ããã³ã®å
¬åŒSïŒïŒïœ(s-a)(s-b)(s-c)
ã®æ¡åŒµãšããŠãã¿ãŒãã°ãã¿ã®å
¬åŒããããŸãã
S^2=(s-a)(s-b)(s-c)(s-d)ã d=0 ãšããã°ãåŸãããŸãã
ããã¯ãå
æ¥åè§åœ¢ã®å Žåã§ããã
å
æ¥ããªãåè§åœ¢ã«ã€ããŠããã¬ãŒãã·ã¥ãã€ããŒã®å
¬åŒ
S^2=(s-a)(s-b)(s-c)(s-d)ãŒabcdcos^2(A+C)/2
No.2564ks3æ17æ¥ 14:23
åžåè§åœ¢ã®å Žåãåè§åœ¢ABCDãšããŠã
蟺ABã®äžç¹ãE,BCã®äžç¹ãF,CDã®äžç¹ãG,DAã®äžç¹ãHãšçœ®ããŸãã
ç¹Eãšç¹Gããçµãã ç·åäžã«ãFããåç·ã®è¶³ãPãç¹Hããã®åç·ã®è¶³ãQãšããŸãã
ãããšãè£æããŠãåè§åœ¢AEQHãEãäžå¿ã«ãåè§åœ¢HQGDãäžå¿ã«å転ã
é·æ¹åœ¢ãã§ãã
åè§åœ¢ABCDã®é¢ç©SïŒïŒEGã»HQïŒïŒEGã»FPïŒEGïŒHQïŒFPïŒ
ãç¥ããæåããŸããã
è£æã«ãããæ£äžè§åœ¢ãæ£æ¹åœ¢ã«ããããšãããããã§ãã!
No.2568ks3æ20æ¥ 12:22
é·æ¹åœ¢ã¯åºæ¥ãªãïŒ
No.2570HP管çè
3æ21æ¥ 08:34 å°åŠïŒå¹Žçã®ãããããŸè«
ãä¹ä¹ã®ç ç©¶ã
ä¹ä¹ã®è¡šã«ã¯ïŒïŒåã®çãããããã
éè€ããŠãããã®ãæ¶ããšïŒïŒåã«ãªãã
ïŒïœïŒïŒã®äžã§ã
ä¹ä¹ã®çã«ç¡ããã®ã¯ïŒïŒå
ããã¯å¶ç¶ã®äžèŽïŒïŒïŒ
ã¹ããªãã¥ã¢ã«ã®æ±ååä¹ããæ°ãã
ãã®äžã«ã¯å¶ç¶ã¯ãªãå
šãŠå¿
ç¶ã«èµ·ããã
ç§ã®é ããã±ãŠãã ãïŒïŒïŒ
No.2553ã«ã«ãã¹3æ15æ¥ 15:53
管ç人æ§
ãæ¥ãããããïœããã
ç§ã¯ä¹ä¹ã®è¡šãæãã«ãçŽãçã£äºã€ã«ããã ãã§ããã
æ£ç¢ºã«ã¯ïŒïŒåã§ãããïŒïŒŸïŒŸïŒ
No.2556ã«ã«ãã¹3æ16æ¥ 13:06
仿Žãªããã»ã»ã»ã»ã»
ç§ã®è¡šçŸã®ä»æ¹ãæªãã£ãã§ãã
ãä¹ä¹ã®éè€ãã®æå³ã¯
äžèšã®ãããªãçãã®éè€ã§ã¯ãªã
ïŒïœïŒïŒïŒ
ïŒïœïŒïŒïŒ
ãåŒã®éè€ããæå³ãšããŠããŸããã
ïŒïœïŒïŒïŒïŒ
ïŒïœïŒïŒïŒïŒ
ãããã1éããšèãããšïŒïŒåã«ãªãã
ä¹ä¹ã®çãã«ç¡ãæ°åã®åæ°ïŒïŒåãšåãã«ãªãã
No.2566ã«ã«ãã¹3æ17æ¥ 22:06
æŽæ° a, b, c (ãã ã 0 < a < b < c) ã«å¯Ÿããa ã®å¹³æ¹ãš c ã®å¹³æ¹ã®çžä¹å¹³åã b ã®å¹³æ¹ãšãªããããªãã¡
â(a² · c²) = b²ââ
ãŸãã¯åãããšã§ãã
a² · c² = bâŽ
ãæºããæŽæ°è§£ã¯ãããšãã° a, b, c ãçæ¯æ°åã®å Žåãªã©ãã容æã«èŠåºãããšãã§ããç¡æ°ã«ååšããŸãã
ãããèžãŸããæ¬¡ã®åé¡ã«ã€ããŠæ€èšããŠãã ããã
æŽæ° a, b, c (0 < a < b < c) ã«ãããŠãa ã®å¹³æ¹ãã 1 ãåŒããæ°ãš c ã®å¹³æ¹ãã 1 ãåŒããæ°ã®çžä¹å¹³åããb ã®å¹³æ¹ãã 1 ãåŒããæ°ãšãªããããªãã¡
â((a² â 1)(c² â 1)) = b² â 1ââ
ãŸãã¯åãããšã§ãã
(a² â 1)(c² â 1) = (b² â 1)²
ãæºããæŽæ°è§£ã¯ãç¡æ°ã«ååšããã®ã§ããããïŒ
â»ã²ãšã€ã®äŸãšããŠã
(577² â 1)(3363² â 1) = (1393² â 1)²
