13åã®é貚13人ã®æè¡è
ã®å Žåã¯GF(3)äžã®å°åœ±å¹³é¢ãå¿çšããŠããŸãããã15åã®é貚15人ã®æè¡è
ã®å Žåã¯ãGF(2)äžã®3次å
å°åœ±ç©ºéãå¿çšããŠã15人ã®æè¡è
ã«1ïœ9,AïœFã®ååãã€ããŠã15åã®é貚ã«ããããïœãããã®ååãã€ããŠãããããã®é貚ã以äžã®ããã«7人ã®æè¡è
ã枬å®ããããšã«ããŸãã
ãïŒ1,2,3,4,9,A,B
ãïŒ1,2,5,6,9,C,D
ãïŒ1,3,5,7,A,C,E
ãïŒ5,6,7,8,9,A,B
ãïŒ3,4,7,8,9,C,D
ãïŒ2,4,6,8,A,C,E
ãïŒ1,3,6,8,A,D,F
ãïŒ1,2,7,8,9,E,F
ãïŒ1,4,5,8,B,C,F
ãïŒ9,A,B,C,D,E,F
ãïŒ1,4,6,7,B,D,E
ãïŒ3,4,5,6,9,E,F
ãïŒ2,4,5,7,A,D,F
ãïŒ2,3,6,7,B,C,F
ãïŒ2,3,5,8,B,D,E
1ïœ9,AïœFã®æè¡è
ã«GF(2)äžã®3次å
å°åœ±ç©ºéå
ã®ç¹ã以äžã®ããã«å¯Ÿå¿ããããšããããïœãããã®é貚ã¯GF(2)äžã®3次å
å°åœ±ç©ºéå
ã®å¹³é¢ã«å¯Ÿå¿ããŸãã
1:(0,0,0,1) 2:(1,0,0,1) 3:(0,1,0,1) 4:(1,1,0,1)
5:(0,0,1,1) 6:(1,0,1,1) 7:(0,1,1,1) 8:(1,1,1,1)
9:(1,0,0,0) A:(0,1,0,0) B:(1,1,0,0)
C:(0,0,1,0) D:(1,0,1,0) E:(0,1,1,0) F:(1,1,1,0)
å
šå¡ãçã®å ±åãããå Žåãåœé貚ã®åœç©ãã€ã³ãã¯7ã§æ¬ç©ã®é貚ã®åœç©ãã€ã³ãã¯3ãšãªããŸãã
éœæ§ãå ±åããã¯ãã®æè¡è
ãé°æ§ãšå ±åããå Žåã該åœãã7æã®åœç©ãã€ã³ãã1äžãããŸãã
é°æ§ãå ±åããã¯ãã®æè¡è
ãéœæ§ãšå ±åããå Žåã該åœãã7æã®åœç©ãã€ã³ãã1äžãããŸãã
ãããã£ãŠãæè¡è
ã1äººå ±åãåœãããšã«ãåœç©ãã€ã³ãã®å·®ã1ã ãæžå°ããŸãã
ããããæ¬ç©ãšåœç©ã®åœç©ãã€ã³ãã®å·®ã¯æ¬æ¥4ãã€ã³ãããã®ã§ãåœãã®å ±åã3人ãŸã§ãªããã®å€§å°é¢ä¿ãé転ããããšã¯ãããŸããã
察å¿ãã15ããã笊å·ã®æå°ããã³ã°è·é¢ã¯8ã«ãªãã®ã§ãåœãã®å ±åã3人ãŸã§ãªãåœé貚ãç¹å®ããããšãã§ããŸãããåœãã®å ±åã4人ã«ãªããšå ±åã«åœããããããšã¯ããã£ãŠããåœé貚ãç¹å®ããããšã¯ã§ããªããªããŸãã
No.2261kuiperbelt10æ15æ¥ 21:33
ãªãã»ã©ãããã¯å匷ã«ãªããŸããã
ãµã€ã¯ãªãã¯ã«ç¿»èš³ã§ããŸããã®ã§ã瀌ã«ã
[
"0,1,1,1,0,0,0,0,1,0,1,0,0,1,1",
"1,0,1,1,1,0,0,0,0,1,0,1,0,0,1",
"1,1,0,1,1,1,0,0,0,0,1,0,1,0,0",
"0,1,1,0,1,1,1,0,0,0,0,1,0,1,0",
"0,0,1,1,0,1,1,1,0,0,0,0,1,0,1",
"1,0,0,1,1,0,1,1,1,0,0,0,0,1,0",
"0,1,0,0,1,1,0,1,1,1,0,0,0,0,1",
"1,0,1,0,0,1,1,0,1,1,1,0,0,0,0",
"0,1,0,1,0,0,1,1,0,1,1,1,0,0,0",
"0,0,1,0,1,0,0,1,1,0,1,1,1,0,0",
"0,0,0,1,0,1,0,0,1,1,0,1,1,1,0",
"0,0,0,0,1,0,1,0,0,1,1,0,1,1,1",
"1,0,0,0,0,1,0,1,0,0,1,1,0,1,1",
"1,1,0,0,0,0,1,0,1,0,0,1,1,0,1",
"1,1,1,0,0,0,0,1,0,1,0,0,1,1,0",
];
No.2265Dengan kesaktian Indukmu10æ15æ¥ 22:58
Dengan kesaktian Indukmu ããã®æçš¿è¡åãã¿ãŠãäŸãã°æ¬¡ã®ãããª31Ã31ã®ãã®ãæ§æã§ããã°
31åã®é貚ãš31人ã®æ€æ»å®ã§15åãã€ã®ç¡¬è²šã調æ»ããŠãããåé¡ã®ç¡¬è²šãçºèŠã§ãããšããããšãªãã§ããããïŒ
å
容ããŸã ããç解ã§ããŠãªããŠé ç挢ãªè³ªåã«ãªããšæããŸãã
[0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0]
[0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0]
[0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1]
[1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0]
[0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1]
[1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1]
[1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0]
[0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0]
[0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1]
[1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1]
[1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0]
[0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1]
[1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0]
[0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0]
[0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1]
[1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0]
[0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1]
[1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1]
[1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0]
[0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1]
[1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0]
[0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0]
[0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1]
[1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1]
[1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0]
[0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0]
[0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1]
[1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0]
[0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1]
[1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1]
[1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0]
No.2267GAI10æ17æ¥ 17:32
GAI ãããä»æèŠããŸãããé©ããŸããããæéãã ããã
No.2268Dengan kesaktian Indukmu10æ17æ¥ 20:21
GAI ããã
ã¡ãã£ãšèŠã§ã¯ã
ãã®èšæž¬ã§ããš
åã€ãã®æ€æ»å®ãæ倧ïŒäººãŸã§ããŠãåœé貚ãç¹å®ã§ããããã§ããã1/3 ãåã€ããŠã倧äžå€«ã£ãŠãããããšã§ãã
ãšããããéå ±ãŸã§ã
