ãã§ã«ããŒã®æçµå®çã«ææŠãçŽãã§ãã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
äºé
å®çããã{http://y-daisan.private.coocan.jp/html/felmer-7-2.pdfãã}
ãããn
a^n-1=Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(a-1)^(n-i)}----(a)
ããã i=1
ãããn
b^n-1=Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(b-1)^(n-i)}----(b)
ããã i=1
ãããn
c^n-1=Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(c-1)^(n-i)}----(c)
ãããi=1
a^n+b^n=c^nãšãããšã{ãã ãa<b<cãšãã}
a^n-1+b^n-1=c^n-1
(a^n-1)+(b^n-1)=(c^n-1)
(a^n-1)=(c^n-1)-(b^n-1)
åŒ(a),(b),(c)ããã
n
Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(a-1)^(n-i)}
i=1
ãn
ïŒÎ£ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(c-1)^(n-i)}
ãi=1
ãn
ãŒÎ£ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(b-1)^(n-i)}
ãi=1
ãããn
a^n-1ïŒÎ£ nCi{b^(n-i)+(b+1)^(n-i)+(b+2)^(n-i)+ã»ã»ã»+(c-1)^(n-i)}
ãããi=1
ããã§ã(a^n-1)=(c^n-1)-(b^n-1)ãæãç«ã€ã«ã¯ã
ïŒïŒi=nã®ãšããa^n-1ã®nCné
ã¯ã
nCn{1^0+2^0+3^0+ã»ã»ã»+(a-1)^0)}=nCn{a-1}=a-1----(d)
äžæ¹(c^n-1)-(b^n-1)ã®nCné
ã¯ã
nCn{b^0+(b+1^0+(b+2)^0ã»ã»ã»+(c-1)^0}=nCn{(c-1)-(b-1)}=c-b---(e)
åŒ(d),(e)ãçå·ã§çµã°ããã®ã¯ã
c-b=a-1---(i)
ã®ãšãã ãã§ããã
ïŒïŒi=n-1ã®ãšããa^n-1ã®nC(n-1)é
ã¯ã
nC(n-1){1+2+3+4+5+ã»ã»ã»+(a-1)}=nC(n-1){(a-1)a/2}----(f)
äžæ¹(c^n-1)-(b^n-1)ã®nC(n-1)é
ã¯ã
nC(n-1){b+(b+1)+(b+2)ã»ã»ã»+(c-1)}=n{(c-1)c/2-(b-1)b/2}---(g)
åŒ(f),(g)ãçå·ã§çµã°ããã®ã¯ã
(c-1)c/2-(b-1)b/2=(a-1)a/2
ã®ãšãã ãã§ããã
(c-1)c-(b-1)b=(a-1)a
c^2-c-b^2+b=(a-1)a
c^2-b^2-(c-b)=(a-1)a
(c-b)(c+b-1)=(a-1)a
åŒ(d),(e)ãçãããšãåŒ(f),(g)ãçãããªããšãããªããããåŒ(i)ããã
c+b-1=aã巊蟺ã(c-b)ã§å²ã£ãŠãå³èŸºã(a-1)ã§å²ã£ãŠïœãªããªãåŒ(i)ããïœ
c+b-2=a-1=c-bãåŒ(i)ãã
c+b-2=c-b
c+b-2-(c-b)=0
c+b-2-c+b=0
2b-2=0
b=1
ããã¯ãc>b>aã«ççŸããã
ãããã£ãŠã
(d)â (e)ã(f)â (g)
ã€ãŸãã
(a^n-1)â (c^n-1)-(b^n-1)
a^nâ c^n-b^n
a^n+b^nâ c^n
ãã£ãŠããã§ã«ããŒã®æçµå®çã¯åççã«èšŒæãããã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
äºé
å®çã®ææžã®åŒçšã¯ç·è²ã®ãããããã¯ã¡ã¹ãããã¯ãªãã¯ããã°ãéããŸãã
No.869ããããã¯ã¡ã¹ã2023幎4æ11æ¥ 15:18 > a^n+b^n=c^nãšãããšã{ãã ãa<b<cãšãã}
> a^n-1+b^n-1=c^n-1
巊蟺㧠2 å -1 ãããªããå³èŸºã 2 å -1 ããå¿
èŠãããã®ã§ã¯ã
No.872DD++2023幎4æ11æ¥ 16:16
äºé
å®çããã{http://y-daisan.private.coocan.jp/html/felmer-7-2.pdfãã}
ãããn
a^n-1=Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(a-1)^(n-i)}----(a)
i=1
ãããn
b^n-1=Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(b-1)^(n-i)}----(b)
i=1
ãããn
c^n-1=Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(c-1)^(n-i)}----(c)
i=1
a^n+b^n=c^nãšãããšã{ãã ãa<b<cãšãã}
a^n-1+b^n-1+1=c^n-1
(a^n-1)+(b^n-1)+1=(c^n-1)
(a^n-1)+1=(c^n-1)-(b^n-1)
åŒ(a),(b),(c)ããã
n
Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(a-1)^(n-i)}ïŒïŒ
i=1
ãn
ïŒÎ£ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(c-1)^(n-i)}
ãi=1
ãn
ãŒÎ£ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(b-1)^(n-i)}
ãi=1
ããããn
a^n-1+1ïŒÎ£ nCi{b^(n-i)+(b+1)^(n-i)+(b+2)^(n-i)+ã»ã»ã»+(c-1)^(n-i)}
ããããi=1
ããã§ã(a^n-1)+1=(c^n-1)-(b^n-1)ãæãç«ã€ã«ã¯ã
ïŒïŒi=nã®ãšããa^n-1ã®nCné
ã¯ã
nCn{1^0+2^0+3^0+ã»ã»ã»+(a-1)^0)}+1=nCn{a-1}+1=a----(d)
äžæ¹(c^n-1)-(b^n-1)ã®nCné
ã¯ã
nCn{b^0+(b+1^0+(b+2)^0ã»ã»ã»+(c-1)^0}=nCn{(c-1)-(b-1)}=c-b---(e)
åŒ(d),(e)ãçå·ã§çµã°ããã®ã¯ã
c-b=a---(i)
ã®ãšãã ãã§ããã
ïŒïŒi=n-1ã®ãšããa^n-1ã®nC(n-1)é
ã¯ã
nC(n-1){1+2+3+4+5+ã»ã»ã»+(a-1)}=nC(n-1){(a-1)a/2}----(f)
äžæ¹(c^n-1)-(b^n-1)ã®nC(n-1)é
ã¯ã
nC(n-1){b+(b+1)+(b+2)ã»ã»ã»+(c-1)}=n{(c-1)c/2-(b-1)b/2}---(g)
åŒ(f),(g)ãçå·ã§çµã°ããã®ã¯ã
(c-1)c/2-(b-1)b/2=(a-1)a/2
ã®ãšãã ãã§ããã
(c-1)c-(b-1)b=(a-1)a
c^2-c-b^2+b=(a-1)a
c^2-b^2-(c-b)=(a-1)a
(c-b)(c+b-1)=(a-1)a
åŒ(d),(e)ãçãããšãåŒ(f),(g)ãçãããªããšãããªããããåŒ(i)ããã
c+b-1=a-1ã巊蟺ã(c-b)ã§å²ã£ãŠãå³èŸºãaã§å²ã£ãŠïœãªããªãåŒ(i)ããïœ
c+b=a=c-bãåŒ(i)ãã
c+b=c-b
c+b-(c-b)=0
c+b-c+b=0
2b=0
b=0
ããã¯ãc>b>aã«ççŸããã
ãããã£ãŠã
(d)â (e)ã(f)â (g)
ã€ãŸãã
(a^n-1)â (c^n-1)-(b^n-1)
a^nâ c^n-b^n
a^n+b^nâ c^n
ãã£ãŠããã§ã«ããŒã®æçµå®çã¯åççã«èšŒæãããã
No.875ããããã¯ã¡ã¹ã2023幎4æ11æ¥ 17:48 (d) ãš (e) ãçãããšãããæ ¹æ ã¯ãªãã§ããïŒ
No.876DD++2023幎4æ11æ¥ 17:51
(a^n-1)+1=(c^n-1)-(b^n-1)ãæãç«ã€ããã§ãã
ã€ãŸãã
ããããn
a^n-1+1ïŒÎ£ nCi{b^(n-i)+(b+1)^(n-i)+(b+2)^(n-i)+ã»ã»ã»+(c-1)^(n-i)}
ããããi=1
ãšããããšã§ãå³èŸºã¯ãã¹ãŠæ£ã®æ°ãªã®åãªã®ã§ãã
ãŸããa^n-1+1ã¯
n
Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(a-1)^(n-i)}ïŒïŒ
i=1
ããã¹ãŠãæ£ã®æ°ã®åã§ãããã
nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(a-1)^(n-i)}
ã®å³å·ŠèŸºã®nCiã©ããçãããªããã°ãªããŸããã
åŒ(d),(e)ã¯ãnCnã®é
ãªã®ã§ã
a^n-1+1ã¯i=nã®
nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(a-1)^(n-i)}ïŒïŒ
ã§ããããã®é
ã ããïŒïŒãäœåã«ããã(c^n-1)-(b^n-1)ã¯ãi=nã®
nCi{b^(n-i)+(b+1)^(n-i)+(b+2)^(n-i)+ã»ã»ã»+(c-1)^(n-i)}
ã§ãããããäºãã«çãããªããã°ãªããŸãããã ããåŒ(d),(e)ã¯ãçãããªããã°ãªããŸããã
äºé
å®çã§ãåãã¹ãä¹ãªãã
(a+b)^nã®åé
ã¯ãnCi a^(n-i) b^iã§ã(a+b)^n=(c+d)^nãªãã a^(n-i) b^i= c^(n-i) d^iãšããããšã§ãã
ã€ãŸããnCiã®ä¿æ°é
ã¯a^(n-i) b^i= c^(n-i) d^iã®ããã«çãããªããªããã°ãªããªããšããããšã§ãã
No.877ããããã¯ã¡ã¹ã2023幎4æ11æ¥ 19:36
ïŒïŒïŒi=n-1ã®ãšããa^n-1ã®nC(n-1)é
ã¯ã
nC(n-1){1+2+3+4+5+ã»ã»ã»+(a-1)}=nC(n-1){(a-1)a/2}----(f)
ïŒïŒi=n-1ã®ãšããa^n-1ã®nC(n-1)é
