æ°åŠçåž°çŽæ³ã§ããããåããªããŠãã以äžã§çµããæ°ãããŸãããã©ãã§ãããïŒ
-----
n = 1 ã®å Žåã¯æããã«æãç«ã€ã
以äžã§ã¯ n â§ 2 ã®å Žåã«ã€ããŠèšŒæããã
pâ§q ã〠râ§s ã®ãšãã
pr + qs - ps - qr = (p-q)(r-s) â§ 0
ãããpr + qs â§ ps + qr
ãã£ãŠã
ïŒå·ŠèŸºïŒ= (Σ[i=1->n] a[i])*(Σ[i=1->n] b[i])
= Σ[i=1->n] a[i]*b[i] + Σ[i=2->n] Σ[j=1->i-1] (a[i]*b[j] + a[j]*b[i])
⊠Σ[i=1->n] a[i]*b[i] + Σ[i=2->n] Σ[j=1->i-1] (a[i]*b[i] + a[j]*b[j])
= n*Σ[i=1->n] a[i]*b[i]
æè¿ãŸããçµ±èšã絡ã¿ã§ããã¿ã ãããã®ã©ããéžã¶ãã¯åããããç³»ã®è©±ã沞ããŠããŸãã
æ°ã«ãªãèšäºããã£ãã®ã§ã確ããããããšããŸããã, ããããããã¿ã ãããã®æ°ãäžããå€ããªãããšã«æ°ãã€ããŸããã
仿¹ããªãã®ã§æ°ããŠã¿ãããšããã®ã§ãã...
äŸãã°, 瞊ã®çã4æ¬ã§, 暪æ£ã3æ¬ã®å Žåã«20éããïŒãšãªã£ãã®ã§ãã, ã©ãã«ãèªä¿¡ãæãŠãŸããã
ãã , 暪æ£ã3æ¬ã®å Žåã§, 瞊ã®çã®æ¬æ°ãå¢ãããŠããã°, 䌌ãèšç®ã§æŒžååŒçã«æ°ãããããã ãš...
ã§ããã£ã±ãèŠé ãåŸãªãã®ã§, äŸãã°ã瞊ã®çã5æ¬ã§æšªæ£ã6æ¬å
¥ã£ããã¿ã ãããã®ç·æ°ã¯ã©ãèšç®ããã°è¯ããæããŠäžãããªã
ã20éããã®æ°ãããã§ããå·Šã«1æ¬ãäžã«0æ¬ãå³ã«2æ¬ããæ°ããããŠããªãæ°ãããŸãã
ç§ã®åéãã§ãããã容赊äžããã
èªåããã¿ã ããã«ã€ããŠããã€ãã®æçš¿ãããŠããã®ãèšæ¶ããŠããã®ã§èª¿ã¹ãŠã¿ãã
ç§ã®åå¿é²äžã®
æ°åŠã»ã»ã»ãã®ä»(æ°åŠã«ã€ããŠã®éåŠãã»ã»ã»)
æãéãã®ãã¿ã ãããäœãæ¹æ³ã(å³åäžãã2çªç®)
ã«é¢é£èšäºããŸãšããããŠããŸãã
æãããã£ãã®ã§èªåã§ããããäžåºŠæŽçããŠã¿ãŸããã
瞊ç·ã4æ¬ã§æšªç·ãnæ¬ã§ã¯(A088305)
gp > a(n)=(((3+sqrt(5))/2)^(n+1)-((3-sqrt(5))/2)^(n+1))/sqrt(5)
gp > for(n=1,10,print(n";"round(a(n))))
1;3
2;8
3;21
4;55
5;144
6;377
7;987
8;2584
9;6765
10;17711
瞊ç·ã5æ¬ã§æšªç·ãnæ¬ã§ã¯(A261547)
gp > b(n)=(3^(n+1)-1)/2
gp > for(n=1,10,print(n";"b(n)))
1;4
2;13
3;40
4;121
5;364
6;1093
7;3280
8;9841
9;29524
10;88573
瞊ç·ã6æ¬ã§æšªç·ãnæ¬ã§ã¯(A005021)
c(n)={S=[];}for(i=0,n,for(j=0,n-i,for(k=0,n-i-j,\
S=concat(S,[binomial(i+j,j)*binomial(j+k,k)*binomial(n+1-j,n-(i+j+k))]))));vecsum(S)
gp > for(n=1,10,print(n";"c(n)))
1;5
2;19
3;66
4;221
5;728
6;2380
7;7753
8;25213
9;81927
10;266110
ãªã瞊æ£ã6æ¬ã§ã®æšªè»žnæ¬ã§ã®ãã¿ã ããã®æ¬æ°ãA005021ã§ã®è§£èª¬ã§ã¯
P_6ãšåŒã°ããéïŒçŽç·äžïŒç¹AãBãCãDãEãF ã䞊ãã§ãããïŒããAããåºçºãã
2*n+5(æ©)ã«ãŠFã®å°ç¹ã«å°çããé
æ©ã®ã³ãŒã¹ãäœéãã§ãããïŒ ããã«åããšããã
ãã£ãŠæšªæ£2æ¬ã§ã¯2*2+5=9æ©ã§é²ãå®äŸãæ§æãããš
1;[A, B, A, B, A, B, C, D, E, F]
2;[A, B, A, B, C, B, C, D, E, F]
3;[A, B, A, B, C, D, C, D, E, F]
4;[A, B, A, B, C, D, E, D, E, F]
5;[A, B, A, B, C, D, E, F, E, F]
6;[A, B, C, B, A, B, C, D, E, F]
7;[A, B, C, B, C, B, C, D, E, F]
8;[A, B, C, B, C, D, C, D, E, F]
9;[A, B, C, B, C, D, E, D, E, F]
10;[A, B, C, B, C, D, E, F, E, F]
11;[A, B, C, D, C, B, C, D, E, F]
12;[A, B, C, D, C, D, C, D, E, F]
13;[A, B, C, D, C, D, E, D, E, F]
14;[A, B, C, D, C, D, E, F, E, F]
15;[A, B, C, D, E, D, C, D, E, F]
16;[A, B, C, D, E, D, E, D, E, F]
17;[A, B, C, D, E, D, E, F, E, F]
18;[A, B, C, D, E, F, E, D, E, F]
19;[A, B, C, D, E, F, E, F, E, F]
ãšèšç®ã®éã19ãã¿ãŒã³æ§æå¯èœãªã®ã§
瞊æ£ã5æ¬ã§ããæã¯
P_5ãšåŒã°ããéïŒçŽç·äž5ç¹AãBãCãDãE ã䞊ãã§ãããïŒããAããåºçºãã
2*n+4(æ©)ã«ãŠEã®å°ç¹ã«å°çããé
æ©ã®ã³ãŒã¹ãäœéãã§ãããïŒ
ãšäžã®ãã¿ãŒã³ãåèã«
ä»åºŠã¯2*2+4=8æ©ã§é²ã¿
1;[A, B, A, B, A, B, C, D, E]
2;[A, B, A, B, C, B, C, D, E]
3;[A, B, A, B, C, D, C, D, E]
4;[A, B, A, B, C, D, E, D, E]
5;[A, B, C, B, A, B, C, D, E]
6;[A, B, C, B, C, B, C, D, E]
7;[A, B, C, B, C, D, C, D, E]
8;[A, B, C, B, C, D, E, D, E]
9;[A, B, C, D, C, B, C, D, E]
10;[A, B, C, D, C, D, C, D, E]
11;[A, B, C, D, C, D, E, D, E]
12;[A, B, C, D, E, D, C, D, E]
13;[A, B, C, D, E, D, E, D, E]
ã®13éãïŒèšç®äžäžèŽ)
ãããã«æ¢ãããšãã§ããŸãã
ã ãã瞊æ£4æ¬ã®ãšãã¯
P_4ãšåŒã°ããéïŒçŽç·äž4ç¹AãBãCãD ã䞊ãã§ãããïŒããAããåºçºãã
2*n+3(æ©)ã«ãŠDã®å°ç¹ã«å°çããé
æ©ã®ã³ãŒã¹ãäœéãã§ãããïŒ
ã§åŠçãããæšªæ£2æ¬ã§ã¯7æ©ã§é²ã¿
1;[A, B, A, B, A, B, C, D]
2;[A, B, A, B, C, B, C, D]
3;[A, B, A, B, C, D, C, D]
4;[A, B, C, B, A, B, C, D]
5;[A, B, C, B, C, B, C, D]
6;[A, B, C, B, C, D, C, D]
7;[A, B, C, D, C, B, C, D]
8;[A, B, C, D, C, D, C, D]
ãèŠã€ããã
ããããšãããããŸãã
ãã£ããæ°ãèœãšããããŠããäºã確èªã§ããŸããã
è¡ãã€æ»ãã€ã®é è·¯æ°ã§æ°ããããçè·¯ã¯ã¡ãããšç¢ºèªã§ããŠãŸããããPythonã§ããã°ã©ã ããŠã¿ãŠç¢ºãã«æžãããŠããå Žåãªæ°ãåŸãããäºã¯åãããŸããã
次ã¯èšäºã«ãã£ãã瞊æ£8æ¬æšªæ£12æ¬ã®å Žåã«ããã¿ã ããã®è¡ãå
ãå ŽåããããŠæ°ããäºãå¿
èŠã«ãªããŸãã
ãè¡ãã€æ»ãã€ãã1ãš-1ã®ãªã¹ãã§æ°ãäžããäºã¯ã§ããã®ã§ãããšã¯ãã®ãªã¹ããããã¿ã ããã埩å
ããŠè¡ãå
ã確èªããã°è¯ãã®ã§ãã... ãã¿ã ããã®ã埩å
ãã¯ã©ã®ããã«ããã°è¯ãã§ãããïŒ
瞊8æ¬ã§æšªæ£næ¬ã®ãšãã®ç°ãªããã¿ã ããã®åŒãæ¹ã¯
次ã®èšç®ã§äžãããããã§ãã
gp > F(n)={S=[];}for(i=0,n,for(j=0,n-i,for(k=0,n-i-j,for(l=0,n-i-j-k,for(m=0,n-i-j-k-l,
W=binomial(i+j,j)*binomial(j+k,k)*binomial(k+l,l)*binomial(l+m,m)*binomial(n+1-(j+k+l),n-(i+j+k+l+m));
S=concat(S,[W]))))));vecsum(S)
gp > for(n=1,12,print(n";"F(n)))
1;7
2;34
3;143
4;560
5;2108
6;7752
7;28101
8;100947
9;360526
10;1282735
11;4552624
12;16131656
OEISã§æ€çŽ¢ãããšA005023ããããããŸããã
åŸã£ãŠæ±ããã¹ãå€ã¯16131656(éã)ã§ã¯ïŒ
ç§ãé
æ©ãšãã¿ã ããã察å¿ãããããšè©Šã¿ãã®ã§ããç·æ°ã§äžèŽããèšããªãã§ãã
察å¿ã®ä»æ¹ã¯ãããããªããïŒãšãããã®ã«æãè³ããŸãããåŠäœã§ãããã
ããšã¯ä»æ¹ãªãã®ã§, Pythonã§äžã€äžã€æ°ãããã...