P.S. 1/3 ãåãã€ããŠããããšããã®ã¯ç§ã®ééãã§ãããç³ãèš³ãããŸãã
No.2270Dengan kesaktian Indukmu10æ17æ¥ 21:53
31人ã®æè¡è
ã«1ïœ9,AïœH,JïœN,PïœXã®ååãã€ããŠã31åã®é貚ã«ããããïœããŸãã®ååãã€ããŠãããããã以äžã®ããã«GF(2)äžã®4次å
å°åœ±ç©ºéå
ã®31åã®ç¹ãš31æã®è¶
å¹³é¢ã«å¯Ÿå¿ãããŸããåè¶
å¹³é¢å
ã®15åã®ç¹ãã該åœããé貚ã枬å®ãã15人ã®æè¡è
ã«çžåœããŸãã
1:(0,0,0,0,1) 2:(1,0,0,0,1) 3:(0,1,0,0,1) 4:(1,1,0,0,1)
5:(0,0,1,0,1) 6:(1,0,1,0,1) 7:(0,1,1,0,1) 8:(1,1,1,0,1)
9:(0,0,0,1,1) A:(1,0,0,1,1) B:(0,1,0,1,1) C:(1,1,0,1,1)
D:(0,0,1,1,1) E:(1,0,1,1,1) F:(0,1,1,1,1) G:(1,1,1,1,1)
H:(1,0,0,0,0) J:(0,1,0,0,0) K:(1,1,0,0,0)
L:(0,0,1,0,0) M:(1,0,1,0,0) N:(0,1,1,0,0) P:(1,1,1,0,0)
Q:(0,0,0,1,0) R:(1,0,0,1,0) S:(0,1,0,1,0) T:(1,1,0,1,0)
U:(0,0,1,1,0) V:(1,0,1,1,0) W:(0,1,1,1,0) X:(1,1,1,1,0)
ãïŒ1,2,3,4,5,6,7,8,H,J,K,L,M,N,P
ãïŒ1,2,3,4,9,A,B,C,H,J,K,Q,R,S,T
ãïŒ1,2,5,6,9,A,D,E,H,L,M,Q,R,U,V
ãïŒ1,3,5,7,9,B,D,F,J,L,N,Q,S,U,W
ãïŒ9,A,B,C,D,E,F,G,H,J,K,L,M,N,P
ãïŒ5,6,7,8,D,E,F,G,H,J,K,Q,R,S,T
ãïŒ3,4,7,8,B,C,F,G,H,L,M,Q,R,S,T
ãïŒ2,4,6,8,A,C,E,G,J,L,N,Q,S,U,W
ãïŒ1,4,5,8,9,C,D,G,K,L,P,Q,T,U,X
ãïŒ1,3,6,8,9,B,E,G,J,M,P,Q,S,V,X
ãïŒ1,2,7,8,9,A,F,G,H,N,P,Q,R,W,X
ãïŒ1,3,5,7,A,C,E,G,J,L,N,R,T,V,X
ãïŒ1,2,5,6,B,C,F,G,H,L,M,S,T,W,X
ãïŒ1,2,3,4,D,E,F,G,H,J,K,U,V,W,X
ãïŒ2,3,6,7,A,B,E,F,K,L,P,Q,T,U,X
ãïŒ2,4,5,7,A,C,D,F,J,M,P,Q,S,V,X
ã¡ïŒ3,4,5,6,B,C,D,E,H,N,P,Q,R,W,X
ã€ïŒ2,4,6,8,9,B,D,F,J,L,N,R,T,V,X
ãŠïŒ3,4,7,8,9,A,D,E,H,L,M,S,T,W,X
ãšïŒ5,6,7,8,9,A,B,C,H,J,K,U,V,W,X
ãªïŒ1,4,6,7,9,C,E,F,K,M,N,Q,T,V,W
ã«ïŒ1,4,5,8,A,B,E,F,K,L,P,R,S,V,W
ã¬ïŒ1,3,6,8,A,C,D,F,J,M,P,R,T,U,W
ãïŒ1,2,7,8,B,C,D,E,H,N,P,S,T,U,V
ã®ïŒ2,3,5,8,A,B,D,G,K,M,N,Q,T,V,W
ã¯ïŒ2,3,6,7,9,C,D,G,K,L,P,R,S,V,W
ã²ïŒ2,4,5,7,9,B,E,G,J,M,P,R,T,U,W
ãµïŒ3,4,5,6,9,A,F,G,H,N,P,S,T,U,V
ãžïŒ1,4,6,7,A,B,D,G,K,M,N,R,S,U,X
ã»ïŒ2,3,5,8,9,C,E,F,K,M,N,R,S,U,X
ãŸïŒH,J,K,L,M,N,P,Q,R,S,T,U,V,W,X
察å¿ãã31ããã笊å·ã¯ä»¥äžã®ããã«ãªããŸãããæå°ããã³ã°è·é¢ã¯16ã§ãæ倧7人ãŸã§ãåœãã®å ±åãããŠãåœé貚ãç¹å®ã§ããŸãã
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0],
[1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0],
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0],
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0],
[0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0],
[0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0],
[0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0],
[0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0],
[1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1],
[1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1],
[1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1],
[1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1],
[1,1,0,0,1,1,0,0,0,0,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,1,1,0,0,1,1],
[1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1],
[0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1],
[0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1],
[0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1],
[0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1],
[0,0,1,1,0,0,1,1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0,0,0,1,1,0,0,1,1],
[0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1],
[1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0],
[1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0],
[1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0],
[1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0],
[0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0],
[0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0],
[0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0],
[0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0],
[1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1],
[0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
No.2273kuiperbelt10æ18æ¥ 10:48
31人ã®æè¡è
ã«1ïœ9,AïœH,JïœN,PïœXã®ååãã€ããŠã31åã®é貚ã«ããããïœããŸãã®ååãã€ããŠãããããã以äžã®ããã«GF(5)äžã®å°åœ±å¹³é¢å
ã®31åã®ç¹ãš31æ¬ã®çŽç·ã«å¯Ÿå¿ãããå ŽåãèããŠã¿ãŸãããåçŽç·å
ã®6åã®ç¹ãã該åœããé貚ã枬å®ãã6人ã®æè¡è
ã«çžåœããŸãã
1:(0,0,1) 2:(1,0,1) 3:(2,0,1) 4:(3,0,1) 5:(4,0,1)
6:(0,1,1) 7:(1,1,1) 8:(2,1,1) 9:(3,1,1) A:(4,1,1)
B:(0,2,1) C:(1,2,1) D:(2,2,1) E:(3,2,1) F:(4,2,1)
G:(0,3,1) H:(1,3,1) J:(2,3,1) K:(3,3,1) L:(4,3,1)
M:(0,4,1) N:(1,4,1) P:(2,4,1) Q:(3,4,1) R:(4,4,1)
