é¢çœãã£ãã®ã§ã玹ä»ããããŸãã
Hereâs How Two New Orleans Teenagers Found a New Proof of the Pythagorean Theorem | by Keith McNulty | Apr, 2023 | Medium
h_TT_ps://keith-mcnulty.medium.com/heres-how-two-new-orleans-teenagers-found-a-new-proof-of-the-pythagorean-theorem-b4f6e7e9ea2d
No.839Dengan kesaktian Indukmu2023幎4æ9æ¥ 13:04
Dengan kesaktian Indukmuæ§ãããã°ãã¯ã
google翻蚳ããŸããã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
éšåã®ãã 1 ã€ã®çç±ã¯ããããã®è¥ãå
é§è
ãææ¡ãã蚌æãã確ç«ãããæ°äººã®æ°åŠè
ã«åœŒãã®èšèãé£ãç©ã«ãããããããªããšããããšã§ãã
ããã¯ã圌ãã®èšŒæãäžè§æ³ã䜿çšããŠããããã§ãã
ã§ã¯ããªãããããããªã«å€§ããªåé¡ãªã®ã§ããïŒ ããŠãç§ãã¡ã®äžè§æçåŒãšæ³åã®å€ãã¯ãã¿ãŽã©ã¹ã®å®çã«äŸåããŠãããããå€ãã®æ°åŠè
ã¯ãäžè§æ³ã䜿çšããå®çã®èšŒæã¯åŸªç°è«çã§ãããšç€ºåããŠããŸãã å¥ã®èšãæ¹ãããã°ãäžè§æ³ã䜿çšããŠãã¿ãŽã©ã¹ã蚌æããããšã¯ãåºæ¬çã« A ã䜿çšã㊠B ã蚌æããããšã§ãããA ãæ¢ã« B ã«äŸåããŠããå Žåã«ã圌ãã¯äž»åŒµããŸãã -å®çã®äžè§æ³ã«ãã蚌æãããã³äžè§æ³ã®èšŒæã¯äžå¯èœã§ããããšãæç€ºçã«è¿°ã¹ãŠããŸãã
ãããããã®èгç¹ã¯ããæ°å幎ã§ãŸããŸãçåèŠãããŠããŠããããã以æ¥ããã¿ãŽã©ã¹ã®ããã€ãã®äžè§æ³ã«ãã蚌æãè¡ãããŠããŸãã. ãžã§ã³ãœã³ãšãžã£ã¯ãœã³ã®èšŒæããã¿ãŽã©ã¹ã®æåã®äžè§æ³ã«ãã蚌æã§ãããšããã¡ãã£ã¢ã®äž»åŒµã¯èªåŒµãããŠããŸããã圌ãã®èšŒæã¯ããããŸã§ã«èŠãäžã§æãçŸãããæãåçŽãªäžè§æ³ã®èšŒæã§ããå¯èœæ§ãååã«ãããæããã«è¥ããŠéãç¥æ§ã®äœåã§ããã å€ãã®çµéšè±å¯ãªæ°åŠè
ã®ä»äºãç¹åŸŽä»ããæ·±ãç ç©¶ã®å¹Žã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
æ°ããææ³ãªãã ãã©ãèŠããã«ã
å¥ã®èšãæ¹ãããã°ãäžè§æ³ã䜿çšããŠãã¿ãŽã©ã¹ã蚌æããããšã¯ãåºæ¬çã« A ã䜿çšã㊠B ã蚌æããããšã§ãããA ãæ¢ã« B ã«äŸåããŠããå Žåã«ã圌ãã¯äž»åŒµããŸãã -å®çã®äžè§æ³ã«ãã蚌æãããã³äžè§æ³ã®èšŒæã¯äžå¯èœã§ããããšãæç€ºçã«è¿°ã¹ãŠããŸãã
ãšããããšããåé¡ç¹ã§ããããšããããšã§ããã
No.847ããããã¯ã¡ã¹ã2023幎4æ9æ¥ 19:37
ã¯ãã
ã§ãã®ã§ä»åã¯ãããã埪ç°è«æ³ãé¿ããŠããããšããçè§£ã§ããããããšããšã
No.848Dengan kesaktian Indukmu2023幎4æ10æ¥ 07:26
ãããããŒãŒãŒãèªããšåŸªç°è«æ³ã®å®å
šãªåé¿ã¯åŸ®åŠã«å€±æããŠãŸãã
In this case we have an isoceles right-angled triangle and, our angles ⺠= β = Ï/4 radians. So our hypotenuse is a/sin(Ï/4) = â2a, which satisfies the Pythagorean Theorem.
ãã® sin(Ï/4) ã®å€ã¯ã©ãããïŒ
éåžžã¯äžå¹³æ¹ã®å®çã§å°åºãããã®ã§ãããããã埪ç°è«æ³ãé¿ããããšã«æåãããšäž»åŒµããã«ã¯ãããå¥ã®æ¹æ³ã§å°åºããŠèŠããå¿
èŠããã£ãã§ãããã
ãŸããçžäŒŒãªå³åœ¢ã®é¢ç©æ¯ã䜿ããšãåé¿æ¹æ³ã¯ãããã§ãããã®ã§å çä¿®æ£ã¯å®¹æã§ããããã©ã
No.849DD++2023幎4æ10æ¥ 11:50
ããã£ã
a=b ã®ç¹æ®ãªã±ãŒã¹ã§ã¯
AãCã®åæ¯ã 0 ã«ãªã£ãŠããŸã
ä»åã®èšŒæãéçšããªãã
ããããè©±ã®æµããªã®ã§ããïŒïŒ
ãã®ã±ãŒã¹ã§ã®ç蚌æã«
sin(Ï/4)
ã䜿ãã®ã¯ç¢ºãã«ååã§ããã
No.850Dengan kesaktian Indukmu2023幎4æ10æ¥ 12:58
å¯ããããŠããã³ã¡ã³ãã远ãããããšãã
a = b ã®ã±ãŒã¹ã§ã¯ã次ã®ããã«æ¹åããæ¡ããããããŠããŸããã
By the way, that case is trivial: the triangle is a one-fourth of a square whose side length is $c$. The area of this square is c^2, while the triangleâs area is (ab)/2 = a^2/2. Therefore c^2=4 times a^2/2 = 2a^2 = a^2+b^2, as desired.
No.851Dengan kesaktian Indukmu2023幎4æ10æ¥ 13:46
google翻蚳ããŸãã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ãã®æ°ãã蚌æ ã¯äœã§ããïŒ
ããããŸããã®ã§ããããç§ãèããæ¹æ³ã§ãã ãã®å³ãèŠãŠããã®èšŒæãéããŠãã£ãšåç
§ããŠãã ããã
å³ã®ããã«ã蟺 aãbãc (æèŸº) ãæã€å·Šäžã®åçŽãªçŽè§äžè§åœ¢ããå§ããŸãããã ããã§ã¯ãa â b ãšä»®å®ããŸããã â ãã®èšäºã®æåŸã®æ³šã§ãa = b ã®èªæãªç¹æ®ãªã±ãŒã¹ãæ±ããŸãã é·ã b ãš c ã®èŸºã®éã®è§åºŠã ⺠ãšããé·ã a ãš c ã®èŸºã®éã®è§åºŠã β ãšããŸãã æ¬¡ã«ããã®å
ã®çŽè§äžè§åœ¢ãã 3 ã€ã®å¹ŸäœåŠçãªã¹ããããäœæããŸãã
é·ã b ã®èŸºã«åæ ããŠãå³äžã®ç䟡äžè§åœ¢ã圢æããŸãã
å
ã®äžè§åœ¢ã®é·ã c ã®èŸºã«åçŽãªçŽç·ãå»¶é·ããŸãã
åå°ããäžè§åœ¢ã®æèŸºããé£ç¶ç·ãå»¶é·ããŸãã
ã¹ããã 2 ãš 3 ããå»¶é·ããç·ã亀ãããšãå³ã®ããã«ãæèŸºã®é·ãã Cã蟺ã A ãš c ã®æ°ãã倧ããªçŽè§äžè§åœ¢ã圢æãããŸãã
ãã®å€§ããªçŽè§äžè§åœ¢å
ã«ãå³ã®ããã«äžé£ã®å°ãããŠå°ããé¡äŒŒã®çŽè§äžè§åœ¢ãæç»ãããµã€ãºãæžå°ããé¡äŒŒã®äžè§åœ¢ã®ç¡éã®ã·ãŒã±ã³ã¹ã圢æããŸãã
ãã®ç¡éã®çžäŒŒäžè§åœ¢ã®ã·ãŒã±ã³ã¹ã䜿çšããŠãé·ã A ãš C ãå°åºããæ¹æ³ã調ã¹ãŸãã
å°ããäžè§åœ¢ã®èŸºã®é·ããå°ãåºã
蟺ã®é·ã A ã®å·Šäžãã 1 çªç®ã®çŽè§äžè§åœ¢ãèŠããšããã®äžè§åœ¢ã®èŸºã®é·ã㯠2a ã§ããããããã£ãŠæèŸºã®é·ã㯠2a/sinβ ã§ãã ããããå
ã®äžè§åœ¢ãããsinβ = b/c ã§ããããšãããã£ãŠããã®ã§ããã®æèŸºã¯é·ã (2ac)/b ã§ãããšçµè«ä»ããããšãã§ããŸãã ããã«ããããã®äžè§åœ¢ã® 3 çªç®ã®èŸºã¯ 2a²/b ã«ãªããŸãã
ããã«å³åŽã®äžè§åœ¢ã«ç§»åãããšãç蟺㮠1 ã€ãé·ã 2a²/b ã§ããããšãããããŸãããããã£ãŠããã®äžè§åœ¢ã®æèŸº (蟺ã®é·ã C ã®ã»ã°ã¡ã³ã) 㯠2a²/(bsinβ) = (2a²c) /b² ã§ãã
ãã®ããã»ã¹ãç¶ããããšãã§ããŸãããå°ããªçžäŒŒäžè§åœ¢ã®ããããã a²/b² ã®ä¿æ°ã§æžå°ããããšãæããã«ãªããŸãã ããã¯ãé·ã A ãæåã®é
(2ac)/b ãšå
¬æ¯ a²/b² ãæã€çæ¯çŽæ°ã§ããããšãæå³ããŸãã åæ§ã«ãé·ã C 㯠c ã§å§ãŸããæåã®é
(2a²c)/b² ãšå
¬æ¯ a²/b² ã®çæ¯çŽæ°ã«ãªããŸãã
é·ã A ãš C ã®èšç®
ããã§ãçæ¯çŽæ°ã®åã®åŒã䜿çšããŠãé·ã A ãš C ãèšç®ã§ããŸããåé
k ãšå
¬æ¯ r ã®çæ¯çŽæ°ã®åã®åŒã¯ãk/(1-r) ã§ãã ãã®åèšã¯ãr ã®çµ¶å¯Ÿå€ã 1 æªæºã®å Žåã«åæããŸãããã®å Žåãr 㯠a²/b² ã§ãããããåžžã«åæããããšã確èªã§ããŸã (a>b ã®å Žåã¯ããããã亀æããã ãã§ã)ã
ããã§ã¯ãé·ã A ãèšç®ããŠã¿ãŸãããããã®å Žåãk = (2ac)/b ããã³ r = a²/b² ãšãªãã®ã§ã
A=2ac/b(1-a^2/b^2)=2abc/b^2-a^2
k = (2a²c)/b² ã§åæ§ã®ã¢ãããŒãã䜿çšããæåã« c ã远å ããå¿
èŠãããããšãæãåºããŠãã ããã
C=c+2a^2c/b^2(1-a^2/b^2)=c(b^2+a^2)/(b^2-a^2)
ããã§ã¯ãé·ã A ãèšç®ããŠã¿ãŸãããããã®å Žåãk = (2ac)/b ããã³ r = a²/b² ãšãªãã®ã§ã
k = (2a²c)/b² ã§åæ§ã®ã¢ãããŒãã䜿çšããæåã« c ã远å ããå¿
èŠãããããšãæãåºããŠãã ããã
ãã®çŸãã蚌æãç· ãããã
A ãš C ã®æ¯ãåããšã©ããªããèŠãŠã¿ãŸãããã
A/C=2ab/(a^2+b^2)
ããããå
ã®å³ããããã㯠sin(2âº) ã§ããããšãããããŸãã
ããã§ãå
ã®çŽè§äžè§åœ¢ãåæ ããŠåœ¢æãããäžã®äºç蟺äžè§åœ¢ã®æ£åŒŠèŠåãèŠãŠã¿ãŸãããã æ£åŒŠå®çã¯çŽè§äžè§åœ¢ã«äŸåããªãããšã«æ³šæããŠãã ããã ãµã€ã³ ã«ãŒã«ã¯ãã©ã®äžè§åœ¢ã§ãã蟺ãšãã®å察åŽã®è§åºŠã®ãµã€ã³ãšã®æ¯çã¯åžžã«åãã§ãããšè¿°ã¹ãŠããŸãã
ãããã£ãŠïŒ
sin 2α/2a=sinβ/c
ãããã£ãŠãçŸåšããã£ãŠããããšã次ã®åŒã«å€æããŸãã
b/(a^2+b^2)=b/c^2
ãã®ç¶æ³ã§ã¯ãaãbãc ã®ãããããŒãã§ã¯ãªãããšã«æ³šæããååãåäžã§ããããšã«æ³šæãããšã忝ãåäžã§ãããšããçµè«ã«è³ããŸãã ããã§ãã¿ãŽã©ã¹ã®å®çã蚌æãããŸããã
[泚: a = b ãšããç¹æ®ãªã±ãŒã¹ã§ã¯ãäžè§åœ¢ã«é·ã a ã® 2 ã€ã®çãèŸºãšæèŸºãããå Žåã蚌æã¯èªæã§ãã ãã®å ŽåãçŽè§äºç蟺äžè§åœ¢ããããè§åºŠ ⺠= β = Ï/4 ã©ãžã¢ã³ã§ãã ãããã£ãŠãæèŸºã¯ a/sin(Ï/4) = â2a ã§ããããã¿ãŽã©ã¹ã®å®çãæºãããŸãã ããã£ã¢ã ãŠãŒã¶ãŒã«æè¬
ãŠã©ããã·ãã
ãã®ç¹å¥ãªã±ãŒã¹ã«å¯ŸåŠããå¿
èŠæ§ãææããŠãããŠ.]
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
å³ãããã«ã¯ãããŸããããåæã«ã¯ãããŸãã
No.852ããããã¯ã¡ã¹ã2023幎4æ10æ¥ 14:20
æŸããã®ã§ãã
ððð ðŠ = ððð (ð¥ â (ð¥ â ðŠ))
= ððð ð¥ ððð (ð¥ â ðŠ) + ð ðð ð¥ ð ðð(ð¥ â ðŠ)
= ððð ð¥(ððð ð¥ ððð ðŠ + ð ðð ð¥ ð ðð ðŠ) + ð ðð ð¥(ð ðð ð¥ ððð ðŠ â ððð ð¥ ð ðð ðŠ)
= (ððð ² ð¥ + ð ðð² ð¥) ððð ðŠ.
