã蟌ã¿ãå¯èœãšããæå³ã§ãã
No.397ks2022幎11æ18æ¥ 10:59
äºèæã®é ç¹ãããšãããã®è§ã
ÎïŒÎïŒÎïŒÎïŒÎãååšè§ãšãªãããã«ã
ããããã«å¯Ÿå¿ããããã«ãäžå¿è§ããšãã°ãé çªã«
ããªãããã«è§ãåãããšãã§ããã
æåå³åœ¢ã®è¡šèšãšããŠããšäºãã«çŽ ãªïœãšãããš
/ïœ åæ°è¡šèšã§ãããããã
äºèæã¯ãïŒ/ïŒ
ä»ã®æå/ïœããç·©ãæå³ã§åã蟌ã¿å¯èœ
No.402ïœïœ2022幎11æ20æ¥ 08:15
æåå³åœ¢ã®å
è§ã®ç·å
æåN/ïœ ãšããïŒïŒ®/dãŒïŒïŒïœÏãšããã°ã
éåžžã®åžå€è§åœ¢ã¯ãïœïŒïŒãšã¿ãªãã°ããã
ïŒïŒ®ïŒïŒïœïŒÏã§ããã
No.403ïœïœ2022幎11æ22æ¥ 11:37
æåã®è¡šèšã«ã€ããŠ
äºãã«çŽ ãã«ãã ããããïœïŒïœ/ïŒ ã§ããã°ã
ïœ/ïœ ã®è¡šèšã¯æå¹ã§ããã¿ããã§ãã
å
ç¹ã®å ŽåãïŒ/ïŒ ãšãããšãïŒç¹ããšã«å¯Ÿè§ç·ãåŒããšã
ç¹ãäœããŸãããæ®ãã®ç¹ãåæ§ã«ããŠã察è§ç·ãåŒããšãäžè§åœ¢ããäºã€ã§ããŸãããããã£ãŠãå
è§ã®ç·åã¯ãïŒÏã§ãã
ç·åã®å
¬åŒïŒïœãŒïŒdïŒÏïŒïŒïŒïŒïŒã»ïŒïŒÏïŒïŒÏ
8/2,9/3,10/2,12/ïŒãªã©ãåæ§
No.404ks2022幎11æ23æ¥ 08:50
åžå€è§åœ¢ã®å¯Ÿè§ç·ãçééã§æããå³åœ¢ã
以å€ã®å ŽåãèããŠã¿ãŸããã
äŸãã°ãååšäžã«ãå
ç¹ABCDEFãå·Šåšãã«ãé©åœã«é
眮ããŸãã
ABïŒïŒïŒBEïŒïŒïŒEFïŒïŒãFCïŒïŒãCDïŒïŒãDAïŒïŒ
æ°åã¯ãé·ãã§ã¯ãªããŠãå·Šåãã«æ°ããè·é¢ã«ç¡é¢ä¿ãªééã§ãã
ïœïŒïŒ1ïŒïŒïŒïŒïŒ3ïŒ1ïŒ3ïŒ/6ïŒ2 (å¹³åå€ããšã)
å
¬åŒã«ä»£å
¥ãããšãïŒ6ïŒïŒã»ïŒïŒÏïŒ2Ï
è§åºŠã«ç¬Šå·ãå°å
¥ãããšãïŒã®è§åºŠãããå Žåã¯ãè§ã®ç·åã¯ãäžå®ãšãªãæå³ãæã¡ãŸããã®ã§ãïŒã®è§ã®ã¿ã®æãšããŸãã
å·Šå転ã¯ïŒãå³å転ã¯ãŒã§ãã
è²ã
è©ŠããŠãããŸããããŸããã
ããäžã€ãïŒç¹ããé
眮ããŠãäžè§åœ¢ãšåè§åœ¢ãé©åœã«äœã£ãŠãã
å¹³åããïŒã§å²ãåã
èšç®ãããšãÏïŒïŒÏïŒ3Ïã§ããŸããããŸãã
以åã®åé€èšæ£ãç·šéããŸããã
No.432ïœïœ2022幎11æ28æ¥ 14:14
dã®èšç®ïŒå·ŠåšãïŒåæèšãŸãããäžå®ã®æ¹åã§æ°ããïŒ
éæ²ç·ãäœããæ°ããæ°ã®ç·åã®å¹³åããšãã
äŸãã°ãååšäžã«é©åœã«åç¹ããšããçééã§ãªããŠãããã
ããããAãBãCãDãšããABDCã®é ã§ãç¹ãçµã¶ãšã
AïœBã¯ãïŒãBïœDã¯ãïŒãDïœCã¯ãïŒãCïœAã¯ãïŒãšãªãã