ã¯ã
nC(n-1){1+2+3+4+5+ã»ã»ã»+(a-1)}+1=nC(n-1){(a-1)a/2}----(f)
ãããªãã§ããããã
No.878KY2023幎4æ11æ¥ 20:45
> (a+b)^n=(c+d)^nãªãã a^(n-i) b^i= c^(n-i) d^iãšããããšã§ãã
a=1, b=-1, c=0, d=0 ã§èãããšã
ã(1-1)^n = (0+0)^n ãªãã1^(n-i) (-1)^i = 0^(n-i) 0^i ãšããããšãã£ãŠæå³ã«ãªããŸããã©ããã£ãŠãŸãïŒ
No.879DD++2023幎4æ11æ¥ 21:58
KYæ§ããã¯ããããããŸãã
nC(n-1)=n!/(n-(n-1)!(n-1)!)=n!/(n-1)!=n
ãªã®ã§ã
nC(n-1){1+2+3+4+5+ã»ã»ã»+(a-1)}=nC(n-1){(a-1)a/2}=n{(a-1)a/2}----(f)
ãŸãã
nC(n-1){1+2+3+4+5+ã»ã»ã»+(a-1)}+1=nC(n-1){(a-1)a/2}---(f)
ïŒïŒã¯ãnCnã®é
ã ãã«äœçšããŸãã®ã§ãnC(n-1)ã«ã¯ãé¢ä¿ããŸããã
ã§ãããã
nC(n-1){1+2+3+4+5+ã»ã»ã»+(a-1)}=nC(n-1){(a-1)a/2}=n{(a-1)a/2}----(f)
ã§ããã¯ãã§ãã
DD++æ§ããã¯ããããããŸãã
ãããããµãã«ããã°ããããªããŸããã
æçš¿å¶éãããã£ãŠããã®ã§ãããã«æžããŸãã
ïŒãªãã»ã©ãã€ãŸããã¯ã¡ã¹ããã㯠(-1)^i = 0^n ãæ£ãããšåºåŒµããŠããããã§ããïŒ
ä»åã®å Žåãa,b,c,dãšãã«ãèªç¶æ°ã§ããããããã¯ãªããªããšæããŸãã
ãææã®ã
ïŒã(1-1)^n = (0+0)^n ãªãã1^(n-i) (-1)^i = 0^(n-i) 0^i ãšããããšã
ã§ãããã(1-1)^n=0ã(0+0)^n=0ã§ãå
šäœã§èŠãã°ãçå·ãæãç«ã¡ãŸããã1^(n-i) (-1)^i = 0^(n-i) 0^iãšã¯ãèšããªãã§ããã
ã¡ãªã¿ã«ã(1-1)^nã¯ã
(1-1)^n=nC0 1^n (-1)^0+nC1 1^(n-1) (-1)^1+nC2 1^(n-2) (-1)^2+nC3 1^(n-3) (-)1^3+ã»ã»ã»ã»+nC(n-1) 1^(n-(n-1)) (-1)^(n-1)+nCn 1^(n-n) (-1)^n
ã«ãããŠã
nãå¶æ°ãªããããšãã°n=10ãªãã
0=10C0-10C1+10C2-10C3+10C4-10C5+10C6-10C7+10C8-10C9+10C10
ãã€ãã¹ã®é
ã巊蟺ã«ç§»é
ãããšã
10C1+10C3+10C5+10C7+10C9=10C0+10C2+10C4+10C6+10C8+10C10
ãã£ãŠã
nC1+nC3+nC5ã»ã»ã»+nC(n-1)=nC0+nC2+nC4+ã»ã»ã»ã»+nCn
å·Šå³ã§é
æ°ãéãã®ã«äžæè°ã«æããããããŸãããããããªã®ã§ãã
nãå¥æ°ãªããããšãã°n=11ãªãã
0=11C0-11C1+11C2-11C3+11C4-11C5+11C6-11C7+11C8-11C9+11C10-11C11
ãã€ãã¹ã®é
ã巊蟺ã«ç§»é
ãããšã
11C1+11C3+11C5+11C7+11C9+11C11=11C0+11C2+11C4+11C6+11C8+11C10
ãã£ãŠã
nC1+nC3+nC5ã»ã»ã»+nCn=nC0+nC2+nC4+ã»ã»ã»ã»+nC(n-1)
ãã¹ã«ã«ã®äžè§åœ¢ãæãåºããŠãã ããã
ããããããããã1ã-2ã1
ãããããããã1ã-3ã3ã-1
ããããããã1ã-4ã6ã-4ãã1
ãããããã1ã-5ã10ã-10ã5ã-1
ããããã1ã-6ã15ã-20ã15ã-6ã1
ãšãªããŸãã
No.880ããããã¯ã¡ã¹ã2023幎4æ12æ¥ 07:20
ãªãã»ã©ãã€ãŸããã¯ã¡ã¹ããã㯠(-1)^i = 0^n ãæ£ãããšäž»åŒµããŠããããã§ããïŒ
No.881DD++2023幎4æ12æ¥ 07:24
æŽæ°èšäºãèŠãŠãæ²ç€ºæ¿ã«ãªãã¯ãã®è¬ã®è¿ä¿¡ãæ¥ãŠãããšæã£ããâŠâŠã
è¿äºã¯å¿
ãæ°ããã¡ãã»ãŒãžã§æžããŠãã ããã
éå»ã®æçš¿ã«å çããŠè¿äºããããŠãæ°ã¥ããŸããã
ãªãã»ã©ãèªç¶æ°éå®ã ãããšãã£ããããªãããããŸãããã
a = 1, b = 3, c = 2, d = 2 ã§èããŸãã
æå¥ãªãèªç¶æ°ã§ããïŒ
ã§ã(1+3)^n = (2+2)^n ã¯æãç«ã¡ãŸãããããåé¡ãªãã§ããïŒ
ãšããããšã¯ãã¯ã¡ã¹ããã㯠1^(n-i) 3^i = 2^(n-i) 2^i ã§ããããšã
ã€ãŸã 3^i = 2^n ã¯æ£ããåŒã§ãããšäž»åŒµããããã§ããïŒ
ã¯ã¡ã¹ãããããã®åŒã誀ãã ãšæãããªãããŸã£ããåãè«çã§äœã£ã (d) = (e) ã誀ããšããããšã§ãã
No.882DD++2023幎4æ12æ¥ 16:01
DD++æ§ããã¯ããããããŸãã
ãã®ãšããã§ããã
ãã®ãã§ã«ããŒã®æçµå®çã®èšŒæã¯ãééãã§ããã
No.883ããããã¯ã¡ã¹ã2023幎4æ13æ¥ 06:59
äŒãã£ãããã§ãããã£ãã§ãã
No.884DD++2023幎4æ13æ¥ 07:48
äºé
å®çããã{http://y-daisan.private.coocan.jp/html/felmer-7-2.pdfãã}
ãããn
a^n-1=Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(a-1)^(n-i)}----(a)
i=1
ãããn
b^n-1=Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(b-1)^(n-i)}----(b)
i=1
ãããn
c^n-1=Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(c-1)^(n-i)}----(c)
i=1
a^n+b^n=c^nãšãããšã{ãã ãa<b<cãšãã}
a^n-1+b^n-1+1=c^n-1
(a^n-1)+(b^n-1)+1=(c^n-1)
(a^n-1)+1=(c^n-1)-(b^n-1)
åŒ(a),(b),(c)ããã
n
Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(a-1)^(n-i)}ïŒïŒ
i=1
ãn
ïŒÎ£ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(c-1)^(n-i)}
ãi=1
ãn
ãŒÎ£ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(b-1)^(n-i)}
ãi=1
ããããn
a^n-1+1ïŒÎ£ nCi{b^(n-i)+(b+1)^(n-i)+(b+2)^(n-i)+ã»ã»ã»+(c-1)^(n-i)}
ããããi=1
n
Σ nCi{b^(n-i)+(b+1)^(n-i)+(b+2)^(n-i)+ã»ã»ã»+(c-1)^(n-i)}-(a)åŒ-1----(d)
i=1
ãšãããšã(d)åŒã®
(c-1)^(n-i)-(a-1)^(n-i)
ã®å€§å°é¢ä¿ã調ã¹ãã°ããã
å
Œ΋
x^n-y^n=(x-y){x^(n-1)+x^(n-2)y+x^(n-3)y^2+ã»ã»ã»+xy^(n-2)+y^(n-1)}
ããã
x,yãèªç¶æ°ãªãã{}ã®äžã¯ãæ£ã®èªç¶æ°ããããã£ãŠã(x-y)ãæ£ãè² ã§x^nãšy^nã®å€§å°é¢ä¿ããããã
(c-1)^(n-i)-(a-1)^(n-i)
ã«ãããŠãc>b>aãããc-1>a-1ããã
(c-1)^(n-i)-(a-1)^(n-i)>0
ãšãªãããã£ãŠ(d)åŒã¯>0
ãã ãc-bã®é
æ°ãšaã®é
æ°ãåé¡ãšãªãã
ãããã£ãŠãæ¡ä»¶ã¯c-bâ§aãã€ãã
ãããæºè¶³ããã°ããã§ã«ããŒã®æçµå®çã¯èšŒæã§ããã
ãªãã(a)åŒ+1ã®éšåã¯ãb^0-1-1>0ã¯a,b,cã¯èªç¶æ°ã§ãããc>b>a>0ãša=1ã§ã¯ãb>3ã§ããããåé¡ãªãã
ããšãã°ãa=1ã®ãšãã1^3+b^3=c^3ã®ãšãb=2ã§ã3ã§ã¯ãªãã
No.898ããããã¯ã¡ã¹ã2023幎4æ15æ¥ 07:08
a,b,cã«ãããŠã
a^n+b^n=c^n
ãæãç«ã€ãšãã
(a^n+b^n)^2=(c^n)^2
ããã§ã
http://y-daisan.private.coocan.jp/html/pdf/felmer-5-4.pdfïŒç·è²ã®ããããã¯ã¡ã¹ããã¯ãªãã¯ããã°éããŸããïŒ
ã®è£é¡ããã
(a^n+b^n)^2>(a+b)^n
ã§ããããã
(a^n+b^n)^2=(c^n)^2
(a+b)^n<(c^2)^n
a,b,cã¯èªç¶æ°ããã
(a+b)<c^2
a<c^2-b
ããããªããc^2-b>aãªããå¶éããªããªã£ãã®ã«ãªãã
No.906ããããã¯ã¡ã¹ã2023幎4æ15æ¥ 11:27 ïŒããããªããc^2-b>aãªããå¶éããªããªã£ãã®ã«ãªãã
ããã¯ã©ãããäºãæå³ããŠããã®ã§ãããããå¶éãä»ããŠè¡ã£ãŠããåŸãªã蚌æãããã®ãçãªã®ã§ã¯ãªãã§ããããã
å ã¿ã«ãïœïŒïœïŒïœïŒïœããïœïŒïœïŒïŒïœã§ãããïœâ§ïŒã§ïœïŒïœïŒïœ^2ããïœïŒïœã«å¶éãä»ããããŸããã
è£é¡ã®èšŒæã¯èŠäºã§ããã
No.909KY2023幎4æ15æ¥ 13:21
KYæ§ãããã«ã¡ã¯ã
ä»ç§ã¯ã24æéã§20件ã®æçš¿å¶éã§ãäœãæ¶ããªããšæçš¿ã§ããªãã®ã§ããç¡çãã1ã€æ¶ããŸããã
ïŒå ã¿ã«ãïœïŒïœïŒïœïŒïœããïœïŒïœïŒïŒïœã§ãããïœâ§ïŒã§ïœïŒïœïŒïœ^2ããïœïŒïœã«å¶éãä»ããããŸããã
ãªãã»ã©ãããšã¡ãã£ãšã§ã»ã»ã»ã»ã»
