2022幎12æ13æ¥ä»ãã®ãããããããæçš¿ãããŠãã
æå®ã®åæ°ã®æ Œåç¹ãæã€ïŒå€æ°æ¹çšåŒã§
2*n+2 (nâ§0)ã®å¶æ°ã§ã¯
4*x^2+y^2=5^n
2*n+1 (nâ§0)ã®å¥æ°ã§ã¯
(4*x+1)^2+y^2=25^n
ã§ç€ºãããŠããã
å¶ç¶äžèšã®ãµã€ãã«ééã
https://mathworld.wolfram.com/SchinzelCircle.html
n=2*k (k=1,2,3,)ã§ã¯
(x-1/2)^2+y^2=5^(k-1)/4
n=2*k+1 (k=0,1,2,3,)ã§ã¯
(x-1/3)^2+y^2=5^(2*k)/9
ã瀺ãããŠããã
ããã«åŸã£ãŠn; ã§ã®æ Œåç¹ãèšç®ãããš
2;
(0,0)
(1,0)
4;
(0,±1)
(1,±1)
6;
(-2,0)
(-1,±2)
(2,±2)
(3,0)
8;
(-5,±1)
(-2,±5)
(3,±5)
(6,±1)
10;
(-12,0)
(-7,±10)
(-3,±12)
(4,±12)
(8,±10)
(13,0)
12;
(-27,±5)
(-20,±19)
(-12,±25)
(13,±25)
(21,±19)
(28,±5)
14;
(-62,0)
(-58,±22)
(-37,±50)
(-17,±60)
(18,±60)
(38,±50)
(59,±22)
(63,0)
16;
(-137,±25)
(-102,±95)
(-62,±125)
(-14,±139)
(15,±139)
(63,±125)
(103,±95)
(138,±25)
18;
(-312,0)
(-292,±110)
(-263,±168)
(-187,±250)
(-87,±300)
(88,±300)
(188,±250)
(264,±168)
(293,±110)
(313,0)
20;
(-687,±125)
(-599,±359)
(-512,±475)
(-312,±625)
(-72,±695)
(73,±695)
(313,±625)
(513,±475)
(600,±359)
(688,±125)

äžæ¹n;奿°ã§ã¯
1;
(0,0)
3;
(-1,±1)
(2,0)
5;
(-8,0)
(-2,±8)
(7,±5)
7;
(-33,±25)
(12,±40)
(15,±39)
(42,0)
9;
(-208,0)
(-73,±195)
(-58,±200)
(167,±125)
(176,±112)
11;
(-878,±560)
(-833,±625)
(292,±1000)
(367,±975)
(1039,±79)
(1042,0)
13;
(-5208,0)
(-5193,±395)
(-1833,±4875)
(-1458,±5000)
(3918,±3432)
(4167,±3125)
(4392,±2800)
15;
(-21958,±14000)
(-20833,±15625)
(-19588,±17160)
(5375,±25481)
(7292,±25000)
(9167,±24375)
(25967,±1975)
(26042,0)
17;
(-130208,0)
(-129833,±9875)
(-54944,±118048)
(-45833,±121875)
(-36458,±125000)
(-26873,±127405)
(97942,±85800)
(104167,±78125)
(109792,±70000)
19;
(-573921,±307359)
(-548958,±350000)
(-520833,±390625)
(-489708,±429000)
(134367,±637025)
(182292,±625000)
(229167,±609375)
(274722,±590240)
(649167,±49375)
(651042,0)

ãšç¢ºãã«æå®ããã ãã®æ Œåç¹ãååšäžã«æã£ãŠããããšãã§ããŸããã
æŽã«é¢é£é
ç®ã蟿ããš
https://mathworld.wolfram.com/CircleLatticePoints.html
ã§æ¢ã«ãã®ã¬ãŠã¹ãåãšæ Œåç¹ã§ã®é¢ä¿ã300幎ãåã«èªèããŠããããšãç¥ããããã
ä»ç§ãã¡ã¯ãã£ãšã³ã³ãã¥ãŒã¿ã®åãåããªããã倩æãã¡ãèŠãŠããäžçã確èªã§ããã
è§åºŠã枬ãåäœã§äžåšã360Â°ã§æ¡çšããŠããã°
360ã«ã¯æ¬¡ã®ãããªå€ãã®çŽæ°ã
[1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360]
çºçããŠãããŠãå€ãã®è§åºŠãéœåããæŽæ°ã§æž¬ãããããšããã®ããã£ããããªèª¬ãèãã
ã§ã¯ãã£ãã®äºã1ãã100ãŸã§ã®ãã¹ãŠã®æŽæ°ãçŽæ°ãšããŠçºçããããã«ä»çµãã«ã¯äžåšã®è§åºŠãæå°é
ã©ããªæŽæ°Nã«æ±ºããŠããã°ãããå¯èœãšãªããïŒ
æå³ãåãéããŠããªããã°
LCM(1,2,3,âŠ,100)
=2^6ã»3^4ã»5^2ã»7^2ã»11ã»13ã»17ã»19ã»23ã»29ã»31ã»37ã»41ã»43ã»47ã»53ã»59ã»61ã»67ã»71ã»73ã»79ã»83ã»89ã»97
=69720375229712477164533808935312303556800
ã¯ãïŒ
ããããåŸ
ã¡ããŠãŸããã
ã¡ãªã¿ã«çŽæ°ã®åæ°ã¯å
šéšã§660602880åããããå€ããããããŠãããããããŸãããã
éãããã¯åã°ããããšã
360ãã¡ããã©ããã
GAIæ§ãããããæ§ãããã«ã¡ã¯ã
å®èŠãšã³ã³ãã¹ã§ãè§ã®äžçåãã§ããããšããåé¡ããããŸããã
ãã®æ°åãçµã¿åãããŠãè§ã®äžçåãåºæ¥ãã®ã§ããããïŒ
ã¡ãã£ãšèå³ããããŸãã
è§ã®äžçåã¯å¹ŸäœåŠã®åé¡ã§ãããæ°åã¯äœ¿ããŸããã
ãŸãå®éã«è§ã®äžçåã®äžå¯èœæ§ã蚌æãããšãããŸã幟äœåŠãããªããªããŸããã©ãçµå±ããããšã¯
ãé·ã1ã®ç·åãšé·ãcosΞã®ç·åãäžãããããšãã«cos(Ξ/3)ã®ç·åã¯äœå³ã§ãããã
ãªã®ã§ãè§åºŠã«ã©ã®ãããªè¡šçŸãæ¡çšãããã¯äœãé¢ä¿ããªãã§ããã
ããããæ§ãããã°ãã¯ã
幟äœåŠãã埮ç©åã§è§£ããŸããããã
ãã®æ°åãã»ã»ã»ã»ãšãã¡ãã£ãšèå³ãæ¹§ããã®ã§ãã
ãŠã©ãªã¹ã®ç©ã§ååãå¶æ°ã忝ã奿°ã§ç©ãäœã
(2*2*4*4*6*6*8*8*10*10*12*12*14*14*16*16*18*18*)/(1*1*3*3*5*5*7*7*9*9*11*11*13*13*15*15*17*17*)
=Ï/2
ãšããçåŒããããŸãããã
ããã§ãããã
2*(2*4)/(3*3)*(4*6)/(5*5)*(6*8)/(7*7)*(8*10)/(9*9)*(10*12)/(11*11)*(12*14)/(13*13)*(14*16)/(15*15)*(16*18)/(17*17)*=Ï/2
ãã£ãŠ
(2*4)/(3*3)*(4*6)/(5*5)*(6*8)/(7*7)*(8*10)/(9*9)*(10*12)/(11*11)*(12*14)/(13*13)*(14*16)/(15*15)*(16*18)/(17*17)*=Ï/4
å³ã¡
lim[n->oo]Î (k=1,n,(2*k)*(2*k+2)/(2*k+1)^2)=Ï/4â
ããã¯ãŸãã¬ã³ã颿°ã䜿ãã°
Î(3/2)^2 ã«ãã£ãŠã瀺ãããã
ããã§â ã3以äžã®çŽ æ°pã«éå®ã«ããŠã¿ãŠkçªç®ã®çŽ æ°ãprime(k)ã§è¡šããš
lim[n->oo]Î (k=2,n,(prime(k)-1)*(prime(k)+1)/prime(k)^2â¡
å³ã¡
=(2*4)/(3*3)*(4*6)/(5*5)*(6*8)/(7*7)*(10*12)/(11*11)*(12*14)/(13*13)*(16*18)/(17*17)*
ãã©ããªæ¥µéå€ããšãã®ãã¯é¢çœãããŒããšãªããŸããã
ããã«ãã¯ã¡ã¹ãããããªã€ã©ãŒç©ã¯ééãã§ãããšããŠæ²èŒããŠããçåŒ
[{(2+1)(2-1)/2^2}{(3+1)(3-1)/3^2}{(5+1)(5-1)/5^2}{(7+1)(7-1)/7^2}{(11+1)(11-1)/11^2}ã»ã»ã»]*ζ(2)=1
ãå©çšãããŠããããš
3/4*{(2*4)/(3*3)*(4*6)/(5*5)*(6*8)/(7*7)*(10*12)/(11*11)*(12*14)/(13*13)*(16*18)/(17*17)*}*ζ(2)=1
å³ã¡â¡=4/3*(1/ζ(2))
ç§ã¯ãªã€ã©ãŒããã®çºèŠã¯ééãã©ãããã人éã®èããåã®çµæ¶ãšé«ãè©äŸ¡ããã®çµæã
å©çšãããŠããããš,
ããã=4/3*6/Ï^2=8/Ï^2
æŽã«çºå±ãããã°ã奿°ã®åææ°ã«éå®ããŠ
(8*10)/(9*9)*(14*16)/(15*15)*(20*22)/(21*21)*(24*26)/(25*25)*(26*28)/(27*27)*â¢
ã¯ã©ããªæ¥µéå€ãªã®ããšããããšãèããããã
ããã«ã¯â ,â¡ã®çµæãã
â¢=â /â¡=(Ï/4)/(8/Ï^2)=Ï^3/32
ãã®æ¥µéå€ã¯
1 - 1/3^3 + 1/5^3 - 1/7^3 + 1/9^3 - 1/11^3 + 1/13^3 - 1/15^3 +â£
ã§ãããã
ã€ãŸãâ¢=â£
ç¡éã«æäœããããšã«ã¯äžæè°ãªããšãèµ·ãããšã€ãã¥ãæããããŸãã
GAIæ§ããã¯ããããããŸãã
ç¡éã£ãŠãããæå³éœåã®ãã話ã§ãããã
ç§ã¯ããªã€ã©ãŒã®ããŒãŒã«åé¡ã¯ãæçæ°ãååæŒç®ã§éããŠããã®ã«ãç¡çæ°ã«ãªã£ãŠããããšããããããšæããŸãã
ããã§ãç¡éåã«ã€ããŠã調ã¹ãŠããã®ã§ããã
ïŒïŒïŒã®ç¡éåã¯ïŒã§ããã
ïŒïŒã§ãããããæéåã®å
ããïŒã®ç¡éåã§ãããšãæéåã«çããã
ãšããããšã§ãããŒãŒã«åé¡ããlim1/n^2â0ïŒäžéã§ã¯=0ãšæžããŠããŸãïŒã§ããããéäžãã0ã®ç¡éåã«ãªãã¯ãã§ããããæéåã§ãããšæã£ãŠããŸããã€ãŸããæçæ°ã§ãããšããããšã§ããç¡çæ°ãªããã«ã¯ãªããªãã®ã§ã¯ïŒ
ç¡éã®ç ç©¶ã¯ãNHKã®ãç¬ããªãæ°åŠãã§ç¡éã®è©±ã§ãã«ã³ããŒã«ã®è©±ãèããŸããã
å€ãã®å Žåãå¯ä»çªç¡éã§ã宿°ã¯è¶
ç¡éãšãããããªæãã§ãã
GAIæ§ã®ç¡éã¯ãå¯ä»çªç¡éã§ããããçªå·ãã€ããŠæ°ããããç¡éã§ãããã€ãŸããèªç¶æ°ã®ç¯å²ã ãšæãã®ã§ãã
ããã§ããã°ãæ°åŠçåž°çŽæ³ã®ç¯å²ãããªãããªãšæã£ããããŸãã
ããããã§ãããïŒ
ç¡éã£ãŠãããæå³éœåã®ãã話ã§ããã
ãšããææ³ãèŠãŠãã¯ã¡ã¹ãããã¯ç®ã«èŠãããã®ã ãã¯ä¿¡ãããããç®ã«èŠããªããã®ã¯ä¿¡ããããªããš
å
ãä¿¡ããããŠããããã«æããããŸãã
ã¯ãããã«ãŒãã«ã³ããŒã«ã«å¯ŸããŠãšã£ãæ
床ã«äŒŒãŠãªãããªãã
ãšããããç¡éã¯æ·±é ã§è±é¥ãªäžçãå
ã¿èŸŒãã§ãããšæãããŠã¯ã©ãã§ãããïŒ
BBCããæ¥æ¬ã®éç¶ããæŸéããããã§ããYOUTUBEã§ã¿ãŸããã
å£ããè¶ç¢ãæŒãšéç²ã§ãã€ãªãåãããŠãå
ãããèžè¡çãªã£ãŠããããã³ã»ãã³ãªãã ããã§ãã
æ¥æ¬ã§ã¯ããã®ããã«ãå£ãããã®ãåçããããŸãã§ãå·ã€ãã人éã§ããåãããçŸãã埩掻ã§ãããšããå²åŠã§ããã人éããããå·ã€ããéç¶ãã§é¥ãã«è±ããªäººéãšããŠåŸ©æŽ»ãããã
西æŽã§ã¯ãäžç¥æãªã®ã§ãå®å
šãäžå®å
šããããªããäžå®å
šã¯æšãŠãããã
äŸãã°ãé»è»ã§å¯ããããªãäžæ³šæãªäººéã¯ã財åžãããããŠãåœç¶ã§ãããšããããšã§ãã
ç¡éãããããæå³ã§ã¯ããã³ã»ãã³ãªã®ãããããŸãããã
ã§ããæ°åŠã¯ãäžç¥æãªã®ã§ã¯ããªãã®ã§ããïŒ
ïŒç§ã¯ããªã€ã©ãŒã®ããŒãŒã«åé¡ã¯ãæçæ°ãååæŒç®ã§éããŠããã®ã«ãç¡çæ°ã«ãªã£ãŠããããšããããããšæããŸãã
ãéããŠãããã®å®çŸ©ã«ã€ããŠåéãã
ãªãã£ãŠããã§ã§ãã
å®çŸ©ã«æ»ãã°ã
äºé
æŒç®ãïŒåè¡ã£ããšãã«
ãã®çµæãå°ãããã§ã¯æçæ°äœã«
å«ãŸããããšãšãªããŸãã
â»æéåã®äºé
æŒç®ã®çµã¿åããã®
çµæããŸããæçæ°ã«ãªãããšã嫿ããŠããŸãã
ãããã«ã¯ã¡ã¹ãããã¯
éããŠããããšã®å®çŸ©ããµã¿ã¯ãããŠ
ç¡éåã®ååæŒç®ã®çµæããŸã
å¿
ããã€ãæçæ°ã§ããã¯ãã ãšã
æã蟌ãã§ããã£ãããã
Dengan kesaktian Indukmuæ§ãããã°ãã¯ã
ç¡éãšã²ãšãããã«ãããããééã£ãŠããŸãã®ã§ãã
(((((a+b)+c)+d)+e)+f)+ã»ã»ã»
ãšããã°ãç¡éã«ïŒé
æŒç®ã§ããèšç®ã¯ãå°åŠæ ¡ã§ãããç¿ããŸããã
ã¯ã¡ã¹ãããã®ãç¡éã«äºé
æŒç®ã
ãã®æäœã«ã€ããŠã¯ããéããŠãããããšã®å®çŸ©ããã¯ãããŠããŸãã
æéã§ã®ããã·ã
ç¡éçžæã§ãéçšããã
ããããæ°åã¯æšãŠãŠé ããã
åããŸãã
仿¥ã®BSããžãã¬ãªã¬ãªXã¯ã¢ã¬ã«ã®ãŒã®è©±ã§ããã
ãããŸã§ã¯ãé£åããã¢ã¬ã«ã®ãŒç©è³ªãé€å»ããæ²»çã ã£ãããã§ãããä»ã§ã¯ã埮éã®ã¢ã¬ã«ã®ãŒç©è³ªãæ®ããã ãã ãæ
£ãããŠãã¢ã¬ã«ã®ãŒåå¿ããªããæ¹åã«é²ãã§ããããã§ãã
ç¡éãã¢ã¬ã«ã®ãŒåå¿ã§ã¯ãªãã§ããããã
ïŒã¯ã¡ã¹ãããã®ãç¡éã«äºé
æŒç®ã
ãã®æäœã«ã€ããŠã¯ããéããŠãããããšã®å®çŸ©ããã¯ãããŠããŸãã
ã©ãããŠãªã®ã§ããããç§ã¯ã()ã€ããŠæŒç®ã«å¶éãããŠããŸãã()ã¯åªå
é äœããããŸããç¡éã«ïŒé
æŒç®ã§ã¯ãããŸããã
åã®ïŒé
æŒç®ã®çµæã¯åé
ã§ããããåæŒç®ã¯ãïŒé
æŒç®ã«éããããŸããã
ïŒé
æŒç®ã§ãéããŠããããšããªãããŠããã®ã§ããããã©ãã«ç¡çãããã®ã§ãããïŒ
ç¡éãšããèšèã«ãã¢ã¬ã«ã®ãŒãããã®ã§ã¯ãªãã§ããã
èšç®ã¯ãå°åŠæ ¡ã§ãåã®æŒç®ã®çµæãšïŒé
æŒç®ãããšç¿ããŸããã
ã©ãããããããã®ã§ããããïŒ
ãŸãã
ïŒç§ã¯ããªã€ã©ãŒã®ããŒãŒã«åé¡ã¯ãæçæ°ãååæŒç®ã§éããŠããã®ã«ãç¡çæ°ã«ãªã£ãŠããããšããããããšæããŸãã
ããã§ãç¡éåã«ã€ããŠã調ã¹ãŠããã®ã§ããã
ïŒïŒïŒã®ç¡éåã¯ïŒã§ããã
ïŒïŒã§ãããããæéåã®å
ããïŒã®ç¡éåã§ãããšãæéåã«çããã
ãšããããšã§ãããŒãŒã«åé¡ããlim1/n^2â0ïŒäžéã§ã¯=0ãšæžããŠããŸãïŒã§ããããéäžãã0ã®ç¡éåã«ãªãã¯ãã§ããããæéåã§ãããšæã£ãŠããŸããã€ãŸããæçæ°ã§ãããšããããšã§ããç¡çæ°ãªããã«ã¯ãªããªãã®ã§ã¯ïŒ
æéåãšããŠããŸããç¡éåã§ã¯ãããŸãããã¡ãããšèªãã§ãããããããããŸãã
ããããããããŸãããã
ã¯ã¡ã¹ãããã®ãè«çïŒã
ã¯å
šãçè§£ã§ããŸããã
æã蟌ã¿ãçŸ
åããŠããã ããªã®ã§ã¯ïŒ
ãã®ã§ãã§ããã°
ãã€ãã¢æ° e ãæçæ°ã«ãªããŸããã
ãã
å調å¢å æçæ°å a_n
å調æžå°æçæ°å b_n
ãååšããŠãä»»æã®æ£ã®èªç¶æ° n ã«ã€ããŠ
a_n < e < b_n
ãšãªãããã€
n â â ã®ãšãã«
b_n - a_n â 0
ãšããããšãã§ããããã§ãã
è¶
è¶æ° e ã§ããæçæ°ã§ãªããã°ãªãã¬ãšãã
ãã®ãããªã¯ã¡ã¹ãããã®æã蟌ã¿ã
äžçãçŽåŸãããšã¯ãšãŠãæããŸããã
Dengan kesaktian Indukmuæ§ããã¯ããããããŸãã
ïŒããããããããŸãããã
ã¯ã¡ã¹ãããã®ãè«çïŒã
ã¯å
šãçè§£ã§ããŸããã
ïŒãã®ã§ãã§ããã°
ãã€ãã¢æ° e ãæçæ°ã«ãªããŸããã
ãã€ãã¢æ°ã¯ãlimïŒïŒïŒ1/n)^nã§ããnâç¡é倧ã§ããããéäžãã0ã®ç¡éåã«ã§ããŸããããããã£ãŠãæéåã«ã§ãããæçæ°ã«ãªãæ ¹æ ããããŸããã
ãªã€ã©ãŒã¯ãããã埮åã§èšŒæããŠããŸãã
ãŸããããŒãŒã«åé¡ãèšç®ã§ãÏ^/6ãšç¢ºä¿¡ããæçµçã«åŸ®åã§è«çã€ããããŠããŸãã
äž¡æ¹ãšããç¡çæ°ã§ãã
ïŒãã
å調å¢å æçæ°å a_n
å調æžå°æçæ°å b_n
ãååšããŠãä»»æã®æ£ã®èªç¶æ° n ã«ã€ããŠ
a_n < e < b_n
ãšãªãããã€
n â â ã®ãšãã«
b_n - a_n â 0
ãšããããšãã§ããããã§ãã
ãããããå°ã詳ããæããŠããããªãã§ããããïŒ
dengan ãããããŠããã®ã¯ã
e = Σ[k=0..â] 1/(k!)