åèšïŒïŒïŒïŒïŒïŒïŒïŒïŒãªã®ã§ãå¹³åïŒÃ·ïŒïŒïŒ
ãããã£ãŠãïŒïŒïŒÃïŒïŒïŒãšãªããïŒã«æå³ãããã
äŸãã°ãïŒç¹ãé
眮ããè¶ã®åœ¢ãšãäžè§åœ¢ãäœããŸãã
ïŒç¹ABCDEFGãAFGãçµãã§äžè§åœ¢ãCDFEãçµãã§è¶ã®åœ¢ãäœããš
ïŒïŒïŒïŒïŒïŒïŒã®ç·åã¯ãïŒïŒã§ãïœïŒïŒ
ãã£ãŠããŒïŒïœïŒïŒïŒïŒÃïŒïŒïŒãšãªããäžè§åœ¢ã®å
è§ïŒïŒïŒÂ°ãšäžèŽã
è¶ã®åœ¢ã®éšåãïŒã«ãªãã®ã§éœåãããã§ãã
No.486ks2022幎12æ30æ¥ 10:41
é©çšç¯å²ãæ¡å€§ããŠã
ïŒN-ïŒïœïŒÏããïŒNãŒïŒïœãŒeïŒÏãèãã
æ£ã®å転ã ããããçŽç·ãç¹ãèããã
eïŒç¹ã ãã®åæ°
ååšäžã«ãNåã®ç¹ã ããæ®ããå ŽåãïœïŒïŒãeïŒN
ïŒN-ïŒïŒNïŒÏïŒïŒ
ïŒåã®é
眮ã§ãïŒç¹ã§äžè§åœ¢ãäœããïŒç¹ãæ®ããš
ïŒïŒïŒïŒãããdïŒïŒãeïŒïŒãªã®ã§ã
ïŒïŒïŒïŒÃïŒïŒïŒïŒÏïŒÏãèŠãç®ãšäžèŽããŸãã
çŽç·ã®å Žåãç¹ãAãšBãšããAããBãïœãšãããš
ããã¯ãïŒïœãšãªããåã¯ïŒ®ãã§å²ã£ãŠïœïŒïŒãåŸãã
äºéã®ç·ã®ã€ã¡ãŒãžã®éæ²ç·ã§ãã
No.487ks2022幎12æ31æ¥ 10:46
ååšäžã®Nåã®ç¹ããçµã¶å³åœ¢ã®ç·è§ã®å(ãŸãšã)
0ïŒ çééã«é
眮ãããç¹ãäžåã¥ã€çµãã§ã§ããå³åœ¢ãæ£å€è§åœ¢
å
è§ã®ç·åã¯ãïŒNâ2ïŒÏã§äžãããã
1ïŒ é
眮ããçééã§ãªããŠããç¹ãäžåã¥ã€çµãã§ã§ããå³åœ¢ãåžå€è§åœ¢
åæ§ã«ãå
è§ã®ç·åã¯ãïŒNâ2ïŒÏã§äžãããã
ïŒïŒé
眮ããçééã§ãªããç¹ãïœåã¥ã€çµãã§ã§ããå³åœ¢ãæåå³åœ¢
ãïŒïŒ®ïŒïŒïœïŒÏãäœããïŒïŒïŒïœããã€ããšïœã¯äºãã«çŽ
3ïŒçééã§ãªããç¹ãïœåã¥ã€çµãã§ã§ããå³åœ¢ãäºãã«çŽ ã§ãªãå Žåãå«ã
ãïŒïŒ®ïŒïŒïœïŒÏãäœããïŒïŒïŒïœãïœãçŽæ°ã®ãšããN/dåã®
è€é£çµã®å³åœ¢ãäœãããšãã§ãããäœã£ãç¹ãããïœåã¥ã€ç¹ãã
äžå¿è§ãšååšè§ã®é¢ä¿ãããå°ãããšãã§ããã
4ãé£çµããŠçµã¶ç·ã®è¶³ã®é·ããåãã§ãªããŠããå
¬åŒãé©çšãããã
ã©ããå§ç¹ã«æ°ãå§ããŠãããããå¿
ãåæèšåãã«æ°ããã
é£ã®ç¹ãšçµã¶å Žåã足ã®é·ãïœïŒïŒãšãããéã«äžåãããŠçµã¶å ŽåïœïŒïŒã以äžåæ§ãïœã¯ïŒ®ïŒïŒãŸã§æ°ããããšãã§ãããå
šãŠã®è¶³ã®é·ãã®åãã§å²ã£ããã®ïŒå¹³åïŒãïœãšããããããããšã1ïŒ2ãïŒãŸã§ã®çµæãå«ãããšã«ãªããäœããNïŒïŒïŒïœ
ãã®æãè§ã®ç·åãäžå®ïŒç¹ã®é