å¶éãªãã«ãªãã°ããã§ã«ããŒã®æçµå®çã®åçç蚌æã«ãªã£ããã§ããã©ãã
æ®å¿µã
No.910ããããã¯ã¡ã¹ã2023幎4æ15æ¥ 16:23
> è£é¡ã®èšŒæ
aâ§2, bâ§2 ã®ãšããè«ç¹å
åã§äžçºéå Žã§ã¯ã
å
¥è©Šãšãã ãšäžè¡èªãã ã ã㧠0 ç¹ã«ããããã€ã§ãã
No.912DD++2023幎4æ15æ¥ 17:46
ããããc-b<aã®ãšãã(d)åŒã¯<0ã§ãã
èŠããã«ã(d)åŒã=0ã§ãªããã°ããã§ã«ããŒã®æçµå®çã®åçç蚌æã¯ã§ãããã ã
ãªããšããå
ãèŠããŠããŸããã
DD++æ§ã®ææã®
ïŒã§ã(1+3)^n = (2+2)^n ã¯æãç«ã¡ãŸãããããåé¡ãªãã§ããïŒ
ãšããããšã¯ãã¯ã¡ã¹ããã㯠1^(n-i) 3^i = 2^(n-i) 2^i ã§ããããšã
ã€ãŸã 3^i = 2^n ã¯æ£ããåŒã§ãããšäž»åŒµããããã§ããïŒ
ããããå®ã«ãããããææã§ãa^n-1+1=c^n-1-(b^n-1)ããæãç«ã€æ¡ä»¶ã¯ãªããšããããæå³ãããã³ããªããããããªãã»ã»ã»ã»ã»
No.913ããããã¯ã¡ã¹ã2023幎4æ15æ¥ 18:59
ïŒaâ§2, bâ§2 ã®ãšããè«ç¹å
åã§äžçºéå Žã§ã¯ã
ããããè«ç¹å
åã§ã¯ãããŸããããŸããæ¬é¡ã®èšŒæã®æ¹ã§ïœïŒïŒïŒïœïŒïŒã®å Žåãè¿°ã¹ãŠããŠã次ã«è£é¡ã®æã§ïœïŒïŒïŒïœïŒïŒïŒïœïŒïŒïŒïœïŒïŒïŒã®å Žåãè¿°ã¹ãŠããŠãæ®ãã¯ïœâ§ïŒïŒïœâ§ïŒã®å Žåãããªãããã§ãã
å ã¿ã«ãå
·äœäŸã¯ã
ãããã¯è«ç¹å
åã ããšèšããã®ã¯ã1ã€ã®äžæ®µè«æ³ã®äžã§ã埪ç°è«æ³ãã䜿ãããŠããå Žåã§ãããããªãã¡ãæšè«éçšã«èšŒæãã¹ãäºæãåæãšããåœé¡ãå«ãã§ããå Žåã§ãããæ¬è³ªçã«ãåœé¡ãããèªèº«ã®èšŒæã«äœ¿ããããããªæŠè¡ã¯ãã®åºæ¬ç圢åŒã«ãããŠèª¬åŸåããªããäŸãã°ãããŒã«ãæ¬åœã®ããšãèšã£ãŠãããšèšŒæããããšããã
ããŒã«ã¯åãèšã£ãŠããªããšä»®å®ããã
ããŒã«ã¯äœãã話ããŠããã
ãããã£ãŠãããŒã«ã¯æ¬åœã®ããšãèšã£ãŠããã
ãã®æç« ã¯è«ççã ãã話è
ã®çå®æ§ãçŽåŸãããããšã¯ã§ããªããåé¡ã¯ãããŒã«ã®çå®æ§ã蚌æããããã«ããŒã«ãæ¬åœã®ããšãèšã£ãŠãããšä»®å®ããããšãèŽè¡ã«é Œãã§ãããããããã¯å®éã«ã¯ãããŒã«ãåãã€ããŠããªããªããããŒã«ã¯çå®ãèšã£ãŠããããšããããšã蚌æããŠããã«éããªãã
ãã®ãããªè«èšŒã¯è«ççã«ã¯åŠ¥åœã§ãããããªãã¡ãçµè«ã¯å®éã«åæããå°ãåºãããŠããããã ããäœããã®æå³ã§ãã®çµè«ã¯åæãšåäžã§ãããèªå·±åŸªç°è«æ³ã¯å
šãŠããã®ãããªèšŒæãã¹ãåœé¡ãè«èšŒã®ããæç¹ã§ä»®å®ããããšããæ§è³ªãæã€ã
åŒçšå
ïŒhttps://ja.wikipedia.org/wiki/%E8%AB%96%E7%82%B9%E5%85%88%E5%8F%96#%E5%85%B7%E4%BD%93%E4%BE%8B
åœãŠã¯ãŸã£ãŠããªããšæããŸããã
No.914å£ããæ2023幎4æ15æ¥ 19:53
äŸãšã㊠1 ã€ã®äžæ®µè«æ³ãæããŠããã ãã§ãè€æ°ã®å Žåã§ãè«ç¹å
åã¯è«ç¹å
åã§ãããã
ãããã¯åŸªç°è«æ³ãšèšã£ãæ¹ãããã£ãã§ããïŒ
ä»åã®å Žåãªãã©ã£ã¡ã«ã該åœããïŒãšãããäž¡è
ã«æ確ãªåºåãããããã§ããªãïŒãšæã£ãŠããã®ã§ã
No.915DD++2023幎4æ15æ¥ 20:35
DD++æ§ããã¯ããããããŸãã
bâ 0ãšãããa/bã»ã»ã»
ã¯ãã©ããªããã ããïŒ
No.917ããããã¯ã¡ã¹ã2023幎4æ16æ¥ 07:33
ãããå¿
ã p åã§ãã
ã¯ã¡ã¹ãããã¯ãp = 7 ãéžãã§ããã®ã« 8 åãã£ãŠãŸããã
No.905DD++2023幎4æ15æ¥ 11:11
ãŸããçŽ æ° p ããã³ãããšäºãã«çŽ ãªèªç¶æ° a ã決ããŠãã ããã
p=7ãa=5ããšããŸãã
ã1, 1+p, 1+2p, âŠâŠ, 1+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
1+2p=15
ã2, 2+p, 2+2p, âŠâŠ, 2+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
2+3p=23
ã3, 3+p, 3+2p, âŠâŠ, 3+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
3+3p=24
ã4, 4+p, 4+2p, âŠâŠ, 4+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
4+4p=32
ã5, 5+p, 5+2p, âŠâŠ, 5+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
5+p=12
ã6, 6+p, 6+2p, âŠâŠ, 6+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
6+p=13
ããã«ãã£ãŠãa*p 以äžã®èªç¶æ°ã p-1 åéžã³åºããŸãããã
ã§ã¯ãããããå°ããé ã«äžŠã¹ãŠäžã€ã®çµãšããŠãã ããã
{12,13,15,23,24,32}
å°ããé ã«äžŠãã§ãã p-1 åã®æ°ã®çµã«ã以äžã®ãã㪠3 ã€ã®æé ãããªãæäœ R ãããŸãã
ãŸããæ«å°Ÿã« a*p ãä»ãå ããäžæçã« p åçµãšããŸãã
{12,13,15,23,24,32,35}
å
é ã®æ°ããã£ããèŠããäžã§åãèœãšããŠãp-1 åçµã«æ»ããŸãã
{13,15,23,24,32,35}
p-1 åã®æ°ãããããããã£ãåãèœãšããæ°ãåŒãç®ããŸãã
{1,3,11,12,20,23}
ããŠãã§ã¯ã
(1) æ°ããã§ãã p-1 åã®æ°ã®çµã§ãããå®ã¯æåã®çµã®äœãæ¹ã®æ¡ä»¶ã«åœãŠã¯ãŸã£ãŠããŸããïŒ
ããªãã¡ã
ã»a*p 以äžã®èªç¶æ° p-1 åãå°ããé ã«äžŠãã§ãã
ã»p ã§å²ã£ãäœã㯠1 ãã p-1 ãŸã§ 1 åãã€
ã«ãªã£ãŠããŸããïŒ
{1,3,11,12,20,23}â¡{1,3,4,5,6,2}(mod p=7)
(2) ãšããããšã¯ãæ°ããã§ããçµã«å¯ŸããŠæäœ R ãããäžåºŠè¡ãããšãã§ããŸãã
ãããŠã§ããçµã«ãŸãããäžåºŠãããã«ããäžåºŠã
æäœ R ã p åç¹°ãè¿ãããšããäœããèµ·ãããšæããŸãããããã¯äœã§ãããã
(1)
{1,3,11,12,20,23}
{1,3,11,12,20,23,35}
{3,11,12,20,23,35}
{2,10,11,19,22,34}
(2)
{2,10,11,19,22,34}
{2,10,11,19,22,34,35}
{10,11,19,22,34,35}
{8,9,17,20,32,33}
(3)
{8,9,17,20,32,33}
{8,9,17,20,32,33,35}
{9,17,20,32,33,35}
{1,9,12,24,25,27}
(4)
{1,9,12,24,25,27}
{1,9,12,24,25,27,35}
{9,12,24,25,27,35}
{8,11,23,24,26,34}
(5)
{8,11,23,24,26,34}
{8,11,23,24,26,34,35}
{11,23,24,26,34,35}
{3,15,16,18,26,27}
(6)
{3,15,16,18,26,27}
{3,15,16,18,26,27,35}
{15,16,18,26,27,35}
{12,13,15,23,24,32}
çã
{12,13,15,23,24,32}
No.907ããããã¯ã¡ã¹ã2023幎4æ15æ¥ 12:12
ããã§ããããã§åã£ãŠãŸãã
No.908DD++2023幎4æ15æ¥ 12:15
DD++æ§ãããã°ãã¯ã
ä»ç§ã¯ã24æéã§20件ã®æçš¿å¶éã§ãäœãæ¶ããªããšæçš¿ã§ããªãã®ã§ããç¡çãã1ã€æ¶ããŸããã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ãŸããçŽ æ° p ããã³ãããšäºãã«çŽ ãªèªç¶æ° a ã決ããŠãã ããã
p=7ãa=5ããšããŸãã
ã1, 1+p, 1+2p, âŠâŠ, 1+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
1+p=8
ã2, 2+p, 2+2p, âŠâŠ, 2+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
2+2p=16
ã3, 3+p, 3+2p, âŠâŠ, 3+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
3+3p=24
ã4, 4+p, 4+2p, âŠâŠ, 4+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
4+4p=32
ã5, 5+p, 5+2p, âŠâŠ, 5+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
5+3p=26
ã6, 6+p, 6+2p, âŠâŠ, 6+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
6+p=13
ããã«ãã£ãŠãa*p 以äžã®èªç¶æ°ã p-1 åéžã³åºããŸãããã
ã§ã¯ãããããå°ããé ã«äžŠã¹ãŠäžã€ã®çµãšããŠãã ããã
{8,13,16,24,26,32}