以äžã®èãã¯ã©ãã§ããããïŒ
næ¬ã®çžŠç·ã«mæ¬ã®æšªç·ãåŒãå Žåã
ã»é
æ°m
ã»åé
ã®å€ã¯1以äžn-1以äž
ã»ä»»æã®é£ç¶ãã2é
ã«ã€ããŠãa[i+1] > a[i]-2
ãšããæ¡ä»¶ãæºããæ°åãšäžå¯Ÿäžã«å¯Ÿå¿ãããšæããŸãã
ãããŠããã®ãããªæ°åã®åæ°ã¯ãæåŸã®é
ãäœãªã®ãã§åé¡ããŠæŒžååŒãäœãããšæããŸãã
ãã¿ã ããã§çžŠç·ãnæ¬(nâ§3)ã§æšªç·ãkæ¬ã§ã®äœãæ¹Tn(k)ãæŒžååŒã§æ§æãããš
T3(k)=if(k==1,2,2*memorize(T3,k-1))
T4(k)=if(k==1,3,k==2,8,3*memorize(T4,k-1)-binomial(2,2)*memorize(T4,k-2))
T5(k)=if(k==1,4,k==2,13,4*memorize(T5,k-1)-binomial(3,2)*memorize(T5,k-2))
T6(k)=if(k==1,5,k==2,19,k==3,66,5*memorize(T6,k-1)-binomial(4,2)*memorize(T6,k-2)+binomial(3,3)*memorize(T6,k-3))
T7(k)=if(k==1,6,k==2,26,k==3,100,6*memorize(T7,k-1)-binomial(5,2)*memorize(T7,k-2)+binomial(4,3)*memorize(T7,k-3))
T8(k)=if(k==1,7,k==2,34,k==3,143,k==4,560,7*memorize(T8,k-1)-binomial(6,2)*memorize(T8,k-2)+binomial(5,3)*memorize(T8,k-3)-binomial(4,4)*memorize(T8,k-4))
T9(k)=if(k==1,8,k==2,43,k==3,196,k==4,820,8*memorize(T9,k-1)-binomial(7,2)*memorize(T9,k-2)+binomial(6,3)*memorize(T9,k-3)-binomial(5,4)*memorize(T9,k-4))
T10(k)=if(k==1,9,k==2,53,k==3,260,k==4,1156,k==5,4845,9*memorize(T10,k-1)-binomial(8,2)*memorize(T10,k-2)+binomial(7,3)*memorize(T10,k-3)-binomial(6,4)*memorize(T10,k-4)+binomial(5,5)*memorize(T10,k-5))
T11(k)=if(k==1,10,k==2,64,k==3,336,k==4,1581,k==5,6954,10*memorize(T11,k-1)-binomial(9,2)*memorize(T11,k-2)+binomial(8,3)*memorize(T11,k-3)-binomial(7,4)*memorize(T11,k-4)+binomial(6,5)*memorize(T11,k-5))
*ã¹ããŒãã¢ãããèšãããã¡ã¢åããŠåŠçããŠããŸãã
çžŠã®æ¬æ°ãå€ããªããšåæå€ãããã€ãéããªããšãããªãã®ã§ãã®èŸºãé¢åãïŒ
çžŠã®æ¬æ°
-3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11(æ¬)
æšªã®æ¬æ°;ã§èŠãŠäžããã
1;2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
2;4 | 8 | 13 | 19 | 26 | 34 | 43 | 53 | 64
3;8 | 21 | 40 | 66 | 100 | 143 | 196 | 260 | 336
4;16 | 55 | 121 | 221 | 364 | 560 | 820 | 1156 | 1581
5;32 | 144 | 364 | 728 | 1288 | 2108 | 3264 | 4845 | 6954
6;64 | 377 | 1093 | 2380 | 4488 | 7752 | 12597 | 19551 | 29260
7;128 | 987 | 3280 | 7753 | 15504 | 28101 | 47652 | 76912 | 119416
8;256 | 2584 | 9841 | 25213 | 53296 | 100947 | 177859 | 297275 | 476905
9;512 | 6765 | 29524 | 81927 | 182688 | 360526 | 657800 | 1134705 | 1874730
10;1024 | 17711 | 88573 | 266110 | 625184 | 1282735 | 2417416 | 4292145 | 7283640
11;2048 | 46368 | 265720 | 864201 | 2137408 | 4552624 | 8844448 | 16128061 | 28048800
12;4096 | 121393 | 797161 | 2806272 | 7303360 | 16131656 | 32256553 | 60304951 | 107286661
13;8192 | 317811 | 2391484 | 9112264 | 24946816 | 57099056 | 117378336 | 224660626 | 408239530
14;16384 | 832040 | 7174453 | 29587889 | 85196928 | 201962057 | 426440955 | 834641671 | 1547129284
15;32768 | 2178309 | 21523360 | 96072133 | 290926848 | 714012495 | 1547491404 | 3094322026 | 5844716616
16;65536 | 5702887 | 64570081 | 311945595 | 993379072 | 2523515514 | 5610955132 | 11453607152 | 22025185281
17;131072 | 14930352 | 193710244 | 1012883066 | 3391793664 | 8916942687 | 20332248992 | 42344301686 | 82836630954
18;262144 | 39088169 | 581130733 | 3288813893 | 11580678656 | 31504028992 | 73645557469 | 156404021389 | 311063682160
19;524288 | 102334155 | 1743392200 | 10678716664 | 39539651584 | 111295205284 | 266668876540 | 577291806894 | 1166646177136
20;1048576 | 267914296 | 5230176601 | 34673583028 | 134998297600 | 393151913464 | 965384509651 | 2129654436910 | 4371207361885
ãŸã äœã®æ€èšŒãããŸããã... Python ã§ããã°ã©ã ããŠæ°ããååžããããªããŸããã
1282735ã¯ç·æ°ã®çã§ããçããã®æ°å€ãšåã£ãŠãªããããªæ°ãããŸã...