眮ã«ãã£ãŠãç·è§ã®åãäžå®ã§ã¯ãªãïŒã®å³åœ¢ãã§ãããšãããããäžå®ã®å³åœ¢ã¯ãæ»ãããçããŠãããã§ãå
šãŠæ£ã®å転ãå
šãŠè² ã®å転ã®å Žå以å€ã¯ãäžå®ã«ãªããå
šãŠè² ã®å転ã®å Žåãéé ããå
šãŠæ£ã®å転ã«ãªããŸãã
æ£ã®å転ã¯ãââã®ãšããâ ããããèŠãŠïŒ¡ããåæèšåšãã®ãšããããã§ãªããšããè² ã®å転ãšãªããäžå®ã®å³ïœåã®ãšããïœâïŒïœã®å€ã®ç·åãeãšããã
ããã¯ãäžå®ã®å Žåãè§ã®ç·åãïŒãšã¿ãªãããåŒãããšã«ããããã§ããã
ïŒïŒ®ïŒïŒã®ãšããçŽç·ã¯ãäžå®ãªã®ã§ãïŒãšãªããïŒïŒïŒã®ãšããNâïŒïœã®å€ãšããŠã¯ãïŒãšãªããïŒ
ïŒïŒïœã®å€ãè² ã«ãªãããšãããããããã¯ãéé ã§ãããããå§ç¹ãå€ããã°ããã
絶察å€ã¯åãã«ãªãã
å
¬åŒãïŒïŒ®â2ïœïŒeïŒÏããšãªããäœããïŒïŒïŒïœ
5ãå
¬åŒãååšäžã®çœ®æãå
šãŠã«ãé©çšããããšãã§ããã
Nåã®ååšäžã®ç¹ãåæèšåšãã«ãã³ããªã³ã°ãããïŒïœïŒ®ïŒïŒã
ïŒããïŒïŒã®å
šåå°ã§ãååã«åŸã£ãŠãâã§çµãã å³åœ¢ïŒçœ®æã®å³ïŒã察象ã«ãå
¬åŒã®é©çšãèããããšãã§ããŸãããã®æãïœããïœã®ååã®ãšãã¯ã足ã®é·ãïœïŒïŒãšããåç¹ãšãã¶ããšã«ãããåç¹ã®åæ°ãäžå®ã®æ°eã«å ãããè§ãäžå®ã®å Žåãé€ãã°ã
å
¬åŒãïŒNâïŒïœâeïŒÏããšãªããäœããïŒïŒ2ïœ
å
·äœäŸãïŒïŒïŒåã®ç¹ãé©åœã«é
眮ãããã³ããªã³ã°ããã
å
šåå°ïŒçœ®æïŒ
ïŒïŒïŒ1ïŒ2ïŒ3ïŒ4ïŒ5ïŒ6ïŒ7ïŒ8ïŒ9ïŒ10ïŒâïŒ2ïŒ0ïŒ5ïŒ3ïŒ6ïŒ8ïŒ7ïŒ4ïŒ9ïŒ1ïŒ10ïŒ
å³ãæããšãïŒç¹ã®è§ãäžå®ã®å³ãïŒç¹ã®äžè§åœ¢ãåç¹ïŒåãã§ããã
足ã®é·ãïœã¯ãç¹ïŒããå§ããŠãïŒåã®éæ²ç·ããç¹ïŒãããå§ããŠäžè§åœ¢ãã€ããã
ïœïŒïŒ3ïŒ3ïŒ1ïŒ3ïŒ10ïŒ2ïŒ2ïŒïŒïŒïŒïŒïŒïŒïŒïŒ/11=3,
ç¹ïŒãšïŒïŒã¯åç¹ãªã®ã§ãïŒç¹ã®å¹³æ²ç·ã¯ãè§ãäžå®ã§ããèªèº«ã®å€ã¯2 ,
ãã£ãŠãeïŒ2ïŒ2ïŒ4ã(N-2d-e)=(11-6-4)=1
ãããã£ãŠãç·è§ã¯ïŒïŒïŒÂ°ã§äžèŽããŸãã
No.508ks2023幎1æ22æ¥ 14:35
å®å®ãªå³åœ¢ïŒç¹ã®é
眮ãçééã«ç¡é¢ä¿ã«ãååšè§ã®ç·åãäžå®ã§ãããæ£ã®è§ã®ã¿ããã€å³åœ¢ïŒã®ã¿ããã€å³åœ¢ã®çš®é¡ããæ°ããŠã¿ãŸããã
åæèšãŸããã«ããã³ããªã³ã°ããŸããã
ïŒç¹ã®ãšãã¯ãååšè§ããªãã®ã§ãïŒ
ïŒç¹ã®ãšãã¯ãäžè§åœ¢ãã²ãšã€ãéé ãåã圢ãªã®ã§ã1çš®é¡ãšèããŸãã
ïŒïŒïŒïŒïŒïŒïŒâïŒïŒïŒïŒïŒïŒïŒã®çœ®æã®ã¿ã1åãç·åïŒïŒïŒÂ°