å°ããé ã«äžŠãã§ãã p-1 åã®æ°ã®çµã«ã以äžã®ãã㪠3 ã€ã®æé ãããªãæäœ R ãããŸãã
ãŸããæ«å°Ÿã« a*p ãä»ãå ããäžæçã« p åçµãšããŸãã
{8,13,16,24,26,32,35}
å
é ã®æ°ããã£ããèŠããäžã§åãèœãšããŠãp-1 åçµã«æ»ããŸãã
{13,16,24,26,32,35}
p-1 åã®æ°ãããããããã£ãåãèœãšããæ°ãåŒãç®ããŸãã
{5,8,16,18,24,27}
ããŠãã§ã¯ã
(1) æ°ããã§ãã p-1 åã®æ°ã®çµã§ãããå®ã¯æåã®çµã®äœãæ¹ã®æ¡ä»¶ã«åœãŠã¯ãŸã£ãŠããŸããïŒ
ããªãã¡ã
ã»a*p 以äžã®èªç¶æ° p-1 åãå°ããé ã«äžŠãã§ãã
ã»p ã§å²ã£ãäœã㯠1 ãã p-1 ãŸã§ 1 åãã€
ã«ãªã£ãŠããŸããïŒ
{5,8,16,18,24,27}â¡{5,1,2,4,3,6}(mod p=7)
(2) ãšããããšã¯ãæ°ããã§ããçµã«å¯ŸããŠæäœ R ãããäžåºŠè¡ãããšãã§ããŸãã
ãããŠã§ããçµã«ãŸãããäžåºŠãããã«ããäžåºŠã
æäœ R ã p åç¹°ãè¿ãããšããäœããèµ·ãããšæããŸãããããã¯äœã§ãããã
(1)
{5,8,16,18,24,27}
{5,8,16,18,24,27,35}
{8,16,18,24,27,35}
{3,11,13,19,22,30}
(2)
{3,11,13,19,22,30}
{3,11,13,19,22,30,35}
{11,13,19,22,30,35}
{8,10,16,19,27,32}
(3)
{8,10,16,19,27,32}
{8,10,16,19,27,32,35}
{10,16,19,27,32,35}
{2,8,11,19,24,27}
(4)
{2,8,11,19,24,27}
{2,8,11,19,24,27,35}
{8,11,19,24,27,35}
{6,9,17,22,25,33}
(5)
{6,9,17,22,25,33}
{6,9,17,22,25,33,35}
{9,17,22,25,33,35}
{3,11,16,19,27,29}
(6)
{3,11,16,19,27,29}
{3,11,16,19,27,29,35}
{11,16,19,27,29,35}
{8,13,16,24,26,32}
çã
{8,13,16,24,26,32}
No.911ããããã¯ã¡ã¹ã2023幎4æ15æ¥ 16:50
ã¡ãã£ãšé¢çœãããšãæãã€ããŸããã
以äžã®ãããªæäœãããŠã¿ãŠãã ããã
ãŸããçŽ æ° p ããã³ãããšäºãã«çŽ ãªèªç¶æ° a ã決ããŠãã ããã
æèšç®ã§ãããªã p 㯠3 ã 5 ã 7 ãa 㯠2 以äžã§ a*p ã 100 ãè¶
ããªããããããããšæããŸãã
ã³ã³ãã¥ãŒã¿ã§ããå Žåã¯å¥œããªå€§ããã®æ°ã§ãèªç±ã«ã©ããã
1, 1+p, 1+2p, âŠâŠ, 1+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
ã€ãŸããp ã§å²ããš 1 äœãæ°ã a*p 以äžã®èªç¶æ°ã§ 1 ã€éžãã§ãã ããããšããããšã§ãã
p > 2 ã§ããã°ã
2, 2+p, 2+2p, âŠâŠ, 2+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
ãã£ãã®ãã€ã®äœã 2 ããŒãžã§ã³ã§ãã
p > 3 ã§ããã°ã
3, 3+p, 3+2p, âŠâŠ, 3+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
äœã 3 ããŒãžã§ã³ã§ãã
以äžäœãã 1 ãã€å¢ãããªããç¹°ãè¿ããŠãäœã (p-1) ããŒãžã§ã³ãŸã§å®è¡ããŠãã ããã
ããã«ãã£ãŠãa*p 以äžã®èªç¶æ°ã p-1 åéžã³åºããŸãããã
ã§ã¯ãããããå°ããé ã«äžŠã¹ãŠäžã€ã®çµãšããŠãã ããã
å°ããé ã«äžŠãã§ãã p-1 åã®æ°ã®çµã«ã以äžã®ãã㪠3 ã€ã®æé ãããªãæäœ R ãããŸãã
ãŸããæ«å°Ÿã« a*p ãä»ãå ããäžæçã« p åçµãšããŸãã
å
é ã®æ°ããã£ããèŠããäžã§åãèœãšããŠãp-1 åçµã«æ»ããŸãã
p-1 åã®æ°ãããããããã£ãåãèœãšããæ°ãåŒãç®ããŸãã
ããŠãã§ã¯ã
(1) æ°ããã§ãã p-1 åã®æ°ã®çµã§ãããå®ã¯æåã®çµã®äœãæ¹ã®æ¡ä»¶ã«åœãŠã¯ãŸã£ãŠããŸããïŒ
ããªãã¡ã
ã»a*p 以äžã®èªç¶æ° p-1 åãå°ããé ã«äžŠãã§ãã
ã»p ã§å²ã£ãäœã㯠1 ãã p-1 ãŸã§ 1 åãã€
ã«ãªã£ãŠããŸããïŒ
(2) ãšããããšã¯ãæ°ããã§ããçµã«å¯ŸããŠæäœ R ãããäžåºŠè¡ãããšãã§ããŸãã
ãããŠã§ããçµã«ãŸãããäžåºŠãããã«ããäžåºŠã
æäœ R ã p åç¹°ãè¿ãããšããäœããèµ·ãããšæããŸãããããã¯äœã§ãããã
(3) æåã®çµãæ°ãã«äœãçŽããåã³æäœ R ã p åç¹°ãè¿ããŠã¿ãŠãã ããã
ãããã¯ã3 ã€ãã4 ã€ãã®çµãäœã£ãŠããããã§ãã
ã»ãšãã©å
šãŠã®çµã§åãçŸè±¡ãèµ·ããããšã確èªããŠãã ããã
(4) ãå
šãŠã®çµãã§ã¯ãªããã»ãšãã©å
šãŠã®çµããšèšã£ãã®ã¯ãå®ã¯ a ãš p ãäºãã«çŽ ã ãš 1 ã€ã ãäŸå€ãããããã§ããããŠãããã¯ã©ããªçµã§ãäœãèµ·ããã§ãããïŒ
(5) ãããŸã§ã®å®éšã§ãæåã®æ¡ä»¶ãæºãããã㪠p-1 åçµã®ç·æ°ããp ã®åæ° +1 åããããšãçŽåŸããŠãããããšæããŸãã
ãšããã§ãæåã®æ°ã®éžã³æ¹ãããæãåºããŠããã®ãã㪠p-1 åçµã£ãŠäœéããããã§ããã£ãïŒ
No.859DD++2023幎4æ10æ¥ 21:54
DD++æ§ããã¯ããããããŸãã
ãã¥ãŒãã³ã®ããªã³ããã¢ã¯ãæç« ã°ããã§ãæ°åŒã¯ãªãã£ãããã§ãããããçŸä»£ç§éãç¿ãç©çåŠãæ°åŒäžå¿ã§ãããããã¯ãªã€ã©ãŒã®æ¥çžŸã®1ã€ã ããã§ãã
ããŠãDD++æ§ãæç« ã°ããã§ãªããæ°åŒãã¡ãã°ããŠãæžããŠãã ãããšãã£ãšãããããããªãããããªãããªïŒãšæããŸãã
ãªããšããªããªããã®ã§ããããïŒ
No.861ããããã¯ã¡ã¹ã2023幎4æ11æ¥ 08:32
ãã®è©±é¡ãæ°åŒã¯åŒãç®ãšæãç®ãšå°äœããåºãŠããŸããã
æãç® a*p ã¯æžããŠãŸãã
å°äœ k+np ãå
šéšæžããŠãŸãã
åŒãç®ã¯ãæç« äžã« 1 åããç»å ŽããŸããããããããã¡ãã¡æžããã»ããããã§ããïŒ
ããã以å€ãæžããããŠãèšç®ãååšããŸããã
No.862DD++2023幎4æ11æ¥ 08:40
ãããªããŸãããã©ãã§ãééããã®ã§ãããïŒ
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ãŸããçŽ æ° p ããã³ãããšäºãã«çŽ ãªèªç¶æ° a ã決ããŠãã ããã
æèšç®ã§ãããªã p 㯠3 ã 5 ã 7 ãa 㯠2 以äžã§ a*p ã 100 ãè¶
ããªããããããããšæããŸãã
ã³ã³ãã¥ãŒã¿ã§ããå Žåã¯å¥œããªå€§ããã®æ°ã§ãèªç±ã«ã©ããã
1, 1+p, 1+2p, âŠâŠ, 1+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
ã€ãŸããp ã§å²ããš 1 äœãæ°ã a*p 以äžã®èªç¶æ°ã§ 1 ã€éžãã§ãã ããããšããããšã§ãã
1+r1p (mod p)â¡1
p > 2 ã§ããã°ã
2, 2+p, 2+2p, âŠâŠ, 2+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
ãã£ãã®ãã€ã®äœã 2 ããŒãžã§ã³ã§ãã
2+r2p (mod p)â¡2
p > 3 ã§ããã°ã
3, 3+p, 3+2p, âŠâŠ, 3+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
äœã 3 ããŒãžã§ã³ã§ãã
3+r3p (mod p)â¡3
以äžäœãã 1 ãã€å¢ãããªããç¹°ãè¿ããŠãäœã (p-1) ããŒãžã§ã³ãŸã§å®è¡ããŠãã ããã
(p-1)+r(p-1)p (mod p)â¡p-1
ããã«ãã£ãŠãa*p 以äžã®èªç¶æ°ã p-1 åéžã³åºããŸãããã
ã§ã¯ãããããå°ããé ã«äžŠã¹ãŠäžã€ã®çµãšããŠãã ããã
{r1,r2,r3,r4,r5,r6,ã»ã»ã»,r(p-1)}
å°ããé ã«äžŠãã§ãã p-1 åã®æ°ã®çµã«ã以äžã®ãã㪠3 ã€ã®æé ãããªãæäœ R ãããŸãã
ãŸããæ«å°Ÿã« a*p ãä»ãå ããäžæçã« p åçµãšããŸãã
{r1,r2,r3,r4,r5,r6,ã»ã»ã»,r(p-1),a*p}
å
é ã®æ°ããã£ããèŠããäžã§åãèœãšããŠãp-1 åçµã«æ»ããŸãã
{r2,r3,r4,r5,r6,ã»ã»ã»,r(p-1),a*p}
p-1 åã®æ°ãããããããã£ãåãèœãšããæ°ãåŒãç®ããŸãã
{r2-r1,r3-r1,r4-r1,r5-r1,r6-r1,ã»ã»ã»,r(p-1)-r1,a*p-r1}
ããŠãã§ã¯ã
(1) æ°ããã§ãã p-1 åã®æ°ã®çµã§ãããå®ã¯æåã®çµã®äœãæ¹ã®æ¡ä»¶ã«åœãŠã¯ãŸã£ãŠããŸããïŒ
ããªãã¡ã
ã»a*p 以äžã®èªç¶æ° p-1 åãå°ããé ã«äžŠãã§ãã
ã»p ã§å²ã£ãäœã㯠1 ãã p-1 ãŸã§ 1 åãã€
ã«ãªã£ãŠããŸããïŒ