ãæããŠãããŸãã
No.2560Dengan kesaktian Indukmu3æ16æ¥ 22:52
GAI ãã颚ã®åºé¡ãå¿åããŠãããŸãã
No.2561Dengan kesaktian Indukmu3æ16æ¥ 22:53
a[1]=3, a[2]=7, a[n+2]=2a[n+1]+a[n] ãšããæŒžååŒã«ãã
3, 7, 17, 41, 99, 239, 577, 1393, 3363, ⊠(A001333)
ãšããæ°åãçæãããŸããããã®ãšã
(a[2n-1]^2-1)(a[2n+1]^2-1)=(a[2n]^2-1)^2
ãæãç«ã¡ãŸãã
# ãã㯠(a[2n])^2=a[2n-1]a[2n+1]-2 ãš a[n+2]=2a[n+1]+a[n] ãã瀺ããŸãã
åŸã£ãŠè§£ã¯ç¡æ°ã«ãããŸãã
ãªããäžèšã«å«ãŸããªã
(4^2-1)(31^2-1)=(11^2-1)^2
(2^2-1)(97^2-1)=(13^2-1)^2
ãªã©ååšããŸãã®ã§ãäžèšã¯å
šè§£ã§ã¯ãããŸããã
No.2562ãããã3æ17æ¥ 03:59
ãããããããç¬æ®ºããèŠäºã§ãã
ããã€ããè峿·±ãã§ããé£ç©ããã§ããã
(4^2-1)(31^2-1)=(11^2-1)^2
(2^2-1)(97^2-1)=(13^2-1)^2
No.2563Dengan kesaktian Indukmu3æ17æ¥ 07:13
é£ç¶ããå¹³æ¹æ°ã®åã§åæçæ°(åãããåŸããããåãæ°åãšãªããã®)ãäœãããšãèããŠã¿ãã
äŸ
9^2+10^2=181
11^2+12^2+13^2=434
6^2+7^2+8^2+9^2+10^2+11^2+12^2=595

ãªã©ãªã©æ°å€ãã®åæçæ°ãæ§æã§ããã
ããã§
ãã®åæçæ°ã®å€§ããã10000000以äžã§ãããã®ãšããæ¡ä»¶ã®ãšã
ãã®æ§ææ¹æ³ã2éãååšãããã®åæçæ°ã¯äœããããïŒ
ãŸããã®æ§ææ¹æ³ãå
·äœçã«ç€ºããŠäžããã
äœæ°ã«èª¿æ»ãããŠè¡ã£ãããçµæ§ããã°ã©ã çã«æ··ä¹±ããŠãããæã£ãããæéåã£ãŠããŸããŸããã
åãæ°ã誰ããèŠã€ããŠãããããèå³ãæ¹§ããã®ã§åºé¡ããŠã¿ãŸããã
No.2557GAI3æ16æ¥ 13:34
10000000以äžã§ã¯554455ãš9343439ã®2åã§ãããã
ã10000000以äžãã
ã100000000000000以äžãã«ããŠã1åããå¢ããŸããã§ããã
9^2+10^2+âŠ+118^2 = 554455
331^2+332^2+âŠ+335^2 = 554455
102^2+103^2+âŠ+307^2 = 9343439
657^2+658^2+âŠ+677^2 = 9343439
2967^2+2968^2+âŠ+14087^2 = 923222222329
42462^2+42463^2+âŠ+42967^2 = 923222222329
(远èš)
çããâããã«ãããŸããã
https://oeis.org/A267600
No.2558ãããã3æ16æ¥ 16:13
æšå¹ŽããProject Eulerã®åé¡ãproblem1 ããé çªã«ããã°ã©ã ã®ç·Žç¿ã«ãšè§£ããŠããŠ
https://projecteuler.net/about
problem=125ã«Palindromic Sumsã®ããŒãã®åé¡ã«ïŒhttps://projecteuler.net/problem=125ïŒ
åœãã£ãŠããã
ããããèŠåŽããªãã3æ¥äœãããã£ãš
the sum of all the numbers less than 10^8
that are both palindromic and can be written as the sum of consecutive squares.