ïŒç¹ã®ãšãã¯ãåè§åœ¢ãã²ãšã€ã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒâïŒïŒïŒïŒïŒïŒïŒïŒïŒã®çœ®æã®ã¿ãäžåãç·åïŒïŒïŒÂ°
ïŒç¹ã®ãšãã¯ãäºè§åœ¢ãšæåã®ãµãã€
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒâïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïœïŒïŒãç·åïŒïŒïŒÂ°
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒâïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïœïŒ2ãç·åïŒïŒïŒÂ°
ã®äºã€ãïŒïŒïŒïŒïŒïŒïŒãšèŠèŠãã®ããæ°å
ïŒç¹ã®ãšãã¯ã3çš®
ïŒïŒïŒïŒïŒïŒïŒïŒâïŒïŒïŒïŒïŒïŒïŒïŒå
è§åœ¢ãïœïŒïŒãç·åïŒïŒïŒÂ°
ïŒïŒïŒïŒïŒïŒ5ïŒâïŒïŒïŒïŒïŒïŒïŒïŒäžè§åœ¢äºåïœïŒïŒãç·åïŒïŒïŒÂ°
ä»ã«ãäžè§åœ¢ãäºã€ã®å ŽåãåäžèŠãã
ïŒïŒïŒïŒïŒïŒ5ïŒâïŒ234051ïŒãç·åïŒïŒïŒÂ°
å転ããŠãéãªããã®ã¯ãåäžèŠããã
No.509ks2023幎1æ25æ¥ 12:00
N=6ã®å Žåãæ°ãã«äžåèŠã€ããããã£ããããæ°åã®äºæ³ãå€ããŸãããã
ããªããããã®å¯èœæ§ãïŒ
ïŒïŒïŒïŒïŒïŒïŒïŒâïŒïŒïŒïŒïŒïŒïŒïŒ
No.510ks2023幎1æ27æ¥ 08:13
åäžèŠãããå¿
èŠæ¡ä»¶ã¯ã
ïŒïŒååšè§ã®ç·è§ã®åãçããããš
ïŒã圢ãåãã§ããããšãéé ãšå転ããŠããªãã«ãªãã
éé ã¯ã眮æãéã«ãªããå転ã¯ã足跡ïŒè¶³ã®é·ãã®é çªãéãã ãããµã€ã¯ã«ã¯äžç·ïŒ
äŸãã°ãïŒããå§ããŠã足跡ïŒ1122422ïŒã®å³ãšãïŒããå§ããŠïŒ1122422ïŒåããšããæå³ã§ãã
ïŒïŒäºã€ä»¥äžã®ãµã€ã¯ã«ã«åãããæãïŒç¹ïŒïŒïŒïŒãïŒç¹ïŒïŒïŒïŒïŒ
ïŒç¹ïŒïŒïŒïŒïŒïŒç¹ïŒïŒïŒïŒ
ãµã€ã¯ã«ã®åãäžèŽãããããã®ãµã€ã¯ã«ã¯ãåäžèŠã§ããã
åãµã€ã¯ã«ã®ã¿ã®éšåã§èããã°ã足跡ãäžèŽããã
ïŒïŒåœ¢ã¯ç°ãªããã足跡ã®æ°ã®äžèº«ãäžèŽãããåŸè¿°
足跡衚瀺ã§ãè¡šãã°ãå§ç¹ã«ç¡é¢ä¿ã«ãåã圢ã«ãªãã足跡ãšã¯ã
åºéã®é·ãã衚瀺ãããã®ã§ãïŒã¯é£ã®ç¹ãïŒã¯äžã€ç¹ãè¶ããŠç·ãåŒãããšãªã©ã
ïŒç¹ã®ãšãã¯ãïŒçš®é¡
â 足跡衚瀺ãïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒãïŒè§åœ¢ãïœïŒïŒãç·è§ãïŒïŒïŒÂ°