----ãããã¡ãããªãã
No.867ããããã¯ã¡ã¹ã2023幎4æ11æ¥ 15:01
ãããããå°ããé ã«äžŠã¹ãŠäžã€ã®çµãšããŠãã ããã
ã®ãšããã§ããã
éžãã æ°ã¯ rk ãããªããŠãk+rk*p ã®æ¹ã§ãã
å
·äœçãªæ°ã§ãããªããšãããã®ãå°ããé ãã䞊ã¹ãã®ã¯é£ãããšæããŸããã
No.868DD++2023幎4æ11æ¥ 15:11
ããã«ãã£ãŠãa*p 以äžã®èªç¶æ°ã p-1 åéžã³åºããŸãããã
ã§ã¯ãããããå°ããé ã«äžŠã¹ãŠäžã€ã®çµãšããŠãã ããã
{1+r1p,2+r2p,3+r3p,4+r4p,5+r5p,6+r6p,ã»ã»ã»,(p-1)+r(p-1)}
å°ããé ã«äžŠãã§ãã p-1 åã®æ°ã®çµã«ã以äžã®ãã㪠3 ã€ã®æé ãããªãæäœ R ãããŸãã
ãŸããæ«å°Ÿã« a*p ãä»ãå ããäžæçã« p åçµãšããŸãã
{1+r1p,2+r2p,3+r3p,4+r4p,5+r5p,6+r6p,ã»ã»ã»,(p-1)+r(p-1),a*p}
å
é ã®æ°ããã£ããèŠããäžã§åãèœãšããŠãp-1 åçµã«æ»ããŸãã
{2+r2p,3+r3p,4+r4p,5+r5p,6+r6p,ã»ã»ã»,(p-1)+r(p-1),a*p}
p-1 åã®æ°ãããããããã£ãåãèœãšããæ°ãåŒãç®ããŸãã
{2+r2p-(1+r1p),3+r3p-(1+r1p),4+r4P-(1+r1p),5+r5p-(1+r1p),6+r6p-(1+r1p),ã»ã»ã»,(p-1)+r(p-1)p-(1+r1p),a*p-(1+r1p)}
ããŠãã§ã¯ã
(1) æ°ããã§ãã p-1 åã®æ°ã®çµã§ãããå®ã¯æåã®çµã®äœãæ¹ã®æ¡ä»¶ã«åœãŠã¯ãŸã£ãŠããŸããïŒ
ããªãã¡ã
ã»a*p 以äžã®èªç¶æ° p-1 åãå°ããé ã«äžŠãã§ãã
ã»p ã§å²ã£ãäœã㯠1 ãã p-1 ãŸã§ 1 åãã€
ã«ãªã£ãŠããŸããïŒ
---ã¯ããããã§ãæ瀺ã®æé ã¯ããã£ãŠãŸããã
ãããããå®éã®æ°ã§ãåé¡ãé²ããããã§ããïŒ
No.870ããããã¯ã¡ã¹ã2023幎4æ11æ¥ 15:38
ãããéžãã§äžŠã¹ããšããããå
·äœçãªæ°ã§ã©ããã
ã¯ã¡ã¹ããã㯠1+r1*p ãæå°å€ãšããŠããŸãããå®é㯠r1 ãš r2 ã®å€§å°ã«ãã£ãŠã¯
2+r2*p < 1+r1*p
ãšãªãå Žåããããå¿
ããã 1+r1*p ãå
é ã«ãããããããªãã®ã§ã
No.871DD++2023幎4æ11æ¥ 15:58
ã¯ã¡ã¹ãããããã£ãããã«
>ãã¥ãŒãã³ã®ããªã³ããã¢ã¯ãæç« ã°ããã§ãæ°åŒã¯ãªãã£ãããã§ãããããçŸä»£ç§éãç¿ãç©çåŠãæ°åŒäžå¿ã§ãããããã¯ãªã€ã©ãŒã®æ¥çžŸã®1ã€ã ããã§ãã
ãŸããã®ããããå€ãã®é«åãªåŠè
ãããé¢ãã£ãŠããŸãã®ã§âŠâŠ
埡åèãŸã§ã«ã
æè³ æ¢è¿ª, ç§åŠå²å
¥é 18äžçŽãšãŒãããã®ååŠç 究 : åŠè
ãã¡ã®äº€æµãšè«äº, ç§åŠå²ç 究, 2014-2015, 53 å·», 272 å·, p. 473-, å
¬éæ¥ 2020/12/14, Online ISSN 2435-0524, Print ISSN 2188-7535, https://doi.org/10.34336/jhsj.53.272_473
, https://www.jstage.jst.go.jp/article/jhsj/53/272/53_473/_article/-char/ja
No.874Dengan kesaktian Indukmu2023幎4æ11æ¥ 17:19
éäžãŸã§äœæ¥ããŠãããããã¯ã¡ã¹ãããããã®åŸã©ããªã£ãã®ãããããŸããããæ°æ¥çµã¡ãŸããã®ã§çµå±ãããäœã ã£ãã®ããšãããã¿ãã©ã·ãã
ãŸããã¿ã€ãã«ã§æåããã»ãšãã©æžããŠãããããªãã®ã§ããã
å®ã¯ããããã§ã«ããŒã®å°å®çãããåæ°ãã䜿ãããšã§åŒå€åœ¢ãªãã«çŽæ¥èšŒæã§ããªãããšè©Šã¿ããã®ã§ãã
æåã«æ瀺ããæ°ã®éžã³æ¹ã¯å
šéšã§ a^(p-1) éããããŸãã
ãã®ãã¡ãå
šãŠã®éžæ㧠a ã®åæ°ãéžãã { a, 2a, 3a, âŠâŠ, (p-1)a } ãšããçµã¯å¯äžæäœ R ã§èªåèªèº«ã«ãªããŸãã
ïŒa ãš p ãäºãã«çŽ ã®ãšãããã®éžã³æ¹ãå¿
ãå¯èœïŒ
ãããŠæ®ãã® a^(p-1) - 1 åã®çµã¯ãåãæ¡ä»¶ãæºããå¥ã®çµãé ã«å·¡ã£ãŠã2 以äžã® p ã®çŽæ°ãååŸã«èªåèªèº«ã«åž°ã£ãŠããŸãã
ããããp ã¯çŽ æ°ãªã®ã§ãã2 以äžã® p ã®çŽæ°ã㯠p 以å€ã«ãããŸããã
ã€ãŸãããã®æäœ R ã§ãããããšç¹ããé¢ä¿ p å 1 ã°ã«ãŒãã« a^(p-1) - 1 åã®ãã®ããããªãããããªãåããããŸãã
ãã£ãŠãa ã p ãšäºãã«çŽ ã§ããã°ãa^(p-1) - 1 㯠p ã®åæ°ã§ããããšã瀺ããâŠâŠãããšããã»ã©ãã¡ããšæžããŠã¯ããŸãããããªãã»ã©ç¢ºãã«æãç«ã¡ããã ãšèšãããããã®ãªã¢ãã£ãã§ããŸããã
âŠâŠãšããããšãªã®ã§ããã
ã¿ãªããããäœã a^(p-1) åã®ãã®ãçšæããŠããããã 1 ã€ãåãé€ããšãæ®ããæŒããªã p åãã€ã®ã°ã«ãŒãã«ãããããããããªãã®ãæãã€ãããæ¯éæããŠãã ããã
å®éã«ãã£ãŠã¿ããšãç°¡åã«äœãããã«èŠããŠãã¡ããã¡ãé£ããã§ãã
No.890DD++2023幎4æ14æ¥ 16:51
DD++æ§ãããã°ãã¯ã
æšæ¥ã1åç®ãŸã§ããããŸãããïŒïŒïŒã®åé¡ãŸã§ããªãå
ãããããã§ãã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ãŸããçŽ æ° p ããã³ãããšäºãã«çŽ ãªèªç¶æ° a ã決ããŠãã ããã
p=7ãa=5ããšããŸãã
ã1, 1+p, 1+2p, âŠâŠ, 1+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
1+3p=22
ã2, 2+p, 2+2p, âŠâŠ, 2+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
2+2p=16
ã3, 3+p, 3+2p, âŠâŠ, 3+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
3+2p=17
ã4, 4+p, 4+2p, âŠâŠ, 4+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
4+3p=25
ã5, 5+p, 5+2p, âŠâŠ, 5+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
5+2p=19
ã6, 6+p, 6+2p, âŠâŠ, 6+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
6+2p=20
ããã«ãã£ãŠãa*p 以äžã®èªç¶æ°ã p-1 åéžã³åºããŸãããã
ã§ã¯ãããããå°ããé ã«äžŠã¹ãŠäžã€ã®çµãšããŠãã ããã
{16,17,19,20,22,25}
å°ããé ã«äžŠãã§ãã p-1 åã®æ°ã®çµã«ã以äžã®ãã㪠3 ã€ã®æé ãããªãæäœ R ãããŸãã
ãŸããæ«å°Ÿã« a*p ãä»ãå ããäžæçã« p åçµãšããŸãã
{16,17,19,20,22,25,35}
å
é ã®æ°ããã£ããèŠããäžã§åãèœãšããŠãp-1 åçµã«æ»ããŸãã
{17,19,20,22,25,35}
p-1 åã®æ°ãããããããã£ãåãèœãšããæ°ãåŒãç®ããŸãã
{1,3,4,6,9,19}
ããŠãã§ã¯ã
(1) æ°ããã§ãã p-1 åã®æ°ã®çµã§ãããå®ã¯æåã®çµã®äœãæ¹ã®æ¡ä»¶ã«åœãŠã¯ãŸã£ãŠããŸããïŒ
ããªãã¡ã
ã»a*p 以äžã®èªç¶æ° p-1 åãå°ããé ã«äžŠãã§ãã
ã»p ã§å²ã£ãäœã㯠1 ãã p-1 ãŸã§ 1 åãã€
ã«ãªã£ãŠããŸããïŒ
{1,3,4,6,9,19}â¡{1,3,4,6,2,5}(mod p=7)
(2) ãšããããšã¯ãæ°ããã§ããçµã«å¯ŸããŠæäœ R ãããäžåºŠè¡ãããšãã§ããŸãã
ãããŠã§ããçµã«ãŸãããäžåºŠãããã«ããäžåºŠã
æäœ R ã p åç¹°ãè¿ãããšããäœããèµ·ãããšæããŸãããããã¯äœã§ãããã
(1)
{1,3,4,6,9,19,35}
{3,4,6,9,19,35}
{2,3,5,8,18,34}
{2,3,5,8,18,34}â¡{2,3,5,1,4,6}(mod p=7)
(2)
{2,3,5,1,4,6}
{1,2,3,4,5,6}
{2,3,4,5,6,35}
{1,2,3,4,5,34}}â¡{1,2,3,4,5,6}(mod p=7)
(3)
{1,2,3,4,5,6,35}
{2,3,4,5,6,35}
{1,2,3,4,5,34}â¡{1,2,3,4,5,6}(mod p=7)
(4)
{1,2,3,4,5,6}
{1,2,3,4,5,6}
{2,3,4,5,6,35}
{1,2,3,4,5,34}}â¡{1,2,3,4,5,6}(mod p=7)
(5)
{1,2,3,4,5,6}
{1,2,3,4,5,6}
{2,3,4,5,6,35}
{1,2,3,4,5,34}}â¡{1,2,3,4,5,6}(mod p=7)
(6)
{1,2,3,4,5,6}
{1,2,3,4,5,6}
{2,3,4,5,6,35}
{1,2,3,4,5,34}}â¡{1,2,3,4,5,6}(mod p=7)
(7)
{1,2,3,4,5,6}
{1,2,3,4,5,6}
{2,3,4,5,6,35}