cos y ã0ã§ãªããã°ã䞡蟺ãããã§å²ãã
以äžã¯ããã¿ãŽã©ã¹ã®å®çãéœã«ã¯äœ¿ããã«
cos^2x ãš sin^2x ãšã®åã 1 ãšç€ºããã®ã§ãã
No.853Dengan kesaktian Indukmu2023幎4æ10æ¥ 16:25
å æ³å®çã¯äžäœã©ãããæ¹§ããŠåºãã®ã§ããããã
sin ã cos ã埮åã§å®çŸ©ããŠããå Žåã¯å æ³å®çããã¯ããŒãªã³å±éãšäºé
å®çã§ç€ºãããšã«ãªãã§ããããããã®å Žåã¯ããã§å€§äžå€«ãšãã話ãªã®ããªïŒ
No.854DD++2023幎4æ10æ¥ 16:45
ãšæããŸããããå°ãèããŠã¿ãã
sâ(x) = c(x)
câ(x) = -s(x)
s(0) = 0
c(0) = 1
ã®è§£ã s(x) = sin x, c(x) = cos x ãšããå®çŸ©ã®å Žåã
{ (sin x)^2 + (cos x)^2 }â = 0 ãäžç¬ã§ç€ºããã®ã§ãå æ³å®çã䜿ããŸã§ããªãã£ãâŠâŠã
çŽæ°ã§å®çŸ©ããå Žåããã®åŸ®åã®é¢ä¿åŒãããäœããŸãããäœãç®çãšããåŒå€åœ¢ã ã£ããã§ããããã³ã¬ã
No.855DD++2023幎4æ10æ¥ 16:56
倱瀌ããŸããã
æŸã£ãå ŽæãèšãæŒãããŸããã
https://forumgeom.fau.edu/FG2009volume9/FG200925.pdf
ã§ãã
No.856Dengan kesaktian Indukmu2023幎4æ10æ¥ 17:07
ããéè§éå®ãªãã§ããã
ãããªã確ãã«å æ³å®çã«äžå¹³æ¹ã¯äžèŠã§ããã
No.857DD++2023幎4æ10æ¥ 17:17
ã§ããéè§éå®ã§ããã£ã±ãå æ³å®ç䜿ããŸã§ããªããããªæ°ãããŸããã
â B = Ξ, â C = Ï/2, AB = 1 ã®äžè§æ¯ã®å®çŸ©ã«äœ¿ããã€ãã®çŽè§äžè§åœ¢ ABC ã«å¯Ÿãã
蟺 DE ãç¹ C ãéãããã«é·æ¹åœ¢ ABDE ãæžãã°çžäŒŒãªçŽè§äžè§åœ¢ã 3 ã€ã§ããŠã
BC = cosΞ 㧠DC = (cosΞ)^2
AC = sinΞ 㧠EC = (sinΞ)^2
(cosΞ)^2 + (sinΞ)^2 = DC + EC = AB = 1
ã§çµãã話ãªãããªã
No.858DD++2023幎4æ10æ¥ 17:34
Dengan kesaktian Indukmuæ§ããã¯ããããããŸãã
ïŒã§ãã®ã§ä»åã¯ãããã埪ç°è«æ³ãé¿ããŠããããšããçè§£ã§ããããããšããšã
ããããsinαãsinβãšããäžè§é¢æ°ã®æŠå¿µã䜿ã£ãŠããŸãããã
ïŒèŸºã®é·ã A ã®å·Šäžãã 1 çªç®ã®çŽè§äžè§åœ¢ãèŠããšããã®äžè§åœ¢ã®èŸºã®é·ã㯠2a ã§ããããããã£ãŠæèŸºã®é·ã㯠2a/sinβ ã§ãã ããããå
ã®äžè§åœ¢ãããsinβ = b/c ã§ããããšãããã£ãŠããã®ã§ããã®æèŸºã¯é·ã (2ac)/b ã§ãããšçµè«ä»ããããšãã§ããŸãã ããã«ããããã®äžè§åœ¢ã® 3 çªç®ã®èŸºã¯ 2a²/b ã«ãªããŸãã
ãããæããã§ãããsinβ = b/c ã¯ã
ïŒããã«å³åŽã®äžè§åœ¢ã«ç§»åãããšãç蟺㮠1 ã€ãé·ã 2a²/b ã§ããããšãããããŸãããããã£ãŠããã®äžè§åœ¢ã®æèŸº (蟺ã®é·ã C ã®ã»ã°ã¡ã³ã) 㯠2a²/(bsinβ) = (2a²c) /b² ã§ãã
ã§ã䜿ãããŠããŸããb/cãsinβãšããããšãªãã«ãè«çã¯ãã¿ããŠãããªããšæããŸãã
ïŒA ãš C ã®æ¯ãåããšã©ããªããèŠãŠã¿ãŸãããã
A/C=2ab/(a^2+b^2)
ããããå
ã®å³ããããã㯠sin(2âº) ã§ããããšãããããŸãã
ããã§ããsin(2âº)ãšããäžè§é¢æ°ã®æŠå¿µã䜿ãããŠããŸãã
ïŒåŸªç°è«æ³ãé¿ããŠãã
ãšã¯èšããªãã®ã§ã¯ãªãã§ããããïŒ
ã§ãªããã°ãæç« ã®ååã¯ããããªãã£ãã¯ãã§ããã埪ç°è«æ³ãªããã©ãããšããå眮ããããããããã®ææžãããã®ã§ã¯ãªãã§ããããïŒ
No.860ããããã¯ã¡ã¹ã2023幎4æ11æ¥ 07:23
äžè§é¢æ°ã®å®çŸ©èªäœã䜿ãã ããªã埪ç°è«æ³ã«ã¯ãªããŸãããã
ãæå
ã®æ°åŠã®æç§æžãèŠãŠãã ããã
(sinΞ)^2 + (cosΞ)^2 = 1 ãšããéèŠãªåŒã®èšŒæã«äžå¹³æ¹ã®å®çãé¢ãã£ãŠããŸããã
ã ããããã®ããŒãžããåŸã«æžããŠããããšã¯ãäžå¹³æ¹ã®å®çã®èšŒæã«äœ¿ã£ãŠã¯ãªããŸããã
èšãæ¹ãå€ããã°ããã®ããŒãžããåã«æžããŠããããšã¯å¥ã«äœ¿ã£ãŠãäœãåé¡ã¯ãªããã§ãã
ã ãããäžè§é¢æ°ïŒã®äžå¹³æ¹ã®å®çã䜿ãåã®éšåïŒã§ãã¡ããšäžå¹³æ¹ã®å®çã蚌æããããšã«æåããããšãã話é¡ãªã®ã§ããã
ã¯ã¡ã¹ãããã¯ã©ããæ°åŒããèŠãŠããªãããã§ãããèšèªãšåãããŠèªãããã«ããæ¹ãããããããšã
No.863DD++2023幎4æ11æ¥ 08:54
(sinΞ)^2 + (cosΞ)^2 = 1
ãããåæãšããã«
æ£åŒŠå®çã£ãŠãªããã€ãã ã£ãïŒ
ãããã念ã®ããã«ç¢ºèªã¯ããããŸããã
埪ç°è«æ³ã«ãªã£ãŠããªãããšã確èªããããã§ãã
No.864Dengan kesaktian Indukmu2023幎4æ11æ¥ 09:08
ããããããã°æ£åŒŠå®ç䜿ã£ãŠãŸãããã
ã§ã¯ã2 ã€äžã®ã³ã¡ã³ããèšæ£ã
ãäžè§é¢æ°ïŒã®äžå¹³æ¹ã®å®çã䜿ãåã®éšåãšãæç§æžã®æ²èŒé çã«ã¯åŸãã ãã©äžå¹³æ¹ã䜿ããã®ã«äŸåãã蚌æãæ§æãããŠãããã®ïŒã§ãã¡ããšäžå¹³æ¹ã®å®çã蚌æããããšã«æåããã
ã§ããã
éè§ã®äžè§æ¯ã®å®çŸ©
tan = sin / cos
éè§ã®æ£åŒŠå®ç
第äžäœåŒŠå®çïŒé«æ ¡ã§ç¿ããã€ã¯ç¬¬äºäœåŒŠå®çã§ããã£ã¡ã¯ãã¡ïŒ
éè§ã®å æ³å®çâŠâŠãããã§ããã
No.865DD++2023幎4æ11æ¥ 09:25
ãªããæããã§äŒŒããããªããšãã£ããããªããšæã£ãŠèª¿ã¹ãŠã¿ãããããŸããã
ãäžç·å®çã
http://shochandas.xsrv.jp/mathbun/mathbun658.html
äžå¹³æ¹ã®å®çã䜿ããã«äžç·å®çã瀺ãããããšãã話é¡ã§ãã
ååã¯ãªãã¯ãããé£ã¹ãããã«ããŠãããŸãã
No.866DD++2023幎4æ11æ¥ 09:46 管ç人ããããç矩ãããã£ãŠããããšã«
æ°ãä»ããŸãããæŠããäžèšã®ããšããšåããŸãã
ãæ£åŒŠå®çã¯(第ïŒ)äœåŒŠå®çããå°ãããããã®äœåŒŠå®çããã¯çŽæ¥ã«äžå¹³æ¹ã®å®çãå°ãããããžã§ã³ãœã³ãšãžã£ã¯ãœã³ã«ããä»åã®æ°èšŒæãæ£åŒŠå®çã«äŸæ ããã®ã¯ãŸããã®ã§ã¯ãªããïŒã
ç§ãå°ã
èã蟌ã¿ãŸããã
調ã¹ããšããã以äžãããããŸãããããªãã¡
äžè§é¢æ°ã®å æ³å®çã®ããšã§ã¯
æ£åŒŠå®çãšç¬¬ïŒäœåŒŠå®çãšç¬¬ïŒäœåŒŠå®çãšã¯
åå€ã§ããã
ã§ããã
å æ³å®çã«äŸæ ãã€ã€
ãžã§ã³ãœã³ãšãžã£ã¯ãœã³ãšã®æ°èšŒæãçè§£ããããšãããã¯ãŸããããã埪ç°è«æ³ã®è¬ããå
ããªãã
ãããã©ãããã°ããã®ãïŒ
æ£åŒŠå®çã®åçš®ã®èšŒæã調ã¹ãŠãã ãã£ãŠããããã¹ããã¿ã€ããŸããã
http://izumi-math.jp/K_Satou/seigen/seigen.htm
äžèšã®ãªãããé©åãªãã®ãèŠãã ããã°ãããšæããŸããã
ãžã§ã³ãœã³ãšãžã£ã¯ãœã³ã¯
é¢ç©ã«ãã蚌æãåé¿ã
蟺ã®é·ãã®çžäŒŒãå©çšããŠããŸããã
ãã®å¿åãšãæŽåããã»ããè¯ãã§ããã
ãããã®ææžã®ãæ®éã®èšŒæïŒïŒïŒã
ãè§£ããããããšæããŸããã
ãããã¯ã
ãïŒã幟äœåŠç蚌æãïŸïœ¯ïŸïœ°ïŸïŸã«ãããäžè§æ³ã®åºç€ãã€ãã£ãïŸïœ·ïŸïœµïŸïŸïŸïŸïœœ(1436-1376)ã®èšŒæã
ãçŽ æµã§ãã
ããã«ããŠããDD++ããã«ãã
No.858
ã¯ã¯ãŒã«ã§ããã
No.885Dengan kesaktian Indukmu2023幎4æ13æ¥ 11:13
æå
ã«é«æ ¡æ°åŠã®æç§æžããªãã®ã§èšæ¶é Œãã§ãããæ¥æ¬ã®é«æ ¡æè²ã§ã¯æ£åŒŠå®çã¯åãååšè§ããã€çŽè§äžè§åœ¢ã䜿ã£ãŠèšŒæããŠãããšæããŸãã
ããã§äœ¿ã£ãŠããã®ã¯
ã»ååšè§ã®å®ç
ã»ã¿ã¬ã¹ã®å®ç
ã»äžè§æ¯ã®å®çŸ©
ã»çŽåŸãšååŸã®å®çŸ©
ãããã ã£ãã¯ãã§ãäžå¹³æ¹ã®å®çã¯å
šã䜿ã£ãŠãªãã§ããã
äœåŒŠå®çãäœ¿ãæ¹æ³ã¯ãç§ã¯ä»å調ã¹ãŠåããŠååšãç¥ããŸããã
æµ·å€ã ãšã©ã®æ¹æ³ã§ã®èšŒæãã¡ãžã£ãŒãªãã ããã
No.886DD++2023幎4æ13æ¥ 12:08
law of sines ã§æ€çŽ¢ããŠè±èªããŒãžãããããèŠãŠã¿ãŸããã
æ¥æ¬ãšã¯éã£ãŠã=2R ãã€ããŠããªã圢ã§ç޹ä»ãããŠããããšãã»ãšãã©ã®ããã§ãã
ãã®ããã蚌æã以äžã§çµãããšããã®ãæ®éã®ããã
A ã B ãéè§ã®å Žåãé ç¹ C ãã蟺 AB ã«äžãããåç·ã®é·ããèãããš
b*sinA = a*sinB
䞡蟺ã sinA ããã³ sinB ã§å²ã£ãŠåŸãããã
ã©ã¡ãããéè§ã®å Žåã¯å
è§ãšå€è§ã® sin ã®å€ã¯çããããšãèããã°åãããšãèšããã
åé¡ã¯äžå¹³æ¹ã®å®çã䜿ã£ãŠãããã©ããã
çŽè§ãéè§ã®å Žåã¯ããããäžå¹³æ¹ã®å®çã䜿ã£ãŠå®çŸ©ããã®ã§ãã¡ã§ãããéè§ã®å Žåã«éå®ããã°äœ¿ã£ãŠãªãã§ããã
ãããŠä»¶ã®èšŒæã§ã¯ã2αãβãéè§ã§ãã
ãã£ãŠãæµ·å€ã§äž»æµã£ãœãæ£åŒŠå®çã®èšŒææ¹æ³ãåæãšããå Žåã埪ç°è«æ³ã«ã¯ãªã£ãŠããªããšèšã£ãŠããããã§ãã
No.889DD++2023幎4æ13æ¥ 21:11
äºé
å®çã¯ã
(a+b)^n=nC0 a^n b^0+nC1 a^(n-1) b^1+nC2 a^(n-2) b^2+nC3 a^(n-3) b^3+ã»ã»ã»ã»+nC(n-1) a^(n-(n-1)) b^(n-1)+nCn a^(n-n) b^n---(1)
ã§ã
ããããn
(a+b)^n=Σ{nCi a^(n-i) b^i}----(2)
ããããi=0
ãšãæžããŸãã
ã§ã¯ã
(1+1)^n=nC0 1^n 1^0+nC1 1^(n-1) 1^1+nC2 1^(n-2) 1^2+nC3 1^(n-3) 1^3+ã»ã»ã»ã»+nC(n-1) 1^(n-(n-1)) 1^(n-1)+nCn 1^(n-n) 1^n
2^n=nC0+nC1+nC2+nC3+ã»ã»ã»+nC(n-1)+nCn----(3)
ãšããæåãªå
¬åŒã«ããã©ãçããŸãã
ãŸãã
(a+b)^n=nC0 a^n b^0+nC1 a^(n-1) b^1+nC2 a^(n-2) b^2+nC3 a^(n-3) b^3+ã»ã»ã»ã»+nC(n-1) a^(n-(n-1)) b^(n-1)+nCn a^(n-n) b^n
(a+b)^n=a^n +nC1 a^(n-1) b^1+nC2 a^(n-2) b^2+nC3 a^(n-3) b^3+ã»ã»ã»ã»+nC(n-1) a b^(n-1)+b^n----(4)
(a+b)^n=a{a^(n-1)n +nC1 a^(n-2) b^1+nC2 a^(n-3) b^2+nC3 a^(n-4) b^3+ã»ã»ã»ã»+nCn-1) b^(n-1)}+b^n
(a+b)^n=aA+b^n ----(5)
ãã ããA=a^(n-1)n +nC1 a^(n-2) b^1+nC2 a^(n-3) b^2+nC3 a^(n-4) b^3+ã»ã»ã»ã»+nCn-1) b^(n-1)
(a+b)^nã¯ã(5)åŒãšãæžããŸãã
ïŒïŒäºé²å°æ°ã®10é²å°æ°åã®åé¡
ããã§ãäºé²å°æ°ã®10é²å°æ°åãèããŠã¿ãŸãããã1/2=0.5ã1/2^2=1/4=0.25ã1/8=0.125ã1/16=0.0625ã»ã»ã»1/256=0.00390625
ãšæ«å°Ÿããå¿
ã5ã«ãªãã®ã§ãã蚌æããŠã¿ãŸãããã
1/(2^n)=1/(2^n) 10^n/10^n=1/(2^n) (2^nã»5^n)/10^n=5^n/10^n=5(4+1)^(n-1)/10^n
ããã§ãäºé
å®çã®(5)åŒããã(4+1)^(n-1)=4A+1
5(4+1)^(n-1)/10^n=5(4A+1)/10^n=(20A+5)/10^n=20A/10^n+5/10^n=2A/10^(n-1)+5/10^n
ããã§ã2Aã¯èªç¶æ°ãªã®ã§ã5/10^nãããäžäœã®å°æ°ã§ãã
ãããã£ãŠãæ«å°Ÿã¯5ã«ãªããŸãã[蚌æçµãã]
äžè¬ã«2é²å°æ°ã¯
n
Σ{ai(1/2^i)} ãã ããaiã¯0ã1
i=0
ãªã®ã§ããã¹ãŠã®2é²å°æ°ã®10é²å°æ°åã¯æ«å°Ÿã¯5ã«ãªããŸãã
ãããããäºé²å°æ°ã§ã¯10é²å°æ°ã®1/5=0.2ã¯è¡šããªãããšã«ãªããŸããã0.24ã0.23ã0.22ã0.21ã衚ããŸããã
No.824ããããã¯ã¡ã¹ã2023幎4æ8æ¥ 14:26
ïŒïŒÎ±^n=nB+αã®å°åº
(4)åŒããã
ãã(1+1)^n=1^n +nC1 1^(n-1) +nC2 1^(n-2)+nC3 1^(n-3)+ã»ã»ã»ã»+nC(n-1) 1+1
ãã(2+1)^n=2^n +nC1 2^(n-1) +nC2 2^(n-2)+nC3 2^(n-3)+ã»ã»ã»ã»+nC(n-1) 2+1
ãã(3+1)^n=3^n +nC1 3^(n-1) +nC2 3^(n-2)+nC3 3^(n-3)+ã»ã»ã»ã»+nC(n-1) 3+1
ãã(4+1)^n=4^n +nC1 4^(n-1) +nC2 4^(n-2)+nC3 4^(n-3)+ã»ã»ã»ã»+nC(n-1) 4+1
ãã(5+1)^n=5^n +nC1 5^(n-1) +nC2 5^(n-2)+nC3 5^(n-3)+ã»ã»ã»ã»+nC(n-1) 5+1
ããããããããããããããããããããã»
ãã(r+1)^n=r^n +nC1 r^(n-1) +nC2 r^(n-2)+nC3 r^(n-3)+ã»ã»ã»ã»+nC(n-1) r+1
ããããããããããããããããããããã»
+)ã(a+1)^n=a^n +nC1 a^(n-1) +nC2 a^(n-2)+nC3 a^(n-3)+ã»ã»ã»ã»+nC(n-1) a+1
ã¯ã
ãã(1+1)^n-1^n= nC1 1^(n-1) +nC2 1^(n-2)+nC3 1^(n-3)+ã»ã»ã»ã»+nC(n-1) 1+1
ãã(2+1)^n-2^n= nC1 2^(n-1) +nC2 2^(n-2)+nC3 2^(n-3)+ã»ã»ã»ã»+nC(n-1) 2+1
ãã(3+1)^n-3^n= nC1 3^(n-1) +nC2 3^(n-2)+nC3 3^(n-3)+ã»ã»ã»ã»+nC(n-1) 3+1
ãã(4+1)^n-4^n= nC1 4^(n-1) +nC2 4^(n-2)+nC3 4^(n-3)+ã»ã»ã»ã»+nC(n-1) 4+1
ãã(5+1)^n-5^n= nC1 5^(n-1) +nC2 5^(n-2)+nC3 5^(n-3)+ã»ã»ã»ã»+nC(n-1) 5+1
ããããããããããããããããããããã»
ãã(r+1)^n-r^n= nC1 r^(n-1) +nC2 r^(n-2)+nC3 r^(n-3)+ã»ã»ã»ã»+nC(n-1) r+1
ããããããããããããããããããããã»
+)ã(a+1)^n-a^n= nC1 a^(n-1) +nC2 a^(n-2)+nC3 a^(n-3)+ã»ã»ã»ã»+nC(n-1) a+1
---------------------------------------------------------------------------------
ãã(a+1)^n-1^n=nC1{ã»ã»â ã»ã»}+nC2{ã»ã»â¡ã»ã»}+nC3{ã»ã»â¢ã»ã»}+ã»ã»ã»ã»+nC(n-1){ã»ã»(n-1)ã»ã»}+a
ãã(a+1)^n=nC1{ã»ã»â ã»ã»}+nC2{ã»ã»â¡ã»ã»}+nC3{ã»ã»â¢ã»ã»}+ã»ã»ã»ã»+nC(n-1){ã»ã»(n-1)ã»ã»}+a+1
ãšããã§ãnãå¥çŽ æ°ãªãã°nCsã¯nã®åæ°ã§ãããã
(a+1)^n=nB+a+1---(6)
ãã ããnB=nC1{ã»ã»â ã»ã»}+nC2{ã»ã»â¡ã»ã»}+nC3{ã»ã»â¢ã»ã»}+ã»ã»ã»ã»+nC(n-1){ã»ã»(n-1)ã»ã»}
ããŠã(6)åŒã§ãα=a+1ãšãããšã
α^n=nB+α----(7)
α^n-α=nB
α{α^(n-1)-1}=nB
ãããnBã¯ãn,αã®åæ°ã§ãããã
ãããã£ãŠã
α{α^(n-1)-1}=nC1{ã»ã»â ã»ã»}+nC2{ã»ã»â¡ã»ã»}+nC3{ã»ã»â¢ã»ã»}+ã»ã»ã»ã»+nC(n-1){ã»ã»(n-1)ã»ã»}
ãªãã
â =1^(n-1)+2^(n-1)+3^(n-1)+ã»ã»ã»ã»ã»+(a-1)^(n-1)+a^(n-1)
â¡=1^(n-2)+2^(n-2)+3^(n-2)+ã»ã»ã»ã»ã»+(a-1)^(n-2)+a^(n-2)
â¢=1^(n-3)+2^(n-3)+3^(n-3)+ã»ã»ã»ã»ã»+(a-1)^(n-3)+a^(n-3)