S:(1,0,0) T:(4,1,0) U:(3,1,0) V:(2,1,0) W:(1,1,0) X:(0,1,0)
ãïŒ1,2,3,4,5,S
ãïŒ6,7,8,9,A,S
ãïŒB,C,D,E,F,S
ãïŒG,H,J,K,L,S
ãïŒM,N,P,Q,R,S
ãïŒ1,A,E,J,N,T
ãïŒ2,6,F,K,P,T
ãïŒ3,7,B,L,Q,T
ãïŒ4,8,C,M,R,T
ãïŒ5,9,D,H,M,T
ãïŒ1,9,C,L,P,U
ãïŒ2,A,D,G,Q,U
ãïŒ3,6,E,H,R,U
ãïŒ4,7,F,J,M,U
ãïŒ5,8,B,K,N,U
ãïŒ1,8,F,H,Q,V
ã¡ïŒ2,9,B,J,R,V
ã€ïŒ3,A,C,K,M,V
ãŠïŒ4,6,D,L,N,V
ãšïŒ5,7,E,G,P,V
ãªïŒ1,7,D,K,R,W
ã«ïŒ2,8,E,L,M,W
ã¬ïŒ3,9,F,G,N,W
ãïŒ4,A,B,H,P,W
ã®ïŒ5,6,C,J,Q,W
ã¯ïŒ1,6,B,G,M,X
ã²ïŒ2,7,C,H,N,X
ãµïŒ3,8,D,J,P,X
ãžïŒ4,9,E,K,Q,X
ã»ïŒ5,A,F,L,R,X
ãŸïŒS,T,U,V,W,X
1çŽç·äžã«ã¯6ç¹ãååšããã©ã®2çŽç·ã1ç¹ãå
±æããã®ã§ã1ç¹ãå
±æãã2çŽç·ã«ã¯äºãã«ç°ãªã5ç¹ãããããšã«ãªããŸãã察å¿ãã31ããã笊å·ã¯ä»¥äžã®ããã«ãªããŸãããæå°ããã³ã°è·é¢ã¯10ã§ãæ倧4人ãŸã§ãåœãã®å ±åãããŠãåœé貚ãç¹å®ã§ããŸãã
[1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0],
[1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0],
[0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0],
[0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0],
[0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0],
[0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0],
[1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0],
[0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0],
[0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0],
[0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0],
[0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0],
[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0],
[0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0],
[0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0],
[0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0],
[0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0],
[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0],
[0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0],
[0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0],
[0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0],
[0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0],
[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1],
[0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1],
[0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1],
[0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1],
[0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1]
No.2274kuiperbelt10æ18æ¥ 10:50
æµéãå¢å€§ããŠããŠ
ãªããªãè¿œãã€ããŸãããã
[2267]ã® GAI ããã®31ã®è§£ã
äžæè°ã§ãªããŸããã
ãããã¯ãã¶ã€ã³ãšããŠã©ã®ãããªäœçœ®ã¥ããªã®ãïŒ
å·¡åããŠããŸãããã
ãã®æã®è§£ã®ããŒã¿ããŒã¹ãããã£ãã®ã§ããç»é²ãããŠããŸããã§ããã
æ°çºèŠïŒ
No.2275Dengan kesaktian Indukmu10æ18æ¥ 13:54
ãç§ã®åå¿é² > ç®ã®åãã®ïœ1,2,2,3,3,4}ã®ç®ãšïœ1,3,4,5,6,8}ã®ç®ããã£ããµã€ã³ãïŒå¹³æïŒïŒå¹ŽïŒæïŒæ¥ä»ãïŒã¯ããžããã£ãŒãã³ã®ãµã€ã³ã(Sicherman dice)ãšãããããã®ã§ãããSichermanã¯ã·ãã£ãŒãã³ããžããã«ãã³ãšãããããŸãã
{1,2,2,3}ãš{1,3,3,5,5,5,7,7,9}ã{1,4,4,7}ãš{1,2,2,3,3,3,4,4,5}ã{1,2,4,5}ãš{1,2,3,3,4,5,5,6,7}ã®çµã¿åããã¯ã4é¢ãã€ã¹ãš9é¢ãã€ã¹ã®çµã¿åããã§å®çŸã§ããŸããã{1,2,4,5}ãš{1,2,3,3,4,5,5,6,7}ã®çµã¿åããã®4é¢ãã€ã¹ãš9é¢ãã€ã¹ã3Dããªã³ãã§ã€ãã£ããã®ããããŸããã
https://www.shapeways.com/product/G2KUH846M/d9-d4-recast-2d6?optionId=347165649&li=marketplace
1ïœ10ã®åºç®ããã10é¢ãã€ã¹ã®æ¯é¢æ°ã¯ã
x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10ã§è¡šããã
x(x+1)(x^4-x^3+x^2-x+1)(x^4+x^3+x^2+x+1)ãšå æ°å解ãããŸãã
a=x+1,b=x^4-x^3+x^2-x+1,c=x^4+x^3+x^2+x+1ãšãããšãããšã®10é¢ãã€ã¹ã®æ¯é¢æ°ã¯ãx*a*b*cã§ã10é¢ãã€ã¹2åã®å Žåã¯(x*a*b*c)^2ãªã®ã§ãããããã®åºç®ã1以äžãšãªãããã«2ã€ã®10é¢ãã€ã¹ã«åé
ãããšãä¿æ°ãè² ãšãªãçµã¿åãããé€å€ãããšã
x*a*c=x^6+2x^5+2x^4+2x^3+2x^2+x
x*a*b^2*c=x^14+x^12+x^10+x^9+x^8+x^7+x^6+x^5+x^3+x
ãªã®ã§ã{1,2,2,3,3,4,4,5,5,6}ãš{1,3,5,6,7,8,9,10,12,14}ã®çµã¿åããã1ïœ10ã®åºç®ããã10é¢ãã€ã¹ã2åãµã£ããšãã®åºç®ã®åãšåã確çååžãäžãã10é¢ãã€ã¹ã®ãã¢ãšãªããŸãã
1ïœ8ã®åºç®ãããæ£8é¢äœãã€ã¹ã®æ¯é¢æ°ã¯ã
x+x^2+x^3+x^4+x^5+x^6+x^7+x^8ã§è¡šããã
x(x+1)(x^2+1)(x^4+1)ãšå æ°å解ãããŸãã
a=x+1,b=x^2+1,c=x^4+1ãšãããšãããšã®æ£8é¢äœãã€ã¹ã®æ¯é¢æ°ã¯ãx*a*b*cã§ãæ£8é¢äœãã€ã¹2åã®å Žåã¯(x*a*b*c)^2ãªã®ã§ãããããã®åºç®ã1以äžãšãªãããã«2ã€ã®æ£8é¢äœãã€ã¹ã«åé
ãããšã
x*b*c^2=x^11+x^9+2x^7+2x^5+x^3+x
x*a^2*b=x^5+2x^4+2x^3+2x^2+x
x*a*c^2=x^10+x^9+2x^6+2x^5+x^2+x
x*a*b^2=x^6+x^5+2x^4+2x^3+x^2+x
x*b^2*c=x^9+2x^7+2x^5+2x^3+x
x*a^2*c=x^7+2x^6+x^5+x^3+2x^2+x
ã®3ã€ã®çµã¿åãããã2ã€ã®æ£8é¢äœãã€ã¹ãšãªãçµã¿åããã§ã1ïœ8ã®åºç®ãããæ£8é¢äœãã€ã¹ã2åãµã£ããšãã®åºç®ã®åãšåã確çååžãäžããæ£8é¢äœãã€ã¹ã®ãã¢ã¯åºç®ãããããã