{1,2,3,4,5,34}}â¡{1,2,3,4,5,6}(mod p=7)
çã
{1,2,3,4,5,6}(mod p=7)
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ãŸã¡ãã£ãŠãŸãïŒ
No.892ããããã¯ã¡ã¹ã2023幎4æ14æ¥ 18:45
ã1 åç®ã®çµæã㯠{2,3,5,8,18,34} ã§ããã
No.893DD++2023幎4æ14æ¥ 19:04
ãã(2) ã® 1 åç®ãã€ãŸãå
šäœã® 2 åç®ã®çµæã®ããšã§ãã
No.894DD++2023幎4æ14æ¥ 19:05
ïŒ(2) ãšããããšã¯ãæ°ããã§ããçµã«å¯ŸããŠæäœ R ãããäžåºŠè¡ãããšãã§ããŸãã
ãããŠã§ããçµã«ãŸãããäžåºŠãããã«ããäžåºŠã
æäœ R ã p åç¹°ãè¿ãããšããäœããèµ·ãããšæããŸãããããã¯äœã§ãããã
ããããã£ãã€ããã§ãããã»ã»ã»ã»
ééã£ãŠãŸãããïŒ
ïŒ(3) æåã®çµãæ°ãã«äœãçŽããåã³æäœ R ã p åç¹°ãè¿ããŠã¿ãŠãã ããã
ãããã¯ã3 ã€ãã4 ã€ãã®çµãäœã£ãŠããããã§ãã
ã»ãšãã©å
šãŠã®çµã§åãçŸè±¡ãèµ·ããããšã確èªããŠãã ããã
ã§ãããã¯ã©ããªããã ãããšæ¢ãŸã£ãã®ã§ãã
No.895ããããã¯ã¡ã¹ã2023幎4æ14æ¥ 20:01
{1,3,4,6,9,19,35} <- æåŸã« 35 ãã€ããïŒæäœ R ã® 1 ã€ãïŒ
{3,4,6,9,19,35} <- 1 ãåãèœãšããŠïŒæäœ R ã® 2 ã€ãïŒ
{2,3,5,8,18,34} <- å
šéšãã 1 ãåŒãããå®æïŒæäœ R ã® 3 ã€ãïŒ
{2,3,5,8,18,34}â¡{2,3,5,1,4,6}(mod p=7) <- äœãããã©ãã©ã確èªããã ã
ããŠãæäœ R ã®å®æåã¯ã©ãã§ãããïŒ
æ¬åœã« {2,3,5,1,4,6} ã§ããïŒ
No.896DD++2023幎4æ14æ¥ 20:50
ãã 1 åæäœ R ã®å®çŸ©ããã¡ããšèªãã§ãã ããã
No.899DD++2023幎4æ15æ¥ 07:11
ïŒå°ããé ã«äžŠãã§ãã p-1 åã®æ°ã®çµã«ã以äžã®ãã㪠3 ã€ã®æé ãããªãæäœ R ãããŸãã
ãŸããæ«å°Ÿã« a*p ãä»ãå ããäžæçã« p åçµãšããŸãã
å
é ã®æ°ããã£ããèŠããäžã§åãèœãšããŠãp-1 åçµã«æ»ããŸãã
p-1 åã®æ°ãããããããã£ãåãèœãšããæ°ãåŒãç®ããŸãã
ã§ãããã
ãšãããšã
ïŒ{2,3,5,8,18,34} <- å
šéšãã 1 ãåŒãããå®æïŒæäœ R ã® 3 ã€ãïŒ
ã§ããããïŒ
No.900ããããã¯ã¡ã¹ã2023幎4æ15æ¥ 08:55
ã¯ãããããæäœ R ã®çµæã§ãã
ã§ãããã次㯠{2,3,5,8,18,34} ããåºçºã«ãªããŸãã
No.901DD++2023幎4æ15æ¥ 08:58
(1)
{1,3,4,6,9,19,35}
{3,4,6,9,19,35}
{2,3,5,8,18,34}
(2)
{2,3,5,8,18,34}
{3,5,8,18,34,35}
{1,3,6,16,32,33}
(3)
{1,3,6,16,32,33}
{3,6,16,32,33,35}
{2,5,15,31,32,34}
(4)
{2,5,15,31,32,34}
{5,15,31,32,34,35}
{3,13,29,30,32,33}
(5)
{3,13,29,30,32,33}
{13,29,30,32,33,35}
{10,26,27,29,30,32}
(6)
{10,26,27,29,30,32}
{26,27,29,30,32,35}
{16,17,19,20,22,25}
(7)
{16,17,19,20,22,25}
{17,19,20,22,25,35}
{1,3,4,6,9,19}
çã
{1,3,4,6,9,19}
ããã§ããã£ãŠãŸãããïŒ
No.902ããããã¯ã¡ã¹ã2023幎4æ15æ¥ 09:14
ã¯ããååã§ãã£ãŠããããšã¯ãã£ãŠããŸãã
ãã ã{16,17,19,20,22,25} ãã {1,3,4,6,9,19} ãäœã£ãã®ã 1 åç®ã§ãããã
> (6)
> {10,26,27,29,30,32}
> {26,27,29,30,32,35}
> {16,17,19,20,22,25}
ã 7 åç®ã§ãããã§ã¹ãããã§ãã
No.903DD++2023幎4æ15æ¥ 09:20
é¢çœãã£ãã®ã§ã玹ä»ããããŸãã
Hereâs How Two New Orleans Teenagers Found a New Proof of the Pythagorean Theorem | by Keith McNulty | Apr, 2023 | Medium
h_TT_ps://keith-mcnulty.medium.com/heres-how-two-new-orleans-teenagers-found-a-new-proof-of-the-pythagorean-theorem-b4f6e7e9ea2d
No.839Dengan kesaktian Indukmu2023幎4æ9æ¥ 13:04
Dengan kesaktian Indukmuæ§ãããã°ãã¯ã
google翻蚳ããŸããã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
éšåã®ãã 1 ã€ã®çç±ã¯ããããã®è¥ãå
é§è
ãææ¡ãã蚌æãã確ç«ãããæ°äººã®æ°åŠè
ã«åœŒãã®èšèãé£ãç©ã«ãããããããªããšããããšã§ãã
ããã¯ã圌ãã®èšŒæãäžè§æ³ã䜿çšããŠããããã§ãã
ã§ã¯ããªãããããããªã«å€§ããªåé¡ãªã®ã§ããïŒ ããŠãç§ãã¡ã®äžè§æçåŒãšæ³åã®å€ãã¯ãã¿ãŽã©ã¹ã®å®çã«äŸåããŠãããããå€ãã®æ°åŠè
ã¯ãäžè§æ³ã䜿çšããå®çã®èšŒæã¯åŸªç°è«çã§ãããšç€ºåããŠããŸãã å¥ã®èšãæ¹ãããã°ãäžè§æ³ã䜿çšããŠãã¿ãŽã©ã¹ã蚌æããããšã¯ãåºæ¬çã« A ã䜿çšã㊠B ã蚌æããããšã§ãããA ãæ¢ã« B ã«äŸåããŠããå Žåã«ã圌ãã¯äž»åŒµããŸãã -å®çã®äžè§æ³ã«ãã蚌æãããã³äžè§æ³ã®èšŒæã¯äžå¯èœã§ããããšãæ瀺çã«è¿°ã¹ãŠããŸãã
ãããããã®èŠ³ç¹ã¯ããæ°å幎ã§ãŸããŸãçåèŠãããŠããŠããããã以æ¥ããã¿ãŽã©ã¹ã®ããã€ãã®äžè§æ³ã«ãã蚌æãè¡ãããŠããŸãã. ãžã§ã³ãœã³ãšãžã£ã¯ãœã³ã®èšŒæããã¿ãŽã©ã¹ã®æåã®äžè§æ³ã«ãã蚌æã§ãããšããã¡ãã£ã¢ã®äž»åŒµã¯èªåŒµãããŠããŸããã圌ãã®èšŒæã¯ããããŸã§ã«èŠãäžã§æãçŸãããæãåçŽãªäžè§æ³ã®èšŒæã§ããå¯èœæ§ãååã«ãããæããã«è¥ããŠéãç¥æ§ã®äœåã§ããã å€ãã®çµéšè±å¯ãªæ°åŠè
ã®ä»äºãç¹åŸŽä»ããæ·±ãç 究ã®å¹Žã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
æ°ããææ³ãªãã ãã©ãèŠããã«ã
å¥ã®èšãæ¹ãããã°ãäžè§æ³ã䜿çšããŠãã¿ãŽã©ã¹ã蚌æããããšã¯ãåºæ¬çã« A ã䜿çšã㊠B ã蚌æããããšã§ãããA ãæ¢ã« B ã«äŸåããŠããå Žåã«ã圌ãã¯äž»åŒµããŸãã -å®çã®äžè§æ³ã«ãã蚌æãããã³äžè§æ³ã®èšŒæã¯äžå¯èœã§ããããšãæ瀺çã«è¿°ã¹ãŠããŸãã
ãšããããšããåé¡ç¹ã§ããããšããããšã§ããã
No.847ããããã¯ã¡ã¹ã2023幎4æ9æ¥ 19:37
ã¯ãã
ã§ãã®ã§ä»åã¯ãããã埪ç°è«æ³ãé¿ããŠããããšããç解ã§ããããããšããšã
No.848Dengan kesaktian Indukmu2023幎4æ10æ¥ 07:26
ãããããŒãŒãŒãèªããšåŸªç°è«æ³ã®å®å
šãªåé¿ã¯åŸ®åŠã«å€±æããŠãŸãã
In this case we have an isoceles right-angled triangle and, our angles ⺠= β = Ï/4 radians. So our hypotenuse is a/sin(Ï/4) = â2a, which satisfies the Pythagorean Theorem.
ãã® sin(Ï/4) ã®å€ã¯ã©ãããïŒ
éåžžã¯äžå¹³æ¹ã®å®çã§å°åºãããã®ã§ãããããã埪ç°è«æ³ãé¿ããããšã«æåãããšäž»åŒµããã«ã¯ãããå¥ã®æ¹æ³ã§å°åºããŠèŠããå¿
èŠããã£ãã§ãããã
ãŸããçžäŒŒãªå³åœ¢ã®é¢ç©æ¯ã䜿ããšãåé¿æ¹æ³ã¯ãããã§ãããã®ã§å çä¿®æ£ã¯å®¹æã§ããããã©ã
No.849DD++2023幎4æ10æ¥ 11:50
ããã£ã
a=b ã®ç¹æ®ãªã±ãŒã¹ã§ã¯
AãCã®åæ¯ã 0 ã«ãªã£ãŠããŸã
ä»åã®èšŒæãéçšããªãã
ãããã話ã®æµããªã®ã§ããïŒïŒ
ãã®ã±ãŒã¹ã§ã®ç蚌æã«
sin(Ï/4)
ã䜿ãã®ã¯ç¢ºãã«ååã§ããã
No.850Dengan kesaktian Indukmu2023幎4æ10æ¥ 12:58
å¯ããããŠããã³ã¡ã³ããè¿œãããããšãã
a = b ã®ã±ãŒã¹ã§ã¯ã次ã®ããã«æ¹åããæ¡ããããããŠããŸããã
By the way, that case is trivial: the triangle is a one-fourth of a square whose side length is $c$. The area of this square is c^2, while the triangleâs area is (ab)/2 = a^2/2. Therefore c^2=4 times a^2/2 = 2a^2 = a^2+b^2, as desired.