â£=1^(n-4)+2^(n-4)+3^(n-4)+ã»ã»ã»ã»ã»+(a-1)^(n-4)+a^(n-4)
ãããããããããããããã»
n-2çªç®=1^2+2^2+3^2+ã»ã»ã»ã»ã»+(a-1)^2+a^2
n-1çªç®=1+2+3+ã»ã»ã»ã»ã»+(a-1)+a
ïŒïŒãã§ã«ããŒã®æçµå®ç
a,b,cãäºãã«çŽ ãªèªç¶æ°ã§ãããnãå¥çŽ æ°ã§ãããªãã°ã
a^n+b^n=c^nãšãããšã(7)åŒããã
nX+a+nY+b=nZ+c
n(X+Y-Z)=c-a-b
X+Y-Z=c/n-a/n-b/n
ããã§ãa,b,cãäºãã«çŽ ãªèªç¶æ°ã§ãããããa,b,cã¯åæã«nã®åæ°ã§ãªãã
ãããã£ãŠã巊蟺ã¯èªç¶æ°ãªã®ã«ãå³èŸºã¯èªç¶æ°ã§ãªãã
ããããc=kn+jãa=ln+jãb=mnãšãããšãc/n=k+j/n,a/n=l+j/n,b/n=mã§å³èŸºã¯èªç¶æ°ã«ãªããããããªãã
ããã§ãa,b,cãäºãã«çŽ ãªèªç¶æ°ã§ãããnã¯å¥çŽ æ°ããã
c (mod n)â b (mod n)
c (mod n)â a (mod n)
a (mod n)â b (mod n)
ããããããªãã
ããã«ããã§ã«ããŒã®æçµå®çã蚌æãããã
No.825ããããã¯ã¡ã¹ã2023幎4æ8æ¥ 14:27
以åãšã¯æã£ãŠå€ãã£ãŠã¡ãããšè«çãæžããŠãã ããããã«ãªããã¡ãããšæ°åŠçè°è«ãããã«å€ããèšè¿°ã«ãªã£ãŠããŸããã
> nã¯å¥çŽ æ°ããã
> c (mod n)â b (mod n)
> c (mod n)â a (mod n)
> a (mod n)â b (mod n)
> ããããããªãã
ããã¯ãå³èŸºãèªç¶æ°ã«ãªãããšããããããªãã®æå³ã ãšè§£éããŸããããããã« 2 ã€ããã³ãã©ããããããŸããã
ãŸã 1 ã€ã4â¡11 (mod7) ã®ããã«ãäºãã«çŽ ã§ãå¥çŽ æ°ãæ³ãšããŠååã«ãªãå Žåã¯ããåŸãŸãã
ãã 1 ã€ãããããå¥ã« a, b, c ãååã§ãªããŠã 10/7 - 2/7 - 1/7 = 1 ã®ããã« 3 ã€ã®åæ°ã®åãå·®ãæŽæ°ã«ãªãããšã¯ããåŸãŸãã
No.827DD++2023幎4æ8æ¥ 15:19
DD++æ§ãããã«ã¡ã¯ã
ïŒïŒãã§ã«ããŒã®æçµå®ç
ã¯ã
ïŒïŒÎ±^n=nB+αã®å°åº
ã®å¿çšäŸãšããŠãäœã£ããã®ã§ãããè©°ããçãã£ãããã§ããã
äºãã«çŽ ãªèªç¶æ°a,b,c
ãšããã®ããããŠã
c (mod n)â b (mod n)
c (mod n)â a (mod n)
a (mod n)â b (mod n)
ãšãããšããããè¯ãã£ãããªïŒ
ã§ãã
a=jn+gãšããŠa (mod n)â¡g
b=kn+hãšããŠb(mod n)â¡h
c=ln+iãšã㊠c(mod n)â¡i
ãšããŠãc/n-a/n-b/nã§ãi-g-h=0ã¯ããããŸããã
No.828ããããã¯ã¡ã¹ã2023幎4æ8æ¥ 16:08
ãã§ã«ããŒã®æçµå®çã¯ãã©ã㪠a, b, c ã§ãããã®çåŒãæç«ããªããšãããã®ã§ãã
èªåã§åæã«æ¡ä»¶ãè¶³ãã a, b, c ã§è°è«ãå§ããŠããŸã£ããããã¯ããæçµå®çãšã¯å¥ã®è©±ã«ãªã£ãŠããŸããŸãã
No.829DD++2023幎4æ8æ¥ 16:16
ïŒãšããã§ãnãå¥çŽ æ°ãªãã°nCsã¯nã®åæ°ã§ãããã
ïŒÎ±^n=nB+α----(7)
α^nïŒÎ±ïŒnBããã®å³èŸºãïœã§å²ãåããã®ã§å·ŠèŸºãïœã§å²ãåããã
âŽÎ±^nïŒÎ±â¡ïŒïŒmod ïœïŒããã§ãαãšïœãäºãã«çŽ ãšãããšã䞡蟺ãαã§å²ããã
âŽÎ±^(n-1)ïŒïŒâ¡ïŒïŒmod ïœïŒ
âŽÎ±^(n-1)â¡ïŒïŒmod ïœïŒãã ããïœã¯çŽ æ°ã§Î±ãšïœã¯äºãã«çŽ
https://manabitimes.jp/math/680
No.830KY2023幎4æ8æ¥ 16:53
KYæ§ãããã°ãã¯ã
ãªãã»ã©ããã§ã«ããŒã®å°å®çã§ãããæ°ã¥ããŸããã§ããã
No.831ããããã¯ã¡ã¹ã2023幎4æ8æ¥ 19:08
ãã§ã«ããŒã®å°å®çãšããã°ããœãã£ãŒã»ãžã§ã«ãã³ã®ãã§ã«ããŒã®æçµå®çãžã®æ¥çžŸã§ããããéã£ãããªïŒ
ç§ãšå£ããæãããåããããªææ³ã§ãã§ã«ããŒã®æçµå®çã蚌æããŠããŸãã
ãã§ã«ããŒã®æçµå®çã®å¶éïŒ a + b ïŒ c ã çŽ æ°ã§ããïŒä»ãã®äžè¬ã® n ã®å Žå
http://y-daisan.private.coocan.jp/html/pdf/felmer-8-1.pdf
ããã«ããããŠã
ãã§ã«ããŒã®æçµå®çã®å¶éïŒ a + b ïŒ c ã n ã®åæ°ã§ãªãïŒä»ãã®äžè¬ã® n ã®å Žå
http://y-daisan.private.coocan.jp/html/pdf/felmer-8-2.pdf
ãšãããŸããã
No.832ããããã¯ã¡ã¹ã2023幎4æ8æ¥ 22:44
ïŒãã§ã«ããŒã®å°å®çãšããã°ããœãã£ãŒã»ãžã§ã«ãã³ã®ãã§ã«ããŒã®æçµå®çãžã®æ¥çžŸã§ããããéã£ãããªïŒ
倩æãã§ã«ããŒ
ããã§ã«ããŒã¯ããã€ãã®å®éšçãªèгå¯ããäžè¬çã«æãç«ã€åœé¡ãèŠã€ãã倩æã§ã倧尿§ã
ãªåœé¡ãæ®ããŸãããäŸãã°ãèªç¶æ°ã®ïŒä¹ããïŒãåŒããŸãããããšã
ïŒ^2ïŒïŒïŒïŒïŒïŒÃïŒïŒ(ïŒ^2ïŒïŒïŒïŒïŒïŒïŒ^2ïŒïŒïŒïŒïŒïŒïŒÃïŒïŒ
ïŒ^2ïŒïŒïŒïŒïŒïŒïŒÃïŒïŒïŒïŒ^2ïŒïŒïŒïŒïŒïŒïŒïŒ^2ïŒïŒïŒïŒïŒïŒïŒÃïŒïŒïŒ
ïŒ^2ïŒïŒïŒïŒïŒïŒïŒÃïŒïŒïŒïŒïŒ^2ïŒïŒïŒïŒïŒïŒ
ãªã©ãšãªããŸããå
ã®å®æ°ïœãïŒã®åæ°ãªãã°ããã®ïŒä¹ããïŒãåŒãã°ïŒã®åæ°ã§ãªããªãã®ã¯åœããåã§ãã®ã§ãïŒãïŒå
ã«å
¥ããŸãããããã§ãªããšãã«ã¯ãïœ^2ïŒïŒã¯ïŒã®åæ°ã«ãªã£ãŠããããã§ãããèªç¶æ°ãïŒä¹ããŠïŒãåŒããšã©ããªãã§ãããã
ïŒ^4ïŒïŒïŒïŒïŒïŒïŒÃïŒïŒïŒ^4ïŒïŒïŒïŒïŒïŒïŒÃïŒïŒïŒ
ïŒ^4ïŒïŒïŒïŒïŒïŒïŒïŒÃïŒïŒïŒïŒïŒ^4ïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒ^4ïŒïŒïŒïŒïŒïŒïŒïŒïŒÃïŒïŒïŒïŒïŒ^4ïŒïŒïŒïŒïŒïŒïŒïŒïŒÃïŒïŒïŒïŒ
ïŒ^4ïŒïŒïŒïŒïŒïŒïŒïŒïŒÃïŒïŒïŒïŒïŒ^4ïŒïŒïŒïŒïŒïŒïŒïŒïŒÃïŒïŒïŒïŒ
ãšãªã£ãŠãå
ã®æ°ïœãïŒã®åæ°ã§ãªããã°ãïœ^4ïŒïŒã¯ïŒã®åæ°ã«ãªã£ãŠããããã§ãããã§ã«ããŒã«ãšã£ãŠã¯ãããã¯æ¬¡ã®ããã«äžè¬åããã®ã¯ããããä»äºã§ããïŒ
ãïœãçŽ æ°ïœãšäºãã«çŽ ãªãã°ãïœ^(p-1)ïŒïŒã¯ïœã§å²ãåãã
ãããæ°è«ã«ãããæãåºæ¬çãªå®çããã§ã«ããŒã®å°å®çã§ããèšå·ã§ã¯ïœ^(p-1)â¡ïŒïŒmod ïœïŒãšæžããŸãããšãŠãçŸããå®çã§ãããã
ãæ°åŠã®è±æãäžææ»èãã
å ã¿ã«ã蚌æãããã®ã¯ã©ã€ããããã ããã§ãããŠã£ãããã£ã¢ã«ã¯ïŒéãã®èšŒææ³ãèŒã£ãŠããŸãããäœãåºããã®ã¯åããŠèŠãŸãããæ¯éããã¡ã€ã«ã«ã§ãããŠæ®ããŠäžããã
No.833KY2023幎4æ9æ¥ 07:23
KYæ§ããã¯ããããããŸãã
ããããšãããããŸãã
æ©éãPDFã«ããŸããã
ãã§ã«ããŒã®å°å®çã®èšŒæ
http://y-daisan.private.coocan.jp/html/felmer-7-2.pdf
No.834ããããã¯ã¡ã¹ã2023幎4æ9æ¥ 09:52
以åãããã ã£ãã®ã§ãããhttp://y-daisan.private.coocan.jp/html/felmer-7-2.pdfãã§æ€çŽ¢ããŠã蟿ãçããŸããã§ãããïŒå€åãç§ã®ããœã³ã³ããããããšæãã®ã§ãããïŒ
å ã¿ã«ãã°ãŒã°ã«æ€çŽ¢ã§ã¯ã
https://www.google.com/search?q=http%3A%2F%2Fy-daisan.private.coocan.jp%2Fhtml%2Ffelmer-7-2.pdf&hl=ja&ei=phkyZP7OAdu02roPrfCbsAg&ved=0ahUKEwj-ufa-15v-AhVbmlYBHS34BoYQ4dUDCA8&oq=http%3A%2F%2Fy-daisan.private.coocan.jp%2Fhtml%2Ffelmer-7-2.pdf&gs_lcp=Cgxnd3Mtd2l6LXNlcnAQDEoECEEYAFAAWABgAGgAcAB4AIABAIgBAJIBAJgBAA&sclient=gws-wiz-serp
ã€ããŒæ€çŽ¢ã§ã¯ã
https://search.yahoo.co.jp/search?p=http%3A%2F%2Fy-daisan.private.coocan.jp%2Fhtml%2Ffelmer-7-2.pdf&fr=top_ga1_sa&ei=UTF-8&ts=32910&aq=-1&oq=&at=&ai=8ca69f0b-b347-4657-b8ca-050b0f50e8b7
ãšããç»é¢ã§ããç§ã«ã¯èŠãããŸãããã倧åã«ä¿ç®¡ããŠäžããã
No.835KY2023幎4æ9æ¥ 10:57
KY ããã¯ãªã URL ãæ€çŽ¢ããããšæã£ããã ããâŠâŠã
URL ãäœãªã®ãããã£ãŠãªãã®ããšãæããŸãããããã®å²ã«ã¯ Google æ€çŽ¢ã®çµæç»é¢ãèªåã§ URL æžããŠãŸããã
ããŒãïŒïŒ
No.836DD++2023幎4æ9æ¥ 11:21
ã§ãPDF èªãŸããŠããã ããŸããã
ãã¡ããšèšŒæã§ããŠãããšæããŸãã
Wikipedia ã®èšŒæ (2) ãšåæ§ã®ãã®ã§ããããã¡ãã¯ããªãçç¥ããæžãæ¹ãããŠããã®ã«å¯ŸããŠãã¯ã¡ã¹ãããã¯ããªãäžå¯§ã«é²ããŠããã£ããããŸããã
现ããç¹ã§ãããæ¹åç¹ã 1 ã€ã
2 ããŒãžç®åŸåãã 3 ããŒãžç®ååã«ãã㊠a = 6 ã§ã®äŸç€ºãããŠãããããã
1^(n-1) + 2^(n-1) + 3^(n-1) + 4^(n-1) + âŠâŠ + 5^(n-1)
ã¿ããã«ãªã£ãŠããŸããã4 ã®æ¬¡ã 5 ãªã®ã§ããã®ãâŠâŠãã¯äžèŠããªãšæããŸãã
No.837DD++2023幎4æ9æ¥ 11:33
DD++ãããããã«ã¡ã¯ãç§ã¯ä»¥åãéããããããšãããã³ãã«ããŒã ã䜿ã£ãŠãããã®ã§ããã
ïŒKY ããã¯ãªã URL ãæ€çŽ¢ããããšæã£ããã ããâŠâŠã
ãããããŠãhttp://y-daisan.private.coocan.jp/html/felmer-7-2.pdfããã¯ãªãã¯åºæ¥ãããã«ãªã£ãŠããã®ã§ããããã
ç§ã®ããœã³ã³ã§ã¯ã¯ãªãã¯åºæ¥ãªãã®ã§ãã³ããããŠæ€çŽ¢ããã®ã§ããã蟿ãçããŸããã§ããã
ïŒWikipedia ã®èšŒæ (2) ãšåæ§ã®ãã®ã§ããããã¡ãã¯ããªãçç¥ããæžãæ¹ãããŠããã®ã«å¯ŸããŠãã¯ã¡ã¹ãããã¯ããªãäžå¯§ã«é²ããŠããã£ããããŸããã
èšãããŠèŠçŽããŠã¿ãŸãããã確ãã«çè«çã«ã¯åãã§ããã
No.838KY2023幎4æ9æ¥ 12:51
ããããªãã»ã©ãäœã§è©°ãŸã£ãŠããããããŸããã
ãããã web ãã©ãŠã¶ã£ãŠãURL ãæå®ã㊠web ãµã€ããé²èЧããããŒã«ãã§ãã
ãªã³ã¯ãã¯ãªãã¯ãããããã¯ããŒã¯ã§ç§»åãããããã®ã¯ã åã« URL ãæå®ããæéãçããŠãããã ãã§ããæ¬æ¥éãèªåã§çŽæ¥ URL ãæå®ããŠããµã€ããé²èЧã§ããããã§ããã
æå
¥åãé¢åãªãæåãæåŸã®æåãæ¬ èœãããäœèšãªæåãå
¥ã£ããããªãããã«æ³šæããªããã³ããŒããŒã¹ãã§å€§äžå€«ã§ãã
âŠâŠ ã£ãŠããšã§åœãã£ãŠãŸããïŒ
ã¡ãã»ãŒãžäžã® URL ãèªåã§ãªã³ã¯ã«ããæ©èœãç¡å¹ã«ãªã£ãŠããã®ã¯ãããããã¹ãã ãšãã®å¯Ÿçã§ãããã
æ®éã®ãŠãŒã¶ãŒãèªåã§ãªã³ã¯ããŠã»ãããšæã£ããšãã¯ãã¡ãã»ãŒãžæ¬ãããªã URL æ¬ã«ãã® URL ãæžãã°ããããã§ããã
ïŒã¯ã¡ã¹ãããããªãããããªãã£ãã®ãã¯ãç§ã«ã¯ããããŸãããïŒ
No.840DD++2023幎4æ9æ¥ 13:27
KYæ§ãããã«ã¡ã¯ã
ïŒã€ããŒæ€çŽ¢ã§ã¯ã
https://search.yahoo.co.jp/search?p=http%3A%2F%2Fy-daisan.private.coocan.jp%2Fhtml%2Ffelmer-7-2.pdf&fr=top_ga1_sa&ei=UTF-8&ts=32910&aq=-1&oq=&at=&ai=8ca69f0b-b347-4657-b8ca-050b0f50e8b7
ãšãªããŸããããã®https://ã»ã»ã»ã»ã»ãšè¡šç€ºãããŠãããšããã«ã
http://y-daisan.private.coocan.jp/html/felmer-7-2.pdf
ã匵ãä»ããã®ã§ããã€ãŸããã³ããŒããŒã¹ãããã®ã§ãã
ä»ãã®ç»é¢ãèŠãŠãããšãã¯ã
(http://)shochandas.xsrv.jp(/ïŒã(ã)ã§å²ãŸããŠããéšåã¯è¡šç€ºãããŸããã
ãšè¡šç€ºãããŠããè¡ã§ããããã«ãhttp://y-daisan.private.coocan.jp/html/felmer-7-2.pdfãã³ããŒããŒã¹ãããŸãã
ãã®ç»é¢ããæ»ã£ãŠããã«ã¯ããâïŒå·Šç¢å°ïŒããã¯ãªãã¯ãããšãã®ç»é¢ã«æ»ããŸãã
No.841ããããã¯ã¡ã¹ã2023幎4æ9æ¥ 13:34
ããœã³ã³çŽ äººãªè
ã§ãã¿ãŸããã
ïŒæå
¥åãé¢åãªãæåãæåŸã®æåãæ¬ èœãããäœèšãªæåãå
¥ã£ããããªãããã«æ³šæããªããã³ããŒããŒã¹ãã§å€§äžå€«ã§ãã
http://y-daisan.private.coocan.jp/html/felmer-7-2.pdfããã®ãŸãŸã³ããŒããŒã¹ãããŠã°ãŒã°ã«æ€çŽ¢ããŠãã€ããŒæ€çŽ¢ããŠããã®URLã«è¡ããªããã§ããæ®éã¯ããã€ãäžçªäžã«åºãã®ã§ãããããããã¯ã¡ã¹ãããã®äŸãã°ã
ãã§ã«ããŒã®æçµå®çã®å¶éïŒ a + b ïŒ c ã çŽ æ°ã§ããïŒä»ãã®äžè¬ã® n ã®å Žå
http://y-daisan.private.coocan.jp/html/pdf/felmer-8-1.pdf
ã§ïŒã°ãŒã°ã«ïŒæ€çŽ¢ãããšäžçªäžã«ã奿°ã®å®å
šæ°ã¯ãªãããåºãŸããããã§ããhttp://y-daisan.private.coocan.jp/html/kanzensu.pdf
ïŒã¡ãã»ãŒãžäžã® URL ãèªåã§ãªã³ã¯ã«ããæ©èœãç¡å¹ã«ãªã£ãŠããã®ã¯ãããããã¹ãã ãšãã®å¯Ÿçã§ãããã
æ®éã®ãŠãŒã¶ãŒãèªåã§ãªã³ã¯ããŠã»ãããšæã£ããšãã¯ãã¡ãã»ãŒãžæ¬ãããªã URL æ¬ã«ãã® URL ãæžãã°ããããã§ããã
ïŒã¯ã¡ã¹ãããããªãããããªãã£ãã®ãã¯ãç§ã«ã¯ããããŸãããïŒ
ãããããŠé ããã°èŸ¿ãçãããšæããŸããã
No.842KY2023幎4æ9æ¥ 14:47
URLãèšå
¥ããŸãããããã§ã©ãã§ãããïŒ
ç·è²ã®ãããããã¯ã¡ã¹ãããã¯ãªãã¯ããŠãã ããã
ããããæ©èœã䜿ã£ãŠãªãã£ãããã§ããŠã£ãããèªåã®ããŒã ããŒãžã貌ãããã ãšæã£ãŠããŸããã
ãã ãæ°ã«ãªãããšããããŸããTexã§PDFãã€ãããšããã©ã³ããåã蟌ãŸããªãã®ã§ãWindowsã§ã¯ãæ¥æ¬èªã®æåãå€ãªæåã«å²ãæ¯ãããããšããããŸãã
ã¢ã¯ãããããªãŒããŒãã€ã³ã¹ããŒã«ããŠããã°ãåé¡ãªãã®ã§ããã
ãã¡ãããã¢ã¯ãããããªãŒããŒã¯ãç¡æã§ãã
No.843ããããã¯ã¡ã¹ã2023幎4æ9æ¥ 15:02 ããããã¯ã¡ã¹ããããããããšãããããŸããç¡äºã蟿ãçããŸããã
DD++ããã®ææã®ã
ïŒçްããç¹ã§ãããæ¹åç¹ã 1 ã€ã
2 ããŒãžç®åŸåãã 3 ããŒãžç®ååã«ãã㊠a = 6 ã§ã®äŸç€ºãããŠãããããã
1^(n-1) + 2^(n-1) + 3^(n-1) + 4^(n-1) + âŠâŠ + 5^(n-1)
ã¿ããã«ãªã£ãŠããŸããã4 ã®æ¬¡ã 5 ãªã®ã§ããã®ãâŠâŠãã¯äžèŠããªãšæããŸãã
ããã¯çŽãããã®ã§ããããã倧äžå€«ã¿ããã§ããã
ïŒWikipedia ã®èšŒæ (2) ãšåæ§ã®ãã®ã§ããããã¡ãã¯ããªãçç¥ããæžãæ¹ãããŠããã®ã«å¯ŸããŠãã¯ã¡ã¹ãããã¯ããªãäžå¯§ã«é²ããŠããã£ããããŸããã
ïœ^pïŒ[ïŒïŒ(ïœïŒïŒ)]^p
ããâ¡ïŒ^pïŒ[ïŒïŒ(ïœïŒïŒ)]^p
ããâ¡ïŒïŒïŒ^pïŒ[ïŒïŒ(ïœïŒïŒ)]^p