ã®è©±ã§ãããã
ãããã0ã«åæããæçæ°ã®ç¡éåãã§ãã
ïŒdengan ãããããŠããã®ã¯ã
e = Σ[k=0..â] 1/(k!)
ã®è©±ã§ãããã
ããã¯ã埮åç©ååŠã®åºæ¬çãªé¢æ°ã䜿ã£ãå®çŸ©ã§ãããã
ç§ã¯ã埮ç©ååŠã䜿ããªããªã€ã©ãŒã®ããŒãŒã«åé¡ã«ã€ããŠèšã£ãŠããŸãã
ãªã€ã©ãŒã¯ã埮ç©ååŠã䜿ã£ãŠããã¯ããŒãªã³å±éã§ãx^3ã®é
ãæ¯èŒããŠÏ^2/6=Σ[k=0..â] 1/(k^2)ãçè«ã¥ããŠããŸãããåãåŒãããx^5,x^7ã®é
ã¯æ±ããããšã¯ã§ããŸãããç§ãèšç®ããŠã§ããŸããã§ããã
ããã§ããªã€ã©ãŒã¯ãΣ[k=0..â] 1/(k^4)ããx^5ã®é
ãæ±ããŠããã¯ãã§ãã
ãªã€ã©ãŒã®åŸ®ç©ååŠã䜿ã£ãŠãx^3ã®é
ãæ¯èŒããŠÏ^2/6=Σ[k=0..â] 1/(k^2)ãçè«ã¥ãã¯ããã®å Žãã®ããšæã£ãŠããŸãã
ãŸãããããªããšãæžããšç°åžžäººã«ãªãã§ããããã»ã»ã»ã»
ããšããšããããã芪ç¶ã§ãããã»ã»ã»ã»
1Ïãã7ÏãŸã§ã®æãç®ãèšç®ããŠã¿ãŸããã
((1-x^2/(1Ï)^2) (1-x^2/(2Ï)^2) (1-x^2/(3Ï)^2) (1-x^2/(4Ï)^2) (1-x^2/(5Ï)^2) (1-x^2/(6Ï)^2) (1-x^2/(7Ï)^2))
=x^14ã®é
ãã»ã»ã»x^8ã®é
ã
x^6ã®é
- x^2/(4Ï)^2 x^2/(6Ï)^2 x^2/(7Ï)^2 - x^2/(5Ï)^2 x^2/(6Ï)^2 x^2/(7Ï)^2
- x^2/(4Ï)^2 x^2/(5Ï)^2 x^2/(7Ï)^2 - x^2/(3Ï)^2 x^2/(5Ï)^2 x^2/(7Ï)^2
- x^2/(3Ï)^2 x^2/(4Ï)^2 x^2/(7Ï)^2 - x^2/(4Ï)^2 x^2/(5Ï)^2 x^2/(6Ï)^2
- x^2/(3Ï)^2 x^2/(6Ï)^2 x^2/(7Ï)^2 - x^2/(2Ï)^2 x^2/(6Ï)^2 x^2/(7Ï)^2
- x^2/(1Ï)^2 x^2/(6Ï)^2 x^2/(7Ï)^2 - x^2/(2Ï)^2 x^2/(5Ï)^2 x^2/(7Ï)^2
- x^2/(1Ï)^2 x^2/(5Ï)^2 x^2/(7Ï)^2 - x^2/(3Ï)^2 x^2/(5Ï)^2 x^2/(6Ï)^2
- x^2/(2Ï)^2 x^2/(4Ï)^2 x^2/(7Ï)^2 - x^2/(1Ï)^2 x^2/(4Ï)^2 x^2/(7Ï)^2
- x^2/(2Ï)^2 x^2/(3Ï)^2 x^2/(7Ï)^2 - x^2/(1Ï)^2 x^2/(3Ï)^2 x^2/(7Ï)^2
- x^2/(1Ï)^2 x^2/(2Ï)^2 x^2/(7Ï)^2 - x^2/(2Ï)^2 x^2/(3Ï)^2 x^2/(6Ï)^2
- x^2/(2Ï)^2 x^2/(5Ï)^2 x^2/(6Ï)^2 - x^2/(1Ï)^2 x^2/(5Ï)^2 x^2/(6Ï)^2
- x^2/(3Ï)^2 x^2/(4Ï)^2 x^2/(6Ï)^2 - x^2/(2Ï)^2 x^2/(4Ï)^2 x^2/(6Ï)^2
- x^2/(1Ï)^2 x^2/(4Ï)^2 x^2/(6Ï)^2 - x^2/(1Ï)^2 x^2/(3Ï)^2 x^2/(6Ï)^2
- x^2/(1Ï)^2 x^2/(2Ï)^2 x^2/(6Ï)^2 - x^2/(3Ï)^2 x^2/(4Ï)^2 x^2/(5Ï)^2
- x^2/(2Ï)^2 x^2/(4Ï)^2 x^2/(5Ï)^2 - x^2/(1Ï)^2 x^2/(4Ï)^2 x^2/(5Ï)^2
- x^2/(2Ï)^2 x^2/(3Ï)^2 x^2/(5Ï)^2 - x^2/(1Ï)^2 x^2/(3Ï)^2 x^2/(5Ï)^2
- x^2/(1Ï)^2 x^2/(2Ï)^2 x^2/(5Ï)^2 - x^2/(2Ï)^2 x^2/(3Ï)^2 x^2/(4Ï)^2
- x^2/(1Ï)^2 x^2/(3Ï)^2 x^2/(4Ï)^2 - x^2/(1Ï)^2 x^2/(2Ï)^2 x^2/(4Ï)^2
- x^2/(1Ï)^2 x^2/(2Ï)^2 x^2/(3Ï)^2
x^4ã®é
+ x^2/(6Ï)^2 x^2/(7Ï)^2 + x^2/(5Ï)^2 x^2/(7Ï)^2 + x^2/(4Ï)^2 x^2/(7Ï)^2
+ x^2/(3Ï)^2 x^2/(7Ï)^2 + x^2/(2Ï)^2 x^2/(7Ï)^2 + x^2/(1Ï)^2 x^2/(7Ï)^2
+ x^2/(5Ï)^2 x^2/(6Ï)^2 + x^2/(4Ï)^2 x^2/(6Ï)^2 + x^2/(3Ï)^2 x^2/(6Ï)^2
+ x^2/(2Ï)^2 x^2/(6Ï)^2 + x^2/(1Ï)^2 x^2/(6Ï)^2 + x^2/(4Ï)^2 x^2/(5Ï)^2
+ x^2/(3Ï)^2 x^2/(5Ï)^2 + x^2/(2Ï)^2 x^2/(5Ï)^2 + x^2/(1Ï)^2 x^2/(5Ï)^2
+ x^2/(3Ï)^2 x^2/(4Ï)^2 + x^2/(2Ï)^2 x^2/(4Ï)^2 + x^2/(1Ï)^2 x^2/(4Ï)^2
+ x^2/(2Ï)^2 x^2/(3Ï)^2 + x^2/(1Ï)^2 x^2/(3Ï)^2 + x^2/(1Ï)^2 x^2/(2Ï)^2
x^2ã®é
- x^2/(7Ï)^2 - x^2/(6Ï)^2 - x^2/(5Ï)^2 - x^2/(4Ï)^2 - x^2/(3Ï)^2 - x^2/(2Ï)^2 - x^2/(1Ï)^2
宿°é
+ 1
x^2(å®éã¯x^3)ã®é
ãã
(x^2/Ï^2){1/1^2+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2}=(x^2/Ï^2) Σ1/n^2ã¯ã§ããŸããã
x=4,6(å®éã¯x^5,7)ã®é
ããã§ããŸããããã¡ãªã¿ã«ãx^4ïŒå®éã¯x^5)ã®é
ã¯ããªã€ã©ãŒã«ãããšÏ^4/90ã ããã§ãã
ã€ãŸããåãåŒããæ±ããããŸããã
ããã§ããªã€ã©ãŒã¯ãΣ[k=0..â] 1/(k^4)ããx^5ã®é
ãæ±ããŠããã¯ãã§ãã
ã¯ã¡ã¹ããããžã
a_n = (1 +1/n)^n
b_n = (1 +1/n)^(n +1)
ãšããããã
Dengan kesaktian Indukmuæ§ãããã«ã¡ã¯ã
a_n = (1 +1/n)^n
b_n = (1 +1/n)^(n +1)
ã§ãnââãšãªããšãa_n=eã«ãªããŸããã
a_nã®ã°ã©ãã¯ãhttp://y-daisan.private.coocan.jp/html/20230313_BMP/2023-3-13-010.png
b_nã®ã°ã©ãã¯ãhttp://y-daisan.private.coocan.jp/html/20230313_BMP/2023-3-13-011.png
b_n-a_nã®ã°ã©ãã¯ãhttp://y-daisan.private.coocan.jp/html/20230313_BMP/2023-3-13-012.pngãšhttp://y-daisan.private.coocan.jp/html/20230313_BMP/2023-3-13-013.png
ã§ãã
b_n-a_n=(1+1/n)^(n+1)-(1+1/n)^n={(1+1/n)-1}(1+1/n)^n=(1/n)(1+1/n)^n
ã§ãnââãšãªããšã(1/n)(1+1/n)^n=(1/n)eãšãªã£ãŠãç¡çæ°ã§ããã
(1/n)ãããã£ãŠããã®ã§ãlim(1/n)eâ0ã§ããã
ã°ã©ãããèŠããšãa_nã¯ãå²ãšæ©ãeã«åæããŸãããã€ãŸããç¡çæ°ã«è¿ã¥ããšããããšã§ããã
b_n=(1+1/n)a_nã§ããã
a_n<e<b_n ãã¯ãa_n<e<(1+1/n)a_nã
a_n<e<ã(1+1/n)ãa_n=b_n
b_n-a_nãã¯ã
0<e-a_n<ã(1+1/n)ãa_n-a_n=b_n-a_n
0<e-a_n<ã(1/n)ãa_n
ããŠãnããããŠã
0<n(e-a_n)<ãa_n
ne-n a_n<ãa_n
na_nãè¶³ããŠã
ne< a_n +n a_n
e<(1+1/n)a_n=b_n
ãªããè¡ãè©°ãŸã£ããªãã
a_nãb_nãeã«è¿äŒŒãããããç¡çæ°ãšèšããããããªãããªãã
Dengan kesaktian Indukmuæ§ããã¿ãŸããã
> x=4,6(å®éã¯x^5,7)ã®é
ããã§ããŸãããã
ã§ããŸããã
ãšãããããã€ãŠããã®ïŒæ§ïŒæ²ç€ºæ¿ã§å®éã«ãã£ãããšãããã®ã§ããµã€ãã®æ¹ã®èšå€§ãªèšäºã®ã©ããã«æ®ã£ãŠããã¯ãã§ãã
ã©ãã ã£ãããªã
ïŒã§ããŸããã
ãããªãã§ããïŒ
ã§ããã§ããã¯ãããªããšæããŸãã
ã¯ã¡ã¹ãããããã£ãããã«ã
ïŒa_nãb_nãeã«è¿äŒŒãããããç¡çæ°ãšèšããããããªãããªãã
ã¯ã¡ã¹ãããã¯
ã¯ã¡ã¹ããããªãã®
ãéããŠããããšãã«èº«ãæ§ããªããŠã¯ãããªãã®ã§ã¯ãªãã§ããããïŒ
a_nãb_nãæçæ°ã«ç¡éåã
ååæŒç®ãé©çšãããã®ã§ããã
ã¯ã¡ã¹ãããã«ãããéããŠãããå®çŸ©ã«ããã°
ãã€ãã¢æ° e ããŸãæçæ°ã§ããã¯ãã§ãã
ãããã«ç¡çæ°ã§ãããšãã£ãããã
èªå·±ççŸã
åå ã¯ãéããŠããããšã«ã€ããŠã®
çè§£äžè¶³ãããã®ã§ãã
Dengan kesaktian IndukmuããŸããã¯ããããããŸãã
ãŸããããŒãŒã«åé¡ã¯ããŸãé²å±ãã¿ãããããå ±åããŸãã
ã¯ã¡ã¹ããããèãããšããã®
æçæ°äœã¯ïŒç¡éåã®ïŒååæŒç®ã«ã€ããŠéããŠããã
ã«ã€ããŠã¯ãæ¢ã«ãã€ãã¢æ°ãäŸã«äžããŠ
誀ãã§ãããšã瀺ããããŠé ããŸããã
å®ã¯ãå€ã®ããã£ãŠããããããã¯å€ãèšç®å¯èœãªä»»æã®ç¡çæ° c ã«ã€ããŠ
次ã®ããšããããŸããããªãã¡ã
ãã
å調å¢å æçæ°å a_n
å調æžå°æçæ°å b_n
ãååšããŠãä»»æã®æ£ã®èªç¶æ° n ã«ã€ããŠ
a_n < c < b_n
ãšãªãããã€
n â â ã®ãšãã«
b_n - a_n â 0
ãšãªãã
a_n ã b_n ããç¡è«ãc ã«åæããŸãã
ç¡çæ° c ãäžããããã°ãäžã®ãããªãæçæ°å a_n ã b_n ã
髿 ¡æ°åŠã®ç¯å²ã§ãååæŒç®ã䜿ã£ãŠæ§æå¯èœãªã®ã§ãã
éããŠåŒ·èª¿ããŠãããŸããã
ã¯ã¡ã¹ããããèãããšããã®
æçæ°äœã¯ïŒç¡éåã®ïŒååæŒç®ã«ã€ããŠéããŠããããšããæŠå¿µãçãªãã°
ä»»æã®ç¡çæ°ãæçæ°ã«ãªã£ãŠããŸããŸãã
ããŒãŒã«åé¡ã©ããã®éšãã§ã¯ãªãã®ã§ãã
ç¡éåã®æäœã§ã¯ãæéåã®æäœãŸã§ã®æèŠãéçšããªãããšããããããããŸãã
ãã®ãããããã¡ããšæç§æžã§åŠã°ãªããš
人çã®è²Žéãªæéãç¡é§ã«ãªããŸãã
ã¯ã¡ã¹ãããã«ãçè§£é ãããããšãããã²ãšã€ã
宿°ãaãbããã ããb > a ã«ã€ããŠä»¥äžããããŸãã
ä»»æã®æ£æ° ð ã«ã€ããŠ
ð - ð < ð
ã§ãããªãã°
ð - ð = 0
ã§ããããã¡ããšæžãã°
âð >0; ð - ð < ð â ð - ð = 0
ãããçã£ãŠãçããããŸããã
äºå®äžãå
¬çã ãšæã£ãŠäžããã
ã¯ã¡ã¹ããããåäŸãèŠåºãããšã¯äžå¯èœã§ããããããã ããåäŸãããã°
äžéå€ã®å®çãããŒã«ã®å®çãå¹³åå€ã®å®çãããŒã©ãŒå±éã«ãŸã€ããå®çããªãŒãã³ç©åã«ãŸã€ããå®çãªã©ã
ããããå
šãŠãççå€ãçãã«ãªããŸãã
æè¿ã®ãã¯ã¡ã¹ãããã«ããæ°ã®äœç³»ã«ã€ããŠã®
äžé£ã®ç矩ã蚎ãã¯ãå
šãŠ
âð >0; ð - ð < ð â ð - ð = 0
ãžã®ç°è°ç³ãç«ãŠã«ãªã£ãŠããã®ã§ãã
倱瀌ããããŸããã
宿°ãaãbããã ããb > a ã«ã€ããŠä»¥äžããããŸãã
ã§ã¯ãªã
宿°ãaãbããã ããb â§ a ã«ã€ããŠä»¥äžããããŸãã
ã«ããŠãã ãã
ãªã€ã©ãŒç©ã¯https://ja.wikipedia.org/wiki/%E3%82%AA%E3%82%A4%E3%83%A9%E3%83%BC%E7%A9%8Dã«ãããŸããã
(ïŒ-1/2^2)(1-1/3^2)(1-1/5^2)(1-1/7^2)(1-1/11^2)ã»ã»ã»Î¶(2)=1 ---(1)
ãšãªã£ãŠããŸãã
ãããã
{(2^2-1)/2^2}{(3^2-1)/3^2}{(5^2-1)/5^2}{(7^2-1)/7^2}{(11^2-1)/11^2}ã»ã»ã»Î¶(2)=1 ---(2)
{(2+1)(2-1)/2^2}{(3+1)(3-1)/3^2}{(5+1)(5-1)/5^2}{(7+1)(7-1)/7^2}{(11+1)(11-1)/11^2}ã»ã»ã»Î¶(2)=1 ---(3)