{1,2,2,3,3,4,4,5}ãš{1,3,5,5,7,7,9,11}
{1,2,3,3,4,4,5,6}ãš{1,2,5,5,6,6,9,10}
{1,2,2,3,5,6,6,7}ãš{1,3,3,5,5,7,7,9}
ãšãªããŸãã
1ïœ12ã®åºç®ãããæ£12é¢äœãã€ã¹ã®æ¯é¢æ°ã¯ã
x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10+x^11+x^12ã§è¡šããã
x(x+1)(x^2+1)(x^2-x+1)(x^2+x+1)(x^4+x^2+1)ãšå æ°å解ãããŸãã
a=x+1,b=x^2+1,c=x^2-x+1,d=x^2+x+1,e=x^4-x^2+1ãšãããšãããšã®æ£12é¢äœãã€ã¹ã®æ¯é¢æ°ã¯ãx*a*b*c*d*eã§ãæ£12é¢äœãã€ã¹2åã®å Žåã¯(x*a*b*c*d*e)^2ãªã®ã§ãããããã®åºç®ã1以äžãšãªãããã«2ã€ã®æ£12é¢äœãã€ã¹ã«åé
ãããšã
x*b^2*c*d*e^2=x^17+x^15+x^13+2x^11+2x^9+2x^7+x^5+x^3+x
x*a^2*c*d=x^7+2x^6+2x^5+2x^4+2x^3+2x^2+x
x*b^2*c*d*e=x^13+2x^11+2x^9+2x^7+2x^5+2x^3+x
x*a^2*c*d*e=x^11+2x^10+x^9+x^7+2x^6+x^5+x^3+2x^2+x
x*b^2*d*e^2=x^15+x^14+x^13+2x^9+2x^8+2x^7+x^3+x^2+x
x*a^2*c^2*d=x^9+x^8+x^7+2x^6+2x^5+2x^4+x^3+x^2+x
x*a^2*c^2*d*e=x^13+x^12+x^10+2x^9+x^8+x^6+2x^5+x^4+x^2+x
x*b^2*d*e=x^11+x^10+2x^9+x^8+x^7+x^5+x^4+2x^3+x^2+x
x*a*b*c*d*e^2=x^16+x^15+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^2+x
x*a*b*c*d=x^8+x^7+2x^6+2x^5+2x^4+2x^3+x^2+x
x*a*b*c^2*d*e=x^14+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x
x*a*b*d*e=x^10+2x^9+2x^8+x^7+x^4+2x^3+2x^2+x
x*a*b*c^2*d*e^2=x^18+x^15+x^14+x^12+x^11+x^10+x^9+x^8+x^7+x^5+x^4+x
x*a*b*d=x^6+2x^5+3x^4+3x^3+2x^2+x
ã®7ã€ã®çµã¿åãããã2ã€ã®æ£12é¢äœãã€ã¹ãšãªãçµã¿åããã§ã1ïœ12ã®åºç®ãããæ£12é¢äœãã€ã¹ã2åãµã£ããšãã®åºç®ã®åãšåã確çååžãäžããæ£12é¢äœãã€ã¹ã®ãã¢ã¯åºç®ãããããã
{1,3,5,7,7,9,9,11,11,13,15,17}ãš{1,2,2,3,3,4,4,5,5,6,6,7}
{1,3,3,5,5,7,7,9,9,11,11,13}ãš{1,2,2,3,5,6,6,7,9,10,10,11}
{1,2,3,7,7,8,8,9,9,13,14,15}ãš{1,2,3,4,4,5,5,6,6,7,8,9}
{1,2,4,5,5,6,8,9,9,10,12,13}ãš{1,2,3,3,4,5,7,8,9,9,10,11}
{1,2,5,6,7,8,9,10,11,12,15,16}ãš{1,2,3,3,4,4,5,5,6,6,7,8}
{1,3,4,5,6,7,8,9,10,11,12,14}ãš{1,2,2,3,3,4,7,8,8,9,9,10}
{1,4,5,7,8,9,10,11,12,14,15,18}ãš{1,2,2,3,3,3,4,4,4,5,5,6}
ãšãªããŸãããã¡ãã«ã€ããŠã3Dããªã³ãã§ã€ãã£ããã®ããããŸããã
https://www.shapeways.com/product/XQKD5HJ27/sicherman-2d12-alpha?optionId=347410953&li=shops
1ïœ20ã®åºç®ãããæ£20é¢äœãã€ã¹ã®æ¯é¢æ°ã¯ã
x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10+x^11+x^12+x^13+x^14+x^15+x^16+x^17+x^18+x^19+x^20ã§è¡šããã
x(x+1)(x^2+1)(x^4-x^3+x^2-x+1)(x^4+x^3+x^2+x+1)(x^8-x^6+x^4-x^2+1)ãšå æ°å解ãããŸãã
a=x+1,b=x^2+1,c=x^4-x^3+x^2-x+1,d=x^4+x^3+x^2+x+1,e=x^8-x^6+x^4-x^2+1ãšãããšãããšã®æ£20é¢äœãã€ã¹ã®æ¯é¢æ°ã¯ãx*a*b*c*d*eã§ãæ£20é¢äœãã€ã¹2åã®å Žåã¯(x*a*b*c*d*e)^2ãªã®ã§ãããããã®åºç®ã1以äžãšãªãããã«2ã€ã®æ£20é¢äœãã€ã¹ã«åé
ãããšã
x*b^2*c*d*e^2=x^29+x^27+x^25+x^23+x^21+2x^19+2x^17+2x^15+2x^13+2x^11+x^9+x^7+x^5+x^3+x
x*a^2*c*d=x^11+2x^10+2x^9+2x^8+2x^7+2x^6+2x^5+2x^4+2x^3+2x^2+x
x*b^2*c*d*e=x^21+2x^19+2x^17+2x^15+2x^13+2x^11+2x^9+2x^7+2x^5+2x^3+x
x*a^2*c*d*e=x^19+2x^18+x^17+x^15+2x^14+x^13+x^11+2x^10+x^9+x^7+2x^6+x^5+x^3+2x^2+x
x*b^2*d*e=x^25+x^24+x^23+x^22+x^21+2x^15+2x^14+2x^13+2x^12+2x^11+x^5+x^4+x^3+x^2+x
x*a^2*c^2*d=x^15+x^14+x^13+x^12+x^11+2x^10+2x^9+2x^8+2x^7+2x^6+x^5+x^4+x^3+x^2+x
x*a^2*c^2*d*e=x^23+x^22+x^19+2x^18+x^17+x^15+2x^14+x^13+x^11+2x^10+x^9+x^7+2x^6+x^5+x^2+x
x*b^2*d*e=x^17+x^16+2x^15+2x^14+2x^13+x^12+x^11+x^7+x^6+2x^5+2x^4+2x^3+x^2+x
x*a*b*c*d*e^2=x^28+x^27+x^24+x^23+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^6+x^5+x^2+x
x*a*b*c*d=x^12+x^11+2x^10+2x^9+2x^8+2x^7+2x^6+2x^5+2x^4+2x^3+x^2+x
x*a*b*c^2*d*e=x^24+x^22+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^3+x
x*a*b*d*e=x^16+2x^15+2x^14+2x^13+2x^12+x^11+x^6+2x^5+2x^4+2x^3+2x^2+x
x*a*b*c^2*d*e^2=x^32+x^28+x^27+x^24+x^23+x^22+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^11+x^10+x^9+x^6+x^5+x
x*a*b*d=x^8+2x^7+3x^6+4x^5+4x^4+3x^3+2x^2+x
ã®7ã€ã®çµã¿åãããã2ã€ã®æ£20é¢äœãã€ã¹ãšãªãçµã¿åããã§ã1ïœ20ã®åºç®ãããæ£20é¢äœãã€ã¹ã2åãµã£ããšãã®åºç®ã®åãšåã確çååžãäžããæ£20é¢äœãã€ã¹ã®ãã¢ã¯åºç®ãããããã
{1,3,5,7,9,11,11,13,13,15,15,17,17,19,21,23,25,27,29}ãš{1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11}
{1,3,3,5,5,7,7,9,9,11,11,13,13,15,15,17,17,19,19,21}ãš{1,2,2,3,5,6,6,7,9,10,10,11,13,14,14,15,17,18,18,19}
{1,2,3,4,5,11,11,12,12,13,13,14,14,15,15,21,22,23,24,25}ãš{1,2,3,4,5,6,6,7,7,8,8,9,9,10,10,11,12,13,14,15}
{1,2,5,6,6,7,9,10,10,11,13,14,14,15,17,18,18,19,22,23}ãš{1,2,3,3,4,4,5,5,6,7,11,12,13,13,14,14,15,15,16,17}
{1,2,5,6,9,10,11,12,13,14,15,16,17,18,19,20,23,24,27,28}ãš{1,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,12}