⡠足跡衚瀺ãïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒãæåãïœïŒïŒãç·è§ãïŒïŒïŒÂ°
⢠足跡衚瀺ãïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒãæåãïœïŒ3ãç·è§ãïŒïŒïŒÂ°
⣠足跡衚瀺ãïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒè€äœã®äžè§ãšåè§ç·è§ãïŒïŒïŒÂ°ã
äœçœ®ã圢ãéã£ãŠããäžè§åœ¢ãšåè§åœ¢ã¯å
šãŠåäžèŠãããïŒã®å
容ã
†足跡衚瀺ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒäžè§åœ¢äºã€åè§åœ¢ãç·è§ãïŒïŒïŒÂ°
⥠足跡衚瀺ãïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒããããããããç·è§ãïŒïŒïŒÂ°
⊠ãïŒïŒïŒïŒïŒïŒïŒïŒïŒãšïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒã ç·è§ãïŒïŒïŒÂ°
äžã®äºã€ã¯ãèŠãç®ã¯ç°ãªããã
足跡ã®æ°ã®å
容ãäžèŽããã®ã§ãåäžèŠããã
No.521ks2023幎2æ2æ¥ 18:12
ïŒç¹ã®ãšãã¯ãïŒïŒçš®é¡ãå
šãŠè¶³è·¡è¡šç€ºã§ãã
â ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒãïœïŒïŒãå
«è§åœ¢ãç·è§ãïŒïŒïŒïŒÂ°
â¡ ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒãïœïŒïŒãæåããç·è§ãïŒïŒïŒÂ°
⢠ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒãïœïŒïŒãæåããç·è§ãïŒïŒïŒÂ°
⣠ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒããããããããããç·è§ãïŒïŒïŒÂ°
†ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒãïŒïŒïŒïŒïŒã®è€äœãç·è§ãïŒïŒïŒÂ°
⥠ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒãïŒïŒïŒïŒïŒã®è€äœãç·è§ãïŒïŒïŒÂ°
⊠ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒããããããããããç·è§ãïŒïŒïŒÂ°
⧠ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒããããããããããç·è§ãïŒïŒïŒÂ°
âš ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒããããããããããç·è§ãïŒïŒïŒÂ°
â© ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒããããããããããç·è§ãïŒïŒïŒÂ°
⪠ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒããããããããããç·è§ãïŒïŒïŒÂ°
â« ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒããããããããããç·è§ãïŒïŒïŒÂ°
⬠ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒããããããããããç·è§ãïŒïŒïŒÂ°
â£ãéè€ããŠãã®ã§ãåé€ããŸããã
No.527ks2023幎2æ11æ¥ 08:20
ïŒç¹ã®ãšãã¯ãïŒïŒçš®ãå
šãŠè¶³è·¡è¡šç€ºã§ãã
â (111111111)
â¡ (2222222222)
⢠(333333333)
⣠(4444444444)
†(171111114)
⥠(171226224)
⊠(1711311616)
⧠161111115
âš (161122626)
â© (123232122)
⪠(442222443)
â« (443122353)
⬠(442424133)
â (123521211)
â® (133131213)
⯠(334334331)
â° (433232334)
â± (422211222)
â² (341515143)
â³ (114114114)
21 (141244425)
22 (442411416)
23 (6221111122)
24 (532244223)
No.543ks2023幎2æ26æ¥ 13:23
足跡ã§ãããããããšã
ïŒ32523252ïŒïŒ24ãïœïŒïŒïŒÃ·ïŒïŒïŒ
ãŒïŒïœïŒïŒïŒïŒÃïŒïŒïŒãïŒÏ
No.557ks2023幎3æ4æ¥ 16:13
äŸã®çŽ æ°pã®éæ°ã ããå ããŠè¡ãç¡éåã§ã¯é©ãã¹ã倧éã®çŽ æ°ãæå
¥ããããšã§
埮å°ãªéã§ã¯ãããå¢å ãç¶ããŠãããçµæçã«âã«çºæ£ããŠãããã
S(r)=1/2^r+1/3^r+1/5^r+1/7^r+1/11^r+1/13^r+
ãšãã®rä¹ã«ãããã®ã®ç¡éçŽæ°ã§ã¯
S(2)=0.45224742(A085548)
S(3)=0.17476263(A085541)
S'4)=0.07699313(A085964)
S(5)=0.03575501(A085965)

次ã
ãšããäžå®å€ã«åæãããšããã
ããŠããã§ããããã®æ¥µéå€ã§æŽã«
(1)S(2)+S(3)+S(4)+S(5)+
(2)S(2)-S(3)+S(4)-S(5)+
ãšç¡éåãåŠçããçµæã®å€ã¯äžäœã©ããªãã®ã«ãªããæ³åã§ããŸããïŒ
ããã
(1)=1/(2*1)+1/(3*2)+1/(5*4)+1/(7*6)+1/(11*10)+1/(13*12)+
(2)=1/(2*3)+1/(3*4)+1/(5*6)+1/(7*8)+1/(11*12)+1/(13*14)+
ã§ãããšäž»åŒµããã®ã§ãã((1):A136141 (2):A179119)
ä¿¡ããããŸããïŒ
確ãã«èšç®ãœããã§ã®ã³ãã³ãäžã§ã¯åãå€ãã¯ããåºããŸããã
ããã¯ã©ã解éã§ãããã®ãªãã§ããããã
ããæ£ããã®ãªãç¡éã¯äººç¥ãè¶
ããéšåã§ãšãŠãèŠäºã«èª¿åããšããæ¯ãèãã
å¯ãã«çŽ¡ãã§ãããšæãããŸãã
No.553GAI2023幎3æ3æ¥ 08:10
(1)ã¯