ããã
{(2+1)(2-1)}{(3+1)(3-1)}{(5+1)(5-1)}{(7+1)(7-1)}{(11+1)(11-1)}ã»ã»ã»Î¶(2)=2^2 3^2 5^2 7^2 11^2ã»ã»ã»ã»
---(4)
ãšãªããŸãã巊蟺ã¯çŽ æ°ã®ååŸã®æ°ã®ç©ã§ã{(2+1)(2-1)}ãé€ããŠããã¹ãŠå¶æ°ã§ãããäžæ¹å³èŸºã¯ãã¹ãŠã®çŽ æ°ã®2ä¹ã®ç©ã§ããã
ãšããã§ãªã€ã©ãŒãæ±ããζ(2)=Ï^2/6ã§ãããã®å€ã¯ããŒãŒã«åé¡ã§æ±ããããŸãããÎ¶é¢æ°ãšã¯ãç¡é¢ä¿ã«æ±ããããŠããŸãã
ãªã€ã©ãŒã¯ãããŒãŒã«åé¡ããçºå±ãããŠããªã€ã©ãŒç©ãèŠã€ããã®ã§ãã
ãªã€ã©ãŒç©ã«æåããŠãªãŒãã³ã¯Î¶é¢æ°ãé²ããŠããã®ã§ãã
ã§ããããζ(2)ãšãã衚çŸã¯èª€è§£ãæããããããŸãããã
ããã§ã(4)åŒã®å³èŸºã«ã¯ãå¶æ°ã¯2^2ãããªãã®ã«ã巊蟺ã¯ã巊蟺ã¯çŽ æ°ã®ååŸã®æ°ã®ç©ã§ã{(2+1)(2-1)}ãé€ããŠããã¹ãŠå¶æ°ã§ããã
ããã¯ã2ã®ææ°ã巊蟺ãšå³èŸºã§ã¯æããã«éããŸããã
ãããã£ãŠããã®åŒã¯æãç«ã¡ãŸããããã€ãŸãããªã€ã©ãŒç©ã¯ééãã§ãããšããããšã§ãã
ãšããããšã¯ãããŒãŒã«åé¡ãééãã§ããããªãŒãã³ãŒãŒã¿é¢æ°ãééãã§ãããšããããšã§ããã
ãŸããç¡éç©ã§ãããããææ°ãéããšèšã£ãŠãæŒãåãããŠããŸãã§ããããããªã€ã©ãŒç©ã¯åé¡ãªããšã
(4)åŒã¯å·ŠèŸºãç¡çæ°ãå³èŸºãèªç¶æ°ãšãã£ãŠããç¡æå³ããªã»ã»ã»ã»
èããåªåãã»ã»ã»ã»ã»ïŒ
> å³èŸºãèªç¶æ°
ããã蚌æããŠãã ããã
ç§ãç¥ãéãã§ã¯ãèªç¶æ°ã®ç¡éç©ãèªç¶æ°ã«ãªããšãã蚌æã¯ååšããŸããã®ã§ãä»ã®ãšããããã¯ã¯ã¡ã¹ãããããæ£ãããã£ãŠã»ããããšãã§ãããããŸããã
远å 蚌æãå¿
èŠãªç¹ã¯ä»ã«ããããšæããŸãããæå€§ã®åé¡ç¹ã¯ãŸãããã§ãã
DD++æ§ããã¯ããããããŸãã
ãŸããç¡éç©ã«ã€ããŠãçŽ æ°ã¯çŽ æ°å®çããæ°ãæ±ããããŸãããç¡éã§ããã
ã«ã³ããŒã«ã«èšãããã°ããã®ç¡éã¯ä»å çªç¡éãªãã§ãããããã€ãŸããæ°ããããçšåºŠã®ç¡éã§ããã
æ°åŠçåž°çŽæ³ã¯ãèªç¶æ°ç¯å²ã§æãç«ã€ãã®ãªããèªç¶æ°ã¯ã«ã³ããŒã«ã®å¯ä»çªç¡éã§ãããæ°ãããããã®ã§ããããããšãå¯ä»çªç¡éã§ãããããèªç¶æ°ç¯å²ãªã®ã§ãå¯ä»çªç¡éçšåºŠãªããæ°åŠçåž°çŽæ³ã¯ã䜿ããããããªãããªãšæã£ããããŸãããã©ããªãã§ããããã
äœè«ã§ãããæçæ°ããå¯ä»çªç¡éã§ãããŸãã
ãæ°åŠçåž°çŽæ³ã¯ãªãããã§èšŒæãããããšã«ãªãã®ãïŒããèããããšã¯ããã§ããããã
ãŸãããç¡éãšã¯äœã§ãããïŒããèããããšã¯ã
ãããã«ã€ããŠãäžè¬çã«ã©ã®ããã«èããããŠãããããã¡ããšçè§£ããã°ãå ç®ç¡éã§æ°åŠçåž°çŽæ³ã䜿ããããããªããšããããšãçŽåŸã§ãããšæããŸãã
ã§ããããŸãã¯ãã®èŸºãã調ã¹ãŠã¿ãŠã¯ã©ãã§ãããã
å ç®ç¡éã¯ãå¯ç®ç¡éã§ããïŒ
éåè«ãããã§ããã
ã«ã³ããŒã«ã®å¯ä»çªç¡éïŒçªå·ãã€ããŠæ°ããããç¡éïŒãšã©ãéãã®ã§ããïŒ
éåã®èŠçŽ ã«çªå·ãã€ããŠãæ°ããããç¡éã ããã§ãã
ããªãããã§ããã
ããã倿ãã¹ããŠãŸãããã
倱瀌ããŸããããå¯ç®ç¡éãã§ãã
ãªã€ã©ãŒç©ããèªãããããªãŒãã³ã®ãŒãŒã¿é¢æ°ãèªããããŠãã以äžãç¡éã®åé¡ã¯ãªããšèšããŸãã
ãªãŒãã³ã®ãŒãŒã¿é¢æ°ã§ããååæ°ã¯
kã¯çŽ æ°ãªã®ã§ã
(k^s-1)ïŒk^s=(k-1){k^(n-1)+k^(n-2)+k^n-3)+ã»ã»ã»+k^2+k+1}/k^s
kã2ãé€ããŠã奿°ã®çŽ æ°ã¯(k-1)ãå¶æ°ãªã®ã§ãæ¬è³ªçã«éãã¯ãããŸããã
ãããã£ãŠããªãŒãã³ã®ãŒãŒã¿é¢æ°ãééã£ãŠããŸãã
ζ(s)ããã©ãã§ãããçåŒãšããŠã巊蟺ãšå³èŸºã®2ã®ã¹ã乿°ãéãã®ã§ãæãç«ã¡ãŸããã
ζ(s)ãã2ã®ã¹ãä¹ã§ããããšã¯ãªãã®ã§ãåé¡ãããŸããã
ãšã¯ããããŸããç§ã¯ãã©ããã«è«æãçºè¡šããããã§ããªãããããããç®çããªãã®ã§ãããã
ä»ã®è©±é¡ã¯ãæ°åŠçåž°çŽæ³ã¯ç¡éã§ãæå¹ããã§ãããã
ãªã€ã©ãŒç©ããŒãŒã¿é¢æ°ã®ã©ãã§æ°åŠçåž°çŽæ³ãçšããããŠããã®ã§ããïŒ
> ç§ã¯ãã©ããã«è«æãçºè¡šããããã§ããªãããããããç®çããªãã®ã§ãããã
è«æãšãã圢ã§ãªããŠãããããžã®æçš¿ã¯ååãçºè¡šãã«è©²åœããã§ãããã
çºè¡šã§ãã以äžãå¯èœãªéãæ£ããããããšããå¿æ§ãã¯å¿
èŠã§ãã
DD++æ§ããã¯ããããããŸãã
ïŒä»ã®è©±é¡ã¯ãæ°åŠçåž°çŽæ³ã¯ç¡éã§ãæå¹ããã§ãããã
ãããªã£ãŠããŸãããç§ãšããŠã¯ããã ç¡éãšããæŒ ç¶ã§ã¯ãªããããšãã°ãå¯ä»çªç¡éã«çµã£ãå Žåããªã€ã©ãŒç©ããªãŒãã³ã®ãŒãŒã¿é¢æ°ãèªç¶æ°ã®ç¯å²ãªã®ã§ãããããããããŸããããç¡éãšããããšãæ°ã«ããããšãªãæç«ããŠããã®ã¯äºå®ã§ãã
ã§ããããç¡éã®çš®é¡ã«ã€ããŠãæ€èšããå¿
èŠãããã§ãããã
ïŒãªã€ã©ãŒç©ããŒãŒã¿é¢æ°ã®ã©ãã§æ°åŠçåž°çŽæ³ãçšããããŠããã®ã§ããïŒ
ã€ããããŠããŸããã
ïŒè«æãšãã圢ã§ãªããŠãããããžã®æçš¿ã¯ååãçºè¡šãã«è©²åœããã§ãããã
çºè¡šã§ãã以äžãå¯èœãªéãæ£ããããããšããå¿æ§ãã¯å¿
èŠã§ãã
ãææãçè§£ã§ããŸããã
> ç¡éãšããããšãæ°ã«ããããšãªãæç«ããŠããã®ã¯äºå®ã§ãã
éããŸãã
ç¡éãšããããšãæ°ã«ããäžã§ãéåžžã«æ
éã«è«çã確èªããäžã§æç«ããŠããŸãã
ç¡éãšããããšãããçšåºŠè»œãæ±ã£ãŠããããããã説æããã解説ããããããšã¯ãããŸããããããã¯ã蚌æãã§ã¯ãªãã®ã§ãã
DD++æ§ããã¯ããããããŸãã
ïŒç¡éãšããããšãæ°ã«ããäžã§ãéåžžã«æ
éã«è«çã確èªããäžã§æç«ããŠããŸãã
ããã¯ããªã€ã©ãŒããªãŒãã³ãã©ã®ããã«ããŠãè£ä»ããããã®ã§ããïŒ
ïŒç¡éãšããããšãããçšåºŠè»œãæ±ã£ãŠããããããã説æããã解説ããããããšã¯ãããŸããããããã¯ã蚌æãã§ã¯ãªãã®ã§ãã
確ãã«ãæ¹ããŠããã蚌æãããŠããŸãããã
> ãªã€ã©ãŒããªãŒãã³ãã©ã®ããã«ããŠãè£ä»ããããã®ã§ããïŒ
æ²ç€ºæ¿ã®ã¬ã¹çšåºŠã«åãŸã話ãããªãã®ã§ããç¡éæ°åã®çµ¶å¯Ÿåæããè€çŽ é¢æ°ã®è§£ææ¥ç¶ãã«ãã¡ããšè§Šããªãã蚌æããŠããæžç±çãæ¢ããŠã¿ãŠãã ããã
> æ¹ããŠããã蚌æãããŠããŸãããã
蚌æã¯ãããŠããŸãã
ã¯ã¡ã¹ããããèªãã ããšãªãã ãã§ãã
空æ¬ãnåãã
â¡â¡â¡ïœ¥ïœ¥ïœ¥ïœ¥â¡
äžã«1ïœnã®æ°åãïŒã€ãã€å
šãŠå
¥ãã
ãã®ãšãåºæ¥ãnæ¡ã®æŽæ°ã§ã以äžã®æ¡ä»¶ããã¹ãŠæãç«ã€ã®ããæ¢ããŠäžããã
ïŒæ¡ä»¶aïŒäž2æ¡ã2ã§å²ããã
ãããã äž3æ¡ã3ã§å²ããã
ãããã äž4æ¡ã4ã§å²ããã
ãããã 
ãããã næ¡ãnã§å²ããã
(1)n=3
(2)n=4
(3)n=5
(4)n=6
(5)n=7
(6)n=8
(7)n=9
ã§ã®æŽæ°ã¯ããããäœïŒ
次ã«ãã®æ¡ä»¶ã
ïŒæ¡ä»¶bïŒäž2æ¡ã2ã§å²ããã
ãããã äž3æ¡ã3ã§å²ããã
ãããã äž4æ¡ã4ã§å²ããã
ãããã 
ãããã næ¡ãnã§å²ããã
ãšã
n=9ã§,
ãã®æ¡ä»¶ãå
šãŠæºãã9æ¡ã®æŽæ°ã®äžã§æ¢ãããšãããš
äž2æ¡(æåŸãå¶æ°ïŒãšäž5æ¡(æåŸã5)ãšãªãçžåããã
ããã§äž5æ¡ã®æ¡ä»¶ã¯é€å€ãããã®ä»ã¯æ¡ä»¶ãæºãããã9æ¡ã®æŽæ°ã®äžã§
æå°ãšæå€§ã®ãã®ã¯äœã§ãããïŒ
æãã©ããã§èãããããªåé¡ã§ããïŒ
(1)ãn=3ãã®ãšãããïŒæ¡ã®æ°ã¯ãïŒã®åæ°ãªã®ã§ãåäœã®æ°ã®åã¯ãïŒã®åæ°
ãå¯èœæ§ã¯ããïŒãïŒãïŒãïŒïŒãïŒïŒãïŒïŒãïŒïŒãïŒïŒãïŒïŒãã®äœããã
ãäž2æ¡ã2ã§å²ããã®ã§ãäž2æ¡ç®ã¯ããïŒãïŒãïŒãïŒãïŒãã®äœããã
ã䜿ããæ°åã¯ãïŒïŒïŒïŒïŒã§ãåäœã®æ°ãå
šãŠçžç°ãªãããšã«æ³šæããŠã
ãäž2æ¡ç®ããïŒãã®ãšããïŒæ¡ã®æ°ã®å¯èœæ§ã¯ã
ãïŒïŒïŒãïŒïŒïŒ
ã以äžãããïŒæ¡ã®æŽæ°ã®äžã§ãæå°å€ã¯ãïŒïŒïŒãã§ãæå€§å€ã¯ãïŒïŒïŒãã§ããã
(2)ãn=4ãã®ãšãã䜿ããæ°åã¯ãïŒãïŒãïŒãïŒã§ãåäœã®æ°ãå
šãŠçžç°ãªãã
äž2æ¡ã2ã§å²ããã
äž3æ¡ã3ã§å²ããã
4æ¡ã4ã§å²ããã
ãšããæ¡ä»¶ããããŸãã4æ¡ã4ã§å²ããããã«ã¯ãäž2æ¡ã4ã®åæ°ã§ããã°ããã®ã§ã
ãã®å¯èœæ§ã¯ããââïŒïŒãââïŒïŒãââïŒïŒãã®ïŒéã
ââïŒããïŒã®åæ°ãšãªãããšã¯ãªãã
ââïŒããïŒã®åæ°ãšãªãã®ã¯ããïŒïŒïŒãïŒïŒïŒ
ââïŒããïŒã®åæ°ãšãªãããšã¯ãªãã
ã以äžããããïŒïŒïŒïŒãïŒïŒïŒïŒãã§ããã®äžã«ãäž2æ¡ã2ã§å²ãããã®ã¯ãªãã
ããã£ãŠãn=4ãã®ãšããè§£ãªã
(3)ãn=5ãã®ãšãã䜿ããæ°åã¯ãïŒãïŒãïŒãïŒãïŒã§ãåäœã®æ°ãå
šãŠçžç°ãªãã
äž2æ¡ã2ã§å²ããã
äž3æ¡ã3ã§å²ããã
äž4æ¡ã4ã§å²ããã
5æ¡ã5ã§å²ããã
ãšããæ¡ä»¶ãããäžã®äœã¯5ãšç¢ºå®ããn=4ãã®ãšããšåæ§ã«ãè§£ãªããšãªãã
(4)ãn=6ãã®ãšãã䜿ããæ°åã¯ãïŒãïŒãïŒãïŒãïŒãïŒã§ãåäœã®æ°ãå
šãŠçžç°ãªãã
äž2æ¡ã2ã§å²ããã
äž3æ¡ã3ã§å²ããã
äž4æ¡ã4ã§å²ããã
äž5æ¡ã5ã§å²ããã
6æ¡ã6ã§å²ããã
ãšããæ¡ä»¶ãããåã®äœã¯5ãšç¢ºå®ããïŒåã®äœïŒçŸã®äœïŒãå¯èœæ§ã¯ã
ãïŒïŒïŒïŒïŒãïŒïŒïŒïŒïŒãïŒïŒïŒïŒïŒãïŒïŒïŒïŒïŒãïŒïŒïŒïŒïŒãïŒïŒïŒïŒïŒ
ããŸããäžã®äœã®å¯èœæ§ã¯ãïŒãïŒãïŒããªã®ã§ã以äžãçµã¿åããããšãå¯èœæ§ã¯ã
ãâïŒïŒïŒïŒâãâïŒïŒïŒïŒâãâïŒïŒïŒïŒâãâïŒïŒïŒïŒâãâïŒïŒïŒïŒâãâïŒïŒïŒïŒâã
ãâïŒïŒïŒïŒâãâïŒïŒïŒïŒâãâïŒïŒïŒïŒâãâïŒïŒïŒïŒâ
ãæ®ãã®æ°åãæžãå ããŠãæ¡ä»¶ãæºãããã®ãæ¢ããšã
ãïŒïŒïŒïŒïŒïŒããïŒïŒïŒïŒïŒïŒ
ã®ïŒéãååšããã
(5)ãn=7ãã®ãšãã䜿ããæ°åã¯ãïŒãïŒãïŒãïŒãïŒãïŒãïŒã§ãåäœã®æ°ãå
šãŠçžç°ãªãã
äž2æ¡ã2ã§å²ããã
äž3æ¡ã3ã§å²ããã
äž4æ¡ã4ã§å²ããã
äž5æ¡ã5ã§å²ããã
äž6æ¡ã6ã§å²ããã
7æ¡ã7ã§å²ããã
ãšããæ¡ä»¶ãããåã®äœã¯5ãšç¢ºå®ããn=6ãã®ãšããšåæ§ã«èããŠãå¯èœæ§ã¯ã
ãâïŒïŒïŒïŒââãâïŒïŒïŒïŒââãâïŒïŒïŒïŒââãâïŒïŒïŒïŒââãâïŒïŒïŒïŒââãâïŒïŒïŒïŒââã
ãâïŒïŒïŒïŒââãâïŒïŒïŒïŒââãâïŒïŒïŒïŒââãâïŒïŒïŒïŒââãâïŒïŒïŒïŒââãâïŒïŒïŒïŒââã
ãâïŒïŒïŒïŒââãâïŒïŒïŒïŒââ
ãæ®ãã®æ°åãæžãå ããŠãæ¡ä»¶ãæºãããã®ã¯ãªãã®ã§ãè§£ãªããšãªãã