No.851Dengan kesaktian Indukmu2023幎4æ10æ¥ 13:46
google翻蚳ããŸãã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ãã®æ°ãã蚌æ ã¯äœã§ããïŒ
ããããŸããã®ã§ããããç§ãèããæ¹æ³ã§ãã ãã®å³ãèŠãŠããã®èšŒæãéããŠãã£ãšåç
§ããŠãã ããã
å³ã®ããã«ã蟺 aãbãc (æ蟺) ãæã€å·Šäžã®åçŽãªçŽè§äžè§åœ¢ããå§ããŸãããã ããã§ã¯ãa â b ãšä»®å®ããŸããã â ãã®èšäºã®æåŸã®æ³šã§ãa = b ã®èªæãªç¹æ®ãªã±ãŒã¹ãæ±ããŸãã é·ã b ãš c ã®èŸºã®éã®è§åºŠã ⺠ãšããé·ã a ãš c ã®èŸºã®éã®è§åºŠã β ãšããŸãã 次ã«ããã®å
ã®çŽè§äžè§åœ¢ãã 3 ã€ã®å¹ŸäœåŠçãªã¹ããããäœæããŸãã
é·ã b ã®èŸºã«åæ ããŠãå³äžã®ç䟡äžè§åœ¢ã圢æããŸãã
å
ã®äžè§åœ¢ã®é·ã c ã®èŸºã«åçŽãªçŽç·ã延é·ããŸãã
åå°ããäžè§åœ¢ã®æ蟺ããé£ç¶ç·ã延é·ããŸãã
ã¹ããã 2 ãš 3 ãã延é·ããç·ã亀ãããšãå³ã®ããã«ãæ蟺ã®é·ãã Cã蟺ã A ãš c ã®æ°ãã倧ããªçŽè§äžè§åœ¢ã圢æãããŸãã
ãã®å€§ããªçŽè§äžè§åœ¢å
ã«ãå³ã®ããã«äžé£ã®å°ãããŠå°ããé¡äŒŒã®çŽè§äžè§åœ¢ãæç»ãããµã€ãºãæžå°ããé¡äŒŒã®äžè§åœ¢ã®ç¡éã®ã·ãŒã±ã³ã¹ã圢æããŸãã
ãã®ç¡éã®çžäŒŒäžè§åœ¢ã®ã·ãŒã±ã³ã¹ã䜿çšããŠãé·ã A ãš C ãå°åºããæ¹æ³ã調ã¹ãŸãã
å°ããäžè§åœ¢ã®èŸºã®é·ããå°ãåºã
蟺ã®é·ã A ã®å·Šäžãã 1 çªç®ã®çŽè§äžè§åœ¢ãèŠããšããã®äžè§åœ¢ã®èŸºã®é·ã㯠2a ã§ããããããã£ãŠæ蟺ã®é·ã㯠2a/sinβ ã§ãã ããããå
ã®äžè§åœ¢ãããsinβ = b/c ã§ããããšãããã£ãŠããã®ã§ããã®æ蟺ã¯é·ã (2ac)/b ã§ãããšçµè«ä»ããããšãã§ããŸãã ããã«ããããã®äžè§åœ¢ã® 3 çªç®ã®èŸºã¯ 2a²/b ã«ãªããŸãã
ããã«å³åŽã®äžè§åœ¢ã«ç§»åãããšãç蟺㮠1 ã€ãé·ã 2a²/b ã§ããããšãããããŸãããããã£ãŠããã®äžè§åœ¢ã®æ蟺 (蟺ã®é·ã C ã®ã»ã°ã¡ã³ã) 㯠2a²/(bsinβ) = (2a²c) /b² ã§ãã
ãã®ããã»ã¹ãç¶ããããšãã§ããŸãããå°ããªçžäŒŒäžè§åœ¢ã®ããããã a²/b² ã®ä¿æ°ã§æžå°ããããšãæããã«ãªããŸãã ããã¯ãé·ã A ãæåã®é
(2ac)/b ãšå
¬æ¯ a²/b² ãæã€çæ¯çŽæ°ã§ããããšãæå³ããŸãã åæ§ã«ãé·ã C 㯠c ã§å§ãŸããæåã®é
(2a²c)/b² ãšå
¬æ¯ a²/b² ã®çæ¯çŽæ°ã«ãªããŸãã
é·ã A ãš C ã®èšç®
ããã§ãçæ¯çŽæ°ã®åã®åŒã䜿çšããŠãé·ã A ãš C ãèšç®ã§ããŸããåé
k ãšå
¬æ¯ r ã®çæ¯çŽæ°ã®åã®åŒã¯ãk/(1-r) ã§ãã ãã®åèšã¯ãr ã®çµ¶å¯Ÿå€ã 1 æªæºã®å Žåã«åæããŸãããã®å Žåãr 㯠a²/b² ã§ãããããåžžã«åæããããšã確èªã§ããŸã (a>b ã®å Žåã¯ããããã亀æããã ãã§ã)ã
ããã§ã¯ãé·ã A ãèšç®ããŠã¿ãŸãããããã®å Žåãk = (2ac)/b ããã³ r = a²/b² ãšãªãã®ã§ã
A=2ac/b(1-a^2/b^2)=2abc/b^2-a^2
k = (2a²c)/b² ã§åæ§ã®ã¢ãããŒãã䜿çšããæåã« c ãè¿œå ããå¿
èŠãããããšãæãåºããŠãã ããã
C=c+2a^2c/b^2(1-a^2/b^2)=c(b^2+a^2)/(b^2-a^2)
ããã§ã¯ãé·ã A ãèšç®ããŠã¿ãŸãããããã®å Žåãk = (2ac)/b ããã³ r = a²/b² ãšãªãã®ã§ã
k = (2a²c)/b² ã§åæ§ã®ã¢ãããŒãã䜿çšããæåã« c ãè¿œå ããå¿
èŠãããããšãæãåºããŠãã ããã
ãã®çŸãã蚌æãç· ãããã
A ãš C ã®æ¯ãåããšã©ããªããèŠãŠã¿ãŸãããã
A/C=2ab/(a^2+b^2)
ããããå
ã®å³ããããã㯠sin(2âº) ã§ããããšãããããŸãã
ããã§ãå
ã®çŽè§äžè§åœ¢ãåæ ããŠåœ¢æãããäžã®äºç蟺äžè§åœ¢ã®æ£åŒŠèŠåãèŠãŠã¿ãŸãããã æ£åŒŠå®çã¯çŽè§äžè§åœ¢ã«äŸåããªãããšã«æ³šæããŠãã ããã ãµã€ã³ ã«ãŒã«ã¯ãã©ã®äžè§åœ¢ã§ãã蟺ãšãã®å察åŽã®è§åºŠã®ãµã€ã³ãšã®æ¯çã¯åžžã«åãã§ãããšè¿°ã¹ãŠããŸãã
ãããã£ãŠïŒ
sin 2α/2a=sinβ/c
ãããã£ãŠãçŸåšããã£ãŠããããšã次ã®åŒã«å€æããŸãã
b/(a^2+b^2)=b/c^2
ãã®ç¶æ³ã§ã¯ãaãbãc ã®ãããããŒãã§ã¯ãªãããšã«æ³šæããååãåäžã§ããããšã«æ³šæãããšãåæ¯ãåäžã§ãããšããçµè«ã«è³ããŸãã ããã§ãã¿ãŽã©ã¹ã®å®çã蚌æãããŸããã
[泚: a = b ãšããç¹æ®ãªã±ãŒã¹ã§ã¯ãäžè§åœ¢ã«é·ã a ã® 2 ã€ã®çã蟺ãšæ蟺ãããå Žåã蚌æã¯èªæã§ãã ãã®å ŽåãçŽè§äºç蟺äžè§åœ¢ããããè§åºŠ ⺠= β = Ï/4 ã©ãžã¢ã³ã§ãã ãããã£ãŠãæ蟺㯠a/sin(Ï/4) = â2a ã§ããããã¿ãŽã©ã¹ã®å®çãæºãããŸãã ããã£ã¢ã ãŠãŒã¶ãŒã«æè¬
ãŠã©ããã·ãã
ãã®ç¹å¥ãªã±ãŒã¹ã«å¯ŸåŠããå¿
èŠæ§ãææããŠãããŠ.]
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
å³ãããã«ã¯ãããŸããããåæã«ã¯ãããŸãã
No.852ããããã¯ã¡ã¹ã2023幎4æ10æ¥ 14:20
æŸããã®ã§ãã
ððð ðŠ = ððð (ð¥ â (ð¥ â ðŠ))
= ððð ð¥ ððð (ð¥ â ðŠ) + ð ðð ð¥ ð ðð(ð¥ â ðŠ)
= ððð ð¥(ððð ð¥ ððð ðŠ + ð ðð ð¥ ð ðð ðŠ) + ð ðð ð¥(ð ðð ð¥ ððð ðŠ â ððð ð¥ ð ðð ðŠ)
= (ððð ² ð¥ + ð ðð² ð¥) ððð ðŠ.