ããâ¡ïœïŒmod ïœïŒ
ãã¡ãã®æ¹ããã»ã»ã»ãå
¥ããæ¹ãè¯ããšæããŸãã
å ã¿ã«ããããèŠãŠããããã¯ã¡ã¹ãããã®è§£æ³ãäœãã人ã¯ããŸãããã
No.844KY2023幎4æ9æ¥ 16:52
ãããã ãããªãæ€çŽ¢æ¬ã«æã¡èŸŒãã®ãâŠâŠã
æ€çŽ¢æ¬ã¯ãããã«é¢ä¿ããæ
å ±ãããå ŽæãæããŠãã ãããã§ãã
ããã®å Žæã«é£ããŠè¡ã£ãŠãã ãããã§ã¯ãããŸãããããããªæ©èœã¯ Google ã«ã Yahoo ã«ããããŸããã
No.845DD++2023幎4æ9æ¥ 17:00
ããããæå³ãåãããŸãããçŽæ¥äžã®éµå°ã®æã«ã³ããããã°è¯ãã£ãã®ã§ããã
ãéšããããŸããã
No.846KY2023幎4æ9æ¥ 18:57
ãšèšãããšã¯
P=sin(Pi/11)^2+sin(2*Pi/11)^2+sin(3*Pi/11)^2+sin(4*Pi/11)^2+sin(5*Pi/11)^2
Q=cos(Pi/11)^2+cos(2*Pi/11)^2+cos(3*Pi/11)^2+cos(4*Pi/11)^2+cos(5*Pi/11)^2
R=cot(Pi/11)^2+cot(2*Pi/11)^2+cot(3*Pi/11)^2+cot(4*Pi/11)^2+cot(5*Pi/11)^2
S=tan(Pi/11)^2+tan(2*Pi/11)^2+tan(3*Pi/11)^2+tan(4*Pi/11)^2+tan(5*Pi/11)^2
ãç°¡åã«æ±ãããããšããããšããªïŒ
åèªã®ãæäžŠã¿ãèŠãŠã¿ããã
No.813GAI2023幎4æ6æ¥ 08:00
忝ã7ã®ãšããšæ¯èŒããŠ
Pã¯(3-A)/2ã(5-A)/2ã«å€ããã®ã§11/4
Qã¯(3+A)/2ã(5+A)/2ã«å€ããã®ã§9/4
Rã¯7C3/7C1ã11C3/11C1ã«å€ããã®ã§15
Sã¯7C2/7C0ã11C2/11C0ã«å€ããã®ã§55
ãšãªããŸããã
No.814ãããã2023幎4æ6æ¥ 09:40
7 ã 11 ãšèšãããäžè¬ã®å¥æ°ã§ãããŸãããã
ãšããããšã§ãç§ãã GAI ããã«åé¡ã
GAI ããã®ãæäžŠã¿æèŠã§ãã
n ãèªç¶æ°ãšããæ²ç€ºæ¿ã®èŠãããã®ãã N=2n+1 ãšããŸãã
(1) {cot(Ï/N)}^2 + {cot(2Ï/N)}^2 + âŠâŠ + {cot(nÏ/N)}^2 ãæ±ããŠãã ããã
ïŒn = 3 ãš n = 5 ã®å Žåã¯æ¢ã«è§£çãåºãŠããŸãã®ã§ãæ€ç®ãããããã°ã©ããïŒ
(2) {csc(Ï/N)}^2 + {csc(2Ï/N)}^2 + âŠâŠ + {csc(nÏ/N)}^2 ãæ±ããŠãã ããã
ïŒcsc ãš cot ã®éã«ã¯ csc^2 = 1 + cot^2 ã®é¢ä¿ããããŸãïŒ
(3) çªç¶ã§ãããx ã 0 < x < Ï/2 ã®ç¯å²ã®å®æ°ãšãããšãã0 < sin(x) < x < tan(x) ã§ããããšã瀺ããŠãã ããã
ïŒé«æ ¡æ°åŠã® sin(x)/x -> 1 (x->0) ã瀺ããšãã®ã¢ã¬ã§ãïŒ
(4) (3) ãçšããŠã1âŠkâŠn ã§ããä»»æã®èªç¶æ° k ã«ã€ããŠã(Ï/N)^2*{cot(kÏ/N)}^2 < 1/k^2 < (Ï/N)^2*{csc(kÏ/N)}^2 ã§ããããšã瀺ããŠãã ããã
(5) äœãæ°ãã€ããããšãããã°ã©ããã
No.816DD++2023幎4æ7æ¥ 12:49
(1) n*(2*n-1)/3
(2) 2*n*(n+1)/3
(3) ååŸ1,äžå¿è§x(0<x<Ï/2)ã®æåœ¢OAP (Oã¯åç¹,Aã¯x軞äžã«ãšãã)
ã§Aã«ãããæ¥ç·ãšOPãšã®å»¶é·ãšã®äº€ç¹ãTãšãããšã
ããé¢ç©ãèãããš
ããããããâ³OAP < æåœ¢OAP < â³OAP
ãã£ãŠ 1/2*sin(x) < 1/2*x ã< 1/2*tan(x)
ããããäžçåŒã¯æç«ããã
(4) ä»ä»»æã®èªç¶æ°nã«å¯Ÿãn/(2*n+1)<1/2 ãªã®ã§
ããk=1,2,3,,n ãªãkã«å¯Ÿã
ããx=k*Ï/(2*n+1) ãšçœ®ããš0<x<Ï/2 ãæç«ããã®ã§
ãã(3)ã§ã®äžçåŒãã
ãã1/{tan(x)}^2 < 1/x^2 <1/{sin(x)}2
ããã«
ã x=k*Ï/(2*n+1)=k*Ï/Nã代å
¥ããŠ
ãã{cot(kÏ/N)}^2 < N^2/(k*Ï)^2 < {csc(kÏ/N)}^2
ãããã
(Ï/N)^2*{cot(kÏ/N)}^2 < 1/k^2 < (Ï/N)^2*{csc(kÏ/N)}^2
ãk=1,2,3,,nãšãããŠåããšãã°(1),(2)ã®çµæãã
ããÏ^2/(2*n+1)^2*n*(2*n-1)/3 < â[k=1ïœn]1/k^2 < Ï^2/(2*n+1)^2*2*n*(n+1)/3
Ï^2/3*(2*n^2-n)/(4*n^2+4*n+1)< â[k=1ïœn]1/k^2 < Ï^2/3*(2*n^2+2*n)/(4*n^2+4*n+1)
Ï^2/3*(2-1/n)/(4+4/n+1/n^2)< â[k=1ïœn]1/k^2 < Ï^2/3*(2+2/n)/(4+4/n+1/n^2)
nââ ãšããã°ãÏ^2/6 âŠÎ¶(2) ⊠Ï^2/6
ãããã£ãŠã ζ(2)=Ï^2/6
(5) äœãšããŒã»ã«åé¡ã®çµè«ãåºãã§ã¯ãªããïŒ
ãããããããã
ããçŽåŸã§ããªãéšåã¯äœåŠã§ããïŒ
ãnââ ã®æã®1/n,1/n^2â0ããåãå
¥ãåºæ¥ãªããã§ããããïœ
ãã確ãã«ãã®å€ãŸã§ãã£ãŠããã«ã¯nã¯è«å€§ãªå€§ãããŸã§ã®æ°ãå¿
èŠãªããšã¯åãããŸãã
ããããããã®å€ã«éããªãè¿ã¥ããŠããããšã¯çµ¶å¯Ÿã«æ£ãããšç§ã¯ä¿¡ããããŸãã
ãå
·äœçã«ã¯èžã¿èŸŒããªã奥深ããæã£ãŠãããã©ããã®äžçã®ããæ§ãæèåã䜿ã£ãŠæ¢ããããšãã
人é¡ãæã£ãŠããç©åãæåã ãšæããŸãã
No.818GAI2023幎4æ7æ¥ 20:19
(3) ã®éäžã®äžçåŒãæå³èŸºã® â³OAP 㯠â³OAT ã®èª€èšã§ãããïŒ
äœã«ããããèŠäºã§ããã
ããŠãä»äººãç
œãå§ãããããäœè£ãª GAI ãããªã (5) ãŸã§ã¯ãŸã æµ
ç¬ã§ãã£ããã£ãããŠãã ãã ãšãæ°ã¥ãã®ããšãšæããŸãã
深淵ã«åãã£ãŠç¶ããã©ããã
(6) N-1 次ã®ä¿æ°ãš N-3 次ã®ä¿æ°ã®æ¯ã¯ã{cot(kÏ/N)}^2 ã®ç·åã® -1 åãæå³ããŸãããã§ã¯ãN-1 次ã®ä¿æ°ãš N-5 次ã®ä¿æ°ã®æ¯ã¯äœãæå³ããã§ããããïŒ
(7) {cot(Ï/N)}^4 + {cot(2Ï/N)}^4 + âŠâŠ + {cot(nÏ/N)}^4 ãæ±ããŠãã ããã
(8) {csc(Ï/N)}^4 + {csc(2Ï/N)}^4 + âŠâŠ + {csc(nÏ/N)}^4 ãæ±ããŠãã ããã
(9) 1âŠkâŠn ã§ããèªç¶æ° k ã«ã€ããŠã1/k^4 ã®è©äŸ¡ããã³ãããã®ç·åã®è©äŸ¡ãã©ããã
(10) åæ§ã«ããŠã1/k^6 ãã©ããã
(11) ããã«ã1/k^8 ãã©ããã
(12) ãšããã§ã1/k^3 ã¯ïŒ
No.819DD++2023幎4æ8æ¥ 02:01
GAIæ§ããã¯ããããããŸãã
ïŒ(5) äœãšããŒã»ã«åé¡ã®çµè«ãåºãã§ã¯ãªããïŒ
ãªãã»ã©ã
No.821ããããã¯ã¡ã¹ã2023幎4æ8æ¥ 07:07
DD++ããã®ã©ããåã«éã£ãããã§ãããå¥ã«ä»äººãç
œãå§ãããããäœè£ã§ããæµ
ç¬ã§ãã£ããã£ãããŠããã€ããããããŸããã
(7),(8)ã®ã¿æººããããªããèããŠã¿ãŸããã
(7)1/45*n*(2*n-1)*(4*n^2+10*n-9)
(8) 8/45*n*(n+1)*(n^2+n+3)
ãã以äžã¯å£ãé«ãããŠç»ãæ°åãæ¹§ããŸããã®ã§ãèžµãè¿ãããšã«ããŸãã
No.822GAI2023幎4æ8æ¥ 09:14
ãããç§ã®åé¡ããã·ã«ã¯ã¡ã¹ããããç
œãå§ãããªãããšæããŸããŠã
(7) ãš (8) ãåºããªã (9) ã¯ãã (4) ãšå
šãåãæ¹æ³ã§ããã
(12) ã«ã€ããŠãcot^3 ã cot^5 ã®ãããªå¥æ°ä¹ã®å Žåã®ããšãèããããšãããšã+cot(kÏ/N) ãè§£ã«æã€ã -cot(kÏ/N) ã¯è§£ã«æããªããããªæ¹çšåŒãäœãå¿
èŠããã£ãŠé£ãããã§ãããã
çå·ã¯æ¬²åŒµãããã«ããŠãäžçå·ã§è©äŸ¡ã§ãããããã°ãªã«ãé¢çœãããšãèµ·ããããªãã§ããã誰ãäœãããã¢ã€ãã¢ã¯ãªããã®ã§ããããã
No.823DD++2023幎4æ8æ¥ 09:58
管ç人ãããšã¯å¥ã®ããæ¹ã§æ±ããŠã¿ãŸããã
α = cos(2Ï/7), β = cos(4Ï/7) , γ = cos(6Ï/7) ãšããŸãã
åè§ã®å
¬åŒãã (cotx)^2 = (1+cos2x)/(1-cos2x) ãªã®ã§ã
(1+α)/(1-α) + (1+β)/(1-β) + (1-γ)/(1+γ) ãæ±ããã°ããããšã«ãªããŸãã
ζ = exp(2Ï/7) = cos(2Ï/7) + i sin(2Ï/7) ãšãããŸãã
z^7 - 1 = 0 㯠1 ã® 7 乿 ¹ãè§£ã«ãã€ã®ã§ã
z^7 - 1 = ( z - 1 ) ( z - ζ ) ( z - ζ^2 ) ( z - ζ^3 ) ( z - ζ^4 ) ( z - ζ^5 ) ( z - ζ^6 )
= ( z - 1 ) { ( z - ζ ) ( z - ζ^6 ) } { ( z - ζ^2 ) ( z - ζ^5 ) } { ( z - ζ^3 ) ( z - ζ^4 ) }
= ( z - 1 ) ( z^2 - 2αz + 1 ) ( z^2 - 2βz + 1 ) ( z^2 - 2γz + 1 )
ããã ( z - 1 ) z^3 ã§å²ããš
( z^3 + 1/z^3 ) + ( z^2 + 1/z^2 ) + ( z + 1/z ) + 1 = ( z + 1/z - 2α ) ( z + 1/z - 2β ) ( z + 1/z - 2γ )
ããã§ã2x = z + 1/z ãšãããšã
4x^2 = z^2 + 2 + 1/z^2 ãããz^2 + 1/z^2 = 4x^2 - 2
8x^3 = z^3 + 3z + 3/z + 1/z^3 ãããz^3 + 1/z^3 = 8x^3 - 6x
ãªã®ã§ããããçšããŠæžãæãããš
8x^3 + 4x^2 - 4x - 1 = 8 ( x - α ) ( x - β ) ( x - γ )
t = (1+x)/(1-x) ãšãããšãx = (t-1)/(t+1) ãªã®ã§ãããã代å
¥ããŠäž¡èŸºã« (t+1)^3 ãããããš
8(t-1)^3 + 4(t-1)^2*(t+1) - 4(t-1)(t+1)^2 - (t+1)^3 = { (t-1) - (t+1)α } { (t-1) - (t+1)β } { (t-1) - (t+1)γ }
æŽçããŠ
7t^3 - 35t^2 + 21t - 1 = { (1-α)t - (1+α) } { (1-β)t - (1+β) } { (1-γ)t - (1+γ) }
ãã£ãŠ (1+α)/(1-α), (1+β)/(1-β) ,(1-γ)/(1+γ) ã¯æ¹çšåŒ 7t^3 - 35t^2 + 21t - 1 = 0 ã®è§£ãªã®ã§ã
è§£ãšä¿æ°ã®é¢ä¿ãããã®å㯠35/7 = 5
No.785DD++2023幎4æ2æ¥ 07:27
æçš¿åŸã«ã7t^3 - 35t^2 + 21t - 1 ãšããã©ãèŠãŠã 7Ck ãªä¿æ°ãèŠãŠã
å
ã»ã©ã®ã¯ãšãã§ããªãé åããããŠããããšã«æ°ã¥ããŠããŸã£ãâŠâŠã
kÏ/7 㯠7 åãããš Ï ã®æŽæ°åã«ãªãã®ã§ã
cot(kÏ/7) + i = { cos(kÏ/7) + i sin(kÏ/7) } / sin(kÏ/7) 㯠7 ä¹ãããšå®æ°ã§ãã
ãã£ãŠã6 次æ¹çšåŒ (x+i)^7 - (x-i)^7 = 0ã®è§£ã¯ x = ±cot(Ï/7), ±cot(2Ï/7), ±cot(3Ï/7) ã§ããã¯ãã§ãã
ãã®æ¹çšåŒã®å·ŠèŸºãå
šéšå±éãããšãã
x^6 ã®ä¿æ°ã¯ 2*7C1*i^1
x^4 ã®ä¿æ°ã¯ 2*7C3*i^3
ãã®æ¯ 7C3/7C1*i^2 = -35/7 = -5 ã¯ã6 ã€ã®è§£ã®ç°ãªã 2 ã€ãã€ã®ç©ã®ç·åã§ããã
笊å·éããæã¡æ¶ãåãããšãèããã°ããã㯠- {cot(Ï/7)}^2 - {cot(2Ï/7)}2 - {cot(3Ï/7)}^2 ã«ä»ãªããŸããã
ãã£ãŠã{cot(Ï/7)}^2 + {cot(2Ï/7)}2 + {cot(3Ï/7)}^2 = 5
No.786DD++2023幎4æ2æ¥ 07:51
ãšããã§ã2åè§ã3åè§ã®å
¬åŒã¯
ããããã2tanΞ
tan2Ξ=-----------
ãããã1-(tanΞ)^2
ãããã1-(cotΞ)^2
cot2Ξ=-----------
ããããã2cotΞ
ããã¯ããªããšãªãéæ°ãšããã€ã¡ãŒãžãªã®ã§ããã£ããããªæ°ã«ãªããã§ãããïŒã§ãæ°åŠçã«ãããããšããå°è±¡ã§ãããïŒïŒ
ãããã
ãããã3tanΞ-(tanΞ)^3
tan3Ξ=-----------------
ãããã1-3(tanΞ)^2
ãããã(cotΞ)^3-3cotΞ
cot3Ξ=------------------
ããããã3(cotΞ)^2-1
ãšå
šãåãæ§é ãªãã§ãããäžæè°ã§ãããïŒã§ãæ°åŠçã«ãããããšããå°è±¡ã§ãããïŒïŒ
No.787ããããã¯ã¡ã¹ã2023幎4æ3æ¥ 20:20
æ°åŠãã¡ãããšãã人ã¯ãããããæ°åŠçã«ãããããã©ãããå°è±¡ã§èšã£ããã¯çµ¶å¯Ÿã«ããŸããã
No.789DD++2023幎4æ4æ¥ 00:15
åãééããŠãŸããã
ãããã(cotΞ)^2-1
cot2Ξ=-----------
ããããã2cotΞ
ã§ããããããããå¶æ°ãšå¥æ°ã§éã«ãªãã®ãããããŸããããïŒç ç©¶ããŠäžãããïŒ
No.790éãããã2023幎4æ4æ¥ 07:17
DD++æ§ããã¯ããããããŸãã
(%i1) float((cot(%pi/7))^2+(cot(2*%pi/7))^2+(cot(3*%pi/7))^2);
(%o1) 5.000000000000001
ãªãã¯ãtanãšcotã®å
ã®å°è±¡ããã
(%i2) float((tan(%pi/7))^2+(tan(2*%pi/7))^2+(tan(3*%pi/7))^2);
(%o2) 20.99999999999999
ããã21ã«ãªããããªå°è±¡ã§ããã»ã»ã»ã»
éããããæ§ããã¯ããããããŸãã
åãééããŠããŸããããææãããããšãããããŸãã
No.791ããããã¯ã¡ã¹ã2023幎4æ4æ¥ 07:18
tan ã®æ¹ã¯ã7 次æ¹çšåŒ (1+xi)^7 - (1-xi)^7 = 0 ã®è§£ã x = 0, ±tan(Ï/7), ±tan(2Ï/7), ±tan(3Ï/7) ã§ããããšããã7C2/7C0 ç±æ¥ã§ 21 ãåŸãããŸããã
No.793DD++2023幎4æ4æ¥ 10:29
ã¡ãã£ãšãåé¡ããå€ããŸãããïŒïŒãïŒïŒãäžããŸãã
ïŒïŒ
ãããã(cotΞ)^2-1
cot2Ξ=-----------------
ããããã2cotΞ
ãããã(cotΞ)^3-3cotΞ
cot3Ξ=-----------------------
ããããã3(cotΞ)^2-1
ã䜿ã£ãŠã(cotΞ)^2+(cot2Ξ)^2+(cot3Ξ)^2=5ãããã£ãŠã¿ãã
cotΞ=xãšãããšã
ããããx^2-1ãããããx^3-3x
x^2ïŒ(------------)^2ïŒ(-----------------)^2=5ãã
ããããã2xãããããã3x^2-1
49x^8-72x^6+62x^4-8x^2+1
----------------------------------------=5
ããã4x^2(3x^2-1)^2
ããã
49x^8-72x^6+62x^4-8x^2+1=20x^2(3x^2-1)^2
(7x^2-1)(7x^6-35x^4+21x^2-1)=0
ããã7x^2-1=0ãš7x^6-35x^4+21x^2-1=0ããæãç«ãŠã°ã
(cotΞ)^2+(cot2Ξ)^2+(cot3Ξ)^2=5ãã¯ããã ããã
7x^2-1=0ã§ã¯x=±1/â7ã宿°è§£ãããã
7x^6-35x^4+21x^2-1=0ã§ã¯ã宿°è§£ã¯ãªããè€çŽ æ°è§£ã¯ããã
ããã«ã(cotΞ)^2+(cot2Ξ)^2+(cot3Ξ)^2=5ãã¯ã宿°è§£ãããã®ã§ãã ããã
ïŒïŒ
ããããã2tanΞ
tan2Ξ=----------------
ãããã1-(tanΞ)^2
ãããã3tanΞ-(tanΞ)^3
tan3Ξ=------------------------
ãããã1-3(tanΞ)^2
ã䜿ã£ãŠã(tanΞ)^2+(tan2Ξ)^2+(tan3Ξ)^2=21ãããã£ãŠã¿ãã
tanΞ=xãšãããšã
ãããã2xãããããã3x-x^3
x^2ïŒ(------------)^2ïŒ(---------------)^2=21ãã
ãããã1-x^2ããããã1-3x^2
2x^2(5x^8-16x^6+40x^4-28x^2+7)
------------------------------------------------=21
ãã(x-1)^2(x+1)^2(3x^2-1)^2
2x^2(5x^8-16x^6+40x^4-28x^2+7)=21(x-1)^2(x+1)^2(3x^2-1)^2
(2x^2-1)(5x^2-3)(x^6-21x^4+35x^2-7)=0
ããã2x^2-1=0ã5x^2-3=0ãšx^6-21x^4+35x^2-7=0ããæãç«ãŠã°ã
(tanΞ)^2+(tan2Ξ)^2+(tan3Ξ)^2=21ãã¯ããã ããã