(6)ãn=8ãã®ãšãã䜿ããæ°åã¯ãïŒãïŒãïŒãïŒãïŒãïŒãïŒãïŒã§ãåäœã®æ°ãå
šãŠçžç°ãªãã
äž2æ¡ã2ã§å²ããã
äž3æ¡ã3ã§å²ããã
äž4æ¡ã4ã§å²ããã
äž5æ¡ã5ã§å²ããã
äž6æ¡ã6ã§å²ããã
äž7æ¡ã7ã§å²ããã
8æ¡ã8ã§å²ããã
ãšããæ¡ä»¶ãããåã®äœã¯5ãšç¢ºå®ããn=7ãã®ãšããšåæ§ã«èããŠãå¯èœæ§ã¯ã
ãâïŒïŒïŒïŒâââãâïŒïŒïŒïŒâââãâïŒïŒïŒïŒâââãâïŒïŒïŒïŒâââãâïŒïŒïŒïŒâââã
ãâïŒïŒïŒïŒâââãâïŒïŒïŒïŒâââãâïŒïŒïŒïŒâââãâïŒïŒïŒïŒâââãâïŒïŒïŒïŒâââã
ãâïŒïŒïŒïŒâââãâïŒïŒïŒïŒâââãâïŒïŒïŒïŒâââãâïŒïŒïŒïŒâââãâïŒïŒïŒïŒâââã
ãâïŒïŒïŒïŒâââãâïŒïŒïŒïŒâââãâïŒïŒïŒïŒâââãâïŒïŒïŒïŒâââãâïŒïŒïŒïŒâââã
ãâïŒïŒïŒïŒâââãâïŒïŒïŒïŒâââãâïŒïŒïŒïŒâââãâïŒïŒïŒïŒâââãâïŒïŒïŒïŒâââã
ãâïŒïŒïŒïŒâââãâïŒïŒïŒïŒâââãâïŒïŒïŒïŒâââãâïŒïŒïŒïŒâââãâïŒïŒïŒïŒâââ
ãæ®ãã®æ°åãæžãå ããŠãæ¡ä»¶ãæºãããã®ãæ¢ããšããïŒïŒïŒïŒïŒïŒïŒïŒãã®ïŒéãååšããã
æ¡ä»¶aã«ã€ããŠ
(1)ïœ(7)å
±é
æ¡ä»¶ãããå¶æ°æ¡ç®ã¯å¶æ°ã§ãªããã°ãªããªããâŠ(a)
æ¡ä»¶ãããäžãã3æ¡ããšã®åèšã¯3ã®åæ°ã§ãªããã°ãªããªããâŠ(b)
(3)ïœ(7)å
±é
æ¡ä»¶ããã5æ¡ç®ã¯5ã§ãªããã°ãªããªããâŠ(c)
(1)
(a)ãã123,321ããããåŸãªãããããã¯ã©ã¡ããæ¡ä»¶ãæºããã
(2)
(a)ãã4æ¡ç®ã¯2ã4ã ããäž3æ¡ã3ã§å²ãåããããã«ã¯4æ¡ç®ã¯4ã§ãªããã°ãªããªãã
ããã3æ¡ç®ã奿°ã§4æ¡ç®ã4ã§ããæ°ã¯4ã§å²ãåããªãã®ã§è§£ãªãã
(3)
(c)ãã5æ¡ç®ã¯5ãªã®ã§äž4æ¡ã¯(2)ãæºãããªããã°ãªããªãããã£ãŠè§£ãªãã
(4)
䜿ããå¶æ°ã¯2,4,6ãªã®ã§ã(a)(b)(c)ãããäž3æ¡ã¯456ãŸãã¯654ã§ãªããã±ãªããªãã
3æ¡ç®ã奿°ã§4æ¡ç®ã4ã ãšäž4æ¡ã4ã§å²ãåããªãã®ã§ãäž3æ¡ã¯654ãšæ±ºãŸãã
ãããšäž3æ¡ã¯1,2,3ãšãªã(1)ãæºããå¿
èŠãããã®ã§ãäž3æ¡ã¯123ã321ã
åŸã£ãŠæ¡ä»¶ãæºããè§£ã¯123654ãš321654ã
(5)
䜿ããå¶æ°ã¯(4)ãšåããªã®ã§ã4æ¡ç®ïœ6æ¡ç®ã¯654ã
æ®ã1,2,3,7ã¯è¶³ããŠ3ã§å²ããš1äœãã®ã§ã7æ¡ç®ã¯1ã7ã
(a)ã«ããã7æ¡ç®ã1ã®å Žåã¯å
é 3æ¡ã¯327ã723ã7æ¡ç®ã7ã®å Žåã¯å
é 3æ¡ã¯123ã321ãšæ±ºãŸããã
3276541,7236541,1236547,3216547ã¯ãããã7ã§å²ãåãããè§£ãªãã
(6)
䜿ããå¶æ°ã¯2,4,6,8ã§ããã3æ¡ç®ã奿°ã§äž4æ¡ã4ã§å²ãåããªããã°ãªããªãããšãã
4æ¡ç®ã¯2ã6ãªã®ã§ã(a)(b)(c)ãã4æ¡ç®ïœ6æ¡ç®ã¯258ã654ã
258ã®ãšãæ®ãæ°ã¯1,3,4,6,7ã ãã7æ¡ç®ã奿°ã§äž8æ¡ã8ã§å²ãåããããã«ã¯ã
å°ãªããšã8æ¡ç®ã¯4ã§å²ãåããªãå¶æ°ããªãã¡6ã§ãªããã°ãªããã
(a)(b)ãã14725836,74125836
654ã®ãšãæ®ãæ°ã¯1,2,3,7,8ã ãã7æ¡ç®ã奿°ã§äž8æ¡ã8ã§å²ãåããããã«ã¯ã
å°ãªããšã8æ¡ç®ã¯4ã§å²ãåããªãå¶æ°ããªãã¡2ã§ãªããã°ãªããã
(a)(b)ãã18365472,38165472,38765412,78365412
ãã®ãã¡ãäž7æ¡ã7ã§å²ãåãäž8æ¡ã8ã§å²ãåããããæºãããã®ã¯38165472ã®ã¿ã
(7)
(6)ãšåæ§ã« xxx258xxx, xxx654xxx
7æ¡ç®ã奿°ã§äž8æ¡ã8ã§å²ãåããããã«ã¯ xxx258x6x, xxx654x2x
æ®ãã®å¶æ°ã2æ¡ç®ã«å
¥ã㊠x4x258x6x, x8x654x2x
åè
ã¯1æ¡ç®ãš3æ¡ç®ã«1,7ãå
¥ããªããã°ãªããªããã
(6)ããäž8æ¡ã14725836,74125836ã¯æ¡ä»¶ãæºãããªãã®ã§ãå¯èœæ§ãããã®ã¯
147258963,741258963
ããããããããäž7æ¡ã7ã§å²ãåããããšããæ¡ä»¶ãæºãããªãã
åŸè
ã¯1æ¡ç®ãš3æ¡ç®ã«(1ãŸãã¯7)(3ãŸãã¯9)ãå
¥ããªããã°ãªããªãã®ã§ãå¯èœæ§ãããã®ã¯
183654729,183654927,189654327,189654723,381654729,381654927,387654129,387654921,
783654129,783654921,789654123,789654321,981654327,981654723,987654123,987654321
ãã®ãã¡äž7æ¡ã7ã§å²ãåãããã®ã¯381654729ãš783654921ã ããåŸè
ã¯äž8æ¡ã8ã§å²ãåããªãã®ã§
æ¡ä»¶ãæºããè§£ã¯381654729ã®ã¿ã
(æ¡ä»¶aã®ãŸãšã)
(1) 123,321
(4) 123654,321654
(6) 38165472
(7) 381654729
(2)(3)(5)ã¯è§£ãªãã
æ¡ä»¶bã«ã€ããŠ
ãäž2æ¡ã2ã§å²ããããšãäž9æ¡ã9ã§å²ãããã¯ç¡èŠããŠããã
ãäž4æ¡ã4ã§å²ããããã
xx12,xx32,xx52,xx72,xx24,xx64,xx84,xx16,xx36,xx56,xx76,xx28,xx48,xx68
ãäž3æ¡ã3ã§å²ãããã®æ¡ä»¶ãå ããŠ
x312,x612,x912,x132,x432,x732,x852,x372,x672,x972,x324,x624,
x924,x264,x564,x864,x384,x684,x984,x216,x516,x816,x936,x156,
x456,x756,x276,x576,x876,x528,x348,x648,x948,x168,x468,x768
ãã®ãã¡ãäž8æ¡ã8ã§å²ããããã®ã¯ã¡ããã©åæ°ã§
x312,x912,x432,x672,x624,x264,x864,x384,x984,x216,x816,x936,
x456,x576,x528,x648,x168,x768
æ®ãæ¡ä»¶ã¯ãäž6æ¡ã6ã§å²ããããäž7æ¡ã7ã§å²ãããã ãã
æäœæ¥ã§å
šéãèšç®ããã®ã¯éåžžã«å€§å€ãªã®ã§æå°å€ãšæå€§å€ã ããèããããšã«ããã
ãäž6æ¡ã6ã§å²ããããšããæ¡ä»¶ããäž3æ¡ã®åèšã¯3ã®åæ°ã§ãªããã°ãªããªãã®ã§ãäž3æ¡ã¯
å°ããé ã«123,126,129,132,135,138,âŠ
倧ããé ã«987,984,981,978,975,972,âŠ
äž3æ¡ã123ã®å Žåãäž3æ¡ã¯äžèšã®ãã¡1,2,3ãå«ãŸãªããã®ãªã®ã§
864,984,456,576,648,768
äžãã4æ¡ç®ã4ã ãšãããšäž3æ¡ã¯576ã768ãªã®ã§
123489576,123498576,123459768,123495768
ããããããã¯ããããäž7æ¡ã7ã§å²ãåããªãã
äžãã4æ¡ç®ã5ã ãšãããšäž3æ¡ã¯864,984,648,768ãªã®ã§åè£ã¯
123579864,123597864,123567984,123576984,123579648,123597648,123549768,123594768
ãã®ãã¡123567984ã ãäž7æ¡ã7ã§å²ãåããŠæ¡ä»¶bãæºããã®ã§ããããæå°å€ã
äž3æ¡ã987ã®å Žåãäž3æ¡ã¯äžèšã®ãã¡9,8,7ãå«ãŸãªããã®ãªã®ã§
312,432,624,264,216,456
äžãã4æ¡ç®ã6ã ãšãããšãäž3æ¡ã¯312ã432ãªã®ã§
987654312,987645312,987651432,987615432
ããããããã¯ããããäž7æ¡ã7ã§å²ãåããªãã
äžãã4æ¡ç®ã5ã ãšãããšãäž3æ¡ã¯312,432,624,264,216ãªã®ã§åè£ã¯
987564312,987546312,987561432,987516432,987531624,
987513624,987531264,987513264,987543216,987534216
ãã®ãã¡äž7æ¡ã7ã§å²ãåãããã®ã¯987564312ãš987516432ã®äºã€ã§ããã
987564312ã®æ¹ã倧ããã®ã§ãããæå€§å€ã
(æ¡ä»¶bã®çã)
æå°å€ã¯ 123567984 ãæå€§å€ã¯ 987564312
ζ(3)=1 + 1/2^3 + 1/3^3 + 1/4^3 + 1/5^3 + 1/6^3 + 1/7^3 +
ã«ã¯Ïã®å§¿ã¯çŸããªãã
1 - 1/3^3 + 1/5^3 - 1/7^3 + 1/9^3 -=Ï^3/32
ã«ã¯ãã¡ãããšÏãåºçŸããŠããã
ããã«
S1=1/(1^3*2^3) + 1/(2^3*3^3) + 1/(3^3*4^3) + 1/(4^3*5^3) +
S2=1/(1^3*3^3) + 1/(2^3*4^3) + 1/(3^3*5^3) + 1/(4^3*6^3) +
ã«ãÏã¯å§¿ãçŸããŸãã
ã§ã¯ã©ããªãã®ã«ãªãã§ããããïŒ
S1 = 10 - Ï^2ããS2 = (21 - 2Ï^2)/32ãã§ããïŒ
1/(n^3(n+1)^3)=(6n^2-3n+1)/n^3-(6(n+1)^2+3(n+1)+1)/(n+1)^3
ãªã®ã§
S1=Σ[n=1ïœâ]1/(n^3(n+1)^3)
=Σ[n=1ïœâ](6n^2-3n+1)/n^3-(6(n+1)^2+3(n+1)+1)/(n+1)^3
=(6*1^2+3*1+1)/1^3-6ζ(2)
=10-Ï^2
1/(n^3(n+2)^3)=(1/16){(3n^2-3n+2)/n^3-(3(n+2)^2+3(n+2)+2)/(n+2)^3}
ãªã®ã§
S2=Σ[n=1ïœâ]1/(n^3(n+2)^3)
=(1/16)Σ[n=1ïœâ]{(3n^2-3n+2)/n^3-(3(n+2)^2+3(n+2)+2)/(n+2)^3}
=(1/16){(3*1^2+3*1+2)/1^3+(3*2^2+3*2+2)/2^3-6ζ(2)}
=(21-2Ï^2)/32
ãªã€ã©ãŒç©ã§ããã¹ãŠã®çŽ æ°ã®ç©ã¯èš±ãããŠä¹
ããã§ãã
ãããïœãšããŸãã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
2022-4-17ã«ãæ°ã®äžæè°äžçãã®æçš¿ãããã®ã«æãå
¥ãããã®ã§ãã
ãããã§ã«ãa^3+b^3=c^3ã¯ãªã€ã©ãŒã蚌æããŸãããã
ããã§ãa=p^m,b=q^m,c=r^mãšãããšã
a^3+b^3=c^3
p^3m+q^3m=r^3m
ã§ããããããšãïŒã®åæ°ã¯ãã¹ãŠèšŒææžã¿ã§ãããã
ãšããã§ãïœã¯ãïŒã®åæ°ã§ãããããã5xãšãªããŸãããã
p^3(5x)+q^3(5x)=r^3(5x)
p^5(3x)+q^5(3x)=r^5(3x)
ããã§ã
u=p^3x,v=q^3x,w=r^3x
ãšãããšã
p^5(3x)+q^5(3x)=r^5(3x)
u^5+v^5=w^5
ãšãªã£ãŠãn=5ã蚌æãããŠããããšã«ãªããŸãããã
ããã«ãïœã¯ãïŒã®åæ°ã§ãããããã7yãšãªããŸãããã
p^3 7y+q^3 7y=r^3 7y
p^7(3y)+q^7(3y)=r^7(3y)
ãã£ãã®ããã«ããŠã
f^7+g^7=h^7
ãšãªã£ãŠãn=7ã蚌æãããŠããããšã«ãªããŸãããã
åæ§ã«ããŠããã¹ãŠã®çŽ æ°ã蚌æã§ããŸãããã
ãããšããããšãã®æã«ããªã€ã©ãŒã«ãã£ãŠããã§ã«ããŒã®æçµå®çã¯èšŒæãããŠãããšèšããŸããããïŒ
*********
DDïŒïŒæ§ãããã°ãã¯ã
ïŒãªããŸãããã
ã©ãèŠãŠãè«çã®çãéã£ãŠãªãã§ãã
äœãã䞻匵ãããã®ã§ããã°ããŸãã蚌æãšã¯ããå匷ããŠããããšããªã¹ã¹ã¡ããŸãã
ããå¥ã«äž»åŒµãããããšã¯ãããŸããããã ããã¹ãŠã®çŽ æ°ã®ç©ã䜿ã£ãŠã以åã»ãã®ãšããã®æçš¿ã䜿ã£ãŠãé¢çœã話ã¯ãªãããšäœã£ããã®ã§ãã
ããã§ããããã«ããŸãããïŒ
ãªããŸãããã
ã©ãèŠãŠãè«çã®çãéã£ãŠãªãã§ãã