1282735
[764877, 279584, 133631, 64604, 27257, 9481, 2693, 608]
[279584, 478114, 262307, 147260, 72988, 29809, 9980, 2693]
[133631, 262307, 365985, 252938, 153368, 75216, 29809, 9481]
[64604, 147260, 252938, 314118, 250202, 153368, 72988, 27257]
[27257, 72988, 153368, 250202, 314118, 252938, 147260, 64604]
[9481, 29809, 75216, 153368, 252938, 365985, 262307, 133631]
[2693, 9980, 29809, 72988, 147260, 262307, 478114, 279584]
[608, 2693, 9481, 27257, 64604, 133631, 279584, 764877]
ãéšããããŸãããïŒç·šéã®ãã¹ã¯ãŒããééã£ãŠå
¥ããããã§èšæ£ã§ããªãã®ã§éããŠã®æçš¿ãšãªãç³ãèš³ãããŸããïŒ
Pythonã§çµãã ãã®ã¯ãªããªãåŠçãçµãããªãã®ã§
Claudiã«ãé¡ãããŠJuliaã«æžãçŽããŠè²°ã£ãŠå®è¡ãããšããããã®æéã§çµæãåºãŸããã
--start---------------------------------------
8 12
--Ans-------------------------------------------
16131656
[9188341, 3508269, 1778834, 939616, 451633, 184261, 63000, 17702]
[3508269, 5568480, 3238722, 1961381, 1086206, 507952, 197646, 63000]
[1778834, 3238722, 4168532, 3074842, 2048283, 1130230, 507952, 184261]
[939616, 1961381, 3074842, 3550353, 3019342, 2048283, 1086206, 451633]
[451633, 1086206, 2048283, 3019342, 3550353, 3074842, 1961381, 939616]
[184261, 507952, 1130230, 2048283, 3074842, 4168532, 3238722, 1778834]
[63000, 197646, 507952, 1086206, 1961381, 3238722, 5568480, 3508269]
[17702, 63000, 184261, 451633, 939616, 1778834, 3508269, 9188341]
--end-------------------------------------------
ãã®çµæã䜿ããš,
ãçµ±èšãªãã©ã·ãŒã®ãªãè
ãã«ã¢ãããæä»£ããã£ãŠããããšãããã€ã¢ã¢ã³ãã»ãªã³ã©ã€ã³ã®èšäº
https://diamond.jp/articles/-/363654
ã«ãããã¿ã ããã®è©±ã®ååžã®éšåã確èªã§ããŸãã
GAI ãããž
ãif(k==1,2,2*memorize(T3,k-1))ã
ã®èªã¿æ¹ïŒãåãããŸãããããã¯ãããããŠ
if k=1 then 2 else 2*T3(k-1) endif
ãšããããšã§ããããïŒ
ããã§ãã
æããŠããã ãããè¡ãã€æ»ãã€ãã®è¡çšããã¿ã ããã«å¯Ÿå¿ãããšããç¥æµã䜿ã£ãŠPythonã§çµãã ãã©é
ãããã®ã§Claudeã«ãé¡ãããŠJuliaã«æžãæãããã®ã§ç¡äºã«8ç12暪æ£ã®ãã¿ã ããã§ã¯, äœçç®ãéžãã å Žåäœçç®ã«è³ãããšããæ°ãäžãã¯ã§ããŸããã, ãmçn暪æ£ã®ãã¿ã ããã§içç®ãéžãã å Žåã«jçç®ã«è³ããã®ã¯å¹Ÿã€ããããã¯ãã©ãããã°èšç®ã§ããããã¯è§£æ±ºããŠããŸããã
äœãšãèšç®ã§æžãŸããããšã¯ã§ããªããã®ã§ããããïŒ
çããã®å©ããåããŠå°ãåãçµãã ããšããŸãšããpdfãããã«çœ®ããŠãããŸãã
ãŸã 解決ããŠããŸããã®ã§ããå°ãå©ããŠäžããã
https://amaryllis4u.wordpress.com/2025/04/26/æšæºçãªããã¿ã ãããã§ããçãéžãã ãšãã«/
8ç12暪æ£ã®ãã®ãæ°åã«å¯Ÿå¿ä»ããŸãã
äŸãã°
â£â«ââ£â«âââ
ââ£â«ââ£â«â£â«
â£â«ââ£â«âââ
â£â«â£â«ââ£â«â
ââââ£â«ââ£â«
ãšãã圢ã®ãã®ã§èããŸãã
ããã®æšªç·ã«çªå·ã
ã»åºæ¬çã«å·Šã«ãããã®ããå³ã«ãããã®ãžãåãåå
ã§ã¯äžã«ãããã®ããäžã«ãããã®ãžãé ã«çªå·ãæ¯ã
ã»ãã ããèªåã®äžæµã«æªæ¡çªã®ãã®ãããã°ããããæ¡çªããããŸã§ä¿çãã
ãšããã«ãŒã«ã§æ¯ã£ãŠãããŸãã
ã»æå·Šåã®äžçªäžã®ã1
ã»æå·Šåçãäžã¯äžæµã«æªæ¡çªã®ãã®ãããã®ã§ä¿ç
ã»æå·Šåäžæ®µã¯äžæµã«æªæ¡çªã®ãã®ãããã®ã§ä¿ç
ã»å·Šãã2åç®ã®ã2
ã»æå·Šåçãäžã¯äžæµãæ¡çªãããã®ã§ããã3
ã»æå·Šåäžæ®µã¯äžæµãæ¡çªãããã®ã§ããã4
以äžç¥
åçªå·ãå·Šããäœåç®ã«ããããèŠããšã
1,2,1,1,4,5,4,3,4,7,6,7
ãšããæ°åã«ãªããŸãã
ãã®å¯Ÿå¿ä»ãã§ã8ç12暪æ£ã®ãã¿ã ãããšã1ãã7ãŸã§ã®æ°ããã©ã®é
ãåé
-1以äžããšããæ¡ä»¶ã§12é
䞊ã¹ãæ°åãäžå¯Ÿäžã«å¯Ÿå¿ããŸãã
ãã£ãŠããã¿ã ããã®åæ°ã®ä»£ããã«åŸè
ãæ°ããããšã«ããŸãã
1é
䞊ã¹ãå Žåã
æ«å°Ÿã1ã®ãã®ã1å
æ«å°Ÿã2ã®ãã®ã1å
æ«å°Ÿã3ã®ãã®ã1å
æ«å°Ÿã4ã®ãã®ã1å
æ«å°Ÿã5ã®ãã®ã1å
æ«å°Ÿã6ã®ãã®ã1å
æ«å°Ÿã7ã®ãã®ã1å
åèš7å
2é
䞊ã¹ãå Žåã
æ«å°Ÿã1ã®ãã®ã1+1=2å
æ«å°Ÿã2ã®ãã®ã1+1+1=3å
æ«å°Ÿã3ã®ãã®ã1+1+1+1=4å
æ«å°Ÿã4ã®ãã®ã1+1+1+1+1=5å
æ«å°Ÿã5ã®ãã®ã1+1+1+1+1+1=6å
æ«å°Ÿã6ã®ãã®ã1+1+1+1+1+1+1=7å
æ«å°Ÿã7ã®ãã®ã1+1+1+1+1+1+1=7å
åèš34å
3é
䞊ã¹ãå Žåã
æ«å°Ÿã1ã®ãã®ã2+3=5å
æ«å°Ÿã2ã®ãã®ã2+3+4=9å
æ«å°Ÿã3ã®ãã®ã2+3+4+5=14å
æ«å°Ÿã4ã®ãã®ã2+3+4+5+6=20å
æ«å°Ÿã5ã®ãã®ã2+3+4+5+6+7=27å
æ«å°Ÿã6ã®ãã®ã2+3+4+5+6+7+7=34å
æ«å°Ÿã7ã®ãã®ã2+3+4+5+6+7+7=34å
åèš143å
4é
䞊ã¹ãå Žåã
æ«å°Ÿã1ã®ãã®ã5+9=14å
æ«å°Ÿã2ã®ãã®ã5+9+14=28å
æ«å°Ÿã3ã®ãã®ã5+9+14+20=48å
æ«å°Ÿã4ã®ãã®ã5+9+14+20+27=75å
æ«å°Ÿã5ã®ãã®ã5+9+14+20+27+34=109å
æ«å°Ÿã6ã®ãã®ã5+9+14+20+27+34+34=143å
æ«å°Ÿã7ã®ãã®ã5+9+14+20+27+34+34=143å
åèš560å
ããš8ååç¥
æèšç®ã§ãæ°åã§çµããã¬ãã«ãªã®ã§ããããPythonãé
ãèšèªãšãã£ãŠãäžç¬ã ãšæããŸãã
ãã察å¿é¢ä¿ãã§ãããã
ãŸããæåŸã®çªå·ããšã«ãå°çå°ç¹ãã©ãã«ãªããã®ãäœåãããããŠèšäžããŠããã°ã©ããšã§ããªããšæããŸãã
DD++ãããž
现ãã解説ãããããšãããããŸãã
ãè¡ãã€æ»ãã€ãã§ãä»°ããé
æ°mã»åé
ã®å€ã¯1以äžn-1以äžã»ä»»æã®é£ç¶ãã2é
ã«ã€ããŠãa[i+1] > a[i]-2ããšãªãæéæ°åãæ°ããææ³ã§ãå
šéšã§äœéãããããæ°ããããšã¯ã§ããŠ, ã³ã¬ãŸãä»°ãéããå
šéšã§äœéããã ããªããããé
ãPythonã§ãååææ
¢ã§ããæéã§çµæãæããŠãããŸããïŒãããŠå€åJuliaãªããã£ãšããã°ã©ã ãæžãæããŠæ©ãïŒ
ãã®ã¬ãã«ã®è©±ã¯ïŒé¢çœãã§ããã©ïŒãŸãããæå³è§£æ±ºæžã¿ã§ãã
ããã§ã¯ãªããŠ, 8ç12暪æ£ã®ãã¿ã ããã§, 4çç®ãéžãã ãšãã«è³ãçã3çç®ã«ãªããããªãã¿ã ããã¯äœéãããã? ãæ°ãããã®ã§ãã
ã§ãªããš, èšäºã«ãããããªãååžãã¯ã·ãã¥ã¬ãŒã·ã§ã³ã§ãã確èªã§ããŸããããã
ãã¡ãããšæ°ããŠã¿ãããã§ããã°ãæ°åŒã§ïŒäŸã挞ååŒã¬ãã«ã§ãïŒèšç®ãããããšãã話ã§ãã
äœãšããªããªãã§ããããïŒ
DD++ãã
ä»°ãéãã§ããã©ããšã§ããªã£ããçµæã¯åŸãããŠããã®ã§ãã... ããŸãã«ãæ©æ¢°é Œããªæ°ãäžããªã®ã§...