{1,3,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24}ãš{1,2,2,3,3,4,4,5,5,6,11,12,12,13,13,14,14,15,15,16}
{1,5,6,9,10,11,13,14,15,16,17,18,19,20,22,23,24,27,28,32}ãš{1,2,2,3,3,3,4,4,4,4,5,5,5,5,6,6,6,7,7,8}
ãšãªããŸãã
9é¢ãã€ã¹ãåºãŠããã€ãã§ã«ã1ïœ9ã®åºç®ããã9é¢ãã€ã¹ã®æ¯é¢æ°ã¯ã
x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9ã§è¡šããã
x(x^2+x+1)(x^6+x^3+1)ãšå æ°å解ãããŸãã
a=x^2+x+1,b=x^6+x^3+1ãšãããšãããšã®9é¢ãã€ã¹ã®æ¯é¢æ°ã¯ãx*a*bã§ã9é¢ãã€ã¹2åã®å Žåã¯(x*a*b)^2ãªã®ã§ãããããã®åºç®ã1以äžãšãªãããã«2ã€ã®9é¢ãã€ã¹ã«åé
ãããšã
x*b^2=x^13+2x^10+3x^7+2x^4+x
x*a^2=x^5+2x^4+3x^3+2x^2+x
ãªã®ã§ã{1,2,2,3,3,3,4,4,5}ãš{1,4,4,7,7,7,10,10,13}ã®çµã¿åããã1ïœ9ã®åºç®ããã9é¢ãã€ã¹ã2åãµã£ããšãã®åºç®ã®åãšåã確çååžãäžãã9é¢ãã€ã¹ã®ãã¢ãšãªããŸãã
No.2059kuiperbelt8æ11æ¥ 00:20
話é¡ãäžéšãã¶ããããªã®ã§ã玹ä»ããŸãã
æ£å
«é¢äœãã€ã¹ã 2 åãããŸãã
çæ¹ã A ãããçæ¹ã B ãšããŸãã
A ã®åºç®ã {a[0],a[1],a[2],a[3],a[4],a[5],a[6],a[7]}
B ã®åºç®ã {b[0],b[1],b[2],b[3],b[4],b[5],b[6],b[7]}
ãšããŸãã
äœã
a[0]âŠa[1]âŠa[2]âŠa[3]âŠa[4]âŠa[5]âŠa[6]âŠa[7]
b[0]âŠb[1]âŠb[2]âŠb[3]âŠb[4]âŠb[5]âŠb[6]âŠb[7]
ãšçŽæããŠãããŸãã
ãäŸé¡ã
ãã® A,B ãµãã€ã®ãã€ã¹ããšãã«æ¯ããšãã«
åºãç®ã®ååžã 0 ãã 63 ãŸã§å
šãŠã®éè² æŽæ°ãšãªã ãã®ãã®ç確çã§åºçŸãããšããã
0 ⊠n ⊠7
ãªãéè² æŽæ° n ã«ã€ããŠ
b[n] = 8*a[n]
ãæç«ãããšã
a[n] ãæ±ããã
ãäŸé¡è§£çã
a[n] = n
â»ïŒé²æ°ãèããã°ããã
ãåé¡ã
ãã® A,B ãµãã€ã®ãã€ã¹ããšãã«æ¯ããšãã«
åºãç®ã®ååžã 0 ãã 63 ãŸã§å
šãŠã®éè² æŽæ°ãšãªã ãã®ãã®ç確çã§åºçŸãããšããã
0 ⊠n ⊠7
ãªãéè² æŽæ° n ã«ã€ããŠ
b[n] = 2*a[n]
ãæç«ãããšã
a[n] ãæ±ããã
ãäŸé¡ã§ã¯ïŒåããã®åé¡ã§ã¯ïŒåã«ãªã£ãŠããŸããã
=======
ãã®åé¡ã®å
ãã¿ã® PDF ã«ã¯
ãžããã£ãŒãã³ã®ãã€ã¹ãæ¯é¢æ°ã«ããåæã®æ¹æ³ã玹ä»ãããŠããŠé¢çœãã£ãã§ãã
åŸæ¥ã«ãã® PDF ããæ¡å
ããããŸãã
No.2065Dengan kesaktian Indukmu8æ11æ¥ 14:04
2ã€ã®ãã€ã¹ã®æ¯é¢æ°ã
f(x)=x^a[0]+x^a[1]+âŠ+x^a[7]
g(x)=x^b[0]+x^b[1]+âŠ+x^b[7]
ãšãããšã
g(x)=x^(2*a[0])+x^(2*a[1])+âŠ+x^(2*a[7])
=(x^2)^a[0]+(x^2)^a[1]+âŠ+(x^2)^a[7]
=f(x^2)
f(x)g(x)=f(x)f(x^2)=1+x+x^2+âŠ+x^63
ã§ã1+x+x^2+âŠ+x^63ãå æ°å解ãããš
(x+1)(x^2+1)(x^4+1)(x^8+1)(x^16+1)(x^32+1)
ãªã®ã§ã
f(x)=(x+1)(x^4+1)(x^16+1)=x^21+x^20+x^17+x^16+x^5+x^4+x+1
g(x)=(x^2+1)(x^8+1)(x^32+1)=x^42+x^40+x^34+x^32+x^10+x^8+x^2+1
ããã
a[0]=0,a[1]=1,a[2]=4,a[3]=5,a[4]=16,a[5]=17,a[6]=20,a[7]=21
åããããªã¢ã€ãã¢ã§æ§æããã10é¢ãã€ã¹ã®ãã¢ã3Dããªã³ãã§äœãããŠããŸããã
10é¢äœãã€ã¹ã2åãããŸãã
çæ¹ãAãããçæ¹ãBãšããŸãã
Aã®åºç®ã{a[0],a[1],a[2],a[3],a[4],a[5],a[6],a[7],a[8],a[9]}
Bã®åºç®ã{b[0],b[1],b[2],b[3],b[4],b[5],b[6],b[7],b[8],b[9]}
ãšããŸãã
äœã
a[0]âŠa[1]âŠa[2]âŠa[3]âŠa[4]âŠa[5]âŠa[6]âŠa[7]âŠa[8]âŠa[9]
b[0]âŠb[1]âŠb[2]âŠb[3]âŠb[4]âŠb[5]âŠb[6]âŠb[7]âŠb[8]âŠb[9]
ãšçŽæããŠãããŸãã
ãã®A,Bãµãã€ã®ãã€ã¹ããšãã«æ¯ããšãã«
åºãç®ã®ååžã0ãã99ãŸã§å
šãŠã®éè² æŽæ°ãšãªã ãã®ãã®ç確çã§åºçŸãããšããã
0 âŠnâŠ9
ãªãéè² æŽæ°nã«ã€ããŠ
a[n],b[n]ãæ±ããã
åŸæ¥ã«ãã®10é¢ãã€ã¹ãã¢ãžã®ãªã³ã¯ããæ¡å
ããããŸãã
No.2067kuiperbelt8æ11æ¥ 18:59
kuiperbelt ãããå
«é¢äœãã€ã¹ã®ãã¢ã®åé¡ã¯ãæ£è§£ã§ãã
ãåºé¡ããã ããåé¢äœãã€ã¹ïŒåã®åé¡ã«ã¯æç®ã§ããããèªæãªè§£ãäžçµãããŸããã
ã»ãã®çµãæ±ãããšããããšãšãªããŸãã§ããããã
No.2068Dengan kesaktian Indukmu8æ11æ¥ 19:34
èªæãªè§£ãé€ããšããã®ãå¿ããŠããŸããã
èªæã§ãªã解ã§ãé¡ãããŸãã
No.2069kuiperbelt8æ11æ¥ 19:39
10é¢ãã€ã¹ã®ãã¢ã®åé¡ã§ããâŠâŠ
OEIS A273013 ã«ããã°èªæãªè§£ãå«ã㊠7 éããããã®ã§ãã âŠâŠâŠ
OEIS ãžã¯ãã®æçš¿ã® Dengan ã®ååãã¯ãªãã¯ã§è¡ããŸãã
ã远䌞ã
éèªãæ°åŠã»ãããŒã2018幎9æå·ã®ããšã¬ã¬ã³ããªè§£çæ±ããã§ã7éããèŒã£ãŠããããšã確èªããŸããã
A=[0,1,4,5,8,9,12,13,16,17]
B=[0,2,20,22,40,42,60,62,80,82]
A=[0,1,2,3,4,25,26,27,28,29]
B=[0,5,10,15,20,50,55,60,65,70]
A=[0,5,10,15,20,25,30,35,40,45]
B=[0,1,2,3,4,50,51,52,53,54]
A=[0,1,20,21,40,41,60,61,80,81]
B=[0,2,4,6,8,10,12,14,16,18]
ã®4çµã¯äœãšãçºèŠã§ããããæ®ã2çµã¯äœãèãããããã ãããïŒ
No.2072GAI8æ12æ¥ 08:40
A=[0,5,20,25,40,45,60,65,80,85]
B=[0,1,2,3,4,10,11,12,13,14]
A=[0,1,10,11,20,21,30,31,40,41]
B=[0,2,4,6,8,50,52,54,56,58]
ã®ïŒã€ã®ããã§ãã
No.2073管çè
8æ12æ¥ 09:31 10é¢ãã€ã¹ã®ãã¢ã¯èªæãªãã®ãé€ããš
A=[0,1,4,5,8,9,12,13,16,17]
B=[0,2,20,22,40,42,60,62,80,82]
A=[0,1,2,3,4,25,26,27,28,29]
B=[0,5,10,15,20,50,55,60,65,70]
A=[0,5,10,15,20,25,30,35,40,45]
B=[0,1,2,3,4,50,51,52,53,54]
A=[0,1,20,21,40,41,60,61,80,81]
B=[0,2,4,6,8,10,12,14,16,18]
A=[0,5,20,25,40,45,60,65,80,85]
B=[0,1,2,3,4,10,11,12,13,14]
A=[0,1,10,11,20,21,30,31,40,41]
B=[0,2,4,6,8,50,52,54,56,58]
ã®6çµã§ãã
2ã€ã®10é¢ãã€ã¹ã®æ¯é¢æ°ã®ç©ã¯1+x+x^2+âŠ+x^99ã§ã
1+x+x^2+âŠ+x^99
=(x+1)(x^2+1)(x^4-x^3+x^2-x+1)(x^4+x^3+x^2+x+1)(x^8-x^6+x^4-x^2+1)