Σ[k=1ïœâ]1/m^k=1/(m-1)ãã
Σ[k=2ïœâ]S(k)
=Σ[k=2ïœâ]Σ[pâprime]1/p^k
=Σ[pâprime]Σ[k=2ïœâ]1/p^k
=Σ[pâprime](1/p)Σ[k=1ïœâ]1/p^k
=Σ[pâprime]1/{p(p-1)}
=1/(2*1)+1/(3*2)+1/(5*4)+1/(7*6)+âŠ
(2)ã¯
Σ[k=1ïœâ](-1)^k/m^k=-1/(m+1)ãã
Σ[k=2ïœâ](-1)^kã»S(k)
=Σ[k=2ïœâ](-1)^kã»Î£[pâprime]1/p^k
=Σ[k=2ïœâ]Σ[pâprime](-1)^k/p^k
=Σ[pâprime]Σ[k=2ïœâ](-1)^k/p^k
=Σ[pâprime](-1/p)Σ[k=1ïœâ](-1)^k/p^k
=Σ[pâprime]1/{p(p+1)}
=1/(2*3)+1/(3*4)+1/(5*6)+1/(7*8)+âŠ
ã®ããã«ãªããŸããã
No.555ãããã2023幎3æ3æ¥ 15:03
S1=1+1/2+1/3+1/4+1/5++1/n+(ïœ;èªç¶æ°)
S2=1/2+1/3+1/5+1/7+1/11++1/p+(p;çŽ æ°)
ã¯ã©ã¡ããåæããã極é㯠â ã«ãªããšããã
ããã§ãã®ïŒã€ãåŠäœã«ç°è³ªã§ããããæããããã«
ãããããåããŠ4ãè¶
ããããã«ã¯
S1ã§ã®n,S2ã§ã®pã®å€ãæ±ããŠã»ããã
No.545GAI2023幎3æ1æ¥ 10:20
åããŠãS1>4ããšãªãïœã®å€ã¯ãïŒïŒãïŒâãäºæ³ããéãã£ãã§ãïŒïŒ
ïŒïŒçªç®ã®çŽ æ°ïŒïŒïŒã§ãããããS2ïŒïŒããšãªãã®ã§ãïŒãè¶
ãããŸã§ã«ã¯çµæ§ãããïŒ
No.547HP管çè
2023幎3æ1æ¥ 17:10 4ãè¶
ããp㯠1801241230056600523 ã§ããã
S1ã®æ¹ã¯ãæãåããŠ100ãè¶
ããnããæ±ããããšããããŸãã
No.549ãããã2023幎3æ1æ¥ 21:30
4 ãè¶
ãã p ã«ã€ããŠã®è«æã以äžãšãªããŸãã
https://www.google.com/url?q=https://www.researchgate.net/publication/41616216_Computing_Prime_Harmonic_Sum
No.550Dengan kesaktian Indukmu2023幎3æ1æ¥ 22:13
ãããããããããä¹
ãã¶ãã§ãã
ããããããããéé
ããŸããïŒ
https://ir.lib.hiroshima-u.ac.jp/files/public/5/51268/202109071135393062/k8495_2.pdf
No.546S(H)2023幎3æ1æ¥ 14:46
S(H)ãããæ¬åœã«ãä¹
ãã¶ãã§ãïŒãããŸã§ãäžè©±ã«ãªã£ãŠããteacupïŒæ²ç€ºæ¿ãæšå¹ŽïŒæïŒæ¥ã§ãµãŒãã¹çµäºãšããããšã§ã
æšå¹Žã®ïŒæïŒïŒæ¥ã«goo blog æ²ç€ºæ¿ã«ç§»è¡ãããŠããã ããŸããã
æ°æ²ç€ºæ¿ã§ã®S(H)ããã®ã掻èºãæåŸ
ããŠãããŸãããŸãã¯ãéé
ããã§ãšãããããŸãã
No.548HP管çè
2023幎3æ1æ¥ 17:25