ãŽãŒã«äœçœ®ãèãããå Žåã®èšç®äŸ
3æ¬ç®ã¹ã¿ãŒãã®å Žå
1é
䞊ã¹ãå Žåã
æ«å°Ÿã1ã®ãã®ã1åïŒ3ãŽãŒã«ã1åïŒ
æ«å°Ÿã2ã®ãã®ã1åïŒ2ãŽãŒã«ã1åïŒ
æ«å°Ÿã3ã®ãã®ã1åïŒ4ãŽãŒã«ã1åïŒ
æ«å°Ÿã4ã®ãã®ã1åïŒ3ãŽãŒã«ã1åïŒ
æ«å°Ÿã5ã®ãã®ã1åïŒ3ãŽãŒã«ã1åïŒ
æ«å°Ÿã6ã®ãã®ã1åïŒ3ãŽãŒã«ã1åïŒ
æ«å°Ÿã7ã®ãã®ã1åïŒ3ãŽãŒã«ã1åïŒ
åèš7åïŒ2ãŽãŒã«ã1åã3ãŽãŒã«ã5åã4ãŽãŒã«ã1åïŒ
2é
䞊ã¹ãå Žåã
æ«å°Ÿã1ã®ãã®ã1+1=2åïŒ1ãŽãŒã«ã1åã3ãŽãŒã«ã1åïŒ
æ«å°Ÿã2ã®ãã®ã1+1+1=3åïŒ2ãŽãŒã«ã1åã3ãŽãŒã«ã1åã4ãŽãŒã«ã1åïŒ
æ«å°Ÿã3ã®ãã®ã1+1+1+1=4åïŒ2ãŽãŒã«ã1åã3ãŽãŒã«ã1åã4ãŽãŒã«ã2åïŒ
æ«å°Ÿã4ã®ãã®ã1+1+1+1+1=5åïŒ2ãŽãŒã«ã1åã3ãŽãŒã«ã3åã5ãŽãŒã«ã1åïŒ
æ«å°Ÿã5ã®ãã®ã1+1+1+1+1+1=6åïŒ2ãŽãŒã«ã1åã3ãŽãŒã«ã4åã4ãŽãŒã«ã1åïŒ
æ«å°Ÿã6ã®ãã®ã1+1+1+1+1+1+1=7åïŒ2ãŽãŒã«ã1åã3ãŽãŒã«ã5åã4ãŽãŒã«ã1åïŒ
æ«å°Ÿã7ã®ãã®ã1+1+1+1+1+1+1=7åïŒ2ãŽãŒã«ã1åã3ãŽãŒã«ã5åã4ãŽãŒã«ã1åïŒ
åèš34åïŒ1ãŽãŒã«ã1åã2ãŽãŒã«ã6åã3ãŽãŒã«ã20åã4ãŽãŒã«ã6åã5ãŽãŒã«ã1åïŒ
äŸãã°æ«å°Ÿã4ã®ãã®ã®å Žåã1ã€æšªç·ãå°ãªããã€ã®æ«å°Ÿ5以äžãå
šéšåèšããŠããããŽãŒã«4ã®ãã®ãšãŽãŒã«5ã®ãã®ã®åæ°ãå
¥ãæ¿ãããšããæãã§ããã
æè¿C++ã«ããããã°ã©ãã³ã°ã®å匷ãå§ããã®ã§ããèŠæã®ãã®ãäžç¬ã§åºåããã³ãŒããæžããŠã¿ãŸããã
âŠâŠæ²ç€ºæ¿ã«ã³ãŒãäžžããšèŒãã¡ãã£ãŠå€§äžå€«ããªïŒ
æšæºå
¥åããnãšmãå
¥åããŠãã ããã
nâ§3ã®ã¿å¯Ÿå¿ããŸãçµæã2^63ãè¶
ãããšãªãŒããŒãããŒããããšã«ã¯å¯ŸåŠãæŸæ£ããŠããŸãã
Pythonã§å®è¡ããããã°AIã«ã§ã翻蚳ããŠããã£ãŠãã ããã
-----
#include <bits/stdc++.h>
using namespace std;
int main () {
int n, m;
cin >> n >> m;
assert(n>2);
vector<vector<vector<long long>>> a(n-1,vector<vector<long long>>(n,vector<long long>(n,0)));
for (int j=0; j<n; j++) {
a.at(0).at(j).at(j) = 1;
}
for (int loop=0; loop<m; loop++) {
vector<vector<vector<long long>>> next(n-1,vector<vector<long long>>(n,vector<long long>(n,0)));
for (int j=0; j<n; j++) {
for (int k=0; k<n; k++) {
next.at(0).at(j).at(k) = a.at(0).at(j).at(k) + a.at(1).at(j).at(k);
for (int i=1; i<n-2; i++) {
next.at(i).at(j).at(k) = next.at(i-1).at(j).at(k) + a.at(i+1).at(j).at(k);
}
next.at(n-2).at(j).at(k) = next.at(n-3).at(j).at(k);
}
}
for (int i=0; i<n-1; i++) {
for (int j=0; j<n; j++) {
swap (next.at(i).at(j).at(i),next.at(i).at(j).at(i+1));
}
}
swap (a,next);
}
long long total = 0LL;
for (int j=0; j<n; j++) {
for (int k=0; k<n; k++) {
long long sum = 0LL;
for (int i=0; i<n-1; i++) {
sum += a.at(i).at(j).at(k);
}
cout << sum;
if (k==n-1) {
total += sum;
cout << endl;
} else {
cout << " ";
}
}
}
cout << "total:" << total << endl;
return 0;
}
-----
åºåãµã³ãã«
8 12
9188341 3508269 1778834 939616 451633 184261 63000 17702
3508269 5568480 3238722 1961381 1086206 507952 197646 63000
1778834 3238722 4168532 3074842 2048283 1130230 507952 184261
939616 1961381 3074842 3550353 3019342 2048283 1086206 451633
451633 1086206 2048283 3019342 3550353 3074842 1961381 939616
184261 507952 1130230 2048283 3074842 4168532 3238722 1778834
63000 197646 507952 1086206 1961381 3238722 5568480 3508269
17702 63000 184261 451633 939616 1778834 3508269 9188341
total:16131656
5 30
69706010502882 64476946102498 61603155451959 58814544487309 54236041597325
64476946102498 62876755878626 61865352374327 60803099299213 58814544487309
61603155451959 61865352374327 61899682489401 61865352374327 61603155451959
58814544487309 60803099299213 61865352374327 62876755878626 64476946102498
54236041597325 58814544487309 61603155451959 64476946102498 69706010502882
total:308836698141973
ïŒè¿œèšïŒã€ã³ãã³ãå
šéšæ¶ãããããŒãïŒïŒ
DD++ãã
åå¿é ãæé£ãã®ã§ãã... ç¢åŒµãæ°ãæ¹ã¯ç·åœããããã¯çŽ æµãªã®ãããããŸãããã¢ã€ããŸãã
(æºåïŒ
6åã®ãµã€ã³ããåé¢ã«æ¬¡ã®3æ¡ã®æ°åãæžãã€ãããã®ãå·¥äœããã
æ°åã®è²; é», é, èµ€, æ©, ç·, 玫
ãµã€ã³ã1;111, 118, 127, 132, 146, 159ã
ãµã€ã³ã2;137, 144, 153, 158, 172, 185
ãµã€ã³ã3;161, 168, 177, 182, 196, 209
ãµã€ã³ã4;160, 167, 176, 181, 195, 208
ãµã€ã³ã5;149, 156, 165, 170, 184, 197
ãµã€ã³ã6;155, 162, 171, 176, 190, 203
(éã³æ¹)
çžæã«6åã®ãµã€ã³ãã®äžã§1åã®ãµã€ã³ããéžã°ãããïŒãããåãåã)
6è²ã®äžã§äžã€ã®è²ã決ããŠãããã
ãã®åŸæ®ãã®5ã€ã®ãµã€ã³ããäžçªäžãæå®ãããè²ä»¥å€ã®5çš®é¡ãå
šãŠåºæãããã«
䞊ã¹ãŠãããã
ããªãã¯çžæãäœæ¥ãçµãã£ããšåæã«äžçªäžã«çŸããå3æ¡ã®æ°åã®åèšã
çŽã«æžãã€ããäŒããŠããã
ãããçžæã«èŠããŠããäžçªäžã«æžãããæ°åã®åèšãããŠãããšé Œãã
èŠåŽã®æ«åèšãçµãã£ããããã®åèšã®æ°åãèšã£ãŠãããã