äœãã䞻匵ãããã®ã§ããã°ããŸãã蚌æãšã¯ããå匷ããŠããããšããªã¹ã¹ã¡ããŸãã
ãã¯ãã
ïŒãa^t ã®åæ°ã§ãªããã°ãªããªãã
ã«ããã詳现ãªèšŒæãå¿
èŠã§ãã
ã®æ¹ã§ãããïŒ
ç§ã¯ããã®äžã®æ¹ã ãšæããŸããã®ã§ã
ïŒããšãäžçªäžã®ãšããããŸãã§ç§ãããã§å®æã§ããããšã«è³åããŠãããããªèšè¿°ã¯ãããŠãã ããã
ç§ã¯ããã¯èšŒæãšããŠæ¬ é¥ã ããã®ã²ã©ãç¶æ
ã ãšæã£ãŠããŸãã
ã©ãããè¿·æããããããããã§ãããåé€ããŸããã
äž¡æ¹çŽããªããŠã¯ãããŸããã
è€æ°æ¬ é¥ããããã¡1ã€ã ãçŽããŠãå®ç§ã«ãªãããããªãã§ãããã
ïŒããããnâ§3 ã®æ¹ãæ²»ã£ãŠããšã¯æããŸããïŒ
ãŸãã§ãnâ§3ã®æ¹ã¯çµæçã«å¿
èŠæ§ãåºãŠããã°ãã話ãªã®ã§ãç©æ¥µçãªä¿®æ£ãæ¥ããã®ã§ã¯ãªããšæããŸãã
ãŸãä¿®æ£ãã¹ãã¯è«çã®æ¬ é¥ã®æ¹ã§ãã
ä»¶ã®åŒã a^t ã§å²ãåããæŽæ°ã«ãªããšããã®ãè£ä»ããè«çãç§ã¯ç¥ããŸããã
å€åä»ã®èª°ãç¥ããŸããã
ã¯ã¡ã¹ãããã®äžã§ã¯ãªããããããå®çãååšããŠããããšã«ãªã£ãŠããããã§ããã
ã¯ã¡ã¹ãããããã®å®çã®å
容ãšèšŒæãé瀺ãããŸã§ã¯ãåŸãããçµè«ã¯ã¯ã¡ã¹ãããã®åŠæ³ã§ãããããŸããã
ãè°è«ãããã®ã«å¿
èŠãšãªãæ£ãããééã£ãŠãããã®å€æææãé ãããŸãŸããã ãèªåãééãããããªããã ããšé£åŒããŠã°ããã®äººããããã®ãçŸç¶ã§ãã
ïŒä»¶ã®åŒã a^t ã§å²ãåããæŽæ°ã«ãªããšããã®ãè£ä»ããè«çãç§ã¯ç¥ããŸããã
å€åä»ã®èª°ãç¥ããŸããã
çåŒã®æ§è³ªã ãšæãã®ã§ããã»ã»ã»ã»
åãªãæ°åŒã®èšç®ã«è«çãèŠãã§ããããïŒ
åãªãæ°åŒã®èšç®ã§ã¯ãªãããè«çãæ±ããŠããã®ã§ãã
ã§ã¯ãã©ãã«è«çãããã®ã§ãããïŒ
ç§ã¯ããã ãçåŒã®æ§è³ªã䜿ã£ãŠãæ°åŒèšç®ãããã ããªã®ã§ãã
æãåœãããã·ããããŸããã
åŠæ ¡ã®å
çã¯ãé ã远ã£ãŠã説æããŸãã
ããšèšã£ãŠãæå³ããè«çãããçµè«ã«ã€ãªããããšã¯ãŸããããŸããã
ãªã€ã©ãŒã«ããŠããã©ãããžã£ã³ã«ããŠããã²ãããèšç®ããŠãçºèŠããã®ã§ãã
ããã§ãåããŠãçŸè±¡ã説æããè«çãæ§æãããã®ã§ãã
ãŸããçºèŠãæåãªãã§ãã
> ã©ãã«è«çãããã®ã§ãããïŒ
ãããç§ãèããŠããã®ã§ããã
ã©ããã« (b) åŒãã (c) åŒã«ãªãæ£ããè«çãååšããã®ã ãšããããããã¯èšŒæè
ã®é ã®äžã蚌æã®æç« ã®äžã§ãã
ãããŠçŸç¶ã蚌æã®æç« ã®äžã«ã¯ããããããŸããã
ã¯ã¡ã¹ãããã®é ã®äžã«ããªãã®ã§ããã°ãã®èšŒæã¯è«çç Žç¶»ããŠãããšããããšã«ãªããŸããã
DD++æ§ããã¯ããããããŸãã
çåŒã«ãããŠã䞡蟺ã0ã§ãªãåãæ°ã§å²ã£ãŠããçåŒã®æ§è³ªã«ããæãç«ã¡ãŸãã
PDFããã
(b) åŒã®äž¡èŸºã a^t ã§å²ããšãa, c ã¯äºãã«çŽ ã§ããããã(b) åŒã®å³èŸºã® c^(nâ1) 㯠a^t ã¯å²ãåã
ãªãããã ããt 㯠t < n ã®èªç¶æ°ã§ããã
ããã«ãå³èŸºã® c^(nâ1) ãé€ããåŒã¯ a^t ã®åæ°ã§ãªããã°ãªããªãã
ãšãªã£ãŠã(c)åŒãæ§æãããã®ã§ãã
ã ããããããæ£ããèšç®ã§ããæ ¹æ ã¯ã©ãã«ããã®ã§ããããšã
ãæ£ãããã£ãŠã»ããããšããäœåºŠèšãããã©ããªå€§ãã声ã§èšãããããã¯ãäœåºŠã倧ããªå£°ã§èšãããæ£ãããã£ãŠã»ããããšãã§ãããªãããæ£ããããšãã«ã¯ãªããŸããã
ããã¯ãçåŒã®æ§è³ªãããå°ãããããšã§ãç§ã®éœåã®è«çã§ã¯ããããŸããã
æçš¿å¶éã«ãããæçš¿ã§ããªãã®ã§ãããã«æžããŸãã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ãã®æ§è³ªãšã¯ãåã«ãæžãããšããã
çåŒã«ãããŠã䞡蟺ã0ã§ãªãåãæ°ã§å²ã£ãŠããçåŒã®æ§è³ªã«ããçåŒã¯æãç«ã¡ãŸãã
ã ããããããªèšç®ãå¯èœã«ããæ§è³ªã誰ãç¥ããªãã®ã§ãã®å 容ãé瀺ããŠãã ããããšèšã£ãŠããã®ã§ããã
ã¯ã¡ã¹ããããèš³ã®åãããªãããšããèšããªãã®ã§ã(a) ãã (b) ãŸã§ã®è«çã®æç€ºäŸã瀺ããŸãã
-------
k 㯠1âŠkâŠn ãæºããèªç¶æ°ã
c^(n-k) * b^(k-1)
= { c^(n-1) * c^(1-k) } * b^(k-1) ïŒææ°æ³å a^
(m+n) = a^m * a^nïŒèšŒæã¯é«æ ¡æ°åŠIIã®æç§æžçãåç
§ïŒ
= c^(n-1) * { c^(1-k) * b^(k-1) } ïŒç©ã®çµåæ³å (ab)c = a(bc)ïŒå
¬çïŒ
= c^(n-1) * { b^(k-1) * c^(1-k) } ïŒç©ã®äº€ææ³å ab = baïŒå
¬çïŒ
= c^(n-1) * { b^(k-1) * (c^(-1))^(k-1)} ïŒææ°æ³å a^(mn) = (a^m)^nïŒèšŒæã¯é«æ ¡æ°åŠIIã®æç§æžçãåç
§ïŒ
= c^(n-1) * { b^(k-1) * (1/c)^(k-1)} ïŒ-1ä¹ã®å®çŸ©ïŒ
= c^(n-1) * {(b/c)^(k-1)} ïŒææ°æ³å a^n * b^n = (ab)^nïŒèšŒæã¯é«æ ¡æ°åŠIIã®æç§æžçãåç
§ïŒ
(a) åŒã® { } ã®äž
= Σ[k=1..n] c^(n-k) * b^(k-1) ïŒÎ£ã®å®çŸ©ïŒ
= Σ[k=1..n] c^(n-1) * {(b/c)^(k-1)} ïŒäžã§ç€ºããçåŒïŒäžã§æžãã蚌æãåç
§ïŒ
= c^(n-1) * Σ[k=1..n] {(b/c)^(k-1)} ïŒåé
æ³å k(a+b+c+âŠ) = ka + kb + kc + âŠïŒ2é
ã®ãã®ã¯å
¬çã3é
以äžã¯åã®çµåæ³åãšæ°åŠçåž°çŽæ³ã«ãã瀺ãããïŒ
(b) åŒã®å·ŠèŸº
= (a) åŒã®å·ŠèŸºããïŒåäžã®åŒïŒ
= (c-b) * { Σ[k=1..n] c^(n-k) * b^(k-1) } ïŒ(a) åŒïŒæ¬æã®èšŒæãåç
§ïŒ
= (c-b) * [ c^(n-1) * Σ[k=1..n] {(b/c)^(k-1)} ] ïŒäžã§ç€ºããçåŒïŒäžã§æžãã蚌æãåç
§ïŒ
= (c-b) * c^(n-1) * Σ[k=1..n] {(b/c)^(k-1)} ïŒç©ã®çµåæ³å (ab)c = a(bc)ïŒå
¬çïŒ
= (b) åŒã®å³èŸº
----
ã¯ãã(b) åŒãã (c) åŒãŸã§ãã¯ã¡ã¹ãããã®æã§ã©ããã
DD++æ§
PDFãšè¡šçŸãéãã ãã§ãåãã§ãããïŒ
ïŒã»ã»ã»ïŒã®è¡šçŸãΣã«ããã ãã§ãããïŒ
æ¬æ°ã§èšã£ãŠãŸãïŒ
+ãšÎ£ã®è¡šèšã®éããªããŠäºæ«ãªéãã§ããã
åå€åœ¢ãã©ãããè«çã§æ£åœåãããã®ã1è¡ããšã«å
šéšæžããŠããã®ãèŠããªããã§ããïŒ
DD++æ§ããã¯ããããããŸãã
ãææã¯ãçè§£ã§ããŸããã
ãã®è©±é¡ã¯ããã®èŸºã§ããããã«ããŸãããïŒ
ç§ã¯ãã©ããã«è«æãçºè¡šããããã§ããªãããããããç®çããªãã®ã§ãããã
H.NaKaoæ§ããã¯ããããããŸãã
ïŒåè¶ãªãããããããã¯ã¡ã¹ãããã«ããããŸããŠã¯ãèªèº«ãæžãã蚌æãæ£ããã®ãã©ããèªåã§å€æã§ããããã«ãªããŸã§ãFLTã®èšŒæ(ãšç§°ãããã®)ã®å
¬è¡šãæ§ããŠããã ããèªèº«ãæžãã蚌æã®æ£ããã»èª€ããæ£ç¢ºã«å€æã§ããããã«ãªã£ãããFLTã®èšŒæãå
¬è¡šããŠããã ããããšæããŸãã
ç§ã¯ããã§ã«ããŒã®æçµå®çãã¿ããªãææŠããã°ãããšæããŸããéåžžã«ãè¯ãææã ãšæããŸãã
ããã«ã¯ãèªåã®ç¿ã£ããã¹ãŠãå©çšããªããã°ã§ããªãããã§ãããŸããèªåãããã£ãŠãªããšããã«ãæ°ã¥ãããããäºã¥ããã§ãã
ãããä»ãŸã§æ°åŠè
ãã§ããªãã£ããããçŠæ¢ãããšãã埡è«ã«ã¯ãå
šãè³åã§ããŸããã
1=0.999ã»ã»ã»ã»ãšããæçæ°ã¯ååæŒç®ã§éããŠããã®ã«ãããŒãŒã«åé¡ã§ã¯ç¡çæ°ã«ãªã£ãŠããŸãã
æ°åŠã§ã¯ãè§ŠããŠã¯ãªããªãåé¡ããã£ã±ããããŸãã
ãããªäºæ
ã¯ãããããã§ãããã
æ°åŠè
ã¯ãããããããšããè§Šãã¬ç¥ç¥ããªãããšæ±ºããŠããã£ãŠããããã«æãããŸãããã§ã«ããŒã®æçµå®çããã®ãããªæ±ãã§ããã
ããã¯ãããããã§ãããïŒ
ç§ã¯ãããã¯ãæ°åŠã«ãšã£ãŠæ¥µããŠäžå¥å
šã ãšæããŸãã
ã§ãããã
1=0.999ã»ã»ã»
ããŒãŒã«åé¡
ãã§ã«ããŒã®æçµå®çã®åçç蚌æ
ããããã€ããã¯ãããŸããã
æ°åŠã¯ãéãããæ°åŠã§ãªããšãããŸãããããç§ã¯ã確信ããŠãããŸãã
ïŒãããããããããã¯ã¡ã¹ãããã®FLTã®åçç蚌æ(No.590)ã§ã¯ãn>=3ãšããæ¡ä»¶ãïŒåã䜿ã£ãŠããªãã
ãã䜿ã£ãŠãããšããã®ã§ããã°ãã©ãã§äœ¿ã£ãŠããã®ã§ããïŒ
ä»®ã«ããã®èšŒæãæ£ãããšä»®å®ãããšãn>=2ã§ãFLTãæç«ããããšã«ãªããççŸããã
ããã§ããæ£ããFLTã®èšŒæãšèšããã®ã§ããããïŒ
æåã«ãnã¯3以äžã®èªç¶æ°ãšæžããŠãããŸãã
ãŸããa,b,cãäºãã«çŽ ãªèªç¶æ°ãšæžããŠãããŸãã
ç§ããa,b,cãèªç¶æ°ãã€ãã£ãŠãªããããè² ã®æ°ã¯ã©ãããã®ããšããã®ã¯ãããããã§ãããã
a,b,cãæŽæ°ãªããa^n+b^n=c^nãæãç«ã€ããšã¯ããã®æ²ç€ºæ¿ã§ãåãäžããããŠããŸãã
ïŒåè¶ãªãããããããã¯ã¡ã¹ãããã«ããããŸããŠã¯ãèªèº«ãæžãã蚌æãæ£ããã®ãã©ããèªåã§å€æã§ããããã«ãªããŸã§ãFLTã®èšŒæ(ãšç§°ãããã®)ã®å
¬è¡šãæ§ããŠããã ããèªèº«ãæžãã蚌æã®æ£ããã»èª€ããæ£ç¢ºã«å€æã§ããããã«ãªã£ãããFLTã®èšŒæãå
¬è¡šããŠããã ããããšæããŸãã
ãããããç§ã¯ãå®å
šã ãšæãããïŒä»äººããèŠãã°äžå®å
šãªããšããããŸããïŒæçš¿ããŠããã®ã§ãã£ãŠããããäžè¬çã«æ£ãããšèšŒæãããŠããã°ãæçš¿ããã¯ãããªãã§ãããïŒ
> ãããããç§ã¯ãå®å
šã ãšæãããïŒä»äººããèŠãã°äžå®å
šãªããšããããŸããïŒæçš¿ããŠããã®ã§ãã£ãŠããããäžè¬çã«æ£ãããšèšŒæãããŠããã°ãæçš¿ããã¯ãããªãã§ãããïŒ
æ£ãã蚌æã¯ã ããèŠãŠãå®å
šãªãã®ã§ããã®ã§ãããããã¯ã¡ã¹ããããå®å
šã ãšæãã ãã§ãªããä»äººããèŠãŠã(ã ããèŠãŠã)å®å
šã§ãããšå€æã§ãã蚌æãæçš¿ããŠæ¬²ããã®ã§ãã
ïŒæ£ãã蚌æã¯ã ããèŠãŠãå®å
šãªãã®ã§ããã®ã§ãããããã¯ã¡ã¹ããããå®å
šã ãšæãã ãã§ãªããä»äººããèŠãŠã(ã ããèŠãŠã)å®å
šã§ãããšå€æã§ãã蚌æãæçš¿ããŠæ¬²ããã®ã§ãã
ã©ãããŠãèªåãä»äººã«ãªããã®ã§ããïŒ
èªåããå®å
šã§ãããšæã£ããã®ã¯ãã©ããããããªãã§ãããïŒ
> æåã«ãnã¯3以äžã®èªç¶æ°ãšæžããŠãããŸãã
蚌æ(No.590)äžã§ããã以å€ã«ãn>=3ã䜿ã£ãŠããå Žæã¯ãªãã®ã§ããã
ãã®èšŒæãæ£ãããã®ãšä»®å®ãããšã(ä»ã§ãn>=3ã䜿ã£ãŠããªãã®ã§)
ãã®èšŒæã®ãnã¯3以äžã®èªç¶æ°ãã®éšåããnã¯2以äžã®èªç¶æ°ããšæžãæããŠãæ£ãã蚌æã«ãªããŸãã
ãã£ãŠãFLT(2)ãæç«ããããšã«ãªããççŸããŸãã