2x^2-1=0ã§ã¯x=±1/â2ã宿°è§£ãããã
5x^2-3=0ã§ã¯x=±â3/â5ã宿°è§£ãããã
x^6-21x^4+35x^2-7=0ã§ã¯ã宿°è§£ã¯ãªããè€çŽ æ°è§£ã¯ããã
ããã«ã(tanΞ)^2+(tan2Ξ)^2+(tan3Ξ)^2=21ã¯ã宿°è§£ãããã®ã§ãã ããã
No.794ããããã¯ã¡ã¹ã2023幎4æ4æ¥ 12:52
ïŒ7x^6-35x^4+21x^2-1=0ã§ã¯ã宿°è§£ã¯ãªããè€çŽ æ°è§£ã¯ããã
宿°è§£ãïŒåãããŸãããïœïŒÂ±0.2282432,±0.7974733,±2.0765214
æåŸã®ã§ÎžïŒÏ/7ãåããšæããŸãã
No.795éãããã2023幎4æ4æ¥ 16:04
éããããæ§ãããã°ãã¯ã
倧å€ãããããšãããããŸãïŒ
ãã£ãšãã±ãªãã€ããŸããã
(%i12) fpprec:50; 50æ¡æå®
(%o12) 50
(%i13) x:bfloat(cot(%pi/7));
(%o13) 2.076521396572336567163538861485840330705720206626b0
(%i14) 7*x^6-35*x^4+21*x^2-1;ã«ä»£å
¥
(%o14) - 6.8422776578360208541197733559077936097669040130689b-49
çã
ã»ãŒïŒã§ãã
è¿äŒŒè§£ãæ±ãããšã
(%i1) allroots( 7*x^6-35*x^4+21*x^2-1);
(%o1) [x = 0.2282434743901499, x = - 0.2282434743901499,
x = 0.7974733888824038, x = - 0.797473388882404, x = - 2.076521396572337,
x = 2.076521396572336]
ãšéããããæ§ã®çµæã«ãªããŸãã
ãŸããtanïŒÏ/7ïŒã¯ã
float(tan(%pi/7));
(%o3) 0.4815746188075286
ã§ã
è¿äŒŒè§£ãæ±ãããšã
(%i2) allroots(x^6-21*x^4+35*x^2-7);
(%o2) [x = - 0.4815746188075286, x = 0.4815746188075286,
x = - 1.253960337662704, x = 1.253960337662703, x = 4.381286267534823,
x = - 4.381286267534823]
ãšãªããtanïŒÏ/7ïŒããããŸããã
No.796ããããã¯ã¡ã¹ã2023幎4æ4æ¥ 16:55
No.794 ã®èšäºã ãå
šç¶éãåé¡ã«åãã£ãŠããã®ã¯æå³çã«ãã£ãŠãããã®ãªãã§ããããïŒ
ãããŠæå³çãªã®ã ãšããããåãã£ãŠããåé¡ãè¿°ã¹ãŠããå§ããŠãã ããã
ãªãã4åã»ã©ããã ããããšèšã£ãŠããŸããããäœããã ãããã®ã誰ã«ãããããŸããã
No.797DD++2023幎4æ4æ¥ 18:22
DDïŒïŒæ§ãããã°ãã¯ã
ããšããšã(cotΞ)^2+(cot2Ξ)^2+(cot3Ξ)^2=5ã蚌æãããã ã£ãã®ã§ããã£ã¡ã«äž»çŒã眮ããŸãããΞïŒÏïŒïŒãèŠããªãã£ãããã§ãã
(tanΞ)^2+(tan2Ξ)^2+(tan3Ξ)^2=21ãããã§ãã
ã§ããéããããæ§ã®ç ç©¶çµæãããΞïŒÏïŒïŒãèŠããŠããã®ã§ãã
ããã§ãæµãããããã颚ã«ãªã£ãã®ã§ãããã¿ãŸããã
No.798ããããã¯ã¡ã¹ã2023幎4æ4æ¥ 18:36
ããã§ããããΞã Ï/7 ã«éããªã話ãããŠããŸãããã
ã ãšããããããã ããããšã¯äœã®ããšãèšã£ãŠããã®ã§ããïŒ
Ξãå®ãŸã£ãŠããªããªãã°ãΞã®å€ã«ãã£ãŠçåŒã¯æãç«ã£ããæãç«ããªãã£ããããã¯ãã§ããã
No.799DD++2023幎4æ4æ¥ 21:49
DD++æ§ããã¯ããããããŸãã
ïŒã ãšããããããã ããããšã¯äœã®ããšãèšã£ãŠããã®ã§ããïŒ
(cotΞ)^2+(cot2Ξ)^2+(cot3Ξ)^2=5
(cotΞ)^2+(cot2Ξ)^2+(cot3Ξ)^2ãŒ5ïŒïŒ
ãæãç«ã€ããšããããšã§ãã
åŒãå±éæŽçãããã
(7x^2-1)(7x^6-35x^4+21x^2-1)=0
ãšãªã£ãã®ã§ã7x^2-1=0ãããããã¯7x^6-35x^4+21x^2-1=0ãšãªããããããã
(cotΞ)^2+(cot2Ξ)^2+(cot3Ξ)^2ãŒ5ïŒïŒ
ã¯ãΞã«ãã£ãŠã¯ãæãç«ã€ã®ã§ãæ£ãããšèšã£ãŠããã®ã§ãããã¡ãããäžçåŒã«ã¯ãªããªãã£ãã§ãããã
ïŒÎžãå®ãŸã£ãŠããªããªãã°ãΞã®å€ã«ãã£ãŠçåŒã¯æãç«ã£ããæãç«ããªãã£ããããã¯ãã§ããã
ããã§ããããã¯ã8ã€ã®è§£ãããã®ã§ãΞã¯ã8éããããŸãã
No.800ããããã¯ã¡ã¹ã2023幎4æ5æ¥ 07:28
調ã¹ãŠããŸããããïœïŒÂ±0.2282432,±0.7974733,±2.0765214ã®æ®ãïŒã€ã§ïŒÏ/ïŒãšïŒÏ/ïŒã«å¯Ÿå¿ããŠããã®ã§ã¯ãªãã§ãããããïŒèª¿ã¹ãŠé ãããšçŽåŸåºæ¥ãŸããïŒ
No.801éãããã2023幎4æ5æ¥ 07:58
éããããæ§ããã¯ããããããŸãã
maximaã§ã
%i1) solve(x^3+1=0,x);ããããããããããããããããããïœè§£ãæ±ããïœ
ããããããããsqrt(3) %i - 1ãã sqrt(3) %i + 1ããããããã{%iã¯èæ°ïœ
(%o1) [x = - -----------------, x =--------------------, x = - 1]
ãããããããããã2ãããããããã2
(%i2) allroots(x^3+1=0);
(%o2) [x = 0.8660254037844386 %i + 0.5, x = 0.5 - 0.8660254037844386 %i,
x = - 1.0]
ãšãªããŸãã®ã§ãéããããæ§ã¯ã宿°è§£ãæ±ããŠããã®ã§ãããè¿äŒŒè§£ãšã¯ãã¿ãŸããã§ããã
ããŠããæšå¯ã®ãšããã
(%i5) float(cot(%pi/7));
(%o5) 2.076521396572337
(%i6) float(cot(2*%pi/7));
(%o6) 0.797473388882404
(%i7) float(cot(3*%pi/7));
(%o7) 0.22824347439015
Ï/7ãïŒÏ/7ãïŒÏ/7ã§ããããããã§ãã
No.802ããããã¯ã¡ã¹ã2023幎4æ5æ¥ 08:02
ã ãšãããã
ã(cotΞ)^2+(cot2Ξ)^2+(cot3Ξ)^2ãŒ5ïŒïŒ ã¯ç¹æ®ãªÎžã®ãšãã«æãç«ã€å Žåãããããããã ããããšãã¡ããšè¿°ã¹ãŠãã ããã
æã
ã¯è¶
èœåè
ãããªãã®ã§ãã¯ã¡ã¹ãããã®é ã®äžã«ããååšããªãæã¯èªããŸããã
No.803DD++2023幎4æ5æ¥ 08:02
ïŒã(cotΞ)^2+(cot2Ξ)^2+(cot3Ξ)^2ãŒ5ïŒïŒ ã¯ç¹æ®ãªÎžã®ãšãã«æãç«ã€å Žåãããããããã ããããšãã¡ããšè¿°ã¹ãŠãã ããã
ããããäžçåŒã«ãªãã°ãæãç«ã€å ŽåããããŸããã®ã§ãæ¹çšåŒãšããŠãæ£ãããããŸãããã
æãç«ã€å Žåãããã®ã§ããã°ãæ¹çšåŒãšããŠããã ããããšèšã£ããçŽåŸããŠããã ããŸããïŒ
No.804ããããã¯ã¡ã¹ã2023幎4æ5æ¥ 08:15
æ¹çšåŒãšããŠæ£ãããšã¯ãéåžžããã®åŒãæ¹çšåŒã®å®çŸ©ã«è©²åœãããšããæå³ã§ãã
ããªãã¡ãåŒïŒå®çŸ©ãããèšç®èšå·ãæ£ãã䜿ãããŠããæ°åãšèšå·åïŒãçå·ã®äž¡èŸºã«æžããŠãããããã«æªç¥æ°ãå«ãŸããŠãããã®ã§ããããšããããšã§ãã
ã ããã(cotΞ)^2+(cot2Ξ)^2+(cot3Ξ)^2-5=0ããšæžãããã ãã§ããæ¹çšåŒã®å®çŸ©ã«è©²åœããŠããã®ã ãããæ¹çšåŒãšããŠæ£ããããšã¿ããªèªããŸããã
念ã®ããèšã£ãŠãããšãæ¹çšåŒã®å®çŸ©ã«ãå®éã«æãç«ã€å Žåããããã©ããã¯èšåãããŠããŸããã
è§£ããªãæ¹çšåŒã¯ããã è§£ããªããšããç¹åŸŽããããšããã ãã®æ£ããæ¹çšåŒã§ãã
ã ãããã¯ã¡ã¹ããããããã ããããšèšã£ãŠããå
容ã¯ããããããæ¹çšåŒãšããŠæ£ããããããªããç¹æ®ãªÎžã®ãšãã«æãç«ã€å Žåãããããšæžãããã¹ããã®ãããªãããšæãã®ã§ããã
No.805DD++2023幎4æ5æ¥ 10:31
DDïŒïŒæ§ãããã«ã¡ã¯ã
ããããšãããããŸããããææã¯ããããŸããã
No.808ããããã¯ã¡ã¹ã2023幎4æ5æ¥ 16:21
ã²ããããé£ãåã2ã€ã®æ°ã®åãæ±ããåã®ã²ãšæ¡ãæ¬¡ã«æžãããŸãã
é£ãåã2ã€ã®æ°ã®åãæ±ããåã®ã²ãšæ¡ãæ¬¡ã«æžãããããç¹°ãè¿ããã®ãšããŸãã
äŸãã°ã
1,3ããŸããããæžãããŠããŸãã1+3=4ãªã®ã§ã3ã®å³ã«4ãæžããŸãã
1,3,4ã3+4=7ãªã®ã§ã4ã®å³ã«7ãæžããŸãã
1,3,4,7ã4+7=11ãªã®ã§ãäž1æ¡ã ããå³ã«æžããŸãã7ã®å³ã«1ãæžããŸãã
1,3,4,7,1ã7+1=8ãªã®ã§ã1ã®å³ã«8ãæžããŸãã
1,3,4,7,1,8ã1+8=9ãªã®ã§ã8ã®å³ã«9ãæžããŸãã
1,3,4,7,1,8,9 8+9=17ãªã®ã§ãäž1æ¡ã ããå³ã«æžããŸãã9ã®å³ã«7æžããŸãã
1,3,4,7,1,8,9,7 9+7=16ãªã®ã§ãäž1æ¡ã ããå³ã«æžããŸãã7ã®å³ã«6æžããŸãã
1,3,4,7,1,8,9,7,6
ãããã²ãããç¹°ãè¿ããšãå°ãªããšã60çªç®ä»¥å
ã«ãå
ã«æ»ãã®ã§ãã
以äžèšŒæããã ãa,bã¯ã1,2,3,4,5,6,7,8,9ã®ããããã®èªç¶æ°
ããšãã°ã
(5a+3)+(8a+5)=13a+8=10a+3a+8â3a+8
(8a+5)+(3a+8)=11a+13=10a+a+10+3âa+3
===================================================================
\| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
===================================================================
0| 1 | a | a+1 | 2a+1 |3a+2 |5a+3 |8a+5 |3a+8 |a+3 |4a+1 |
--------------------------------------------------------------------ã
10| 5a+4 |9a+5 | 4a+9 | 3a+4 |7a+3 | 7 |7a |7a+7 |4a+7 | a+4 |
--------------------------------------------------------------------ã
20| 5a+1 |6a+5 | a+6 | 7a+1 |8a+7 |5a+8 |3a+5 |8a+3 | a+8 |9a+1 |
--------------------------------------------------------------------ã
30| 9 |9a | 9a+9 | 8a+9 |7a+8 |5a+7 |2a+5 |7a+2 |9a+7 |6a+9 |
--------------------------------------------------------------------ã
40| 5a+6 |a+5 | 6a+1 | 7a+6 |3a+7 | 3 |3a |3a+3 |6a+3 |9a+6 |
--------------------------------------------------------------------ã
50| 5a+9 |4a+5 | 9a+4 | 3a+9 |2a+3 |5a+2 |7a+5 |2a+7 |9a+2 | a+9 |
--------------------------------------------------------------------
60| 1 | a | a+1 | 2a+1
ããã
===================================================================
\| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
===================================================================
0| b | a | a+ b| 2a+ b|3a+2b|5a+3b|8a+5b|3a+8b|a+3b |4a+ b |
--------------------------------------------------------------------ã
10| 5a+4b|9a+5b| 4a+9b| 3a+4b|7a+3b| 7b|7a |7a+7b|4a+7b| a+4b |
--------------------------------------------------------------------ã
20| 5a+ b|6a+5b| a+6b| 7a+ b|8a+7b|5a+8b|3a+5b|8a+3b| a+8b|9a+ b |
--------------------------------------------------------------------ã
30| 9b|9a | 9a+9b| 8a+9b|7a+8b|5a+7b|2a+5b|7a+2b|9a+7b|6a+9b |
--------------------------------------------------------------------ã
40| 5a+6b|a+5b | 6a+ b| 7a+6b|3a+7b| 3b|3a |3a+3b|6a+3b|9a+6b |
--------------------------------------------------------------------ã
50| 5a+9b|4a+5b| 9a+4b| 3a+9b|2a+3b|5a+2b|7a+5b|2a+7b|9a+2b| a+9b |
--------------------------------------------------------------------
60| b| a | a+ b| 2a+ b
ã©ãããŠã60ã§ç¹°ãè¿ãã®ããªïŒ
2æ¡ã§ããç¹°ãè¿ããªããããã€ã§ç¹°ãè¿ãã®ããªïŒ
äœããçå±ããã£ãŠãäœæ¡ãªãããã€ã§ç¹°ãè¿ããšèšããã®ããªïŒ
No.766ããããã¯ã¡ã¹ã2023幎3æ28æ¥ 11:26
11,aã§å§ãããšã300çªç®ã§ç¹°ãè¿ãã®ããªã»ã»ã»ã»ïŒ
No.767ããããã¯ã¡ã¹ã2023幎3æ28æ¥ 16:34
åé
ããïŒïŒãã ãšã絶察ã«å
ã«æ»ããªãã®ã§ã¯ïŒ
No.768HP管çè
2023幎3æ28æ¥ 17:52 HP管çè
æ§ãããã°ãã¯ã
2æ¡ã®å Žåã§ãã2æ¡ã§ãããã10ãæå°å€ã§ããæ¬¡ãã11ã§ãã
èšç®ã倧å€ã§ããééãããããããããŸãããã
======================================================================
\| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
======================================================================
0| 11| a | a+11| 2a+11|3a+22 |5a+33 |8a+55 |13a+88 |21a+43|24a+31 |
--------------------------------------------------------------------ã
10|45a+74|69a+5 |14a+79|83a+84|97a+63|80a+47|77a+10|57a+57|34a+67|91a+24 |
--------------------------------------------------------------------ã
20|25a+91|16a+15|41a+6 |57a+21|98a+27|55a+48|53a+75| 8a+23|61a+98|69a+21 |
--------------------------------------------------------------------ã
30|30a+19|29a+40|59a+59|88a+99|47a+58|35a+57|82a+15|17a+72|99a+87|16a+59 |
ãŸã ãaã®åŸªç°ã®ç¢ºèªãã§ããŠããŸãããã11ã®åŸªç°ã¯ã§ããŸããã
270| 59|9a+60| 9a+19| 8a+79|7a+98|5a+77|2a+75|7a+52|9a+27|6a+79 |
--------------------------------------------------------------------ã
280| 5a+6 |a+85 | 6a+91| 7a+76|3a+67| 43|3a+10|3a+53|6a+63|9a+16 |
--------------------------------------------------------------------ã
290| 5a+79|4a+95| 9a+74| 3a+69|2a+43|5a+12|7a+55|2a+67|9a+22| a+89 |
--------------------------------------------------------------------
300| 11| a | a+11| 2a+11|3a+22|5a+33
No.769ããããã¯ã¡ã¹ã2023幎3æ28æ¥ 18:24
ã¡ãã£ãšèŠã«ãããããããŸãããã