ããªãã¯äœæ°ã«çŽã«æžãã€ããã¡ã¢ãèŠããã
(è§£æ)
ãã®æç®ã®é人ãå¯èœãªããããä»çµã¿ãçºèŠããŠãã ããã
n=1,2,3,ã
ãã£ããããæ°å{fn};1,1,2,3,5,8,13,21,
ãx^nã®ä¿æ°ãšãªã
F(x)=â[n=1,â]fn*x^n
ã§å®çŸ©ããã颿°F
åã³
å€åœ¢ãã£ããããæ°å{gn};1,4,5,9,14,23,37,
ãx^nã®ä¿æ°ãšãã
G(x)=â[n=1,â]gn*x^n
ã§å®çŸ©ããã颿°Gã§ãããšããã
ãã®æ
F(â2-1)=1
F(1/2)=2
F((â13-2)/3)=3

G((â5-1)/4)=1
G(1/2)=2
G(â22-2)/6)=3

ãªã©ãæç«ããããã«ãªãã
ããã§
(1)F(x)=4,5,6,7,8,9
ãããããæãç«ã€åxã«å¯Ÿå¿ããå€ãæ±ãã
ãŸãxãæçæ°ã§F(x)ã10000以äžã®æ£ã®æŽæ°å€ãåãåŸããã®ã¯äœåããã§ããããïŒ
(2)G(x)=4,5,6,7,8,9
ãããããæãç«ã€åxã«å¯Ÿå¿ããå€ãæ±ãã
ãŸãxãæçæ°ã§G(x)ã1000000以äžã®æ£ã®æŽæ°å€ãåãåŸããã®ã¯äœåããã§ããããïŒ
åé¡ã®è§£éãšããã°ã©ã ãæ£ãããã°ãã§ãã
F(x)=x/(1-x-x^2)ãïŒ|x|ïŒ1ïŒãªã®ã§
F^(-1)(y)=(-y-1+â(5y^2+2y+1))/(2y)ãïŒâµ|x|ïŒ1ïŒ
ããã«4ïœ9ã代å
¥ããŠ
F^(-1)(4)=(-5+â89)/8
F^(-1)(5)=(-3+â34)/5
F^(-1)(6)=(-7+â193)/12
F^(-1)(7)=(-4+â65)/7
F^(-1)(8)=(-9+â337)/16
F^(-1)(9)=(-5+â106)/9
ãxãæçæ°ã§F(x)ã10000以äžã®æ£ã®æŽæ°å€ãåãã
âãyã10000以äžã®æ£ã®æŽæ°ã§5y^2+2y+1ãå¹³æ¹æ°ã
ãyã10000以äžã®æ£ã®æŽæ°ã§5y^2+2y+1ãå¹³æ¹æ°ããæºããyã¯
5å(2,15,104,714,4895)ãªã®ã§
ãxãæçæ°ã§F(x)ã10000以äžã®æ£ã®æŽæ°å€ãåãããæºããxã¯
5å(1/2,3/5,8/13,21/34,55/89)
G(x)=(1+3x)x/(1-x-x^2)ãïŒ|x|ïŒ1ïŒãªã®ã§ïŒG(1/2)=5, G(2/5)=2ã§ã¯ïŒïŒ
G^(-1)(y)={-y-1±â(5y^2+14y+1)}/(2(y+3))ãïŒyïŒ2ïŒ
G^(-1)(y)={-y-1+â(5y^2+14y+1)}/(2(y+3))ãïŒyâ§2ïŒ
ããã«4ïœ9ã代å
¥ããŠ
G^(-1)(4)=(-5+â137)/14
G^(-1)(5)=(-3+7)/8=1/2
G^(-1)(6)=(-7+â265)/18
G^(-1)(7)=(-4+â86)/10
G^(-1)(8)=(-9+â433)/22
G^(-1)(9)=(-5+â133)/12
ãxãæçæ°ã§G(x)ã1000000以äžã®æ£ã®æŽæ°å€ãåãã
âãyã1000000以äžã®æ£ã®æŽæ°ã§5y^2+14y+1ãå¹³æ¹æ°ã
ãyã1000000以äžã®æ£ã®æŽæ°ã§5y^2+14y+1ãå¹³æ¹æ°ããæºããyã¯
14å(2,5,21,42,152,296,1050,2037,7205,13970,49392,95760,338546,656357)ãªã®ã§
ãxãæçæ°ã§G(x)ã1000000以äžã®æ£ã®æŽæ°å€ãåãããæºããxã¯
14å(2/5,1/2,7/12,3/5,19/31,8/13,50/81,21/34,131/212,55/89,343/555,144/233,898/1453,377/610)
åºé¡ãã¹ïŒã¿ã€ããã¹)
G(2/5)=2 ã§ããã
(G(1/2)=5ïŒ
ãã®ãã¹ã«ãæããã
F(x)<10000ã§ã®5å
G(x)<1000000ã§ã®14åã®xã®æçæ°ããã¹ãŠå®ç§ã«æ£è§£ã§ãã
äžã®5åããã£ããããæ°ã®æçæ°ã§æ§æãããŠããã®ã«æ¯ã¹
äžã®14åã¯å¶æ°çªç®ïŒ1/2,3/5,8/13,21/34,55/89,144/233,377/610 ããã£ããããæ°ã§ã®æçæ°
ãããŠå¥æ°çªç®ïŒ2/5,7/12,19/31,50/81,131/212,343/555,898/1453 ãç䌌ãã£ããããæ°ã§ã®æçæ°
ã§æ§æãããã®ãé¢çœãã§ãã
æ¯é¢æ°ããäžæ°ã«é颿°ãèããããšãèªåã®æ¹æ³ãšç°ãªãããã®æãæãå¹çããé²ããããããšã
æããããŸããã
F(x)ïŒ10000ã®5åã®æ°å 2,15,104,714,âŠã¯ A081018 ã«ãããŸããã
ãã£ãŠåé¡ãF(x)ïŒ1000000000000000000000000000000000000000000000
ã§ãã£ãŠã容æã«çããããŸãïŒãã®å Žå54åïŒã
G(x)ã®æ¹ã®æ°å 2,5,21,42,152,⊠ã¯OEISã«ãããŸãããã
挞ååŒãç«ãŠãã°åæ§ã«å·šå€§æ°ãŸã§ã§ãçãããããšæããŸãã
ã¡ãªã¿ã«
åè
ã®æŒžååŒã¯ a[1]=2, a[2]=15, a[n+2]=7a[n+1]-a[n]+1
åŸè
ã®æŒžååŒã¯ a[1]=2, a[2]=5, a[3]=21, a[4]=42, a[n+4]=7a[n+2]-a[n]+7
ç§ã®åå¿é² > å°åœ±å¹Ÿäœ
http://shochandas.xsrv.jp/projection/projectivegeometry.htm
ã«ãããŠã
ç§ã什åïŒå¹ŽïŒïŒæïŒïŒæ¥ã«ã³ã¡ã³ãããå
容ã«é¢ããŠ
ãã®åŸã«èããããšãèšäºã«ããŸããã
ã¡ãã©ãŠã¹ã®å®çãšãã§ãã®å®çã®äžè¬å | Mathlog
https://mathlog.info/articles/TdvnRiSb0n8XacFyN5ba
çŽ æ°ã®åºçŸé çªãšçŽ æ°ãç¹ãã§ã¿ãŸãããïŒæ²èŒã®éœåã§100çªã§æ¢ããŠãŸããããã®å
ã©ããŸã§ã§ãå¯èœã§ãã)
1*2 = 2 | 2*5 = 10 | :
2*15 = 30 | 3*7 = 21 | :
3*17 = 51 | 5*6 = 30 | :
4*18 = 72 | 7*6 = 42 | 7*2 = 14
5*22 = 110 | 11*5 = 55 | 11*5 = 55
6*22 = 132 | 13*5 = 65 | 13*2 = 26
7*25 = 175 | 17*42 = 714 | 17*1 = 17
8*24 = 192 | 19*43 = 817 | 19*2 = 38
9*26 = 234 | 23*4 = 92 | 23*3 = 69
10*29 = 290 | 29*35 = 1015 | 29*90 = 2610
11*29 = 319 | 31*36 = 1116 | 31*81 = 2511
12*31 = 372 | 37*33 = 1221 | 37*76 = 2812
13*32 = 416 | 41*32 = 1312 | 41*93 = 3813
14*31 = 434 | 43*33 = 1419 | 43*98 = 4214
15*314 = 4710 | 47*32 = 1504 | 47*45 = 2115
16*332 = 5312 | 53*31 = 1643 | 53*72 = 3816
17*35 = 595 | 59*3 = 177 | 59*63 = 3717
18*34 = 612 | 61*3 = 183 | 61*38 = 2318
19*353 = 6707 | 67*29 = 1943 | 67*57 = 3819
20*355 = 7100 | 71*29 = 2059 | 71*20 = 1420
21*35 = 735 | 73*3 = 219 | 73*77 = 5621
22*36 = 792 | 79*28 = 2212 | 79*18 = 1422
23*361 = 8303 | 83*28 = 2324 | 83*81 = 6723
24*371 = 8904 | 89*27 = 2403 | 89*16 = 1424
25*39 = 975 | 97*26 = 2522 | 97*25 = 2425
26*39 = 1014 | 101*26 = 2626 | 101*26 = 2626
27*382 = 10314 | 103*27 = 2781 | 103*9 = 927