> ç§ã¯ããã§ã«ããŒã®æçµå®çãã¿ããªãææŠããã°ãããšæããŸãã
> ãããä»ãŸã§æ°åŠè
ãã§ããªãã£ããããçŠæ¢ãããšãã埡è«ã«ã¯ãå
šãè³åã§ããŸããã
ãã®ç¹ã«é¢ããŠã¯ã¯ã¡ã¹ãããã«åæããŸãã
ããããŸã§äžäŸããªãã£ãã®ã ãããããããå
ããããªäŸã¯ãªãããªããŠçå±ãã²ã©ã誀謬ã§ããã®ã¯æ°åŠããã£ãŠãã人ãªã誰ã§ãããããŸãã
Nakaoããã®èšãåã¯æããã«çãéã£ãŠããŸããã
ããããå®éã®æŽå²äžã§é£åãšèšãããŠããåé¡ãããæ¥çªç¶ãã£ãã解決ããäŸããªããã©ãããããããŸããããïŒãããæ¢ãã°ãããã§ãåºãŠãããïŒã
ãããäžæ¹ã§ãã¯ã¡ã¹ãããã¯ã¯ã¡ã¹ãããã§éåžžã«ç¬åçãªæ±ºãã€ããå€ããçµæãšããŠèšŒæãšã¯ãšãŠãåŒã¹ãªãåŠèšã«è¿ããã®ã®ç¹°ãè¿ãã«ãªã£ãŠããŸã£ãŠããã®ã確ãã§ãã
ãæ£ãããã£ãŠã»ããããšã
ãæ£ãããšèªåãä¿¡ããŠããããšã
ãèªåã蚌æã§ãããšäž»åŒµããããšã
ã蚌æãäžéã§åãå
¥ããããããšã
ã誀ãã§ãã£ãŠã»ããããšã
ã誀ãã ãšèªåãä¿¡ããŠããããšã
ã誀ãã ãšèªåã蚌æã§ãããšäž»åŒµããããšã
ã誀ãã§ãã蚌æãäžéã§åãå
¥ããããããšã
ãããã®éãã¯æ°åŠã§ã¯éåžžã«å€§äºã§ãã
ãšããããããããåºå¥ããããšãæ°åŠãšããäžçã®å¯äžã®ã«ãŒã«ã ãšç§ã¯æã£ãŠããŸãã
ãã®ã«ãŒã«ãéµå®ããŠããéããã1+1=0 ã§ããããšãã䞻匵ãããã®ããæ°åŠã§ã¯èªç±ã§ãã
ïŒã2ãæ³ãšããå°äœé¡ããšããå®éã«ååšãã話ã§ãïŒ
æ°åŠã¯åºãéãããŠãããšæããŸããã
ã¯ã¡ã¹ããããäœãã©ãã ãç±åŒããŠãæ¹å€ã°ãããªã®ã¯ãçå±ã誀ã£ãŠããããã§ããæ°åŠã®äžçãçéã ããã§ããããŸããã
ã¯ã¡ã¹ãããããã®ã«ãŒã«ãç¡èŠããŠããããããã ããã ãã§ãã
æ°åŠçãäžå¥å
šãªã®ã§ã¯ãªããã¯ã¡ã¹ãããã®æ°åŠã«å¯Ÿããæ
床ãäžå¥å
šãªãã§ããã
ïŒã¯ã¡ã¹ãããããã®ã«ãŒã«ãç¡èŠããŠããããããã ããã ãã§ãã
æ°åŠçãäžå¥å
šãªã®ã§ã¯ãªããã¯ã¡ã¹ãããã®æ°åŠã«å¯Ÿããæ
床ãäžå¥å
šãªãã§ããã
DD++æ§ããã¯ããããããŸãã
ãææããããšãããããŸãã
ã§ãããªãŒãã³ãªè°è«ãèš±ãã°ããããã倿§æ§ãããããªã«ãåŸããã®ããããšæãã®ã§ããã
ãŸããç§ããç°åžžãªäººéãããããŸãããã»ã»ã»ã»ïŒ
> ãªãŒãã³ãªè°è«ãèš±ãã°ããããã倿§æ§ãããããªã«ãåŸããã®ããããšæãã®ã§ããã
ããããè°è«ã«ãªã£ãŠããã°ãããã§ããããã
ãããç§ã¯ãã¯ã¡ã¹ãããã®è©±ã¯ãããããè°è«ãšåŒã¹ããã®ã«ãªã£ãŠããªãããšèšã£ãŠããã®ã§ããã
> ã©ãããŠãèªåãä»äººã«ãªããã®ã§ããïŒ
> èªåããå®å
šã§ãããšæã£ããã®ã¯ãã©ããããããªãã§ãããïŒ
ä»äººã«ãªããšã¯æžããŠããªãã
ãã ããèŠãŠãå®å
šã§ãããšå€æã§ãã蚌æãæçš¿ããŠæ¬²ããããšæžããã
ããšãèªåã®èšŒæã®æ£ããã«ç¢ºä¿¡ããã£ããšããŠããæçš¿åã«ãä»ã®ã ããã«ãã®èšŒæãã¬ãã¥ãŒããŠããã£ãŠãã¬ãã¥ãŒè
ãæ£ãããšå€æãã蚌æãæçš¿ããã°è¯ãã®ã§ãã
ïŒãã®èšŒæãæ£ãããã®ãšä»®å®ãããšã(ä»ã§ãn>=3ã䜿ã£ãŠããªãã®ã§)
ãã®èšŒæã®ãnã¯3以äžã®èªç¶æ°ãã®éšåããnã¯2以äžã®èªç¶æ°ããšæžãæããŠãæ£ãã蚌æã«ãªããŸãã
ããã¯ããã§ã«ããŒã®æçµå®çã«ãèšããããšã§ã¯ãªãã§ããïŒ
n>=3ãšããåæãããã®ã§ãã
ãããç¡èŠããã°ããã§ã«ããŒã®äž»åŒµã¯ééã£ãŠããŸãã
åææ¡ä»¶ãç¡èŠããã®ã¯ããããããããŸãããïŒ
ïŒããšãèªåã®èšŒæã®æ£ããã«ç¢ºä¿¡ããã£ããšããŠããæçš¿åã«ãä»ã®ã ããã«ãã®èšŒæãã¬ãã¥ãŒããŠããã£ãŠãã¬ãã¥ãŒè
ãæ£ãããšå€æãã蚌æãæçš¿ããã°è¯ãã®ã§ãã
åœå®¶ã®åæ Œãšããæ¬ãæžããæ°åŠè
ãããæ»èªãããŠãããšç¡çç¢çéµäŸ¿ç©ãéãã€ããŠãããã€ãããããããªãã®ã¯ç¡èŠãããããšèšã£ãŠãŸãã
æ»èªãåŒãåããŠããã人ã¯ããã£ãã«ããŸããã
ããã§ã倱瀌ã§ããããã®æ²ç€ºæ¿ãå©çšããŠããŸãã
ïŒãããç§ã¯ãã¯ã¡ã¹ãããã®è©±ã¯ãããããè°è«ãšåŒã¹ããã®ã«ãªã£ãŠããªãããšèšã£ãŠããã®ã§ããã
DD++æ§ã®ãã£ããããšããã§ãã
æ»èªã§ãæãããªééããææããããããã®ä¿®æ£äœæ¥ã«ãªããŸãããã
ãã®ç¹ã§ãDD++æ§ã®ææã¯ãç§ã¯æãããªééããèªèŠã§ããŸããã
è°è«ãšã¯ãééããšèªããããªããšããèµ·ããã®ã§ã¯ãªãã§ããããïŒ
ã¯ã¡ã¹ãããã«ãäŒãããŠãããšããã®Nakaoãããšããæ¹ã¯æ§æ²ç€ºæ¿ã§æ°åŠçãªè©±ã£ãœãèŠããããäººæ Œæ»æããæ²ç€ºæ¿ãèãããåç§ããã人ã ãšããã®ãèæ
®ããŠèªãã æ¹ãããã§ãã
ãã®æ²ç€ºæ¿ãã¬ãã¥ãŒã«äœ¿ã£ãŠããããåæã«æ±ºãããªããŠããã£ãšèªåãç¥ã«ã§ããªã£ãŠããã®ç®¡çæš©éãä¹ã£åã£ãã€ããã«ã§ããªã£ãŠãããã§ããããã
ããŠãããã¯ãããšããŠNakaoããã®è©±ããã¡ãããšæ°åŠçã«äŸ¡å€ãããéšåã ãæãåºããšãããããããšã§ããã
ã»ãã§ã«ããŒã®æçµå®çã nâ§3 ã§æãç«ã£ãŠã»ãã
ã»ãã§ã«ããŒã®æçµå®çïŒãšå圢åŒã®æïŒã¯ n=2 ã§ã¯èª€ãã§ããããšã¯èšŒæãããŠããïŒã¯ã¡ã¹ããããåæããŠãããŸããïŒïŒ
ãšããäºã€ããèãããšããã§ã«ããŒã®æçµå®çã®æ£ãã蚌æã«ãªã£ãŠãããææžXãããã£ããšãããšã
ã»nâ§3 ã®å Žåã¯ææžXçå±ã®éã£ãæç« ã«ãªã
ã»nâ§3 ãšããæ¡ä»¶ãç¡èŠã㊠n=2 ãšããå Žåã¯ææžXã¯ã©ããã«èª€ããããæç« ã«ãªã
ãšããããšãèšããã¯ããªãã§ãã
Nakao ããã¯ããã® n=2 ã®ãšãã«èª€ãã§ããç®æã¯ã©ããªã®ãããšåããŠããŸããã
ãŸããããã§èšŒæã誀ãã ãšããã£ããšããŠãã©ããä¿®æ£ãã¹ããªã®ãäœã®æ
å ±ãåŸãããªãã®ã§ãã¬ãã¥ãŒã§ã®ææã®ä»æ¹ãšããŠããŸãããŸãããæ¹ã ãšã¯æããŸããã
ãã蚌æã§ãããšäž»åŒµããåŽããã¯æçš¿åã«èæ
®ããã¹ãç¹ã§ã¯ãã£ãããªãšãæããŸãã
> n>=3ãšããåæãããã®ã§ãã
> ãããç¡èŠããã°ããã§ã«ããŒã®äž»åŒµã¯ééã£ãŠããŸãã
> åææ¡ä»¶ãç¡èŠããã®ã¯ããããããããŸãããïŒ
蚌æã®äžã§äœ¿ã£ãŠããªãåæã¯ã蚌æããé€å»ããŠãã蚌æã®æ£ããã¯ä¿åããã(çµè«ãä¿åããã)ã
FLTã§ã¯n>=3ã®åæã¯å¿
é ãªã®ã§ãFLTã®èšŒæãæ£ãããã°ãå¿
ããã®èšŒæäžã§äœ¿ãããããšã«ãªãã
ããããã¯ã¡ã¹ãããã®FLTã®åçç蚌æ(No.590)ã¯ãn>=3ã®åæãå
šã䜿ã£ãŠããªãã®ã§ã誀ãã§ããã(蚌æçµãã)
n=2ã®ãšãã
a^2=c^2-b^2=(c-b)(c+b)=(c-b)c(1+b/c)
aãšcã¯äºãã«çŽ ã§ãããããaã§a^2=(c-b)c(1+b/c)ã¯å·ŠèŸºãå²ãåãããå³èŸºã¯å²ãåããªãã
ãã£ãŠãa^2+b^2=c^2ã¯ãªããããªãã
ãããããã¿ãŽã©ã¹æ°ãããæããã«ééãã§ããã
ãã®ããã«ãäžèŠnâ§3ã¯äœ¿ãããŠããããã«èŠããŸããããã¡ãããšäœ¿ãããŠããã®ã§ããã
DD++æ§ã®ææã«ãåçã«ãªã£ãããªïŒ
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒåïŒïŒïŒïŒïŒïŒ
ããŠããææã®ãã£ãééããä¿®æ£ããŠãPDFã«ããŸããã
http://y-daisan.private.coocan.jp/html/pdf/felmer-10-2.pdf
ããã§ãã©ãã§ããããïŒ
> è°è«ãšã¯ãééããšèªããããªããšããèµ·ããã®ã§ã¯ãªãã§ããããïŒ
æ°åŠã®äžçã«éã£ãŠã®è©±ã ãšããŠãè°è«ã«ãªãã®ã¯
ã蚌æäžã§ç¥ããŠãããšããã«ã€ããŠãäžéã§ãã®éšåã®èšŒæãåãå
¥ããããŠããã®ã§ç¥ããŠãããšæã£ãŠãã人 vs äžéã§åãå
¥ããããŠãã蚌æãããã®ãç¥ããªãã®ã§çåãæãããã人ã
ã®æ§å³ãå€ããšæããŸãã
ãã®å Žåã
ã蚌æããåŽããã®éšåã®èšŒæãè¿œå æåºããŠæ±ºçã
ãäžéã§ãã®éšåã®èšŒæãåãå
¥ããããŠãããšããã®ãåéãã ã£ãããšãçºèŠããŠæ±ºçã
ã®ã©ã¡ããã«ãªãã§ããããã
ä»åã ãšç§ã管ç人ããããäžéã§åãå
¥ããããŠãã蚌æãããã®ãç¥ããªãã®ã§çåãæãããã人ãã§ã
ã¯ã¡ã¹ããããææãåããéšåã®è¿œå 蚌æãããªãã®ã§ã
åšå²ã®äººã¯ãäžéã§ãã®éšåã®èšŒæãåãå
¥ããããŠãããšããã®ãåéãã ã£ãããšãçºèŠããŠæ±ºçãããããã ãªãšèŠãŠãããšæããŸãã
ããããå Žåãäž¡è
ãæ°åŠçæ
床ã§ããã°ã蚌æã§ãããšèšã£ãŠããåŽãããããŸããæã蟌ã¿ã§ããããšãªã£ãŠçµãããŸãã
ããããã§ãèªåãæã蟌ã¿ãªããŠããã¯ãããªããã ïŒããšããå§ããå Žåãšãããªããè°è«ãèµ·ããã©ããããããã¯ããæ¢ã«è°è«ãšããèå°ããã¯ã¿åºããŠã®ä¹±éãšåããç¶æ
ã§ãã
PDFã®2ããŒãžç®ã®3è¡ç®ã
ãa^t ã®åæ°ã§ãªããã°ãªããªãã
ã«ããã詳现ãªèšŒæãå¿
èŠã§ãã
çŸç¶ããã¯ã¯ã¡ã¹ãããããæ£ãããã£ãŠã»ãããšæã£ãŠããããšãã§ãããããŸããã
DD++æ§ããã¯ããããããŸãã
ããŠããææã®ãã£ãééããä¿®æ£ããŠãPDFã«ããŸããã
http://y-daisan.private.coocan.jp/html/pdf/felmer-10-2.pdf
ããã§ãã©ãã§ããããïŒ
äœãå€ãã£ãŠããªãããã«èŠããŸããã
ç§ãæ±ããŠããã®ã¯è«ççãªè£ä»ãã§ãã£ãŠã
決ããŠå£°ã倧ããèšãããšã§ãç¹°ãè¿ããŠäœåºŠãèšãããšã§ããªããã§ããã
ããšãäžçªäžã®ãšããããŸãã§ç§ãããã§å®æã§ããããšã«è³åããŠãããããªèšè¿°ã¯ãããŠãã ããã
ç§ã¯ããã¯èšŒæãšããŠæ¬ é¥ã ããã®ã²ã©ãç¶æ
ã ãšæã£ãŠããŸãã
> n=2ã®ãšãã
> a^2=c^2-b^2=(c-b)(c+b)=(c-b)c(1+b/c)
> aãšcã¯äºãã«çŽ ã§ãããããaã§a^2=(c-b)c(1+b/c)ã¯å·ŠèŸºãå²ãåãããå³èŸºã¯å²ãåããªãã
> ãã£ãŠãa^2+b^2=c^2ã¯ãªããããªãã
> ãããããã¿ãŽã©ã¹æ°ãããæããã«ééãã§ããã
ãa^2+b^2=c^2ã¯ãªããããªããã蚌æã§ããããšã§ããããŸã§ã®èšŒæ(æšè«)ãééã£ãŠããããšã¯æããã
æããã«ééãã§ããã®ã¯ãããããã¯ã¡ã¹ãããã®èšŒæ(No.590)ã§ãã
ã©ããééã£ãŠããã®ãã¯ãåé¡ã§ã¯ãªã(åé¡ã«ããªããªã)ã
> ãã®ããã«ãäžèŠnâ§3ã¯äœ¿ãããŠããããã«èŠããŸããããã¡ãããšäœ¿ãããŠããã®ã§ããã
No.590ã®èšŒæã§ã¯äœ¿ãããŠããªãã(ã©ãã«ãæžããŠããªã)
åççãªèšŒæãšããã®ã§ããã°ããã®äžã§äœ¿ã£ãè£å©å®çã¯ãããããã¯ã¡ã¹ãããã«ãã£ãŠãå
šãŠèšŒæã§ããã¯ãã§ãã蚌æã§äœ¿ãããè£å©å®çã®å°ãªããšãïŒã€ã«ã¯n>=3ã®åæãå«ãŸããã®ã§ãæžããŠããªããŠã䜿ãããŠããã¯è©åŒã§ããã