======================================================================
\| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
======================================================================
0| 11| a | a+11| 2a+11|3a+22 |5a+33 |8a+55 |13a+88 |21a+43|34a+31 |
--------------------------------------------------------------------ã
10|55a+74|89a+5 |44a+79|33a+84|77a+63|10a+47|87a+10|97a+57|84a+67|81a+24 |
--------------------------------------------------------------------ã
20|65a+91|46a+15|11a+6 |57a+21|68a+27|25a+48|93a+75|18a+23|11a+98|29a+21 |
--------------------------------------------------------------------ã
30|40a+19|69a+40| 9a+59|78a+99|87a+58|65a+57|52a+15|17a+72|69a+87|86a+59 |
--------------------------------------------------------------------ã
40|55a+46|41a+5 |96a+51|37a+56|33a+7 |70a+63| 3a+70|73a+33|76a+3 |49a+36 |
--------------------------------------------------------------------ã
50|25a+39| 4a+75|69a+14|73a+89|42a+3 |15a+92|57a+95|72a+87|29a+82| a+69 |
--------------------------------------------------------------------
60|30a+51|31a+20|61a+71|92a+91|53a+62|45a+53|98a+15|43a+68|41a+83 |94a+51 |
--------------------------------------------------------------------ã
70|35a+34|29a+85|64a+19|93a+4 |57a+23|50a+27| 7a+50|57a+77|64a+27|21a+4 |
--------------------------------------------------------------------ã
80|85a+31| 6a+35|91a+66|97a+1 |88a+67|85a+68|73a+35|58a+ 3|31a+38 |89a+41 |
--------------------------------------------------------------------ã
90|20a+79| 9a+20|29a+99|38a+19|67a+18| 5a+37|72a+55|77a+92|49a+47|26a+39 |
--------------------------------------------------------------------ã
100|75a+86| a+25|76a+11|77a+36|53a+47|30a+83|83a+30|13a+13|96a+43| 9a+56 |
--------------------------------------------------------------------ã
110| 5a+99|14a+55|19a+54|33a+9 |52a+63|85a+72|37a+35|22a+7 |59a+42|81a+49 |
--------------------------------------------------------------------
120|40a+91|21a+40|61a+31|82a+71|43a+2 |25a+73|68a+75|93a+48|61a+23 |54a+71 |
--------------------------------------------------------------------ã
130|15a+94|69a+65|84a+59|53a+24|37a+83|90a+7 |27a+90|17a+97|44a+87|61a+84 |
--------------------------------------------------------------------ã
140| 5a+71|66a+55|71a+26|37a+81| 8a+7 |45a+88|53a+95|98a+83|51a+78|49a+61 |
--------------------------------------------------------------------ã
150| 39|49a+0 |49a+39|98a+39|47a+78|45a+17|92a+95|37a+12|29a+7 |66a+19 |
--------------------------------------------------------------------ã
160|95a+26|61a+45|56a+71|17a+16|73a+87|90a+3 |63a+90|53a+93|16a+83|89a+76 |
--------------------------------------------------------------------
170|85a+59|54a+35|39a+94|93a+29|32a+23|25a+52|57a+75|82a+27|39a+2 |21a+29 |
--------------------------------------------------------------------
180|60a+31|81a+60|41a+91|22a+51|63a+42|85a+93|48a+35|33a+28|81a+63|14a+91|
--------------------------------------------------------------------ã
190|95a+54| 9a+45| 4a+99|13a+44|17a+43|30a+87|47a+30|77a+17|24a+47| a+64 |
--------------------------------------------------------------------ã
200|25a+11|26a+75|51a+86|77a+61|28a+47| 5a+8 |33a+55|38a+63|71a+18| 9a+81 |
--------------------------------------------------------------------ã
210|80a+99|89a+80|69a+79|58a+59|27a+38|85a+97|12a+35|97a+32| 9a+67| 6a+99 |
--------------------------------------------------------------------ã
220|15a+66|21a+65|36a+31|57a+96|93a+27|50a+23|43a+50|93a+73|36a+23|29a+96 |
--------------------------------------------------------------------ã
230|65a+19|94a+15|59a+34|53a+49|12a+83|65a+32|77a+15|42a+47|19a+62|61a+9 |
--------------------------------------------------------------------
240|80a+71|41a+80|21a+51|62a+31|83a+82|45a+13|28a+95|73a+8 | a+3 |74a+11 |
--------------------------------------------------------------------ã
250|75a+14|49a+25|24a+39|73a+64|97a+3 |70a+67|67a+70|37a+37| 4a+7 |41a+44 |
--------------------------------------------------------------------ã
260|45a+51|86a+95|31a+46|17a+41|48a+87|65a+28|13a+15|78a+43|91a+58|69a+1 |
--------------------------------------------------------------------ã
270|60a+59|29a+60|89a+19|18a+79| 7a+98|25a+77|32a+75|57a+52|89a+27|46a+79 |
--------------------------------------------------------------------ã
280|35a+6 |81a+85|16a+91|97a+76|13a+67|10a+43|23a+10|33a+53|56a+63|89a+16 |
--------------------------------------------------------------------ã
290|45a+79|34a+95|79a+74|13a+69|92a+43| 5a+12|97a+55| 2a+67|99a+22| a+89 |
--------------------------------------------------------------------
300| 11|a | a+11| 2a+11|3a+22|5a+33
301çªç®ããå
ã«æ»ããŸãããäžè¬è«ã«ããã«ã¯ã»ã»ã»ã»ã»ïŒ
No.770ããããã¯ã¡ã¹ã2023幎3æ28æ¥ 21:25
ãã®æ°åã¯åé
ããšã«äžäžæ¡ãåãåºããŠã
{a[n]} = 1,3,4,7,1,8,9,7,6
ã®ããã«ããŠããŸãããå®ã¯ããã¯
{b[n]} = 1,3,4,7,11,18,29,47,76
ã®ããã«å
šæ¡ããç¶æ
ã§è¶³ããåŸã§äžã®äœã ããåãåºããŠãåãæ°åãã§ããŸãã
ïŒèšŒæã¯æ°åŠçåž°çŽæ³ã§ã§ããŸããç¢ºãæ±å€§å
¥è©Šã§ãŸãã«ãã®åé¡ãåºãããšãã£ããããªâŠâŠïŒ
ãããŠãå
šæ¡è¶³ãå Žåã®æ°åã¯
b[n] = b[1]*F[n-2] + b[2]*F[n-1]
ãšäžè¬é
ãæžããã®ã§ããïŒãããæ°åŠçåž°çŽæ³ã§èšŒæã§ããŸãïŒ
ãªããF[n] ã¯ãã£ããããæ°åã§ã
F[1] = F[2] = 1, F[n+2] = F[n+1] +F[n] ã§å®çŸ©ãããä»åã¯æŒžååŒãéåãã«äœ¿ã£ãŠ F[0] = 0 ãš F[-1] = 1 ãŸã§äœ¿çšããŸãã
ä»åã®ã«ã©ã¯ãªã¯ F[59] ã®äžã®äœã 1ãF[60] ã®äžã®äœã 0ãF[61] ã®äžã®äœã 1ããšãªã£ãŠããããšã§ã
b[61] = b[1]*F[59] + b[2]*F[60] ã®äžã®äœã b[1] ã«äžèŽãã
b[62] = b[1]*F[60] + b[2]*F[61] ã®äžã®äœã b[2] ã«äžèŽããããšã«ãããŸãã
ããã«ãããå
ã
èããŠããæ°åã§ã¯ a[61] = a[1], a[62] = a[2] ã§ãããšããããšã«ãªããŸããã
ãã® 2 ã€ãæãç«ãŠã°ãa[3] ãš a[63] ã¯å
šãåãèšç®ãããããšã«ãªããa[4] ãš a[64] ã¯å
šãåãèšç®ãããããšã«ãªããâŠâŠãç¹°ãè¿ãã®ã§ a[61] 以éã¯æåãšåãæ°åã®ã«ãŒãã«ãªããšããããã§ãã
æåã® 2 é
ã®å€ã«ãã£ãŠã¯ 20 é
ã«ãŒãã ã£ãããããšæããŸãããããã¯ãã® 60 é
ã«ãŒãèªäœãããŸããŸåãæ°å 3 åšã§æ§æãããŠããŸã£ãå Žåãšããããšã§ããã
ãã¡ããã60 é
ã§ã«ãŒããã蚌æãæžãã®ããŽãŒã«ãªãããa, b, ãããå§ããŠã¯ã¡ã¹ãããã®ããã«æ°åãã§ 62 çªç®ãŸã§å
šéšæžãåºããŠãæ£è§£ã§ãã
ããŠãäžäºæ¡ã§åãããšããããšã©ããªããã
ã¯ã¡ã¹ããã㯠300 é
ãšåœãããã€ããããã§ããã
æãã㊠F[299], F[300], F[301] ã®äžäºæ¡ã¯ã©ããªã£ãŠããã§ããããïŒ
äžäžæ¡ã®å Žåãäœé
ã§ã«ãŒãããã§ããããïŒ
ãã²ç ç©¶ããŠã¿ãŠãã ããã
No.771DD++2023幎3æ28æ¥ 22:34
DD++æ§ããã¯ããããããŸãã
ïŒã®ããã«å
šæ¡ããç¶æ
ã§è¶³ããåŸã§äžã®äœã ããåãåºããŠãåãæ°åãã§ããŸãã
å
šããã®ãšããã§ãã2æ¡ã®å Žåãããã§ããã¯ããã¯æèšç®ã§äœåºŠã倱æããŸããããexcelã§ãã®ããã«ãèšç®ããŠããŸãã
ïŒãããŠãå
šæ¡è¶³ãå Žåã®æ°åã¯
b[n] = b[1]*F[n-2] + b[2]*F[n-1]
ãšäžè¬é
ãæžããã®ã§ããïŒãããæ°åŠçåž°çŽæ³ã§èšŒæã§ããŸãïŒ
ãªããF[n] ã¯ãã£ããããæ°åã§ã
F[1] = F[2] = 1, F[n+2] = F[n+1] +F[n] ã§å®çŸ©ãããä»åã¯æŒžååŒãéåãã«äœ¿ã£ãŠ F[0] = 0 ãš F[-1] = 1 ãŸã§äœ¿çšããŸãã
ãªããšãã£ããããæ°åã§ããïŒããŸããŸãå
ã«æ»ãçç±ã¯ããããããã®ã ããã»ã»ã»ã»ïŒ
ãŸãã2æ¡ã®äžè¬åŒã¯ã©ããããã®ããªïŒ300ãšããæ°åãåºãŸããããäžè¬åŒã§ã¯ã©ããªãã®ããªïŒ
ããŠã3æ¡ãã©ããªãã®ã§ããããïŒ
No.773ããããã¯ã¡ã¹ã2023幎3æ29æ¥ 07:16
> ããŸããŸãå
ã«æ»ãçç±ã¯ããããããã®ã ããã»ã»ã»ã»ïŒ
ãããäžnæ¡ã§ããã°ã10^(2n) é
以å
ã«ã«ãŒãã«çªå
¥ããããšã¯é³©ãå·£åçã§èšŒæã§ããŸãã
ã€ãŸããn=1 ã®ãšãã«å€ããšã 100 é
以å
ã«ã«ãŒãã 1 åšããããšã¯å¿
ç¶ã§ãã
ããã 60 é
ãšããæ°åã ã£ãããšãŸã§å¿
ç¶ããšãããšâŠâŠã©ãã§ããããã
ç§ã¯ãããå®éšãªãã§å°åºããæ¹æ³ã¯ç¥ããŸããããäžã®äžã®ã©ããã«ã¯ååšããããïŒ
n=2 ã®ãšãã«ãå€ããšã 10000 é
以å
ã«ã«ãŒãã 1 åšããããšã¯å¿
ç¶ã§ãã
ãããæ¬åœã« 300 é
ãšããæ°åãã©ããã¯ãç§ããã¯é»ã£ãŠãããŸãã®ã§ãã¯ã¡ã¹ãããèªèº«ã§ç¢ºãããŠã¿ãŠãã ããã
èªåã§æ°åãã§ãããªããŠããããã£ããããæ°ãäžèЧããšãã§æ€çŽ¢ãããšãF[500] ãŸã§ãšã F[1000] ãŸã§ãšãèŒããŠãããŠãããµã€ããèŠã€ãããŸãããã
No.774DD++2023幎3æ29æ¥ 09:06
HP管çè
æ§ããã¯ããããããŸãã
é©åãªã³ã¡ã³ãããããšãããããŸãããæ©éå匷ããŸãã
ãŸããçµæ§ããã€ãã«ãŒãããã£ããã§ããã
DD++æ§ããææãããããšãããããŸãã
No.776ããããã¯ã¡ã¹ã2023幎3æ29æ¥ 09:35
2æ¡ã®äžè¬è§£ãã§ããŸãããa,bã¯ã10ãã99ãŸã§ã®èªç¶æ°ã§ãã
====================================================================================
\ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
====================================================================================
0| b | a | a+b | 2a+b |3a+2b |5a+3b |8a+5b |13a+8b |21a+13b|34a+21b |
-------------------------------------------------------------------------------------ã
10|55a+34b|89a+55b|44a+89b|33a+44b|77a+33b|10a+77b|87a+10b|97a+87b|84a+97b|81a+84b |
-------------------------------------------------------------------------------------ã
20|65a+81b|46a+65b|11a+46b|57a+11b|68a+57b|25a+68b|93a+25b|18a+93b|11a+18b|29a+11b |
-------------------------------------------------------------------------------------ã
30|40a+29b|69a+40b| 9a+69b|78a+ 9b|87a+78b|65a+87b|52a+65b|17a+52b|69a+17b|86a+69b |
-------------------------------------------------------------------------------------ã
40|55a+86b|41a+55b|96a+41b|37a+96b|33a+37b|70a+33b| 3a+70b|73a+ 3b|76a+73b|49a+76b |
-------------------------------------------------------------------------------------ã
50|25a+49b|74a+25b|99a+74b|73a+99b|72a+73b|45a+72b|17a+45b|62a+17b|79a+62b|41a+79b |
-------------------------------------------------------------------------------------
