ååŸ1ã®åã«å
æ¥ããåè§åœ¢ABCDããã
DA=2*AB,â BAD=120°ã§ãã
察è§ç·BD,ACã®äº€ç¹ãEãšãããšã
æ¬¡ã®æ¡ä»¶ã®ãšããããããã®åè§åœ¢ABCDã®é¢ç©Sãæ±ããã
(1)Eã¯BDã3:4ã«å
åããã
(2)Eã¯BDã2:3ã«å
åããã
å€åããŸãè§£ãæ¹ãããã®ã ãããšæããŸããã
å
šãæãã€ããªãã£ãã®ã§ãŽãªãŽãªèšç®ããŸããã
BEïŒED=aïŒbã®ãšãt=a/(a+b)ãšãããš
AEïŒEC=7t^2-4t+1ïŒ7t(1-t)
ãããã
(åè§åœ¢ABCD)={(3t+1)/(7t^2-4t+1)}â³ABD
ããè§ãΞã察蟺ãaãæ®ã2èŸºã®æ¯ãbïŒcã§ããäžè§åœ¢ã®é¢ç©ã¯
S=(a^2sinΞ)/{2(b/c+c/b-2cosΞ)}
ã§ããããšããâ³ABD=3â3/14
ãã£ãŠåè§åœ¢ABCDã®é¢ç©ã¯
(3â3)(3t+1)/{14(7t^2-4t+1)}
ãªã®ã§
(1)t=3/7ã代å
¥ããŠ6â3/7
(2)t=2/5ã代å
¥ããŠ165â3/182
è§£çããããšãããããŸãã
2ã€ãšãåãå€ã«ãªã£ãŠããŸããã
èªåã®ããæ¹ã«èŒã¹ãé¥ãã«ç°¡ç¥ãªæ¹æ³ã§ããããããã¯æ±ããããŠããŸãã
ãç°¡ç¥ãªæ¹æ³ãã«èŠããã®ã¯ããããããéäžèšç®ã®å€§åãçç¥ãããããããšæããŸãã
å
¬åŒã£ãœããã®ãåºãã ãã§å€§å€æéãããã£ãŠããŸãã
â³ABCã«ãããŠABïŒACãbïŒcã§ãããšããâ A=ΞãBC=aãšããã
AB=bkãAC=ckãšãããšäœåŒŠå®çã«ãã
a^2=b^2k^2+c^2k^2-2bck^2cosΞ
ãããkã«ã€ããŠè§£ããš
k=a/â(b^2+c^2-2bccosΞ)
æ¬åã®å Žåã¯a=â3ãb=1ãc=2ãΞ=120°ãªã®ã§ä»£å
¥ããŠkãæ±ãããš
k=â3/â(1+4+2)=â(3/7)=â21/7
âŽAB=bk=â21/7ãAC=ck=2â21/7
ãŸã
å蟺ã®2ä¹ã¯
a^2
(bk)^2=a^2b^2/(b^2+c^2-2bccosΞ)
(ck)^2=a^2c^2/(b^2+c^2-2bccosΞ)
ç°¡ç¥åã®ããt^2=b^2+c^2-2bccosΞãšãããš
(bk)^2=a^2b^2/t^2
(ck)^2=a^2c^2/t^2
ããã
# å蟺ã®é·ãã®2ä¹ãp,q,rãšãããš
# äžè§åœ¢ã®é¢ç©ã¯S=(1/4)â{2(pq+qr+rp)-(p^2+q^2+r^2)}
ãšããå€åœ¢ããã³ã®å
¬åŒã«ä»£å
¥ããŠæŽçãããš
S=(1/4)â{2(pq+qr+rp)-(p^2+q^2+r^2)}
(éäžèšç®çç¥)
=a^2/(4t^2)*â{(2b^2+2c^2-t^2)t^2-(b^2-c^2)^2}
=a^2/(4(b^2+c^2-2bccosΞ))*â{(2b^2+2c^2-(b^2+c^2-2bccosΞ))(b^2+c^2-2bccosΞ)-(b^2-c^2)^2}
(éäžèšç®çç¥)
=(a^2bcsinΞ)/{2(b^2+c^2-2bccosΞ)}
=(a^2sinΞ)/{2(b/c+c/b-2cosΞ)}
ãããŸã§ã§
AB=â21/7ãAC=2â21/7ãS=(a^2sinΞ)/{2(b/c+c/b-2cosΞ)}
ãåŸãããŸããã
次ã«ããã座æšã«åœãŠã¯ããŸãã
åãx^2+y^2=1ãšãã
B(-â3/2,1/2)
D(â3/2,1/2)
Bãäžå¿ãšããŠååŸãâ(3/7)ã§ããå
(x+â3/2)^2+(y-1/2)^2=3/7
ãšx^2+y^2=1ã®äº€ç¹ãæ±ãããš
A(-3â3/14,13/14)
Eã¯t=0ã®ãšãBã«äžèŽãt=1ã®ãšãDã«äžèŽããããã«
E=B+t(D-B)=((t-1/2)â3,1/2)
ãšããŸãã
AãéãçŽç·ã®åŒã
y=m(x+3â3/14)+13/14
ãšãããšy軞ã«å¹³è¡ãªçŽç·ã衚ããåé¡ãããã®ã§