> DD++æ§ã®ææã«ãåçã«ãªã£ãããªïŒ
å
šããªã£ãŠããªãã
åã®ç¶ãã§ãããçš¿ãæ°ããããŸããã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ãã§ã«ããŒã®æçµå®çã®åçç蚌æãèããã
a^n+b^n=c^nã«ãããŠãa,b,cã¯èªç¶æ°ã§ãããnâ§3ã§ã¯ãæãç«ããªããšããåé¡ã§ããã
a,b,cã¯ãäºãã«çŽ ãªèªç¶æ°ãªã®ã§ãa,b,cçå¶æ°ã§ã¯ãªããa,b,cç奿°ã¯å¥æ°ïŒå¥æ°ïŒå¥æ°ããªãã®ã§ã
ïŒïŒa,b,c:å¶æ°ã奿°ã奿°
ïŒïŒa,b,c:奿°ãå¶æ°ã奿°
ïŒïŒa,b,c:奿°ã奿°ãå¶æ°
ã®å Žåã ããèããã°ãããnãå¶æ°ã®æã¯ãç¡éäžéæ³ã§ããã§ã«ããŒã«ãã£ãŠèšŒææžã¿ã§ãããnã奿°ã®åææ°ãªãã°ãæ§æããæå°ã®çŽ æ°ãèããã°ãããâwikipediaåç
§
ãããã£ãŠãnã¯ã奿°ã®çŽ æ°ã§ããã
ããŠãå
¬åŒããã
c^n-b^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)}
ãŸããc^n-b^n=a^n
ãã£ãŠã
a^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)} ---(a)
ããŠãnã¯ã奿°ã®çŽ æ°ã§ããã®ã§ãïœïœã®äžã¯ãné
ã§ããã
ïŒïŒa,b,c:å¶æ°ã奿°ã奿°
(a)åŒã¯ã2ã€ã®åææ°ã®ç©ã§ããããã
a^s=c-b---(1)
a^(n-s)=c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(2)
ã§ãªããã°ãªããªãããšããã(2)ã§ã¯ã巊蟺ã¯å¶æ°ãå³èŸºã¯å¥æ°ã®å¥æ°åã®åã§ãããã奿°ã
ãããã£ãŠãççŸã
ïŒïŒa,b,c:奿°ãå¶æ°ã奿°
(a)åŒã¯ã2ã€ã®åææ°ã®ç©ã§ããããã
a^s=c-b---(3)
a^(n-s)=c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(4)
ã§ãªããã°ãªããªãã(4)ã§ã¯ã巊蟺ã¯å¥æ°ãå³èŸºã¯c^(n-1)ã®å¥æ°ãé€ããŠãã¹ãŠã®é
ã¯å¶æ°ã§ãããã奿°ã
ãããã£ãŠãççŸããªãã
ïŒïŒa,b,c:奿°ã奿°ãå¶æ°
a)åŒã¯ã2ã€ã®åææ°ã®ç©ã§ããããã
a^s=c-b---(5)
a^(n-s)=c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(6)
ã§ãªããã°ãªããªãã(6)ã§ã¯ã巊蟺ã¯å¥æ°ãå³èŸºã¯b^(n-1)ã®å¥æ°ãé€ããŠãã¹ãŠã®é
ã¯å¶æ°ã§ãããã奿°ã
ãããã£ãŠãççŸããªãã
ãã£ãŠãïŒïŒãïŒïŒã ããèããã°ããã
a^s=c-b---(3)ããb=c-a^s bã¯èªç¶æ°ãããc > a^s
a^(n-s)=c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(7)
ãšããã§ã(7)ã¯ãåé
c^(n-1)ãé
æ¯b/c,é
æ°nã®çæ¯çŽæ°ã§ããã
ããã§ã
a^(n-s)=c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)}
ããã2ã€ã®åææ°ã®ç©ã§ãããã
a^t=c^(n-1) ---(8)
a^(n-s-t)={1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)} ----(9)
(8)åŒã¯ã䞡蟺ãa^tã§å²ããšãa,cã¯äºãã«çŽ ã§ãããããc^(n-1)/a^tã¯å²ãåãããæãç«ããªãã
ãããšã(7)ã¯ãæãç«ããªãããã(6)åŒã¯æãç«ããªãã
ããã«ã(a)åŒã¯æãç«ãããc^n-b^n=a^nã¯æãç«ããªãã
ãã£ãŠããã§ã«ããŒã®æçµå®çã¯ãåççã«èšŒæãããã
> nãå¶æ°ã®æã¯ãç¡éäžéæ³ã§ããã§ã«ããŒã«ãã£ãŠèšŒææžã¿ã§ããã
ãã§ã«ããŒã蚌æããïŒãšèããããŠããïŒã®ã¯ n=4 ã®å Žåã®ã¿ã®ã¯ãã§ããã
n=8, 12, 16, âŠâŠã¯ãšããããn=6, 10, 14, âŠâŠã¯ãã§ã«ããŒèªèº«ã®çµæããã¯ç€ºãããªãã¯ãã§ãã
> (a)åŒã¯ã2ã€ã®åææ°ã®ç©ã§ããããã
> a^s=c-b---(1)
ïŒä»¥äžã(6) åŒãŸã§ïŒ
ãããã a ã®çޝ乿°ã§ãªããã°ãªããªããšèããçç±ãæããŠãã ããã
ããšãc-b ãåæã«åææ°ãšãããŠããçç±ãã§ãããã
ãªããããçŽ æ°ã 1 ãããããªããã§ãããïŒ
DD++ããŸããã¯ããããããŸãã
> nãå¶æ°ã®æã¯ãç¡éäžéæ³ã§ããã§ã«ããŒã«ãã£ãŠèšŒææžã¿ã§ããã
ãã§ã«ããŒã蚌æããïŒãšèããããŠããïŒã®ã¯ n=4 ã®å Žåã®ã¿ã®ã¯ãã§ããã
n=8, 12, 16, âŠâŠã¯ãšããããn=6, 10, 14, âŠâŠã¯ãã§ã«ããŒèªèº«ã®çµæããã¯ç€ºãããªãã¯ãã§ãã
äŸãã°ãïœïŒïŒïŒ3x2ã§ãããã
(a^2)^3+(b^2)^3=(c^2)^3
ããã§ãA=a^2,B=b^2,C=c^ïŒãšããã°ã
A^3+B^3=C^3
10=2x5,15=3x5,18=3x3x2,ã»ã»ã»ã»
ãšããããã«ãçŽ å æ°åè§£ã§ããã°ã奿°ã®çŽ æ°ã«ãªããŸãã®ã§ã奿°ã®çŽ æ°ã蚌æã§ããã°ããã®ã§ããããWikipediaïŒãã§ã«ããŒã®æçµå®çïŒãèŠãŠãã ããã
> (a)åŒã¯ã2ã€ã®åææ°ã®ç©ã§ããããã
> a^s=c-b---(1)
ïŒä»¥äžã(6) åŒãŸã§ïŒ
ãããã a ã®çޝ乿°ã§ãªããã°ãªããªããšèããçç±ãæããŠãã ããã
ã€ãŸãã巊蟺ãa^nã§ããããã巊蟺ã¯aã®çޝä¹ã§ãªããšãããŸããã
ïŒããšãc-b ãåæã«åææ°ãšãããŠããçç±ãã§ãããã
ãªããããçŽ æ°ã 1 ãããããªããã§ãããïŒ
çŽ æ°ã§ã1ã§ãæ§ããªãã®ã§ãããäžè¬çã«äžçªå€§ããªå¯èœæ§ãåææ°ã§ããããèªç¶æ°ã®æ¹ãããããªïŒ
ãå¥çŽ æ°ã§ã®èšŒæãã§ããã°ååã§ãããèªäœã¯æ£ããã§ããã
ã§ããæåŸã®äžæã«çµæçã«æ£ããããšãæžããŠãããããšãã£ãŠãéäžã«æžãããã®ãå
šéšæ£ããã£ãããšã«ãªããããããããŸããã
ãã§ã«ããŒã®æçµå®çã®èšŒæããæåŸã®çµæã¯å¥ã®æ¹æ³ã§èšŒæãããŠãããã ãããäœãã©ãæžããã£ãŠæ£ãã蚌æã«ãªããã ããšãæã£ãŠãŸããããïŒ
> 巊蟺ãa^nã§ããããã巊蟺ã¯aã®çޝä¹ã§ãªããšãããŸããã
æå³ãããããŸããã
> çŽ æ°ã§ã1ã§ãæ§ããªãã®ã§ãããäžè¬çã«äžçªå€§ããªå¯èœæ§ãåææ°ã§ããããèªç¶æ°ã®æ¹ãããããªïŒ
ã»ããåæãªæ±ºãã€ããè¡ãªã£ãŠããã
ããã 1 ã€ã§ããã£ãç¬éãããã¯ãååšããªã蚌æãã§ã¯ãªãããã ã®ãèªåã«ã¯èŠã€ããããªãã£ããšããç¡äŸ¡å€ãªå€±æå ±åãã«ãªããŸãã
蚌æãããšããã®ãªããŸããã®èªèãæã£ãŠãã ããã
DD++ããŸãããã«ã¡ã¯ã
> 巊蟺ãa^nã§ããããã巊蟺ã¯aã®çޝä¹ã§ãªããšãããŸããã
æå³ãããããŸããã
(a)ã®åŒã
a^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)} ---(a)
(a)ã®åŒã¯ãa^nã¯2ã€ã®èªç¶æ°ã®ç©ã§æ§æãããŠããŸããããã¯ã
c-b---(1)
c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(2)
ã®(1),(2)åŒã§ãããã®2ã€ã®åŒã®ç©ãa^nãªã®ã§ãããã
a^s=c-b---(1)
a^(n-s)=c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(2)
ã§ãªããã°ãªããªããšããããšã§ãã
> çŽ æ°ã§ã1ã§ãæ§ããªãã®ã§ãããäžè¬çã«äžçªå€§ããªå¯èœæ§ãåææ°ã§ããããèªç¶æ°ã®æ¹ãããããªïŒ
a^s=c-bã«ãããŠã巊蟺ã¯aã®çޝä¹ã®åŒã§ããããc-bã¯ãçŽ æ°ã«ã¯ãªããªãã§ãããã
a^sãs=1ãªããa=c-bãªã®ã§ãaãçŽ æ°ã§ãããããŸãããããã
(c-b)^n+b^n=c^n
c^n-nC1 c^(n-1)b+nC2 c^(n-2) b^2-nC3 c^(n-3)b^3+ã»ã»ã»+nC1 c b^(n-1)-b^n+b^n=c^n
-b^n+b^n=0ã§ãæ¶ãã䞡蟺ããc^nãåŒããšã
-nC1 c^(n-1)b+nC2 c^(n-2) b^2-nC3 c^(n-3)b^3+ã»ã»ã»+nC1 c b^(n-1)=0
ããã¯ãcbã§ããããŸããã
cb{-nC1 c^(n-2)+nC2 c^(n-3) b-nC3 c^(n-4)b^2+ã»ã»ã»+nC1 b^(n-2)}=0
cbã¯0ã§ãªãã®ã§ãå²ããšã
-nC1 c^(n-2)+nC2 c^(n-3) b-nC3 c^(n-4)b^2+ã»ã»ã»+nC1 b^(n-2)=0
nC2 c^(n-3) b+nC4 c^(n-5) b^3+ã»ã»+nC1 b^(n-2)=nC1 c^(n-2)+nC3 c^(n-4)b^2+ã»ã»ã»+nC2 c b^(n-3)
ãšãªãã(a)åŒã«ã¯ãªããã(1),(2)åŒã¯ååšããªããªããŸãã
ãããã£ãŠãa=c-bã§ã¯ããŸããã®ã§ãã
c-b=1ãªãã
a^n+b^n=(b+1)^n
a^n+b^n=b^n+nC1 b^(n-1) +nC2 b^(n-2) +nC3 b^(n-3) +ã»ã»ã»+nC(n-1) b +1
䞡蟺ããb^nãåŒããŠã
a^n=nC1 b^(n-1) +nC2 b^(n-2) +nC3 b^(n-3) +ã»ã»ã»+nC(n-1) b +1
ãšãªãã(a)åŒã«ã¯ãªããã(1),(2)åŒã¯ååšããªããªããŸãã
ãããã£ãŠãc-b=1ã§ã¯ããŸããã®ã§ãã
DD++ããŸãããã°ãã¯ã
(a)ã®åŒã
a^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)} ---(a)
(a)ã®åŒã¯ãa^nã¯2ã€ã®èªç¶æ°ã®ç©ã§æ§æãããŠããŸããããã¯ã
α=c-b---(1)
β=c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(2)
ãšããŸãã
a^n=αβ
ããã§ãa^n=v^n u^n ãšãããšã
α=v^p
β=v^q u^n
ãããã£ãŠã
v^p=c-b
v^p=v^r(c'-b')
c'-b'=v^(p-r)
c=v^rc'
b=v^rb'
ãšããããa,b,cã¯äºãçŽ ã§ãããããããã¯ããããªãã
> ãã®2ã€ã®åŒã®ç©ãa^nãªã®ã§ãããã
> a^s=c-b---(1)
> a^(n-s)=c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(2)
> ã§ãªããã°ãªããªããšããããšã§ãã
ã ãããããããªãããã§ãªããã°ãããªãã®ããšåããŠããŸãã
ãèªåãæ£ãããšæã£ãŠããããæ£ãããã ãã§ã¯èšŒæã«ãªã£ãŠããŸããã
ãŸããããè§£æ¶ãããªãéããã®å
ã®è©±ã¯èªã䟡å€ããªãã®ã§äžæŠçœ®ããšããŸãã
> a^s=c-b---(1)
ïŒä»¥äžã(6) åŒãŸã§ïŒ
ãããã a ã®çޝ乿°ã§ãªããã°ãªããªããšèããçç±ãæããŠãã ããã
ã€ãŸãã巊蟺ãa^nã§ããããã巊蟺ã¯aã®çޝä¹ã§ãªããšãããŸããã
ïŒåŒçšçµããïŒ
ãããåºæ¥ãã®ã¯ïœãçŽ æ°ã®å Žåã ãã§ããäŸãã°ãïœãåææ°ã§ïœïŒïœ1ïœ2ãšãããšã
a^n=(a1a2)^n=a1^na2^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)}
c-b=a1ãããããªãããc-b=a1a2ãããããŸãããïœïŒïŒãããã ã£ããå
šãŠã®çµã¿åããã調ã¹ãããŸããã
ïŒc-b=1ãªãã
a^n+b^n=(b+1)^n
a^n+b^n=b^n+nC1 b^(n-1) +nC2 b^(n-2) +nC3 b^(n-3) +ã»ã»ã»+nC(n-1) b +1
䞡蟺ããb^nãåŒããŠã
a^n=nC1 b^(n-1) +nC2 b^(n-2) +nC3 b^(n-3) +ã»ã»ã»+nC(n-1) b +1