ã®å€ãç®åºãçãåããããããšééã£ãŠãããšã®çµæããããã
ãããèŠçŽããŠãã©ããééã£ãŠããããã©ãããŠãåããããäœæéãæ©ã¿ãšã¯ã»ã«ã«èŠã€ãã
ãã®åæçæ°ã貌ãä»ã(168åååš)ã©ãã«èŠèœãšããããã®ãæ©ãã§ããã
ãµãšéè€ããŠããããã®çåãæã¡éè€ããå€ãããã®ããã³ãã³ãã®æ©èœãå©çšãããš
ãªããš2ãæã§å°ãä»ãã§ã¯ãªããïŒ
ããã¯åãå€ã2ã€ã®äœãæ¹ãååšããŠããããšã瀺ããŠããããšã«çžåœãããã®éè€ããå€ã
ããããåé€ããããäžåºŠåèšæ°ãæ±ããã®å€ã§å°ããããã£ãšã®ããšã§æ£è§£ã®è¿äºãããã£ãã
(168åããã£ãã®ã§éè€ããŠããããšãå
šãèŠããŠããªãã£ãã)
ãã®çµéšãå
ã«åé¡ãäœãå°ããããšã§ããã
ãã以äžã®éè€ããããšã¯æããããä»ãŸã§ããã£ãæéãèãããšå
ã«é²ãåæ°ãåºãªãã£ãã
OEISã®A267600ã«ãããèŒã£ãŠãããšã¯äžã®äžèª°ãã調ã¹ãŠãããã®ã§ããã
a(4) > 10^18, if it exists
ã®ã¡ã¢ãèŠãã ãã§ããè
°ãåŒããŠããŸããŸãã
ãããçæéã§èŠåºãããããããã®æè
ã«æ¬æã§ãã
No.2559GAI3æ16æ¥ 18:57
以åãšãããããã¶ããšåã«äº¬å€§æ°åŠã«åºãŠã
tan((a+b)/2)âŠ(tana+tanb)/2
ãšããäžçåŒããæ¢ããŠåžäžçåŒã䜿çšããã«å³åœ¢çã«èŠãããæ¹ãèããŠã¿ãŸããïŒ
ä»ã«ãè²ã
ãšè§£éã§ãããšæãã®ã§ãé¢çœãããæ¹ãæãã°æããŠãã ããïŒ
No.2555Tabasco3æ16æ¥ 07:52
å°åŠæ ¡ã®é ãä¹ä¹ãå
šéšèšããªããŠãæŸèª²åŸãæ®ãããã
ç§ã«ãšã£ãŠãä¹ä¹ã¯èŠèŠã ã£ãã
ä¹ä¹ã®çãã®è¡šã«ã¯ãïŒïŒåã®æ°åãæžãããŠãããã
ãã®ïŒïŒåã®æ°åãå
šéšè¶³ããšïŒïŒïŒïŒã«ãªããš
ä»å¹ŽïŒïŒïŒïŒïŒå¹ŽïŒã«åããŠç¥ã£ãã
ã¡ãã£ãšæåã»ã»ã»ã»ã»
ããã§åé¡ãæãã€ããã
ïŒïŒãïŒïŒãïŒïŒãïŒïŒãïŒïŒãæ¬¡ã®æ°ã¯ïŒ
No.2544ã«ã«ãã¹3æ14æ¥ 16:55
ä¹ä¹ã®è¡šã«çŸããªãæ°åãå°ããé ã«äžŠã¹ããã®ãšèãããšãçãã¯ãïŒïŒãããªïŒ
No.2545HP管çè
3æ14æ¥ 18:10 管ç人æ§
倧åœãããïœã§ããããŸããããã
倧å€ãé
ããªããŸãããã
æ¬å¹Žããããããé¡ãããããŸãã
No.2546ã«ã«ãã¹3æ14æ¥ 18:16
ïŒïŒãïŒïŒãïŒïŒãïŒïŒãïŒïŒ
ãšãããªãçŽ æ°ä»¥å€ã®22ãå
¥ã蟌ãã§æ¥ãã®ã§ãæžæã£ãŠããŸããŸããã
ããã§