*(x^20-x^15+x^10-x^5+1)(x^20+x^15+x^10+x^5+1)(x^40-x^30+x^20-x^10+1)
ãšå æ°å解ãããã®ã§ã
a=x+1
b=x^2+1
c=x^4-x^3+x^2-x+1
d=x^4+x^3+x^2+x+1
e=x^8-x^6+x^4-x^2+1
f=x^20-x^15+x^10-x^5+1
g=x^20+x^15+x^10+x^5+1
h=x^40-x^30+x^20-x^10+1
ãšãããšãx=1ã代å
¥ãããšãa,b,c,d,e,f,g,hã2,2,1,5,1,1,5,1ãšãªãã®ã§ã
2ã€ã®10é¢ãã€ã¹ã®æ¯é¢æ°ã¯ããããããa*dãb*gãå æ°ã«ãã€å Žåãšãa*gãb*d
ãå æ°ã«ãã€å Žåããããããããã«ã€ããŠc,e,f,hãåé
ããŠä¿æ°ãè² ã«ãªã
å Žåãé€å€ãããšãèªæãªãã®ãå«ããŠ7éãã®çµã¿åãããåŸãããŸãã
äžèšã®ãµã€ãã«ã
A=[0,1,20,21,40,41,60,61,80,81]
B=[0,2,4,6,8,10,12,14,16,18]
ã®çµã¿åãããšãªã10é¢ãã€ã¹ãã¢ã3Dããªã³ãã§äœã£ããã®ãèŒã£ãŠããŸããã
https://www.shapeways.com/product/B7VEDU96X/alternative-percentile-dice-set?optionId=59862239&li=marketplace
OEIS A273013ãèŠããšãèªæãªãã®ãå«ãããšã8é¢ãã€ã¹ã®å Žåã¯10éãã
12é¢äœãš20é¢äœã§ã¯42éããããã®ã§ããâŠ
No.2074kuiperbelt8æ12æ¥ 15:50
ãçŽæããŠããåèæç®ãã°ã
â Extending Sicherman Dice to 100-cell Calculation Tables
Yutaka Nishiyama, Nozomi Miyanaga
https://doi.org/10.48550/arXiv.1602.03736
â»äžèšPDFã®fig13ã
b[n]=2*a[n] ãªåé¡ã®å
ãã¿ã§ãã
â æ°åŠã»ãããŒ:ãšã¬ã¬ã³ããªè§£çæ±ã
https://yutaka-nishiyama.sakura.ne.jp/susemi/susemi1809.pdf
ä»ãŒããããš
https://oeis.org/A273013/b273013.txt
ãçºããŠããŸããã次ã®ãããªäºæ³ãã
p, q ãçŽ æ°ãšããã(p < q)
A273013[p^2] = 3
A273013[p*q] = 7
ã³ã¬ãæ£ãããã°10é¢ãã€ã¹ã®ãã¢ã®ããæ¹ã 7 éããšããã®ã¯ææãã¹ããšããããšã«ïŒ
ããã㯠7 éãã®èŠã€ãæ¹ã«ã¯é ããã«ãŒããããïŒ
No.2076Dengan kesaktian Indukmu8æ12æ¥ 21:50
n=p^rã®ãšããæ¯é¢æ°ã¯ã
1+x+x^2+âŠ+x^(p^(2r)-1)
=(1+x+âŠ+x^(p-1))*(1+x^p+âŠx^(p^2-p))âŠ(1+x^(p^(2r-1))+âŠ+x^(p^(2r)-p^(2r-1)))
ãš2råã®å æ°ã«å解ãããã®ã§ãråãã€åãåºããŠ2åã®ãã€ã¹ã®æ¯é¢æ°ãã€ããæ¹æ³ã¯ã
2é
ä¿æ°C(p,q)=p!/q!/(p-q)!ãçšãããšãC(2r,r)/2éãã§ã
n=p^2ã®ãšãC(4,2)/2=3
n=p^3ã®ãšãC(6,3)/2=10
n=p^4ã®ãšãC(8,4)/2=35
n=p^5ã®ãšãC(10,5)/2=126
n=p^6ã®ãšãC(12,6)/2=462
ãªã©ãšãªããŸãã
ä»ã«ããp,q,rãç°ãªãçŽ æ°ãšãããšã
a(p^2*q)=42
a(p^3*q)=230
a(p*q*r)=115
ãšããäºæ³ããããŸãã
No.2077kuiperbelt8æ13æ¥ 01:52
> A273013[p^2] = 3
> A273013[p*q] = 7
> ã³ã¬ãæ£ãããã°10é¢ãã€ã¹ã®ãã¢ã®ããæ¹ã 7 éããšããã®ã¯ææãã¹ããšããããšã«ïŒ
> ããã㯠7 éãã®èŠã€ãæ¹ã«ã¯é ããã«ãŒããããïŒ
ïœã®å æ°å解åã«åœ±é¿ããããªã
A074206ã§ã®Kalmár's [Kalmar's] problem: number of ordered factorizations of n
ã§ã®ããã°ã©ã ãå©çšããã°ããç°¡åã«ãã®æ°åã¯æã«å
¥ãããã§ãã
n=10=2*5(=p*qå)
ãªã3ãè¿ããããããããã7ãžå€æŽããŠããã°ãããããªïœ¥ïœ¥ïœ¥ïœ¥
No.2078GAI8æ13æ¥ 12:30
n=p*qã®ãšããæ¯é¢æ°ã¯ã
1+x+x^2+âŠ+x^((p*q)^2-1)
=(1+x+âŠ+x^((p*q)-1))*(1+x^(p*q)+âŠ+x^((p*q)^2-p*q))ã»ã»ã»(ã€)
=(1+x+âŠ+x^(p^2-1))*(1+x^(p^2)+âŠ+x^((p*q)^2-p^2))ã»ã»ã»(ã)
=(1+x+âŠ+x^(q^2-1))*(1+x^(q^2)+âŠ+x^((p*q)^2-q^2))ã»ã»ã»(ã)
ãšè¡šããã(ã€)ã®å Žåããã¯ã
1+x+âŠ+x^((p*q)-1)
=(1+x+âŠ+x^(p-1))*(1+x^p+âŠ+x^(p*q-p))
=(1+x+âŠ+x^(q-1))*(1+x^q+âŠ+x^(p*q-q))
1+x^(p*q)+âŠ+x^((p*q)^2-p*q)
=(1+x^(p*q)+âŠ+x^(p*q*(p-1)))*(1+x^(p^2*q)âŠ+x^(p^2*q^2-p^2*q))
=(1+x^(p*q)+âŠ+x^(p*q*(q-1)))*(1+x^(p*q^2)âŠ+x^(p^2*q^2-p*q^2))
ãªã®ã§ã
1+x+x^2+âŠ+x^((p*q)^2-1)
=(1+x+âŠ+x^(p-1))*(1+x^p+âŠ+x^(p*q-p))
*(1+x^(p*q)+âŠ+x^(p*q*(p-1)))*(1+x^(p^2*q)âŠ+x^(p^2*q^2-p^2*q))
=(1+x+âŠ+x^(p-1))*(1+x^p+âŠ+x^(p*q-p))
*(1+x^(p*q)+âŠ+x^(p*q*(q-1)))*(1+x^(p*q^2)âŠ+x^(p^2*q^2-p*q^2))
=(1+x+âŠ+x^(q-1))*(1+x^q+âŠ+x^(p*q-q))
*(1+x^(p*q)+âŠ+x^(p*q*(p-1)))*(1+x^(p^2*q)âŠ+x^(p^2*q^2-p^2*q))
=(1+x+âŠ+x^(q-1))*(1+x^q+âŠ+x^(p*q-q))
*(1+x^(p*q)+âŠ+x^(p*q*(q-1)))*(1+x^(p*q^2)âŠ+x^(p^2*q^2-p*q^2))
ããã第1é
ãšç¬¬2é
ã第3é
ãšç¬¬4é
ã®ç©ãèªæãªå Žåã®ãã€ã¹ãã¢ã®æ¯é¢æ°ã§ã第1é
ãšç¬¬3é
ã第2é
ãšç¬¬4é
ã®ç©ããå¥ã®çµã¿åããã®ãã€ã¹ãã¢ã®æ¯é¢æ°ã4çµåŸãããŸãã
(ã)ã®å Žåã¯ã
1+x+âŠ+x^(p^2-1)=(1+x+âŠ+x^(p-1))*(1+x^p+âŠ+x^(p^2-p))
1+x^(p^2)+âŠ+x^((p*q)^2-p^2)
=(1+x^(p^2)+âŠ+x^(p^2*(q-1)))*(1+x^(p^2*q)+âŠ+x^(p^2*q*(q-1)))
ããã
1+x+x^2+âŠ+x^((p*q)^2-1)
=(1+x+âŠ+x^(p-1))*(1+x^p+âŠ+x^(p^2-p))
*(1+x^(p^2)+âŠ+x^(p^2*(q-1)))*(1+x^(p^2*q)+âŠ+x^(p^2*q*(q-1)))
ãªã®ã§ã第1é
ãšç¬¬3é
ã第2é
ãšç¬¬4é
ã®ç©ãã6çµç®ã®ãã€ã¹ãã¢ã®æ¯é¢æ°ãåŸãããŸããã第1é
ãšç¬¬4é
ã第2é
ãšç¬¬3é
ã®ç©ã¯ã
1+x^p+âŠ+x^(p^2*q-p)
=(1+x^p+âŠ+x^(p^2-p))*(1+x^(p^2)+âŠ+x^(p^2*q-p^2))
=(1+x^p+âŠ+x^(p*q-p))*(1+x^(p*q)+âŠ+x^(p^2*q-p*q))
ãªã®ã§ã(ã€)ã®å Žåãšéè€ããŸãã
(ã)ã®å Žåã¯ã
1+x+âŠ+x^(q^2-1)=(1+x+âŠ+x^(q-1))*(1+x^q+âŠ+x^(q^2-q))
1+x^(q^2)+âŠ+x^((p*q)^2-q^2)
=(1+x^(q^2)+âŠ+x^(q^2*(p-1)))*(1+x^(q^2*p)+âŠ+x^(q^2*p*(p-1)))
ããã
1+x+x^2+âŠ+x^((p*q)^2-1)
=(1+x+âŠ+x^(q-1))*(1+x^q+âŠ+x^(q^2-q))
*(1+x^(q^2)+âŠ+x^(q^2*(p-1)))*(1+x^(q^2*p)+âŠ+x^(q^2*p*(p-1)))
ãªã®ã§ã第1é
ãšç¬¬3é
ã第2é
ãšç¬¬4é