28*383 = 10724 | 107*27 = 2889 | 107*4 = 428
29*376 = 10904 | 109*27 = 2943 | 109*81 = 8829
30*377 = 11310 | 113*27 = 3051 | 113*10 = 1130
31*41 = 1271 | 127*25 = 3175 | 127*53 = 6731
32*41 = 1312 | 131*25 = 3275 | 131*72 = 9432
33*416 = 13728 | 137*241 = 33017 | 137*9 = 1233
34*41 = 1394 | 139*25 = 3475 | 139*6 = 834
35*426 = 14910 | 149*24 = 3576 | 149*15 = 2235
36*42 = 1512 | 151*24 = 3624 | 151*36 = 5436
37*425 = 15725 | 157*24 = 3768 | 157*41 = 6437
38*43 = 1634 | 163*234 = 38142 | 163*26 = 4238
39*43 = 1677 | 167*234 = 39078 | 167*17 = 2839
40*433 = 17320 | 173*232 = 40136 | 173*80 = 13840
41*437 = 17917 | 179*23 = 4117 | 179*79 = 14141
42*431 = 18102 | 181*233 = 42173 | 181*82 = 14842
43*445 = 19135 | 191*23 = 4393 | 191*73 = 13943
44*44 = 1936 | 193*23 = 4439 | 193*8 = 1544
45*438 = 19710 | 197*23 = 4531 | 197*85 = 16745
46*433 = 19918 | 199*232 = 46168 | 199*54 = 10746
47*45 = 2115 | 211*223 = 47053 | 211*77 = 16247
48*465 = 22320 | 223*216 = 48168 | 223*76 = 16948
49*464 = 22736 | 227*22 = 4994 | 227*87 = 19749
50*458 = 22900 | 229*22 = 5038 | 229*50 = 11450
51*457 = 23307 | 233*22 = 5126 | 233*47 = 10951
52*46 = 2392 | 239*22 = 5258 | 239*68 = 16252
53*455 = 24115 | 241*22 = 5302 | 241*33 = 7953
54*465 = 25110 | 251*216 = 54216 | 251*54 = 13554
55*468 = 25740 | 257*215 = 55255 | 257*15 = 3855
56*47 = 2632 | 263*213 = 56019 | 263*12 = 3156
57*472 = 26904 | 269*212 = 57028 | 269*53 = 14257
58*468 = 27144 | 271*215 = 58265 | 271*98 = 26558
59*47 = 2773 | 277*213 = 59001 | 277*67 = 18559
60*469 = 28140 | 281*214 = 60134 | 281*60 = 16860
61*464 = 28304 | 283*216 = 61128 | 283*67 = 18961
62*473 = 29326 | 293*212 = 62116 | 293*34 = 9962
63*488 = 30744 | 307*206 = 63242 | 307*9 = 2763
64*486 = 31104 | 311*206 = 64066 | 311*24 = 7464
65*482 = 31330 | 313*21 = 6573 | 313*5 = 1565
66*481 = 31746 | 317*21 = 6657 | 317*98 = 31066
67*495 = 33165 | 331*203 = 67193 | 331*57 = 18867
68*496 = 33728 | 337*202 = 68074 | 337*64 = 21568
69*503 = 34707 | 347*2 = 694 | 347*27 = 9369
70*499 = 34930 | 349*201 = 70149 | 349*30 = 10470
71*498 = 35358 | 353*202 = 71306 | 353*7 = 2471
72*499 = 35928 | 359*201 = 72159 | 359*8 = 2872
73*503 = 36719 | 367*2 = 734 | 367*19 = 6973
74*505 = 37370 | 373*2 = 746 | 373*38 = 14174
75*506 = 37950 | 379*2 = 758 | 379*25 = 9475
76*504 = 38304 | 383*2 = 766 | 383*72 = 27576
77*506 = 38962 | 389*2 = 778 | 389*93 = 36177
78*51 = 3978 | 397*197 = 78209 | 397*74 = 29378
79*508 = 40132 | 401*198 = 79398 | 401*79 = 31679
80*512 = 40960 | 409*196 = 80164 | 409*20 = 8180
81*518 = 41958 | 419*194 = 81286 | 419*99 = 41481
82*514 = 42148 | 421*195 = 82095 | 421*42 = 17682
83*52 = 4316 | 431*193 = 83183 | 431*93 = 40083
84*516 = 43344 | 433*194 = 84002 | 433*48 = 20784
85*517 = 43945 | 439*194 = 85166 | 439*15 = 6585
86*516 = 44376 | 443*195 = 86385 | 443*2 = 886
87*517 = 44979 | 449*194 = 87106 | 449*63 = 28287
88*52 = 4576 | 457*193 = 88201 | 457*84 = 38388
89*518 = 46102 | 461*194 = 89434 | 461*49 = 22589
90*515 = 46350 | 463*195 = 90285 | 463*30 = 13890
91*514 = 46774 | 467*195 = 91065 | 467*73 = 34091
92*521 = 47932 | 479*193 = 92447 | 479*48 = 22992
93*524 = 48732 | 487*191 = 93017 | 487*39 = 18993
94*523 = 49162 | 491*192 = 94272 | 491*34 = 16694
95*526 = 49970 | 499*191 = 95309 | 499*5 = 2495
96*524 = 50304 | 503*191 = 96073 | 503*32 = 16096
97*525 = 50925 | 509*191 = 97219 | 509*33 = 16797
98*532 = 52136 | 521*19 = 9899 | 521*38 = 19798
99*529 = 52371 | 523*19 = 9937 | 523*13 = 6799
100*541 = 54100 | 541*185 = 100085 | 541*100 = 54100
ã»ç°¡åãªåé¡
äžè¡šã®å³åã®åŒã§ã7çªç®ã®17ã«ã*1ãããããŸããã
次ã«å³åã®åŒã§ã*1ããåºãŠããã®ã¯äœçªç®ã®çŽ æ°ã§ããããã
ãŸããäžåã§ã*1ããåºãŠããã®ã¯äœçªç®ã®çŽ æ°ã§ããããã
ã»ããé£ããåé¡
å³åã§åºãŠãã10åç®ã®ã*1ãã¯ãäœçªç®ã®çŽ æ°ã§ããããã
ã»è§£ããªãåé¡
äžåã§åºãŠãã7åç®ã®ã*1ãã¯ãäœçªç®ã®çŽ æ°ã§ããããã
ã»ç°¡åãªåé¡
9551çªç®ãš6455çªç®ã®çŽ æ°
ã»ããé£ããåé¡
1;17
2;99551
3;4303027
4;6440999
5;14968819
ãŸã§ã¯èŠã€ããããã®å
10åãèŠã€ããèªä¿¡ãªã
ãšæã£ãŠOEISã®æ€çŽ¢ãæãããA046883ãçºèŠ
ã«ã³ãã³ã°ã§