60|20a+41b|61a+20b|81a+61b|42a+81b|23a+42b|65a+23b|88a+65b|53a+88b|41a+53b|94a+41b |
-------------------------------------------------------------------------------------ã
70|35a+94b|29a+35b|64a+29b|93a+64b|57a+93b|50a+57b| 7a+50b|57a+ 7b|64a+57b|21a+64b |
-------------------------------------------------------------------------------------ã
80|85a+21b| 6a+85b|91a+ 6b|97a+91b|88a+97b|85a+88b|73a+85b|58a+73b|31a+58b|89a+31b |
-------------------------------------------------------------------------------------ã
90|20a+89b| 9a+20b|29a+ 9b|38a+29b|67a+38b| 5a+67b|72a+ 5b|77a+72b|49a+77b|26a+49b |
-------------------------------------------------------------------------------------ã
100|75a+26b| a+75b|76a+ 1b|77a+76b|53a+77b|30a+53b|83a+30b|13a+83b|96a+13b| 9a+96b |
-------------------------------------------------------------------------------------ã
110| 5a+ 9b|14a+ 5b|19a+14b|33a+19b|52a+33b|85a+52b|37a+85b|22a+37b|59a+22b|81a+59b |
-------------------------------------------------------------------------------------
120|40a+81b|21a+40b|61a+21b|82a+61b|43a+82b|25a+43b|68a+25b|93a+68b|61a+93b|54a+61b |
-------------------------------------------------------------------------------------ã
130|15a+54b|69a+15b|84a+69b|53a+84b|37a+53b|90a+37b|27a+90b|17a+27b|44a+17b|61a+44b |
-------------------------------------------------------------------------------------ã
140| 5a+61b|66a+ 5b|71a+66b|37a+71b| 8a+37b|45a+ 8b|53a+45b|98a+53b|51a+98b|49a+51b |
-------------------------------------------------------------------------------------ã
150|0+ 49b|49a+ 0 |49a+49b|98a+49b|47a+98b|45a+47b|92a+45b|37a+92b|29a+37b|66a+29b |
-------------------------------------------------------------------------------------ã
160|95a+66b|61a+95b|56a+61b|17a+56b|73a+17b|90a+73b|63a+90b|53a+63b|16a+53b|69a+16b |
-------------------------------------------------------------------------------------
170|85a+69b|54a+85b|39a+54b|93a+39b|32a+93b|25a+32b|57a+25b|82a+57b|39a+82b|21a+39b |
-------------------------------------------------------------------------------------
180|60a+21b|81a+60b|41a+81b|22a+41b|63a+22b|85a+63b|48a+85b|33a+48b|81a+33b|14a+81b |
-------------------------------------------------------------------------------------ã
190|95a+14b| 9a+95b| 4a+ 9b|13a+ 4b|17a+13b|30a+17b|47a+30b|77a+47b|24a+77b| a+24b |
-------------------------------------------------------------------------------------ã
200|25a+ 1b|26a+25b|51a+26b|77a+51b|28a+77b| 5a+28b|33a+ 5b|38a+33b|71a+38b| 9a+71b |
-------------------------------------------------------------------------------------ã
210|80a+ 9b|89a+80b|69a+89b|58a+69b|27a+58b|85a+27b|12a+85b|97a+12b| 9a+97b| 6a+ 9b |
-------------------------------------------------------------------------------------ã
220|15a+ 6b|21a+15b|36a+21b|57a+36b|93a+57b|50a+93b|43a+50b|93a+43b|36a+93b|29a+36b |
-------------------------------------------------------------------------------------ã
230|65a+29b|94a+65b|59a+94b|53a+59b|12a+53b|65a+12b|77a+65b|42a+77b|19a+42b|61a+19b |
-------------------------------------------------------------------------------------
240|80a+61b|41a+80b|21a+41b|62a+21b|83a+62b|45a+83b|28a+45b|73a+28b| a+73b|74a+ b |
-------------------------------------------------------------------------------------ã
250|75a+74b|49a+75b|24a+49b|73a+24b|97a+73b|70a+97b|67a+70b|37a+67b| 4a+37b|41a+ 4b |
-------------------------------------------------------------------------------------ã
260|45a+41b|86a+45b|31a+86b|17a+31b|48a+17b|65a+48b|13a+65b|78a+43b|91a+78b|69a+91b |
-------------------------------------------------------------------------------------ã
270|60a+69b|29a+60b|89a+29b|18a+89b| 7a+18b|25a+ 7b|32a+25b|57a+32b|89a+57b|46a+89b |
-------------------------------------------------------------------------------------ã
280|35a+46b|81a+35b|16a+81b|97a+16b|13a+97b|10a+13b|23a+10b|33a+23b|56a+33b|89a+56b |
-------------------------------------------------------------------------------------ã
290|45a+89b|34a+45b|79a+34b|13a+79b|92a+13b| 5a+92b|97a+ 5b| 2a+97b|99a+ 2b| a+99b |
-------------------------------------------------------------------------------------
300| b|a | a+ b| 2a+ b| 3a+ 2b|5a+ 3b
300ã§åãŸã£ãŠããŸãã1æ¡ã®60ã®5åã§ãã
3æ¡ã¯1500ã§ããã2æ¡ã®300ã®5åã§ãã
4æ¡ã¯ã3æ¡ã®1500ã®5åã¯7500ã§ããããããèŠããŸããã¡ãã£ãšéãããã§ãã
No.777ããããã¯ã¡ã¹ã2023幎3æ29æ¥ 11:59
https://oeis.org/A096363
âããã«ãããš
4æ¡ä»¥äžã¯15000,150000,1500000,âŠã€ãŸã
1.5Ã10^(æ¡æ°)ãšãªãããã§ãã
No.778ãããã2023幎3æ29æ¥ 16:45
ããããæ§ãããã°ãã¯ã
ããããã3æ¡ããããã4æ¡
çªå·ãaã®ãbã®ä¿æ°ããaã®ãbã®ä¿æ°
14998 2 997 2 9997
14999 999 2 9999 2
15000 1 999 1 9999
15001 0 1 0 1
15002 1 0 1 0
15003 1 1 1 1
15004 2 1 2 1
15005 3 2 3 2
15006 5 3 5 3
15007 8 5 8 5
15008 13 8 13 8
15009 21 13 21 13
15010 34 21 34 21
15011 55 34 55 34
15012 89 55 89 55
ãã£ãããéã15000ã§ããã3æ¡ã¯10åç®ã®æè¿ãã§ããã
No.779ããããã¯ã¡ã¹ã2023幎3æ29æ¥ 18:23
ãã£ããããæ°åã§ãããã
f2=f1+f0
f3=f2+f1
f4=f3+f2
f5=f4+f3
ããã»
ããã»
ããã»
fn=fn-1+fn-2
ããã
ãf2-f1=f0
ãf3-f2=f1
ãf4-f3=f2
ãf5-f4=f3
ããã»
ããã»
ããã»
+)fn-fn-1=fn-2
------------------------
fn-f1=f0+f1+f2+f3+ã»ã»+fn-2
ããã§ã
ããn-2
fn=f1+Σfiãã---(1)
ãããi=0
ãŸãã
f2=f1+f0
(1)ããã
f3=f1+f0+f1=2f1+f0
f4=f1+f0+f1+f2=f1+f0+f1+(f0+f1)=3f1+2f0
f5=f1+f0+f1+f2+f3=f1+f0+f1+(f0+f1)+(2f1+f0)=5f1+3f0
f6=f1+f0+f1+f2+f3+f4=f1+f0+f1+(f0+f1)+(2f1+f0)+(3f1+2f0)=8f1+5f0
f2=f1+f0
f3=2f1+f0
f4=3f1+2f0
f5=5f1+3f0
f6=8f1+5f0
f7=13f1+8f0
f8=21f1+13f0
f9=34f1+21f0
f10=55f1+34f0
f11=89f1+55f0
f12=144f1+89f0
f13=233f1+144f0
f14=377f1+233f0
f15=610f1+377f0
f16=987f1+610f0
f17=1597f1+987f0
ãããããç¶ãããš
f58 f59 f60 f61 f62
f0ã®ä¿æ° 365435296162 591286729879 956722026041 1548008755920 2504730781961
f1ã®ä¿æ° 591286729879 956722026041 1548008755920 2504730781961 4052739537881
fnã®ä¿æ° 956722026041 1548008755920 2504730781961 4052739537881 6557470319842
fnã®æäžäœã¯ 1 0 1 1 2
ãã®ããã«ã299çªç®ã§ãfnã®æäžäœããäºæ¡ãã00ã«ã300çªç®ã§ã01ã«ã1499çªç®ã§fnã®æäžäœããäžæ¡ãã000ã«ã1500çªç®ã§ã001ã«ããšãããµãã«ãªãã®ã§ãããããããããæ¡æ°ãèšå€§ãªã®ã§ãlibreofficeãã®Calcã§ããExcelã§ãã確èªã¯åããŸããã
fn=mod(fn,10^k)ãšããã°ãã§ããŠããŸãã
ãªããaã¯16,31,46çªç®ãæäžäœã¯0ã§ãããæ¬¡ã1ã«ã¯ãªããŸãããããã¯ã61çªç®ãš62çªç®ã§ãã
No.780ããããã¯ã¡ã¹ã2023幎3æ30æ¥ 08:43
0: 0
1: 1
2: 1
60: 1548008755920
61: 2504730781961
62: 4052739537881
300: 222232244629420445529739893461909967206666939096499764990979600
301: 359579325206583560961765665172189099052367214309267232255589801
302: 581811569836004006491505558634099066259034153405766997246569401
1500: 135511256685631019516369368671âŠ800838145996187122583354898000 (314æ¡)
1501: 219261819175562414066861037063âŠ414440690362014196035679949001 (314æ¡)
1502: 354773075861193433583230405734âŠ215278836358201318619034847001 (314æ¡)
15000: 291822482420491383023640722369âŠ140908611007655976683548980000 (3135æ¡)
15001: 472178695237723741550776991928âŠ405008577933901775242024490001 (3135æ¡)
15002: 764001177658215124574417714298âŠ545917188941557751925573470001 (3135æ¡)
ã®ããã«ãªããŸããïŒéã®å
šæ¡ãèšç®ã¯ããŠããŸããã
æ²ç€ºæ¿ã«æžãã«ã¯é·ãããŸãã®ã§çç¥ããŠããŸããïŒ
No.781ãããã2023幎3æ30æ¥ 09:48
ããããæ§ãããã«ã¡ã¯ã
ããããšãããããŸãã
No.782ããããã¯ã¡ã¹ã2023幎3æ30æ¥ 12:55
a, b, c ã¯å®æ°ã§ã(a,b) â (0,0) ãšããŸãã
a, b, c ãçšãã 4 ã€ã®åŒ p, q, r, s ãäžæã«çšæããŠ
ã(p,q), (r,s) ã¯çŽç· ax + by + c = 0 äžã®ç°ãªã 2 ç¹ã§ããã
ãä»»æã® a, b, c ã®å€ã«å¯ŸããŠæãç«ã€ããã«ã§ããã§ããããïŒ
ãšãããã ãã ãšé¡æãåããã«ãããšæãã®ã§è£è¶³ãã
äŸãã° p = -c/a, q = 0, r = 0, s = -c/b ãšããã°äžèŠæ¡ä»¶ãæºããããã«èŠããŸãããããå®ã¯
ã»a = 0 ã®å Žåã(p,q) ã¯ç¹èªäœãæ¶å€±ããã®ã§ãçŽç·äžã®ç¹ãã衚ããªããªã
ã»b = 0 ã®å Žåã(r,s) ã¯ç¹èªäœãæ¶å€±ããã®ã§ãçŽç·äžã®ç¹ãã衚ããªããªã
ã»a â 0, b â 0 ã§ããc = 0 ã ãš 2 ç¹ãäžèŽããŠããŸããç°ãªã 2 ç¹ãã衚ããªããªã
ãšããåé¡ããããä»»æã® a, b, c ã®å€ã«å¯ŸããŠæç«ãããã®ã§ã¯ãªããªã£ãŠããŸãã
ãã®ãããªç¹ãæ¶å€±ããã 2 ç¹ãäžèŽãããããç¹æ®ãªå Žåãäžåååšããªããããªè¡šåŒãäœããã®ãããšããã®ãæå³ã«ãªããŸãã
No.760DD++2023幎3æ27æ¥ 07:45
ãåç¹ãéãax+by+c=0ãšåçŽãªçŽç·ããšax+by+c=0ãšã®äº€ç¹ã¯(-ac/(a^2+b^2),-bc/(a^2+b^2))ãªã®ã§ãäŸãã°
p=-ac/(a^2+b^2)+b
q=-bc/(a^2+b^2)-a
r=-ac/(a^2+b^2)-b
s=-bc/(a^2+b^2)+a
ãšããã°æ¡ä»¶ãæºãããŸããã
远èš
(p,q)ãš(r,s)ã¯(-ac/(a^2+b^2),-bc/(a^2+b^2))ã«é¢ããŠå¯Ÿç§°ãªç¹ã«ããŸãããã
ã©ã¡ããã(-ac/(a^2+b^2),-bc/(a^2+b^2))ã§ãæ§ããŸããããããäžè¬ã«ã¯
(-ac+(a^2+b^2)+bt,-bc/(a^2+b^2)-at)ã§tã®å€ãå€ããã°ããã ããªã®ã§ã2ç¹ãšèšããäœç¹ã§ããšããŸãã
No.761ãããã2023幎3æ27æ¥ 09:03
ãããªãã»ã©ã確ãã«æ¹åãã¯ãã«ã䜿ãã° 2 ç¹ç®ã©ããã奜ããªã ãåããŸããã
ç²ç¹ã§ããã
åèã«ãªããŸãããããããšãããããŸãã
No.762DD++2023幎3æ27æ¥ 09:18
å
ã
ãªããããæ°ã«ãªã£ãããšãããšã以äžã®ãããªçåããã§ããã
ç¹ãšçŽç·ã®è·é¢ã®å
¬åŒã¯é«æ ¡æ°åŠIIã®æç§æžã«æ²èŒãããŠããŸãã
ãããŠãããããå
šãŠã®æç§æžã§ãçŽç·ã x 軞ã«å¹³è¡ãªå ŽåããçŽç·ã y 軞ã«å¹³è¡ãªå Žåãããã以å€ã®å Žåããšå ŽååããããŠç€ºãããŠãããšæããŸãã
ããããå
ã
ã®é¡æã¯å¹³é¢äžã®ç¹ãšçŽç·ã§ãããx 軞㚠y 軞ãå°å
¥ãããŸã§ã¯ããã«ã¯ç¹å¥ãªåãã¯ååšããŸããã
ã ã£ãããç¹å¥ãªæ¹åã®å Žååããå¿
èŠãªãæ¹æ³ã§èšŒæããæ¹ãæµããšããŠèªç¶ãªã®ã§ã¯ïŒ