ã®ç©ãã7çµç®ã®ãã€ã¹ãã¢ã®æ¯é¢æ°ãåŸãããŸããã第1é
ãšç¬¬4é
ã第2é
ãšç¬¬3é
ã®ç©ã¯ã
1+x^q+âŠ+x^(p*q^2-q)
=(1+x^q+âŠ+x^(q^2-q))*(1+x^(q^2)+âŠ+x^(p*q^2-q^2))
=(1+x^q+âŠ+x^(p*q-q))*(1+x^(p*q)+âŠ+x^(p*q^2-p*q))
ãªã®ã§ã(ã€)ã®å Žåãšéè€ããŸãã
以äžã«ãããn=p*qã®ãšãã®ãã€ã¹ãã¢ã¯7çµãšãªããŸãã
No.2079kuiperbelt8æ14æ¥ 21:29
GAI ããã
kuiperbelt ããã
ããããšãããããŸããã
No.2080Dengan kesaktian Indukmu8æ15æ¥ 19:48
N=2^2*3=12ã®ãšãã®ç©ã®åå²ã¯
12,2*6,6*2,3*4,4*3,2*2*3,2*3*2,3*2*2
ã®8éããããŸããããA273013ãåç
§ãããšãæ£12é¢äœã®2ã€ã®ãã€ã¹ãžã®å²ãåœãŠæ¹ã«ã
(12)*(12),
(2*6)*(12),(6*2)*(12),(3*4)*(12),(4*3)*(12),
(2*6)*(2*6),(2*6)*(6*2),(2*6)*(3*4),(2*6)*(4*3),
(6*2)*(2*6),(6*2)*(6*2),(6*2)*(3*4),(6*2)*(4*3),
(3*4)*(2*6),(3*4)*(6*2),(3*4)*(3*4),(3*4)*(4*3),
(4*3)*(2*6),(4*3)*(6*2),(4*3)*(3*4),(4*3)*(4*3),
(2*2*3)*(2*6),(2*2*3)*(6*2),(2*2*3)*(3*4),(2*2*3)*(4*3),
(2*3*2)*(2*6),(2*3*2)*(6*2),(2*3*2)*(3*4),(2*3*2)*(4*3),
(3*2*2)*(2*6),(3*2*2)*(6*2),(3*2*2)*(3*4),(3*2*2)*(4*3),
(2*2*3)*(2*2*3),(2*2*3)*(2*3*2),(2*2*3)*(3*2*2),
(2*3*2)*(2*2*3),(2*3*2)*(2*3*2),(2*3*2)*(3*2*2),
(3*2*2)*(2*2*3),(3*2*2)*(2*3*2),(3*2*2)*(3*2*2)
ã®1^2+1*4+4^2+4*3+3^2=42éããã£ãŠãæ£12é¢äœã®ãã€ã¹ãã¢ã®æ¯é¢æ°ã¯ã
(1+x+âŠ+x^11)ãš(1+x^12+âŠ+x^132)
(1+x)(1+x^24âŠ+x^120)ãš(1+x^2+âŠ+x^22)
(1+x+âŠ+x^5)(1+x^72)ãš(1+x^6+âŠ+x^66)
(1+x+x^2)(1+x^36+^72+x^108)ãš(1+x^3+âŠ+x^33)
(1+x+x^2+x^3)(1+x^48+x^72)ãš(1+x^4+âŠ+x^44)
(1+x)(1+x^4+âŠ+x^20)ãš(1+x^2)(1+x^24+âŠ+x^120)
(1+x)(1+x^12+âŠ+x^60)ãš(1+x^2+âŠ+x^10)(1+x^72)
(1+x)(1+x^6+âŠ+x^30)ãš(1+x^2+x^4)(1+x^36+x^72+x^108)
(1+x)(1+x^8+âŠ+x^40)ãš(1+x^2+x^4+x^6)(1+x^48+x^96)
(1+x+âŠ+x^5)(1+x^12)ãš(1+x^6)(1+x^24+âŠ+x^120)
(1+x+âŠ+x^5)(1+x^36)ãš(1+x^6+âŠ+x^30)(1+x^72)
(1+x+âŠ+x^5)(1+x^18)ãš(1+x^6+x^12)(1+x^36+x^72+x^108)
(1+x+âŠ+x^5)(1+x^24)ãš(1+x^6+x^12+x^18)(1+x^48+x^96)
(1+x+x^2)(1+x^6+^12+x^18)ãš(1+x^3)(1+x^24+âŠ+x^120)
(1+x+x^2)(1+x^18+^36+x^54)ãš(1+x^3+âŠ+x^15)(1+x^72)
(1+x+x^2)(1+x^9+^18+x^27)ãš(1+x^3+x^6)(1+x^36+x^72+x^108)
(1+x+x^2)(1+x^12+^24+x^36)ãš(1+x^3+x^6+x^9)(1+x^48+x^96)
(1+x+x^2+x^3)(1+x^8+x^16)ãš(1+x^4)(1+x^24+âŠ+x^120)
(1+x+x^2+x^3)(1+x^24+x^48)ãš(1+x^4+âŠ+x^20)(1+x^72)
(1+x+x^2+x^3)(1+x^12+x^24)ãš(1+x^4+x^8)(1+x^36+x^72+x^108)
(1+x+x^2+x^3)(1+x^16+x^32)ãš(1+x^4+x^8+x^12)(1+x^48+x^96)
(1+x)(1+x^4)(1+x^48+x^96)ãš(1+x^2)(1+x^8+âŠ+x^40)
(1+x)(1+x^12)(1+x^48+x^96)ãš(1+x^2+âŠ+x^10)(1+x^24)
(1+x)(1+x^6)(1+x^48+x^96)ãš(1+x^2+x^4)(1+x^12+x^24+x^36)
(1+x)(1+x^8)(1+x^48+x^96)ãš(1+x^2+x^4+x^6)(1+x^16+x^32)
(1+x)(1+x^4+x^8)(1+x^72)ãš(1+x^2)(1+x^12+âŠ+x^60)
(1+x)(1+x^12+x^24)(1+x^72)ãš(1+x^2+âŠ+x^10)(1+x^36)
(1+x)(1+x^6+x^12)(1+x^72)ãš(1+x^2+x^4)(1+x^18+x^36+x^54)
(1+x)(1+x^8+x^16)(1+x^72)ãš(1+x^2+x^4+x^6)(1+x^24+x^48)
(1+x+x^2)(1+x^6)(1+x^72)ãš(1+x^3)(1+x^12+âŠ+x^60)
(1+x+x^2)(1+x^18)(1+x^72)ãš(1+x^3+âŠ+x^15)(1+x^36)
(1+x+x^2)(1+x^9)(1+x^72)ãš(1+x^3+x^6)(1+x^18+x^36+x^54)
(1+x+x^2)(1+x^12)(1+x^72)ãš(1+x^3+x^6+x^9)(1+x^24+x^48)
(1+x)(1+x^4)(1+x^16+x^32)ãš(1+x^2)(1+x^8)(1+x^48+x^96)
(1+x)(1+x^4)(1+x^24+x^48)ãš(1+x^2)(1+x^8+x^16)(1+x^72)
(1+x)(1+x^6)(1+x^24+x^48)ãš(1+x^2+x^4)(1+x^12)(1+x^72)
(1+x)(1+x^4+x^8)(1+x^24)ãš(1+x^2)(1+x^12)(1+x^48+x^96)
(1+x)(1+x^4+x^8)(1+x^36)ãš(1+x^2)(1+x^12+x^24)(1+x^72)
(1+x)(1+x^6+x^12)(1+x^36)ãš(1+x^2+x^4)(1+x^18)(1+x^72)
(1+x+x^2)(1+x^6)(1+x^24)ãš(1+x^3)(1+x^12)(1+x^48+x^96)
(1+x+x^2)(1+x^6)(1+x^36)ãš(1+x^3)(1+x^12+x^24)(1+x^72)
(1+x+x^2)(1+x^9)(1+x^36)ãš(1+x^3+x^6)(1+x^18)(1+x^72)
ãšãªã£ãŠããã€ã¹ãã¢ã®åºç®ã¯ã
{0,1,2,3,4,5,6,7,8,9,10,11};{0,12,24,36,48,60,72,84,96,108,120,132},
{0,1,24,25,48,49,72,73,96,97,120,121};{0,2,4,6,8,10,12,14,16,18,20,22},
{0,1,2,3,4,5,72,73,74,75,76,77};{0,6,12,18,24,30,36,42,48,54,60,66},
{0,1,2,36,37,38,72,73,74,108,109,110};{0,3,6,9,12,15,18,21,24,27,30,33},
{0,1,2,3,48,49,50,51,72,73,74,75};{0,4,8,12,16,20,24,28,32,36,40,44},
{0,1,4,5,8,9,12,13,16,17,20,21};{0,2,24,26,48,50,72,74,96,98,120,122},
{0,1,12,13,24,25,36,37,48,49,60,61};{0,2,4,6,8,10,72,74,76,78,80,82},
{0,1,6,7,12,13,18,19,24,25,30,31};{0,2,4,36,38,40,72,74,76,108,110,112},
{0,1,8,9,16,17,24,25,32,33,40,41};{0,2,4,6,48,50,52,54,96,98,100,102},
{0,1,2,3,4,5,12,13,14,15,16,17};{0,6,24,30,48,54,72,78,96,102,120,126},
{0,1,2,3,4,5,36,37,38,39,40,41};{0,6,12,18,24,30,72,78,84,90,96,102},
{0,1,2,3,4,5,18,19,20,21,22,23};{0,6,12,36,42,48,72,78,84,108,114,120},