12426836115943
ã»è§£ããªãåé¡
1;64553
2;64567
3;64577
4;64591
5;94601
6;64661
ãŸã§ã¯é£ãªãèŠã€ããã
ããããå
ç¯å²ãåºããŠæçŽ¢ããŠãèŠã€ãããã
A236469ã«é¢é£ãããïŒ
A046883(16) = 23540145178774772939
A046883(16) = p(540145178774772939)
A046883(17) = 39904678560078237431
A046883(17) = p(904678560078237431)
ãšããæ
å ±ãã¿ã€ããŸããã
OEIS ã«ã¯ãšã³ããªãŒãããŠããªãã§ããâŠ
https://www.primepuzzles.net/puzzles/puzz_1083.htm
åçããããšãããããŸãã
ç°¡åãªåé¡âæ£è§£
ããé£ããåé¡
ã«ã³ãã³ã°ã§çããç¹ã¯æ£è§£ã§ãã
ãã ããäœçªç®ã®çŽ æ°ããšããåé¡ãªã®ã§ãæ£è§£ã¯426836115943ã§ãã
A046883ã®12426836115943ã ããèŠãŠã
2426836115943ãªã®ã426836115943ãªã®ã26836115943ãªã®ã
確å®ããŸããã®ã§ããäœçªç®ããã®æ°åã§ããA067248ãèŠã€ããŠ
çããã°å®ç§ã§ããã
è§£ããªãåé¡
èŠã€ãã£ãŠãã6åã¯
n=[p(n)/10]ãšãªã£ãŠããããã§ããã
ãã®åŸã¯p(n)/nã¯10ãã倧ãããªã£ãŠå¢å ããŠããŸãããã
7çªç®ã®å€ã¯åããŠ
n=[p(n)/100]ãšãªãå€ã§ãã
ïŒãã ãããã®ãããªå€ãããã°ãã§ããå€åãããšã¯æããŸããïŒ
ããã«ã€ããŠèšç®ããŠã¿ããš
çŽ7.38202775Ã10^41çªç®ã®çŽ æ°ã
çŽ7.38202775Ã10^43ãšãªãããã®èŸºã«çããããããã§ãã
çŸåšçŽ æ°ã®æ£ç¢ºãªåæ°ãããã£ãŠããã®ã¯10^29ãŸã§ã®ããã§ãã®ã§ã
åœåã¯èŠã€ãããªãã§ãããã
https://oeis.org/A006880/b006880.txt
10^29 ãŸã§âŠâŠãããã§ãããã©ãã ãæéãããã®ã§ããããã
https://jkoizumi144.com/puzzles.html
ã®åé ã«æ¬¡ã®ãããªããºã«ããããŸãã
åŒçšéå§
1. Fake coins and a magic bag
There are 7 gold coins and 9 silver coins. Among them, there is one fake gold coin and one fake silver coin. You want to identify these fake coins using a magic bag. When you put coins into the magic bag and cast a spell, it emits a suspicious glow only if both fake coins are inside the bag. How many times do you need to cast the spell to determine both fake coins?
åŒçšçµãã
â :5 åã®åªæã®è© å±ã§ã¯ç¡çã ãšããèå¯ãããŸãã
ããã°ãå
ãã»å
ããªãã®1ãããã®æ
å ±ãïŒã€éããŠããæå€§ã§ 2^5 = 32 éãã®åå¥ãã§ããã«ãããŸããã
äžæ¹ã«ãããŠ
ééã®åœã³ã€ã³ã®ããããã±ãŒã¹ãæ°ãããããš
7â9=63
ã§ãã
32 < 63
ã§ãããã
5 åã®åªæã®è© å±ã§ã¯ç¡çãããšå€æã§ããŸãã
â¡:ïŒåã®è© å±ã§åœã³ã€ã³ãã€ããšããæ¹æ³ã¯ãããŸãã(çç¥)
â¢: 6åã®è© å±ã§ããŸãã¯ã¬ããŒãªæ¹æ³ãããã®ãã©ããæ°ã«ãªããŸãã
63 < 2^6 = 64
ã§ãããããã³ã¬ã ãã§ã¯è¯ãæ¹æ³ãç¡ããšã¯æèšã§ããªãããšããâŠããºã«ãšããŠã¯è¯ãç·ãçªããŠããæããããŸãã
å®éãéã8æãéã8æã ãšãïŒåã®è© å±ã§ããŸãæ¹æ³ã¯ãããŸãã®ã§ããã¡ããå
ã®ããºã«ã®å§¿ã§ããããã²ãã£ãŠéïŒæéïŒæã«çŽããŠãããããªâŠâŠ
ãã®ãããªã«ã©ããªæå³ãããã®ãé ãåŸããŠããŸãã
çæ§ã®ãç¥æµãã貞ããã ããã
éïŒæéïŒæã®ã±ãŒã¹ã§ã¯
ïŒåã®åªæè© å±ã§ç¢ºå®ã«åœã³ã€ã³ãç¹å®ã§ãããšå€æããããŸããã
é£ããèããŠããããã«ã©ããã«åµã£ãŠããããã§ãã
ãéšããããããŸããã
ãã£ããã§ãã®ã§
éïŒæéïŒæã®ã±ãŒã¹ã§
åªæè© å±ïŒåã®ããæ¹ãã²ãšã€ãæ¡å
ãããŠããã ããŸãã
éãG1, G2,G3
éãS1,S2,S3,S4,S5
ãšããŸããåœã³ã€ã³ã®ããããã±ãŒã¹ã¯15éãã§ããæ·»ä»ã®å³ãã芧ãã ããã
ïŒåç®ã®èšæž¬ã§ã¯â ãã«ããŒããããã«è¢ã«ãããŠåªæãå±ããŸããè¢ãå
ãã°ãæ®ãïŒåã®åªæã§â ã®ãªãã«ããåœã³ã€ã³ãã¢ã確å®ããã課é¡ã¯ã€ãŒãžãŒã§ãã
ïŒåç®ã®èšæž¬ã§å
ããªãå Žåã«ã¯æ¬¡ã®ã¹ãããã«è¡ããŸãã
ïŒåç®ã®èšæž¬ã§ã¯â¡ãã«ããŒããããã«è¢ã«ãããŠåªæãå±ããŸããè¢ãå
ãã°ãæ®ãïŒåã®åªæã§â¡ã®ãªãã«ããåœã³ã€ã³ãã¢ã確å®ããã課é¡ã¯ã€ãŒãžãŒã§ãã
ïŒåç®ã®èšæž¬ã§å
ããªãå Žåã«ã¯æ¬¡ã®ã¹ãããã«è¡ããŸãã
ïŒåç®ã®èšæž¬ã§ã¯â¢ãã«ããŒããããã«è¢ã«ãããŠåªæãå±ããŸããè¢ãå
ãã°åœã³ã€ã³ãã¢ã¯ç¢ºå®ã§ãã(G1:S5)
ïŒåç®ã®èšæž¬ã§å
ããªãå Žåã«ã¯æ¬¡ã®ã¹ãããã«è¡ããŸãã
ïŒåç®ã®èšæž¬ã§ã¯â£ãã«ããŒããããã«è¢ã«ãããŠåªæãå±ããŸããè¢ãå
ãã°åœã³ã€ã³ãã¢ã¯ç¢ºå®ã§ãã(G2:S5)
ïŒåç®ã®èšæž¬ã§å
ããªãå Žåã«ã¯åœã³ã€ã³ãã¢ã¯ç¢ºå®ã§ãã(G3:S5)
ãªããäžèšã®ããæ¹ã¯å®¹æã«æ¡åŒµã§ããŠ
é7æé9æã®ã±ãŒã¹ã§åªæïŒåã§æžãŸããæ¹æ³ãããããšãããããŸãã
é7æé9æã®ã±ãŒã¹ã®å³è§£ãäœããŸããã
åœã³ã€ã³ã®ãã¢ã
â€ã«å«ãŸããŠããã°æ®ãïŒåã®è© å±ã§ç¢ºå®ã
ãããªããã°
â£ã«å«ãŸããŠããã°æ®ãïŒåã®è© å±ã§ç¢ºå®ã
ãããªããã°
â¢ã«å«ãŸããŠããã°æ®ãïŒåã®è© å±ã§ç¢ºå®ã
ãããªããã°
â¡ã«å«ãŸããŠããã°æ®ãïŒåã®è© å±ã§ç¢ºå®ã
ãããªããã°
â ã«å«ãŸããŠããã°æ®ãïŒåã®è© å±ã§ç¢ºå®ã
ãããªããã°
â»ã§ç¢ºå®
ãšããããšã«ãªããŸãã
ãµãšæãç«ã¡ãŸããŠã
chatgpt-4o-latest-20250326 ã«ããããŠ
äžèšã®ããã«åºé¡ããŸãããã誀çãè¿ããŠæ¥ãŸããããªããè±æãªã®ã¯ãã®ã»ããçæAIã«ãšã£ãŠçè§£ãããããšããã£ãããã§ãã
(誀çã«ã€ããŠã¯ãã³ã»ã³ã¹ãªã®ã§çç¥ããããŸãã)
åºé¡å
容ã®äžã«ã¯ãç§ãããŸåãçµãã§ããããšãä»èšãããŠããã ããŸãã
çããã«ãå©åãé¡ããã°å¹žãã§ãããããããé¡ãç³ãäžããŸãã
âŠåºé¡å
容âŠ
Fake Coins and a Magic Bag
You have a collection of 9 coins in total: 3 gold coins, 3 silver coins, and 3 bronze coins. Among these, exactly one gold coin, exactly one silver coin, and exactly one bronze coin are counterfeit.