ãšããããšã§ãæå§ãã«çŽç·ãæ¹çšåŒã§ã¯ãªãéã 2 ç¹ã§è¡šçŸããããšããå§ããããšæã£ããŸã§ã¯ãããã®ã®ã
åã£ç«¯ããæãã¬é£æžãšãªããå©ãèãæ±ããŠã¿ã次第ã§ããã
2 ç¹ãåãããæ¬¡ã¯å
åãå€åã§çŽç·äžã®ä»»æã®ç¹ãæžãããšèããŠããã®ã§ããããŸããäžæ®µéãã£é£ã°ããŠãããªãä»»æã®ç¹ãåãæ¹ãæ©ãã£ããšã¯ã
ã§ãå®éã«å ŽååããäžèŠãªç¹ãšçŽç·ã®è·é¢ã®å
¬åŒã®èšŒæãæžããŠã¿ãã®ããã¡ãã
éäžã§ãã©ãŒãã°ãã¿ã®äºå¹³æ¹æçåŒ (a^2+b^2)(c^2+d^2) = (ac+bd)^2 - (ad-bc)^2 ãçšããŠããŸããããã®èšŒæã¯äž¡èŸºå±éããã ããªã®ã§çç¥ããŠããŸãã
--------
(a,b) â (0,0) ãã a^2+b^2 â 0
ãã£ãŠã( -ac/(a^2+b^2) + tb , -bc/(a^2+b^2) - ta ) ãšãã座æšã§è¡šãããç¹ã¯ä»»æã®å®æ° t ã«ã€ããŠçŽç· ax + by + c = 0 äžã«ããã
éã«çŽç· ax + by + c = 0 äžã«ããä»»æã®ç¹ã®åº§æšã¯ããã宿° t ãçšã㊠( -ac/(a^2+b^2) + tb , -bc/(a^2+b^2) - ta ) ãšæžããã
ãããã£ãŠãç¹ (X,Y) ãšçŽç· ax + by + c = 0 ãšã®è·é¢ã¯ãç¹ (X,Y) ãšç¹ ( -ac/(a^2+b^2) + tb , -bc/(a^2+b^2) - ta ) ã®è·é¢ã t ã®é¢æ°ãšèãããšãã®æå°å€ãšããŠæ±ããããã
ããã§ã
-ac/(a^2+b^2) + tb - X
= { -ac + b(a^2+b^2)t - a^2*X - b^2*X + abY - abY } / (a^2+b^2)
= { b( (a^2+b^2)t - bX + aY ) - a( aX + bY + c ) } / (a^2+b^2)
-bc/(a^2+b^2) - ta - Y
= { -bc - a(a^2+b^2)t - a^2*Y - b^2*Y + abX - abX } / (a^2+b^2)
= { -a( (a^2+b^2)t - bX + aY ) - b( aX + bY + c ) } / (a^2+b^2)
ãšãªãã®ã§ããã©ãŒãã°ãã¿ã®äºå¹³æ¹æçåŒãçšãããšã2 ç¹éã®è·é¢ L ã® 2 ä¹ã¯
L^2 = ( -ac/(a^2+b^2) + tb - X )^2 + ( -bc/(a^2+b^2) - ta - Y )^2
= (a^2+b^2){ (a^2+b^2)t - bX + aY )^2 + ( aX + bY + c )^2 } / (a^2+b^2)^2
= { (a^2+b^2)t - bX + aY )^2 + ( aX + bY + c )^2 } / (a^2+b^2)
ãšãªãã
ãã㯠t = ( bX - aY ) / (a^2+b^2) ã®ãšãã«æå°å€ ( aX + bY + c )^2 / (a^2+b^2) ããšãã
ãããã£ãŠãç¹ (X,Y) ãšçŽç· ax + by + c = 0 ãšã®è·é¢ã¯ãã® L^2 ã®æå°å€ã®è² ã§ãªãå¹³æ¹æ ¹ãããªãã¡
d = | aX + bY + c | / â(a^2+b^2)
ã§ããã
--------
å Žååããå¿
èŠãªç¹å¥ãªæ¹åãååšããªããèªç¶ãªæµãã®èšŒæâŠâŠãšããæãã§ã¯ãªããªãã
No.763DD++2023幎3æ27æ¥ 19:44
> 管ç人ããã®ã³ã¡ã³ã
ãã€ããã®ãµã€ãå
ã«æ
å ±ããªããæ¢ããšãã
ãæ°åŠæåç§è©±ã
ãç§ã®åå¿é²ã
ããè¶ã®æéãâãããºã«&ã¯ã€ãºã
ã®ã¿ã€ãã«äžèЧãã¶ããšç¢ºèªãããã§ããããŸãã
ãç§ã®åå¿é²ãâããã®ä»ãâãè£æã®èšé²ã
ã«ãèšäºã®éãŸãããã£ããšã¯ã
èšäºã®ã¿ã€ãã«äžèЧã¿ããã«ãªã£ãŠããããŒãžã£ãŠãã® 4 ã¶æã§å
šéšã§ããããïŒ
èå¿ã®ç¹ãšçŽç·ã®è·é¢å
¬åŒã®è©±ã§ããã確ãã«æ³ç·ãã¯ãã«ã䜿ã£ãŠåç·ãåŒããŠããŸãã°å ŽååãäžèŠãã€ç°¡çŽ ã§è¯ãã§ããã
ãããããã®èšŒæã¯ãã®ãŸãŸäžžããšç©ºéå
ã«ãããç¹ãšå¹³é¢ã®è·é¢ã®å
¬åŒã®èšŒæã«è»¢çšã§ãããšããç¹ãçŽ æŽãããã
髿 ¡æ°åŠã ãšæ°åŠBã®å
å®¹ãæ°åŠIIã§äœ¿ãããã«ã¯ãããªããšããäºæ
ããããã§ããããããã®èšŒæã¯ãã£ãšåºãŸã£ãŠã»ãããšããã§ãã
No.765DD++2023幎3æ28æ¥ 10:05
> 管ç人ããã®ã³ã¡ã³ã
æ
å ±ããããšãããããŸãã
èšäºã®éåäœãæã£ã以äžã«ãã£ã±ããã£ããã§ããâŠâŠã
ãŸããã£ããèªãŸããŠããã ããããšæããŸãã
No.775DD++2023幎3æ29æ¥ 09:11
9ãæ°å€ã䜿çšãããŠããã®äžã§ãã ïŒåã ã9ãšã¯ç°ãªãæ°å(1,2,4,5,7,8)
ããã§ã¯äŸãã°1ã䜿ãããŠããçŽ æ°ã§ã©ããªãã®ãããã®ãã
10æ¡ãã100æ¡ã®ç¯å²ã§èª¿ã¹ãŠã¿ãŸããã
ïŒ9ã®äžã«1ã1åå«ãŸããçŽ æ°
æ¡æ°;1ã®æ°åãããäžäœããã®äœçœ®
10;2,
11;6,8,ã<==>ã(99999199999,99999991999ãã®2ã€ãçŽ æ°ã瀺ãã)
12;3,9,
13;3,
14;11,12,
15;2,7,13,
16;14,
17;4,8,16,
18;
19;4,13,18,
20;6,18,
21;
22;4,7,16,
23;20,
24;6,7,12,
25;7,21,
26;18,23,
27;1,6,9,14,18,19,
28;1,20, <==>ã(1999999999999999999999999999,9999999999999999999199999999ãã®2ã€ãçŽ æ°ã瀺ãã)
29;23,
30;8,20,
31;8,30,
32;23,
33;7,21,26,33,
34;
35;
36;
37;26,36,
38;33,
39;
40;11,34,
41;8,
42;5,13,15,29,39,
43;8,10,24,32,38,42,
44;13,
45;12,14,36,45,
46;44,
47;2,15,
48;2,7,32,
49;
50;11,17,30,47,
51;31,
52;17,50,
53;39,
54;1,4,7,32,51,
55;51,52,
56;5,43,
57;7,
58;4,
59;29,
60;9,14,18,25,46,
61;16,30,54,
62;
63;
64;26,48,
65;14,
66;26,49,63,
67;10,40,57,
68;13,64,
69;
70;
71;34,
72;40,53,55,
73;
74;15,39,52,63,
75;3,
76;14,48,50,
77;32,
78;
79;4,72,
80;
81;21,
82;22,60,73,
83;29,39,57,70,74,
84;3,44,51,76,
85;9,19,
86;
87;3,44,
88;55,
89;30,60,70,
90;23,28,43,
91;16,18,90,
92;35,76,
93;
94;56,64,
95;66,
96;79,80,
97;27,58,
98;39,47,79,94,
99;
100;25,90,
以äžåãã
-----------------------------------------------------
ïŒ9ã®äžã«2ã1åå«ãŸããçŽ æ°
10;2,6,9,
11;2,8,
12;
13;6,10,11,
14;13,
15;3,12,
16;2,4,6,13,
17;9,10,
18;
19;10,
20;1,13,15,
................
------------------------------------------------------
ïŒ9ã®äžã«4ã1åå«ãŸããçŽ æ°
10;5,
11;3,
12;3,6,9,
13;8,
14;8,
15;1,6,7,10,
16;3,7,
17;8,10,
18;3,7,10,
19;5,
20;8,
................
-----------------------------------------------------
ïŒ9ã®äžã«5ã1åå«ãŸããçŽ æ°
10;3,4,6,
11;1,9,
12;2,4,7,10,11,
13;5,
14;1,2,13,
15;4,
16;3,
17;
18;
19;8,
20;5,7,
..............
------------------------------------------------------
ïŒ9ã®äžã«7ã1åå«ãŸããçŽ æ°
10;
11;1,7,
12;
13;3,11,
14;5,
15;
16;6,8,12,13,
17;7,17,
18;13,15,
19;
20;18,
............
--------------------------------------------------------
ïŒ9ã®äžã«8ã1åå«ãŸããçŽ æ°
10;
11;2,4,
12;6,10,11,
13;
14;3,6,9,
15;7,11,14,
16;4,12,
17;12,
18;6,9,14,17,
19;4,
20;1,19,
............
çã®çŽ æ°ãèŠã€ãããŸããã
ãªãå
é ã ããç°ãªã以äž9ãé£ç¶ããã¿ã€ãã§ã¯1000æ¡ãŸã§ã®èª¿æ»ã§
æé·ãªçŽ æ°ã§ãããã®ã¯
19999999 (786æ¡)
29999 (208æ¡)
4999999 (595æ¡)
59999999 (614æ¡)
7999999999 (797æ¡)
899999999999 (936æ¡)
ã«ãªããŸããã
No.772GAI2023幎3æ29æ¥ 07:09
1ïœ10^n
ãŸã§ã®åææ°ã®äžã§ãã®çŽæ°(1ãšèªåèªèº«ãå«ã)ã®åæ£ãæã倧ãããªããã®ã¯
äœã§ããããçŽæã§äºæ³ã§ããŸããïŒ
n=1,2,3,4,5,6
ãŸã§ãåœãŠãŠã¿ãŠäžããã
No.751GAI2023幎3æ25æ¥ 09:42
倧ãããªãã®ã¯ãã2Ããªãã¹ã倧ããªçŽ æ°ãã§ãããïŒ
åãããŠã¯ããŸããããå°ãããªãæ¹ã¯ãã£ã±ãäºæ³ãã€ããŸãããã
ååçŽ æ°ã®ç©ã¿ãããªã®ã匷ãã®ãããããšãçŽæ°ã®åæ°ãéåžžã«å€ãæ°ã匷ãã®ãã
No.753DD++2023幎3æ25æ¥ 10:54
忣ã¯ç¯å²ãå°ããæ¹ãå°ãããªããŸãã®ã§ã4ã®ãšãã®åæ£(14/9)ãæå°ã«ãªãæ°ãããŸãã
(远èš)
ïŒå€§ããæ¹ãïŒèª¿ã¹ãŠã¿ããšãããn=1,2ã§ã¯ã2Ãæå€§ã®çŽ æ°ãã§ããããnâ§3ã§ã¯éããŸããã
No.754ãããã2023幎3æ25æ¥ 17:03
ããããã§ããã
å°ããæ¹ã¯ç¯å²ãéã«ãããæ°ä»¥äžã®ç¯å²ã§ããšããªããšãããŸãããã
倧ããæ¹ã§ãããçŽ æ°ã®å¹³æ¹ãšããååšãå¿ããŠãŸããã
ãªããçŽæ°ã®åæ°ã®æå°ã¯ 4 åã ãšæã蟌ãã§ããâŠâŠã
No.755DD++2023幎3æ25æ¥ 18:20
ånã§ã®ç¬¬1äœã第2äœã第3äœã¯ãããªãããã§ãã
n=1 ;10(=2*5),9(=3^2), 8(=2^3)
n=2 ;94(=2*47),95(=5*19),93(=3*31)
n=3 ;961(=31^2),989(=23*43),998(=2*499)
n=4 ;9409(=97^2),9991(=97*103),9983(=67*149)
n=5 ;97969(=313^2),99973(=257*389),99899(=283*353)
n=6 ;994009(=997^2),999997(=757*1321),999919(=991*1009)
n=7 ;9840769(=3137^2),9999727(=2549*3923),999557(=2617*3821)
n=8 ;99460729(=9973^2),99999233(=9433*10601),99998791(=9719*10289)
ïŒn=6ãŸã§ã¯ç¢ºèªããŸãããããã以äžã§ã¯äºæ³ã§ãã
No.756GAI2023幎3æ25æ¥ 19:09
nâ§5ã®ç¬¬2äœã第3äœã®å€ããã¹ãŠæ£ãããªãããã§ã(第1äœã¯æ£ããã§ã)ã
äŸãã°n=5ã®ç¬¬2äœã¯99973=257Ã389ãšæžãããŠããŸãã
99973ã®çŽæ°ã¯1,257,389,99973ã§åæ£ã¯1865930500
ããã«å¯Ÿã96721=311^2ã®çŽæ°ã¯1,311,96721ã§åæ£ã¯2072193622.222âŠ
ã§ããã96721ã®æ¹ã忣ã倧ããã§ãã
No.757ãããã2023幎3æ25æ¥ 21:15
n=4 ;å
šéšã§10000ïŒå)ã ã£ãã®ã§å
šåæ£èšç®ãå
ã«ç¬¬3äœãŸã§èª¿ã¹ãã2ã€ã®çŽ æ°ã®ç©ã10000ã«è¿ã¥ã
ãã¿ãŒã³ãåè£ã«äžãã£ãã®ã§ãn=5ã§ã®å€§éã®ããŒã¿ãåŠçããããšãªããŠã£ãããã®ãã¿ãŒã³ã«éå®
ã§æ¢ãã«è¡ã£ãŠããŸããã(n=2,3ã§ããã®åŸåã瀺ããŠããã)
ãã®ç¯å²ãŸã§åºãããšãã®åã³çŽ æ°ã®å¹³æ¹ã®ãã¿ãŒã³ãå
¥ã蟌ãããšãã§ãããã§ãããïŒé¢åããé¿ããããã€ãæã蟌ãã§ããŸã£ããïŒ
æ¹ããŠäºæ³ã§ã¯
n=5 ;97969(=313^2), 96721(=311^2), 94249(=307^2)
n=6 ;994009(=997^2), 982081(=991^2), 966289(=983^2)
n=7 :9840769(=3137^2), 9740641(=3121^2), 9728161(=3119^2)
n=8 ;99460729(=9973^2), 99341089(=9967^2), 98982601(=9949^2)
ãŸãæã蟌ã¿ãèµ·ãã£ãŠããŸãã®ãïŒ
n=8ã§å
šåææ°ã§ãã§ãã¯ããŠã¿ãŸããããééããªãããã§ããã
No.758GAI2023幎3æ26æ¥ 05:46
ç§ãåãçµæã«ãªããŸããã®ã§ãåé¡ãªããšæããŸãã
15:20远èš
n=9ã«ã€ããŠèšç®ããŠã¿ãŸããã
n=9 ;999002449(=31607^2), 998623201(=31601^2), 997485889(=31583^2)
ãã®åŸããã£ãšçŽ æ°ã®2ä¹ãç¶ãããã§ããã
No.759ãããã2023幎3æ26æ¥ 09:47
1ïœ10^(2*n)
ãŸã§ã®åææ°ã®äžã§ãã®çŽæ°ã®åæ£ãæå€§ã«ãªããã®ã¯
ããçŽ æ°pã§ããã®å¹³æ¹ã10^nãè¶ããªãæå€§ã®çŽ æ°pã§ãããã®ã
èŠã€ããŠãã®å¹³æ¹æ°ãæ±ãããã®ã«ãªããïŒäœãn=2,3,4,)
1ïœ10^4-->9409=97^2 (97<10^2 ã§ã®æå€§ã®çŽ æ°)
1ïœ10^6-->994009=997^2 (997<10^3 ã§ã®æå€§ã®çŽ æ°ïŒ
1ïœ10^8-->99460729=9973^2 (9973<10^4 ã§ã®æå€§çŽ æ°)
å¹³æ¹ããŠããã®10^nãè¶ããªãæå€§ã®çŽ æ°ã«çç®ããŠOEISã§æ€çŽ¢ããããš
https://oeis.org/A132153
ããããããããã«ã¯n=1ïœ2000 ãã®ããŒã¿ãæã£ãŠããã
n;å¶æ°ã§ã®çŽ æ°ã«çç®ãããšãæ°å9ããšãŠãå€ãé£ç¶ããŠäžŠã¶ããšãèµ·ããŠããŸã
ããšãèµ·ããŠããŸãã(ãªããªãå¹³æ¹ããããšã§10^nã«æãè¿ã¥ããŠãããã)
2000ã®å
ã®ãã®åå1000åã«éäžããã°
https://oeis.org/A003618
ããã«ã¯èŠäºã«9ã䞊ãã§ããŸãçŽ æ°ãæã£ãŠããã
ãã®1000åããã£ãšçºããŠãããšäžæ°æ¡ã§äžã€ã ã9ã§ã¯ãªãæ°ãçŸããŠããŸãã¿ã€ãã®çŽ æ°ã
ããã€ãããïŒåœç¶å
šéšã®æ°ã9ã§ã®çŽ æ°ã¯ããåŸãã粟ãã£ã±ãã®9ãå«ãçŽ æ°ãšãªã£ãŠããã)
åé¡äŸ
9991(æåŸã®æåŸã§1) (n=10,14,66,90,210,394,398,562,602,634)
n=634ãšã¯10^634ã«æããã®å¹³æ¹ãè¿ã¥ããçŽ æ°ïœãp=9991 ïŒ9ãé£ç¶634/2-1=317-1=316å䞊ã¶ãã®)
ã§ãããšããããšã«ãªãã
999919(10äœã ãã1)ã(n=182,678,814)
999929(10äœã ãã2)ã(n=254,302,548)
999949(10äœã ãã4)ã(n=128)
999959(10äœã ãã5)ã(n=94,176,260)
9997(æåŸã®æåŸã§7) (n=4,6,34,280,1980)
n=1980ã¯p=9997 (9ããªããšé£ç¶1980/2-1=989åã䞊ãã§ããŸãçŽ æ°ãããããšã瀺ãã)
999979(10äœã ãã7) (n=216,816)
999799(100äœã ãã7) (n=1152)
999989(10äœã ãã8)ã(n=16,24,30,36,40,60,160,304,328,352,478,582.648,1008,1188,1966)
999899(100äœã ãã8) (n=42,1432,1558)
9998999(1000äœã ãã8) (n=652)
ãããªã«ïŒã®æ°åã䞊ãã§ããŸãçŽ æ°ã®å
·äœäŸãèŠãããšãç¡ãã£ãã®ã§ãäœæ°ãªãåææ°ã®åæ£ã
æ¢ããŠã¿ãããšãã詊ã¿ããæãã¬å¯ç£ç©ã«åºäŒããŠé¢çœãã£ãã§ãã
å¿è«çŽ æ°ã¯ç¡éã«ããã®ã§ïŒéåžžã¯ãããªäžçã«ã¯ç¡çžã§ã¯ãããŸãã)æŽã«é©ãã¹ãçŽ æ°ãæœãã§ããããšã§ãããã
No.764GAI2023幎3æ28æ¥ 07:04