cos y ã0ã§ãªããã°ã䞡蟺ãããã§å²ãã
以äžã¯ããã¿ãŽã©ã¹ã®å®çãéœã«ã¯äœ¿ããã«
cos^2x ãš sin^2x ãšã®åã 1 ãšç€ºããã®ã§ãã
No.853Dengan kesaktian Indukmu2023幎4æ10æ¥ 16:25
å æ³å®çã¯äžäœã©ããã湧ããŠåºãã®ã§ããããã
sin ã cos ã埮åã§å®çŸ©ããŠããå Žåã¯å æ³å®çããã¯ããŒãªã³å±éãšäºé
å®çã§ç€ºãããšã«ãªãã§ããããããã®å Žåã¯ããã§å€§äžå€«ãšãã話ãªã®ããªïŒ
No.854DD++2023幎4æ10æ¥ 16:45
ãšæããŸããããå°ãèããŠã¿ãã
sâ(x) = c(x)
câ(x) = -s(x)
s(0) = 0
c(0) = 1
ã®è§£ã s(x) = sin x, c(x) = cos x ãšããå®çŸ©ã®å Žåã
{ (sin x)^2 + (cos x)^2 }â = 0 ãäžç¬ã§ç€ºããã®ã§ãå æ³å®çã䜿ããŸã§ããªãã£ãâŠâŠã
çŽæ°ã§å®çŸ©ããå Žåããã®åŸ®åã®é¢ä¿åŒãããäœããŸãããäœãç®çãšããåŒå€åœ¢ã ã£ããã§ããããã³ã¬ã
No.855DD++2023幎4æ10æ¥ 16:56
倱瀌ããŸããã
æŸã£ãå ŽæãèšãæŒãããŸããã
https://forumgeom.fau.edu/FG2009volume9/FG200925.pdf
ã§ãã
No.856Dengan kesaktian Indukmu2023幎4æ10æ¥ 17:07
ããéè§éå®ãªãã§ããã
ãããªã確ãã«å æ³å®çã«äžå¹³æ¹ã¯äžèŠã§ããã
No.857DD++2023幎4æ10æ¥ 17:17
ã§ããéè§éå®ã§ããã£ã±ãå æ³å®ç䜿ããŸã§ããªããããªæ°ãããŸããã
â B = Ξ, â C = Ï/2, AB = 1 ã®äžè§æ¯ã®å®çŸ©ã«äœ¿ããã€ãã®çŽè§äžè§åœ¢ ABC ã«å¯Ÿãã
蟺 DE ãç¹ C ãéãããã«é·æ¹åœ¢ ABDE ãæžãã°çžäŒŒãªçŽè§äžè§åœ¢ã 3 ã€ã§ããŠã
BC = cosΞ 㧠DC = (cosΞ)^2
AC = sinΞ 㧠EC = (sinΞ)^2
(cosΞ)^2 + (sinΞ)^2 = DC + EC = AB = 1
ã§çµãã話ãªãããªã
No.858DD++2023幎4æ10æ¥ 17:34
Dengan kesaktian Indukmuæ§ããã¯ããããããŸãã
ïŒã§ãã®ã§ä»åã¯ãããã埪ç°è«æ³ãé¿ããŠããããšããç解ã§ããããããšããšã
ããããsinαãsinβãšããäžè§é¢æ°ã®æŠå¿µã䜿ã£ãŠããŸãããã
ïŒèŸºã®é·ã A ã®å·Šäžãã 1 çªç®ã®çŽè§äžè§åœ¢ãèŠããšããã®äžè§åœ¢ã®èŸºã®é·ã㯠2a ã§ããããããã£ãŠæ蟺ã®é·ã㯠2a/sinβ ã§ãã ããããå
ã®äžè§åœ¢ãããsinβ = b/c ã§ããããšãããã£ãŠããã®ã§ããã®æ蟺ã¯é·ã (2ac)/b ã§ãããšçµè«ä»ããããšãã§ããŸãã ããã«ããããã®äžè§åœ¢ã® 3 çªç®ã®èŸºã¯ 2a²/b ã«ãªããŸãã
ãããæããã§ãããsinβ = b/c ã¯ã
ïŒããã«å³åŽã®äžè§åœ¢ã«ç§»åãããšãç蟺㮠1 ã€ãé·ã 2a²/b ã§ããããšãããããŸãããããã£ãŠããã®äžè§åœ¢ã®æ蟺 (蟺ã®é·ã C ã®ã»ã°ã¡ã³ã) 㯠2a²/(bsinβ) = (2a²c) /b² ã§ãã
ã§ã䜿ãããŠããŸããb/cãsinβãšããããšãªãã«ãè«çã¯ãã¿ããŠãããªããšæããŸãã
ïŒA ãš C ã®æ¯ãåããšã©ããªããèŠãŠã¿ãŸãããã
A/C=2ab/(a^2+b^2)
ããããå
ã®å³ããããã㯠sin(2âº) ã§ããããšãããããŸãã
ããã§ããsin(2âº)ãšããäžè§é¢æ°ã®æŠå¿µã䜿ãããŠããŸãã
ïŒåŸªç°è«æ³ãé¿ããŠãã
ãšã¯èšããªãã®ã§ã¯ãªãã§ããããïŒ
ã§ãªããã°ãæç« ã®ååã¯ããããªãã£ãã¯ãã§ããã埪ç°è«æ³ãªããã©ãããšããå眮ããããããããã®ææžãããã®ã§ã¯ãªãã§ããããïŒ
No.860ããããã¯ã¡ã¹ã2023幎4æ11æ¥ 07:23
äžè§é¢æ°ã®å®çŸ©èªäœã䜿ãã ããªã埪ç°è«æ³ã«ã¯ãªããŸãããã
ãæå
ã®æ°åŠã®æç§æžãèŠãŠãã ããã
(sinΞ)^2 + (cosΞ)^2 = 1 ãšããéèŠãªåŒã®èšŒæã«äžå¹³æ¹ã®å®çãé¢ãã£ãŠããŸããã
ã ããããã®ããŒãžããåŸã«æžããŠããããšã¯ãäžå¹³æ¹ã®å®çã®èšŒæã«äœ¿ã£ãŠã¯ãªããŸããã
èšãæ¹ãå€ããã°ããã®ããŒãžããåã«æžããŠããããšã¯å¥ã«äœ¿ã£ãŠãäœãåé¡ã¯ãªããã§ãã
ã ãããäžè§é¢æ°ïŒã®äžå¹³æ¹ã®å®çã䜿ãåã®éšåïŒã§ãã¡ããšäžå¹³æ¹ã®å®çã蚌æããããšã«æåããããšãã話é¡ãªã®ã§ããã
ã¯ã¡ã¹ãããã¯ã©ããæ°åŒããèŠãŠããªãããã§ãããèšèªãšåãããŠèªãããã«ããæ¹ãããããããšã
No.863DD++2023幎4æ11æ¥ 08:54
(sinΞ)^2 + (cosΞ)^2 = 1
ãããåæãšããã«
æ£åŒŠå®çã£ãŠãªããã€ãã ã£ãïŒ
ãããã念ã®ããã«ç¢ºèªã¯ããããŸããã
埪ç°è«æ³ã«ãªã£ãŠããªãããšã確èªããããã§ãã
No.864Dengan kesaktian Indukmu2023幎4æ11æ¥ 09:08
ããããããã°æ£åŒŠå®ç䜿ã£ãŠãŸãããã
ã§ã¯ã2 ã€äžã®ã³ã¡ã³ããèšæ£ã
ãäžè§é¢æ°ïŒã®äžå¹³æ¹ã®å®çã䜿ãåã®éšåãšãæç§æžã®æ²èŒé çã«ã¯åŸãã ãã©äžå¹³æ¹ã䜿ããã®ã«äŸåãã蚌æãæ§æãããŠãããã®ïŒã§ãã¡ããšäžå¹³æ¹ã®å®çã蚌æããããšã«æåããã
ã§ããã
éè§ã®äžè§æ¯ã®å®çŸ©
tan = sin / cos
éè§ã®æ£åŒŠå®ç
第äžäœåŒŠå®çïŒé«æ ¡ã§ç¿ããã€ã¯ç¬¬äºäœåŒŠå®çã§ããã£ã¡ã¯ãã¡ïŒ
éè§ã®å æ³å®çâŠâŠãããã§ããã
No.865DD++2023幎4æ11æ¥ 09:25
ãªããæããã§äŒŒããããªããšãã£ããããªããšæã£ãŠèª¿ã¹ãŠã¿ãããããŸããã
ãäžç·å®çã
http://shochandas.xsrv.jp/mathbun/mathbun658.html
äžå¹³æ¹ã®å®çã䜿ããã«äžç·å®çã瀺ãããããšãã話é¡ã§ãã
ååã¯ãªãã¯ãããé£ã¹ãããã«ããŠãããŸãã
No.866DD++2023幎4æ11æ¥ 09:46 管ç人ããããç矩ãããã£ãŠããããšã«
æ°ãä»ããŸãããæŠããäžèšã®ããšããšåããŸãã
ãæ£åŒŠå®çã¯(第ïŒ)äœåŒŠå®çããå°ãããããã®äœåŒŠå®çããã¯çŽæ¥ã«äžå¹³æ¹ã®å®çãå°ãããããžã§ã³ãœã³ãšãžã£ã¯ãœã³ã«ããä»åã®æ°èšŒæãæ£åŒŠå®çã«äŸæ ããã®ã¯ãŸããã®ã§ã¯ãªããïŒã
ç§ãå°ã
èã蟌ã¿ãŸããã
調ã¹ããšããã以äžãããããŸãããããªãã¡
äžè§é¢æ°ã®å æ³å®çã®ããšã§ã¯
æ£åŒŠå®çãšç¬¬ïŒäœåŒŠå®çãšç¬¬ïŒäœåŒŠå®çãšã¯
åå€ã§ããã
ã§ããã
å æ³å®çã«äŸæ ãã€ã€
ãžã§ã³ãœã³ãšãžã£ã¯ãœã³ãšã®æ°èšŒæãç解ããããšãããã¯ãŸããããã埪ç°è«æ³ã®è¬ããå
ããªãã
ãããã©ãããã°ããã®ãïŒ
æ£åŒŠå®çã®åçš®ã®èšŒæã調ã¹ãŠãã ãã£ãŠããããã¹ããã¿ã€ããŸããã
http://izumi-math.jp/K_Satou/seigen/seigen.htm
äžèšã®ãªãããé©åãªãã®ãèŠãã ããã°ãããšæããŸããã
ãžã§ã³ãœã³ãšãžã£ã¯ãœã³ã¯
é¢ç©ã«ãã蚌æãåé¿ã
蟺ã®é·ãã®çžäŒŒãå©çšããŠããŸããã
ãã®å¿åãšãæŽåããã»ããè¯ãã§ããã
ãããã®ææžã®ãæ®éã®èšŒæïŒïŒïŒã
ã解ããããããšæããŸããã
ãããã¯ã
ãïŒã幟äœåŠç蚌æãïŸïœ¯ïŸïœ°ïŸïŸã«ãããäžè§æ³ã®åºç€ãã€ãã£ãïŸïœ·ïŸïœµïŸïŸïŸïŸïœœ(1436-1376)ã®èšŒæã
ãçŽ æµã§ãã
ããã«ããŠããDD++ããã«ãã
No.858
ã¯ã¯ãŒã«ã§ããã
No.885Dengan kesaktian Indukmu2023幎4æ13æ¥ 11:13
æå
ã«é«æ ¡æ°åŠã®æç§æžããªãã®ã§èšæ¶é Œãã§ãããæ¥æ¬ã®é«æ ¡æè²ã§ã¯æ£åŒŠå®çã¯åãååšè§ããã€çŽè§äžè§åœ¢ã䜿ã£ãŠèšŒæããŠãããšæããŸãã
ããã§äœ¿ã£ãŠããã®ã¯
ã»ååšè§ã®å®ç
ã»ã¿ã¬ã¹ã®å®ç
ã»äžè§æ¯ã®å®çŸ©
ã»çŽåŸãšååŸã®å®çŸ©
ãããã ã£ãã¯ãã§ãäžå¹³æ¹ã®å®çã¯å
šã䜿ã£ãŠãªãã§ããã
äœåŒŠå®çã䜿ãæ¹æ³ã¯ãç§ã¯ä»å調ã¹ãŠåããŠååšãç¥ããŸããã
æµ·å€ã ãšã©ã®æ¹æ³ã§ã®èšŒæãã¡ãžã£ãŒãªãã ããã
No.886DD++2023幎4æ13æ¥ 12:08
law of sines ã§æ€çŽ¢ããŠè±èªããŒãžãããããèŠãŠã¿ãŸããã
æ¥æ¬ãšã¯éã£ãŠã=2R ãã€ããŠããªã圢ã§çŽ¹ä»ãããŠããããšãã»ãšãã©ã®ããã§ãã
ãã®ããã蚌æã以äžã§çµãããšããã®ãæ®éã®ããã
A ã B ãéè§ã®å Žåãé ç¹ C ãã蟺 AB ã«äžãããåç·ã®é·ããèãããš
b*sinA = a*sinB
䞡蟺ã sinA ããã³ sinB ã§å²ã£ãŠåŸãããã
ã©ã¡ãããéè§ã®å Žåã¯å
è§ãšå€è§ã® sin ã®å€ã¯çããããšãèããã°åãããšãèšããã
åé¡ã¯äžå¹³æ¹ã®å®çã䜿ã£ãŠãããã©ããã
çŽè§ãéè§ã®å Žåã¯ããããäžå¹³æ¹ã®å®çã䜿ã£ãŠå®çŸ©ããã®ã§ãã¡ã§ãããéè§ã®å Žåã«éå®ããã°äœ¿ã£ãŠãªãã§ããã
ãããŠä»¶ã®èšŒæã§ã¯ã2αãβãéè§ã§ãã
ãã£ãŠãæµ·å€ã§äž»æµã£ãœãæ£åŒŠå®çã®èšŒææ¹æ³ãåæãšããå Žåã埪ç°è«æ³ã«ã¯ãªã£ãŠããªããšèšã£ãŠããããã§ãã
No.889DD++2023幎4æ13æ¥ 21:11