ãšãªãã(a)åŒã«ã¯ãªããã(1),(2)åŒã¯ååšããªããªããŸãã
ãããã£ãŠãc-b=1ã§ã¯ããŸããã®ã§ãã
ïŒåŒçšçµããïŒ
c-b=1ã®å Žåã¯èšŒæããªããŠã¯ãããŸããã
a^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)} ---(a)
(a)åŒãša^n=nC1 b^(n-1) +nC2 b^(n-2) +nC3 b^(n-3) +ã»ã»ã»+nC(n-1) b +1ã¯åãåŒã§ãã
(a)åŒã«c-b=1ã代å
¥ããŠããã«c=b+1ã代å
¥ãããšã
a^n=(b+1)^(n-1)+(b+1)^(n-2)b+ã»ã»ã»+(b+1)b^(n-2)+b^(n-1)ãšãªããŸããããããäºé
å®çã§å±éããŠ
b^(n-1)ã®ä¿æ°ãèãããš1+1+ã»ã»ã»+1(nå)=nããŸããnC1=nã§ãããäžèŽããŸãã
ãŸãã宿°é
ãïŒã§äžèŽããŸããããã€ãŸããåãåŒãšããäºã§ããã ãããc-b=1ã®å Žåã蚌æããŠäžããã
DD++ããŸãéããããïŒæ§ãããã°ãã¯ã
ããäžåºŠã泚æããŠãããããã®ã¯ãåææ¡ä»¶ã§ãã
â a,b,cã¯ãäºãã«çŽ ãªèªç¶æ°
a,bã®æå€§å
¬çŽæ°gcd(a,b)=1
a,cã®æå€§å
¬çŽæ°gcd(a,c)=1
b,cã®æå€§å
¬çŽæ°gcd(b,c)=1
ãšããããšãå®ãããŠãããïŒ
â¡a,b,c:奿°ãå¶æ°ã奿°
â¢a,b,c:奿°ã奿°ãå¶æ°
â£a^n+b^n=c^n
ã§ãã
ããšãã°ãNo.585ã®
*************
(a)ã®åŒã¯ãa^nã¯2ã€ã®èªç¶æ°ã®ç©ã§æ§æãããŠããŸããããã¯ã
α=c-b---(1)
β=c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)----(2)
ãšããŸãããããã£ãŠãa^n=αβ
a,b,cã¯ãäºãã«çŽ ãªèªç¶æ°ã®ç¢ºèªã¯ã(1)åŒãéœåãè¯ãã®ã§ã
ããã§ãa^n=v^n u^nïŒã€ãŸããaãçŽ å æ°åè§£ãããa=vuãšãããš) ãšãããšã
ããšãã°ã
α=v^p
β=v^q u^nããïŒãã ããp+q=nïŒ
ãããã£ãŠã
v^p=c-bããåŒãç®ãæç«ããã®ã§å
±éå åv^rããããšããŠã
ãŸããv^p=v^r(c'-b')ãããã«c'-b'=v^(p-r)
ãããšãc=v^rc'ãã€b=v^rb'
ãšããããa,b,cã¯äºãçŽ ã§ãããããããã¯ããããªãã
*********
ã®ããã«ã確èªããªããã°ããªããªãã¯ãã§ãã
éããããïŒããŸã
1=c-bã®å Žåã®æ€èšã¯ãåèã«ãªããŸãããããããšãããããŸãã
> å
±éå åv^rããããšããŠã
ãŸããv^p=v^r(c'-b')
ãªãã®å
±éå åã§ããïŒ
DD++æ§ããã¯ããããããŸãã
äœèšãªããšãåé€ããã°ããããšã«æ°ã¥ããŸããã
ïŒïŒïŒïŒïŒïŒïŒïŒ
ãã§ã«ããŒã®æçµå®çã®åçç蚌æãèããã
a^n+b^n=c^nã«ãããŠãa,b,cã¯èªç¶æ°ã§ãããnâ§3ã§ã¯ãæãç«ããªããšããåé¡ã§ããã
a,b,cã¯ãäºãã«çŽ ãªèªç¶æ°ã§ãããšããã
ããŠãå
¬åŒããã
c^n-b^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)}
ãŸããc^n-b^n=a^n
ãã£ãŠã
a^n=(c-b){c^(n-1)+c^(n-2)b+c^(n-3)b^2+c^(n-4)b^3+ã»ã»ã»+cb^(n-2)+b^(n-1)} ---(a)
ããã§ã{}ã®äžã¯ãåé
c^(n-1)ãé
æ¯b/c,é
æ°nã®çæ¯çŽæ°ã§ããã
a^n=(c-b)c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)} ---(b)
(b)åŒã®äž¡èŸºãa^tã§å²ããšãa,cã¯äºãã«çŽ ã§ãããããc^(n-1)/a^tã¯å²ãåããªãã
ãã ããtã¯t<nã®èªç¶æ°ã§ããã
ãããšã(b)ã¯ã巊蟺ã¯å²ãåããããå³èŸºã¯å°ãªããšãc^(n-1)/a^tãå²ãåããªãã®ã§ãæãç«ããªããããã«ã(a)åŒã¯æãç«ãããc^n-b^n=a^nã¯æãç«ããªãã
ãã£ãŠããã§ã«ããŒã®æçµå®çã¯ãåççã«èšŒæãããã
ïŒã³ã¡ã³ãïŒãã(b)ã¯ã巊蟺ã¯å²ãåããããå³èŸºã¯å°ãªããšã c^(n-1)/a^t ãå²ãåããªãã®
ããããããã§ãæãç«ããªããããšãããŸãããããã¯èª€éåãã§ã¯ãããŸãããïŒ
ãããåŠå®ããã®ã§ããã°ã
(c-b)c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)}
ã®c^(n-1)ãé€ããéšåããa^tã§å²ãããã€ãŸããa^tã®åæ°ã§ããããšã蚌æããªããã°ãªããŸããã
éã«ãc^(n-1)ãé€ããéšåããa^tã§å²ããªããšããããšãããããã¯ã¡ã¹ããã
ã®æ¹ã§åæã«ä»®å®ããŠããŸãããïŒ
è«çãç Žç¶»ããŠããã®ã§ãããã§ã«ããŒã®æçµå®çã¯ãåççã«èšŒæããããããšã¯
ãªããªãã®ã§ã¯ïŒ
ïŒïŒã³ã¡ã³ãïŒãã(b)ã¯ã巊蟺ã¯å²ãåããããå³èŸºã¯å°ãªããšã c^(n-1)/a^t ãå²ãåããªãã®
ããããããã§ãæãç«ããªããããšãããŸãããããã¯èª€éåãã§ã¯ãããŸãããïŒ
ãããåŠå®ããã®ã§ããã°ã
(c-b)c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)}
ã®c^(n-1)ãé€ããéšåããa^tã§å²ãããã€ãŸããa^tã®åæ°ã§ããããšã蚌æããªããã°ãªããŸããã
ïŒåŒçšçµããïŒ
ïŒa^n=(c-b)c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)} ---(b)
(b)åŒã®äž¡èŸºãa^tã§å²ããšãa,cã¯äºãã«çŽ ã§ãããããc^(n-1)/a^tã¯å²ãåããªãã
ãã ããtã¯t<nã®èªç¶æ°ã§ããã
ãããšã(b)ã¯ã巊蟺ã¯å²ãåããããå³èŸºã¯å°ãªããšãc^(n-1)/a^tãå²ãåããªãã®ã§ãæãç«ããªããããã«ã(a)åŒã¯æãç«ãããc^n-b^n=a^nã¯æãç«ããªãã
ïŒåŒçšçµããïŒ
ãc^(n-1)/a^tã¯å²ãåããªããã®ã§ãc-bãš1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)ãa^tã§å²ãåããªãäºã瀺ããã°èçæ³ã§èšŒæåºæ¥ãã®ã§ãã
ããããã1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)ãããªãèªç¶æ°ã ãšèšããã®ã§ãïŒ
äŸãã°ãïœ^2ïŒïŒã§1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)ïŒïŒ/ïŒã®å¯èœæ§ã ã£ãŠãããããªãã§ãããïŒçްãã調æŽã¯ããŠããŸãããïŒ
äŸãã°ãïŒ^2ïŒïŒ^2ïŒïŒ^2ãããïŒ^2ïŒïŒ^2ïŒïŒ^2ïŒ(ïŒïŒïŒ)(ïŒïŒïŒ)ïŒ(ïŒïŒïŒ)ïŒ(ïŒïŒïŒ/ïŒ)ã§ïŒïŒïŒ/ïŒã¯èªç¶æ°ãããªãã§ãããã
ãc^(n-1)/a^tã¯å²ãåããªããã®ã§ãc-bãš1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)ãa^tã§å²ãåããªãäºã瀺ããã°
ãšã®ããšã§ãããããã¯èšŒæãããã®ã§ããïŒ
HP管çè
æ§ãã¢ã«ã³èŠå¯æ§ãããã«ã¡ã¯ã
ïŒãããåŠå®ããã®ã§ããã°ã
(c-b)c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)}
ã®c^(n-1)ãé€ããéšåããa^tã§å²ãããã€ãŸããa^tã®åæ°ã§ããããšã蚌æããªããã°ãªããŸããã
ã§ããããã¯ã衚çŸããŸããã§ãã
c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)}
ãšããçæ¯çŽæ°ããa,cãäºãã«çŽ ãªã®ã§ãå²ããªããšããã¹ãã§ããããc^(n-1)ã ããåãåºãããããããããªããŸããããã¿ãŸããã
éã«ãc^(n-1)ãé€ããéšåããa^tã§å²ããªããšããããšãããããã¯ã¡ã¹ããã
ã®æ¹ã§åæã«ä»®å®ããŠããŸãããïŒ
ãããªããšã¯ãæã£ãŠããŸãããéã§ããa^tã®åæ°ã§ãªããã°ãããŸããã
ãc^(n-1)/a^tã¯å²ãåããªããã®ã§ãc-bãš1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)ãa^tã§å²ãåããªãäºã瀺ããã°
ãšã¯ãèšã£ãŠãŸãããéã§ããa^tã®åæ°ã§ãªããšãããªãã®ã§ãã
ã©ãããŠãããªã£ãã®ããªïŒ
ããããã1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)ãããªãèªç¶æ°ã ãšèšããã®ã§ãïŒ
ããã¯ãçæ¯çŽæ°c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)}ã§ãããèªç¶æ°ã§ãã
(c-b)c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)}ããa,cãäºãã«çŽ ã§ããããa^tã§å²ããªããšèšã£ãŠããã ãã§ãã
ãããåŠå®ãããªãã
(c-b)c^(n-1){1+b/c+(b/c)^2+(b/c)^3+ã»ã»ã»+(b/c)^(n-2)+(b/c)^(n-1)}ããa^tã§å²ãããšããã°ããã®ã§ãã
ããã ãã§ãã
å±±äžééããã¯ãä»å¹ŽïŒïŒæ³ã®èªçæ¥ãè¿ããŸããããŠãŒãã³ãæ¥å¹ŽïŒïŒæ³ã§ãçããŠããã°ãå®éšãããæ¥å¹ŽïŒïŒæ³ã§ãããç§ãæ¥å¹ŽïŒïŒæ³ã§ãã
ããããã€ããããšã¯ãã§ããŸãããHP管çè
æ§ã¯ããè«çãç Žç¶»ããŠããããšèšããŸããããããçè§£ã§ããŸããã
ã§ãããã§ã«ããŒã®æçµå®çã¯ãn=3ãšãïœãçŽ æ°ãšããå¶éãä»ãããšãè«ççã«åãå
¥ããããŸãã
ããããnã«ãªããšããšãŠã€ããªãå£ãåã«ãç«ã¡ã¯ã ããã®ã§ãã
ããããªè©±ã§ãã
ããããªè©±ã§ã¯ãªãã®ã§ã¯ïŒäŸãã°ã宿šã»ã³ã³ãã¹ãçšããŠãè§ã®ïŒçååé¡
ãèããå ŽåãïŒïŒÂ°ã®è§ãïŒçåã§ãããããäžè¬ã®å Žåãã§ããããšèšã£ãŠ
ãããããªãã®ã§ã¯ãªãã§ããããïŒ
FLTã®èšŒæã«ã€ããŠã§ãããè«ççã«ã¯åççã«èšŒæã§ããå¯èœæ§ã¯ãããŸãã
ãããããããŸã§ãããããªæ°åŠè
ãææŠããŠãå°ãªããšãåççãªèšŒæã¯ã§ããªãã£ãããã§ãã
ããFLTã®ç°¡åãª(äŸãã°100ããŒãžä»¥äžã®)åçç蚌æãååšããã®ã§ããã°ãåã ããæ°åŠè
ã®æã«ãã£ãŠæ¢ã«èšŒæã§ããŠããããšã§ãããã
ãšããããšã¯ãFLTã®åçç蚌æã¯(äžçãããŠãæžããããªãã»ã©ã«)ãšãã§ããªãé·ããã®ã§ããå¯èœæ§ãé«ãã§ããåœç¶ããã®èšŒæãæ£ãããã©ããæ€èšŒããã®ãå°é£ãããããŸããã
åè¶ãªãããããããã¯ã¡ã¹ãããã«ããããŸããŠã¯ãèªèº«ãæžãã蚌æãæ£ããã®ãã©ããèªåã§å€æã§ããããã«ãªããŸã§ãFLTã®èšŒæ(ãšç§°ãããã®)ã®å
¬è¡šãæ§ããŠããã ããèªèº«ãæžãã蚌æã®æ£ããã»èª€ããæ£ç¢ºã«å€æã§ããããã«ãªã£ãããFLTã®èšŒæãå
¬è¡šããŠããã ããããšæããŸãã
ãããããããããã¯ã¡ã¹ãããã®FLTã®åçç蚌æ(No.590)ã§ã¯ãn>=3ãšããæ¡ä»¶ãïŒåã䜿ã£ãŠããªãã
ãã䜿ã£ãŠãããšããã®ã§ããã°ãã©ãã§äœ¿ã£ãŠããã®ã§ããïŒ
ä»®ã«ããã®èšŒæãæ£ãããšä»®å®ãããšãn>=2ã§ãFLTãæç«ããããšã«ãªããççŸããã
ããã§ããæ£ããFLTã®èšŒæãšèšããã®ã§ããããïŒ
(泚æ)
åœé¡FLT(n)ããx^n+y^n=z^nãæºããèªç¶æ°x,y,zã¯ååšããªãããšãããšã
FLT(2)ã¯æç«ããªã(ãªããªãã3^2+4^2=5^2ãªã©ã®åäŸã倿°ååšããã®ã§)ã