{0,1,2,3,4,5,24,25,26,27,28,29};{0,6,12,18,48,54,60,66,96,102,108,114},
{0,1,2,6,7,8,12,13,14,18,19,20};{0,3,24,27,48,51,72,75,96,99,120,123},
{0,1,2,18,19,20,36,37,38,54,55,56};{0,3,6,9,12,15,72,75,78,81,84,87},
{0,1,2,9,10,11,18,19,20,27,28,29};{0,3,6,36,39,42,72,75,78,108,111,114},
{0,1,2,12,13,14,24,25,26,36,37,38};{0,3,6,9,48,51,54,57,96,99,102,105},
{0,1,2,3,8,9,10,11,16,17,18,19};{0,4,24,28,48,52,72,76,96,100,120,124},
{0,1,2,3,24,25,26,27,48,49,50,51};{0,4,8,12,16,20,72,76,80,84,88,92},
{0,1,2,3,12,13,14,15,24,25,26,27};{0,4,8,36,40,44,72,76,80,108,112,116},
{0,1,2,3,16,17,18,19,32,33,34,35};{0,4,8,12,48,52,56,60,96,100,104,108},
{0,1,4,5,48,49,52,53,96,97,100,101}ãš{0,2,8,10,16,18,24,26,32,34,40,42},
{0,1,12,13,48,49,60,61,96,97,108,109}ãš{0,2,2,6,8,10,24,26,28,30,32,34},
{0,1,6,7,48,49,54,55,96,97,102,103}ãš{0,2,4,12,14,16,24,26,28,36,38,40},
{0,1,8,9,48,49,56,57,96,98,104,105}ãš{0,2,4,6,16,18,20,22,32,34,36,38},
{0,1,4,5,8,9,72,73,76,77,80,81}ãš{0,2,12,14,24,26,36,38,48,50,60,62},
{0,1,12,13,24,25,72,73,84,85,96,97}ãš{0,2,4,6,8,10,36,38,40,42,44,46},
{0,1,6,7,12,13,72,73,78,79,84,85}ãš{0,2,4,18,20,22,36,38,50,54,56,58},
{0,1,8,9,16,17,72,73,80,81,88,89}ãš{0,2,4,6,24,26,28,30,48,50,52,54},
{0,1,2,6,7,8,72,73,74,78,79,80}ãš{0,3,12,15,24,27,36,39,48,51,60,63},
{0,1,2,18,19,20,72,73,74,90,91,92}ãš{0,3,6,9,12,15,36,39,42,45,48,51},
{0,1,2,9,10,11,72,73,74,81,82,83}ãš{0,3,6,18,21,24,36,39,42,54,57,60},
{0,1,2,12,13,14,72,73,74,84,85,86}ãš{0,3,6,9,24,27,30,33,48,51,54,57},
{0,1,4,5,16,17,20,21,32,33,36,37}ãš{0,2,8,10,48,50,56,58,96,98,104,106},
{0,1,4,5,24,25,28,29,48,49,52,53}ãš{0,2,8,10,16,18,72,74,80,82,88,90},
{0,1,6,7,24,25,30,31,48,49,54,55}ãš{0,2,4,12,14,16,72,74,76,84,86,88},
{0,1,4,5,8,9,24,25,28,29,32,33}ãš{0,2,12,14,48,50,60,62,96,98,108,110},
{0,1,4,5,8,9,36,37,40,41,44,45}ãš{0,2,12,14,24,26,72,74,84,86,96,98},
{0,1,6,7,12,13,36,37,42,43,48,49}ãš{0,2,4,18,20,22,72,74,76,90,92,94},
{0,1,2,6,7,8,24,25,26,30,31,32}ãš{0,3,12,15,48,51,60,63,96,99,108,111},
{0,1,2,6,7,8,36,37,38,42,43,44}ãš{0,3,12,15,24,27,72,75,84,87,96,99},
{0,1,2,9,10,11,36,37,38,45,46,47}ãš{0,3,6,18,21,24,72,75,78,90,93,96}
ã®42éããšãªããŸãã
No.2096kuiperbelt8æ23æ¥ 19:38
twitter ã«ãŠããã«ããŒãã( @HKTmine ) ã次ã®ãããªåã€çµã®å
é¢äœãã€ã¹ãçºè¡šãããŸãããïŒç«Šã¿ãšãªã£ãŠããŸãã
A=(0,4,4,4,7,7)
B=(3,3,3,3,8,8)
C=(1,1,6,6,6,6)
D=(2,2,5,5,5,9)
AãBã«åã€ç¢ºçã¯5/9ã§ã
BãCã«åã€ç¢ºçã¯5/9ã§ã
CãDã«åã€ç¢ºçã¯5/9ã§ã
DãAã«åã€ç¢ºçã¯5/9ã§ããã€ã
AãCã«åã€ç¢ºçã1/2ã§ã
BãDã«åã€ç¢ºçã1/2ã«ãªã£ãŠããŸãã
No.2252Dengan kesaktian Indukmu10æ13æ¥ 23:37
ãµãšæãã€ããã¢ã€ãã¢ãããšã«æã§äœæããŠã¿ãã察称æ§ã®é«ããéæšç§»çãã€ã¹ãã«ãªã£ãŠããŸããã
äºã€çµã®ãäºé¢äœãã€ã¹ (20é¢äœã§åäžæ°ãåã€âäºã€ã®æ°ã§å®çŸ) ã§ãã
A: (0,8,11,19,22)
B: (3,6,14,17,20)
C: (1,9,12,15,23)
D: (4,7,10,18,21)
E: (2,5,13,16,24)
Aã¯Bã«13/25 ã®ç¢ºçã§åã¡
Bã¯Cã«13/25 ã®ç¢ºçã§åã¡
Cã¯Dã«13/25 ã®ç¢ºçã§åã¡
Dã¯Eã«13/25 ã®ç¢ºçã§åã¡
Eã¯Aã«13/25 ã®ç¢ºçã§åã¡
ãã€
Aã¯Dã«14/25 ã®ç¢ºçã§åã¡
Bã¯Eã«14/25 ã®ç¢ºçã§åã¡
Cã¯Aã«14/25 ã®ç¢ºçã§åã¡
Dã¯Bã«14/25 ã®ç¢ºçã§åã¡
Eã¯Cã«14/25 ã®ç¢ºçã§åã€ã
No.2253Dengan kesaktian Indukmu10æ14æ¥ 15:22
5ç«Šã¿ãã€ã¹ãããã®ã§ããã
4ç«Šã¿ãã€ã¹ã§ã¯ããšããã³ã®ãã€ã¹(Efronâs Dice)ãç¥ãããŠããŸããã
aïŒ(0,0,4,4,4,4)
b =(3,3,3,3,3,3)
c =(2,2,2,2,6,6)
d =(1,1,1,5,5,5)
ãšãããã€ã¹ã§ã
aãbã«åã€ç¢ºçã¯2/3ã§ã
bãcã«åã€ç¢ºçã¯2/3ã§ã
cãdã«åã€ç¢ºçã¯2/3ã§ã
dãaã«åã€ç¢ºçã¯2/3ã§ããã
aãcã«åã€ç¢ºçã4/9ã§ã
bãdã«åã€ç¢ºçã1/2ã«ãªã£ãŠããŠããã«ããŒããã®ãã€ã¹ãšéã£ãŠa,b,c,dã¯å®å
šã«å¯Ÿçãšã¯ãªã£ãŠããªãããã§ãã
3ç«Šã¿ãã€ã¹ã¯2é¢ãã€ã¹ã§ã¯äœããŸãããã3é¢ãã€ã¹ã§ã¯
A=(1,6,8)
B=(2,4,9)
C=(3,5,7)
ãšãããã€ã¹ã§ã
AãBã«åã€ç¢ºçã¯5/9ã§ã
BãCã«åã€ç¢ºçã¯5/9ã§ã
CãAã«åã€ç¢ºçã¯5/9ãšãªã£ãŠããŠãããããã®æ°åã2é¢ãã€ããã°6é¢ãã€ã¹ã§ãäœãããšãã§ããŸãã
No.2254kuiperbelt10æ14æ¥ 21:11
äžç«Šã¿ãã€ã¹ã«é¢çœãã®ããããŸããŠã
äžçµãã
A:ïŒïŒïŒ
B:ïŒïŒïŒ
C:ïŒïŒïŒ
äžã¯ [2254]ã§kuiperbeltãããæ瀺ãªãã£ããã®ã§ããã
äºçµãã
D:ïŒïŒïŒ
E:ïŒïŒïŒ
F:ïŒïŒïŒ
ããã¯äžçµãã«çŽäº€ããŠããŸããããªã¬ãªã¬çšèªã§ãããã©ããåçã®äžç«Šã¿ã¯ãã²ãšãã¿ããšåãã§ãã
ïŒçµãã
äžã®äºçµã®å¹³åïŒãåããŸãã
G:ïŒïŒïŒ //ADã®å¹³å
H:ïŒïŒïŒ//BEã®å¹³å
:ïŒïŒïŒ//CFã®å¹³å
ãã®ïŒçµç®ãé¢çœããã§ãã
äžç«Šã¿ã¯
匷â匱ããšâã䜿ãããšã«ããŠã
A â Bâ Câ A
D â E â F â D
ã§ããã«ãããããã
å¹³åããšããšç¢å°ã®åããéã«ãªããŸããããªãã¡
G â H â I â G
å
ã»ã©ã®ïŒç«Šã¿ãã€ã¹ã«ããçŽäº€ããããã€ã¹ã®çµããããŸããããŸã ãåãããšãèµ·ãããã©ãã確èªããŠããŸããã
No.2256Dengan kesaktian Indukmu10æ14æ¥ 22:52