Assume that the three coins of each metal are distinguishable (e.g., labeled G_1, G_2, G_3, S_1, S_2, S_3, B_1, B_2, B_3).
You are provided with a magic bag that has the following property:
When you place any subset of coins into the bag and cast a spell, the bag glows if and only if the subset contains all three counterfeit coins simultaneously, regardless of any additional genuine coins that might be included.
If the subset contains only one, only two, or none of the counterfeit coins, the bag does not glow.
All tests are deterministic and error-free. There are no restrictions on how many or which coins you may include in a single test, and coins may be reused in multiple tests.
Your task is to devise a strategy that is guaranteed to identify all three counterfeit coins using no more than 5 tests.
Justify your answer with a logical or mathematical argument.
âŠåºé¡å
容ã¯ãããŸã§âŠ
â¥ç§ãä»ããããŠããããšâ¥
ãã®åºé¡ã«ã€ããŠã©ã®ãããªãã³ã(èªå°)ã远å ããã°çæAI(chatgptãªã©)ãæ£è§£ã«èŸ¿ãçãã工倫ãããŠããã®ã§ããæªæŠèŠéããŠãããŸãã
çããã«äŒºãããã®ã§ãã
ãªã«ãè¯ãã¢ã€ãã¢ã¯ãªããã®ã§ããããïŒ
ç³ãé
ããŸããã
æ±ºå®æšãæ±ããŠã»ããã£ããã§ãã
äžèšã®å³ã®ãããªã
åå²çµ±æ²»æŠç¥ã§äºåæšãäœãããããã®æã«ãããŠåæã«å¿
èŠãªæ
å ±ããããé床ã«å€§ãããªããªãããã«ã
å鲿³ã§è¡šèšãããæ°
NïŒa10^n+b10^n-1++c10+dâ¡ïŒ(mod p) pã¯ã7ãã倧ããªçŽ æ°ã®ãšãã
a10^(n-1)ïŒ+b10^(n-2)+âŠ+cãŒXdâ¡ïŒ(mod p)ãšãªãããã«ã
ïœé²äœã§ãXãéžã¶ããšãã§ããã
10ãã䞡蟺ã«ãããŠãã
a10^n+b10^n-1++c10-10Xdâ¡ïŒ(mod p)
-10Xâ¡1ãšãªãããã«ããéžã¹ã°ããã
ãããããšãå
ã®åŒã«æ»ããŸããïœã®å€ã¯ãã«ãã£ãŠç°ãªã,以äž
P X
7 2
11 1
13 9
17 5
19 17
23 16
29 26
31 3
37 11
41 4
43 30
47 14
53 37
73 51
瞊æžãã§å€±ç€ŒããŸãã
è¶³ãããåŒããã©ã¡ãã§ã
ïŒïŒïŒïŒïŒïŒ22ãªã®ã§ãïŒïŒâ¡ãŒ51ïŒmod73)
æ¡æ°ãäžåãã€äžããŠããã®ã§ãèšç®åæ°ãå¢ããŸãã
âããããã®Xã®æ°å(73â51)
oeis.org/A103876
âããã察ã«ãªãæ°å(73â22)
oeis.org/A357913
倧ããªæ°ã®å Žåãåã±ã¿ãã€åºåããåã€æ°ã®ã奿°çªç®ã®åãšå¶æ°çªç®ã®åã
åŒããŠ73ã§ãå²ããæãïŒïŒã§ãå²ãåãã
åããåŒããçµæããïŒïŒïŒã§ãå²ãåããæãïŒïŒïŒã§å²ãåããããšãã
åãããŸããã
ïŒ000ïŒïŒïŒïŒïŒÃïŒïŒ
ïŒïŒïŒïŒïŒïŒïŒã®ãšãã¯ãïŒã±ã¿ãã€ã§ããã
ææãåããŠãä¿®æ£ããŸããã
äŸãã°740001ã¯4æ¡ãã€åºåã£ãŠå·®ããšããš73ã§ãã73ã§å²ãåããŸããããã®æ°ã¯137ã§ã¯å²ãåããŸããã
åã«73ã®åæ°ãå€å®ãããªã
N=10*A+bã73ã®åæ°<==>A+22*bã73ã®åæ°
ã䜿ããã
äŸN=9012288(=10*901228+8)
901228+22*8=9012228+176=901404
åãã
90140+22*4=90228
9022+22*8=9198
919+22*8=1095
109+22*5=219
ãã蟺ãã§219=73*3ã倿
ãã£ãŠå
ã®
N=9012288ã73ã§å²ããã(73*123456=N)
ã¡ãªã¿ã«137ã®åæ°ã®å€å®ã§ã¯
N=10*A+bã137ã®åæ°<==>A - 41*bã137ã®åæ°
ã®åçã䜿ããã
4æ¡ãããå·®åãšåããããšéããã§ããã
9012288
2288-901=1387
138+22*7=292
29+22*2=73
çŽ æ°5以äžã®çŽ æ°p1ãªããã®æ°ãæ«å°Ÿã«æã€ãã®ã®äžã§æ¬¡ã®çŽ æ°p2ã§å²ãåããã®ãå¿
ãååšããã
p1=5ãªã
15,25,35,45,,105,ã»ã»ã»,175,
ãªã©ãåè£ã§ããã®äžã§æ¬¡ã®çŽ æ°ïœïŒïŒïŒã§å²ãåããã®ã¯
35,105,175,245,315,çãèŠã€ããã
ããã§ãã®äžã®æå°å€ã®35ã«æ³šç®ããã
p1=7ãªãp2=11ã§å²ãåãããã®ãšããŠ
77,187,297,407,ãªã®ã§77ãéžã¶ã
ããããŠåçŽ æ°p1ã«å¯Ÿããæ«å°Ÿã«p1ãæã¡ããããæ¬¡ã®çŽ æ°p2ã§å²ãåããæå°ã®æŽæ°ãåããŠè¡ãã
ããããŠèŠã€ããæå°ã®æŽæ°ã®åã
5âŠp1âŠ100000
ã®ç¯å²ã§äœã«ãªãããæ±ããŠäžããã
22405801611641
ã§åã£ãŠããŸããïŒ
224ãŸã§ã¯åã£ãŠãããšæãããŸãããã®å ããã¯ç°ãªã£ãŠããããã§ãã
åã£ãŠããªãçç±ãããããŸããã
5âŠp1âŠ100000 ã§ã¯ãªã
5âŠp1ïŒp2âŠ100000 ã§èšç®ããŠããŠ
(p1,p2)=(99991,100003)ã®åãæããŠãããããšæãããŸãã
ä¿®æ£ããã以äžã®ããã«ãªããŸããã
5âŠp1âŠ10: 112
5âŠp1âŠ100: 69155
5âŠp1âŠ1000: 36941222
5âŠp1âŠ10000: 27951351491
5âŠp1âŠ100000: 22415801611632
5âŠp1âŠ1000000: 18613426663617118
5âŠp1âŠ10000000: 15837879736548209451
5âŠp1âŠ100000000: 13817330053429013602371
ããããã§ãéã£ãŠããããã§ããããã©ããŸã§åã£ãŠãããæããŠäžããã
5âŠp1ïŒp2âŠ100000 ã§èšç®ããŠããŠ
(p1,p2)=(99991,100003)ã®åãæããŠãããããšæãããŸãã
ããŒãªãã»ã©
å
šéšåã£ãŠããŸãã
ãèŠäºã§ãã