x=m(y-13/14)-3â3/14
ãšããŸãã
ããã«E((t-1/2)â3,1/2)ã代å
¥ããŠmãæ±ãããš
m=-(7t-2)/â3
ãã£ãŠçŽç·ã®åŒã¯
x=-{(7t-2)/â3}(y-13/14)-3â3/14
=-(â3/42){9+(7t-2)(14y-13)}
ãããx^2+y^2=1ã«ä»£å
¥ããŠxãæ¶å»ããyã®åŒãå°åºãããš
(1/588){9+(7t-2)(14y-13)}^2+y^2=1
(éäžèšç®çç¥)
28(7t^2-4t+1)y^2-4(7t-2)(13t-5)y+13(13t^2-10t+1)=0
âŽy=13/14, (13t^2-10t+1)/{2(7t^2-4t+1)}
AEã®y座æšã®å·®ã¯13/14-1/2=3/7
ECã®y座æšã®å·®ã¯1/2-(13t^2-10t+1)/{2(7t^2-4t+1)}=3t(1-t)/(7t^2-4t+1)
ãã£ãŠ
AEïŒEC=3/7ïŒ3t(1-t)/(7t^2-4t+1)
=(7t^2-4t+1)ïŒ7t(1-t)
ãªã®ã§
AEïŒAC=(7t^2-4t+1)ïŒ(7t^2-4t+1)+7t(1-t)
=7t^2-4t+1ïŒ3t+1
ãšãªã
(åè§åœ¢ABCD)={(3t+1)/(7t^2-4t+1)}â³ABC
ãèšããŸããã
ããããããªã«ãããããã§ãããïŒ
åã«å
æ¥ããåè§åœ¢ABCDãšãã®å¯Ÿè§ç·ã®äº€ç¹Eã«ã€ããŠã
AB*AD/AE = BC*BA/BE = CD*CB/CE = DA*DC/DE
ãæãç«ã¡ãŸãã
ïŒèšŒæã¯äžè§åœ¢ã®çžäŒŒã§äžç¬ïŒ
BC*BA/BE = DA*DC/DE
ã®éšåã䜿ããŸãã
äºåã«æ£åŒŠå®çã§ BD = â3 ã¯åºããŠãããŸãã
(1)
AB = x ãšãããšãAD = 2x
CB = 3y ãšãããšãCD = 2y
â³ABDãšâ³CBDã«æ³šç®ããŠã
äœåŒŠå®çãã 7x^2 = 7y^2 = 3
ãã£ãŠæ±ããé¢ç©ã¯ S = (x^2 + 3y^2) * â3/2 = 6â3/7
(2)
AB = x ãšãããšãAD = 2x
CB = 4y ãšãããšãCD = 3y
â³ABDãšâ³CBDã«æ³šç®ããŠã
äœåŒŠå®çãã 7x^2 = 13y^2 = 3
ãã£ãŠæ±ããé¢ç©ã¯ S = (x^2 + 6y^2) * â3/2 = 165â3/182
ãã¯ãç°¡åãªè§£ãæ¹ããã£ãã®ã§ããã
å
šãæãã€ããŸããã§ããã
> åã«å
æ¥ããåè§åœ¢ABCDãšãã®å¯Ÿè§ç·ã®äº€ç¹Eã«ã€ããŠã
> AB*AD/AE = BC*BA/BE = CD*CB/CE = DA*DC/DE
> ãæãç«ã¡ãŸãã
> ïŒèšŒæã¯äžè§åœ¢ã®çžäŒŒã§äžç¬ïŒ
ãé¢çœãããã®å€ãäžäœã©ããªå€ãåãã®ãã
(1)Eã¯BDã3:4ã«å
åããã
(2)Eã¯BDã2:3ã«å
åããã
ã®å Žåã«ã€ããŠèª¿ã¹ããš
(1)ãªãâ3
(2)ãªã10*â(3/91)
ã察å¿ããã
ããã§ãã®åã«å
æ¥ããåè§åœ¢ã§ã®èšå®ãäžè¬åããŠ
ååŸRã®åã«å
æ¥ããåè§åœ¢ABCDã§
AD=k*AB,ãâ BAD=Ξ
察è§ç·AC,BDã®äº€ç¹ãEãšãããšã
BE:ED=1:t
ã§ããæã®
AB*AD/AE = BC*BA/BE = CD*CB/CE = DA*DC/DE
ã¯ã©ããªå€ãåãã®ããæ±ããããšãããŠã¿ãã
ãã®çµæ
2*k*(t+1)*R*sin(Ξ)/â(k^2+t^2+2*k*t*cos(Ξ))*(k^2-2*k*cos(Ξ)+1))
ãäžèšã®åæ¯ãäžå®ã®å€ãšãªããã®ãšãªãããã ã
åã«å
æ¥ããåè§åœ¢ã«ãã¬ããŒã®å®çããDD++æ°ãææãã4ã€ã®åçµã§ã®æ¯ã®çžç
ãªã©ããæå³çŸããé¢ä¿ã«ãã©ã³ã¹ãä¿ãããŠããå§¿ãèŠããŸããã