1,2,3,5,7,11,13,17,19,22,23,25,26,29,
ãšç¶ããŠããæ°åã®æ¬¡ã®10åã®æ°ã¯äœã§ãããïŒ
No.2547GAI3æ14æ¥ 20:31
31ã33ã34ã37ã38ã41ã43ã46ã47ã51 ã§ããïŒ
No.2548HP管çè
3æ14æ¥ 21:11 倧æ£è§£ã§ãã
å¿
ãçŽ æ°ã¯å
¥ã£ãŠãããããã以å€ã«ãåææ°ãæã
å
¥ã蟌ãããšãããé¢çœãã
ãã«ãã©ã³ã®ä»®èª¬ãããããçºçããŠããããããããããããªæ§è³ªã«çç®ã§ãããã®ã ãšæå¿ããŸãã
ãŸãããã蚌æãããã§ãã·ã§ãã®èœåã«ãè±åžœã§ãã
No.2549GAI3æ15æ¥ 07:38
åã®æ¥µã𿥵ç·ã¯ããç¥ãããŠããŸããã
äžè§åœ¢ã®æ¥µã¯ç¥ããŸããã§ããã
極ç·ã¯ãæ¥æŠã®äžè¬åãšèããŠããã®ã§ããããïŒ
No.2535ks3æ10æ¥ 11:48
äžç·æ¥µç¹(trilinear pole)ãšäžç·æ¥µç·(trilinear polar)ã®ããšã§ãããïŒ
https://ja.wikipedia.org/wiki/%E4%B8%89%E7%B7%9A%E6%A5%B5%E7%B7%9A
ãããäœãã®äžè¬åãªã®ãã©ããç§ã¯ç¥ããŸãããã
åãäºæ¬¡æ²ç·ã®æ¥µã»æ¥µç·ãšã¯ç¡é¢ä¿ã ãšæã£ãæ¹ããããšæããŸãã
ããããããšã§ãããå¥ã®ãã®ã«åããããªåç§°ã䜿ãããŠãããšçŽããããã§ãããã
ãã®å³ã§åºæºäžè§åœ¢ãâ³ABCãšãããšããç¹PãšçŽç·UVWãäžç·æ¥µç¹ã»äžç·æ¥µç·ã®é¢ä¿ã«ãããŸãã
No.2538ããã²ã3æ10æ¥ 23:20
No.2538 ã®å³ã«ã€ããŠèª¬æãæžããŠããããšæããŸãã
以äžã§ã¯å°åœ±å¹³é¢ã§èããããšãšãã
ãŠãŒã¯ãªããå¹³é¢ã§å¿
èŠãªå¹³è¡ç·ã®å Žååããäžåçç¥ããŸãã
ç¹ããå§ããå ŽåãšçŽç·ããå§ããå Žåã§ãããã説æãã§ããŸããã
ããããã®èª¬æã¯å°åœ±å¹Ÿäœã®å察ã®é¢ä¿ã«ãããŸãã
(1)[ç¹Pããå§ããå Žå]
åºæºäžè§åœ¢ãâ³ABCãšããŸãã
ç¹Pã¯çŽç·BC,CA,ABäžã«ãªãç¹ãšããŸãã
BCãšAPã®äº€ç¹ãA'ïŒCAãšBPã®äº€ç¹ãB'ïŒABãšCPã®äº€ç¹ãC'ãšãããšãã
â³A'B'C'ã(â³ABCã«é¢ãã)ç¹Pã®ãã§ãäžè§åœ¢ãšãããŸãã
åºæºäžè§åœ¢â³ABCãšãã§ãäžè§åœ¢â³A'B'C'ã¯ç¹Pãäžå¿ãšããé
æ¯ã®äœçœ®ã«ããã®ã§
ãã¶ã«ã°ã®å®çã«ããé
æ¯ã®è»žãååšããŸãã
ããªãã¡ãBCãšB'C'ã®äº€ç¹UïŒCAãšC'A'ã®äº€ç¹VïŒABãšA'B'ã®äº€ç¹Wã¯ããçŽç·läžã«ããã
ãã®çŽç·lã(â³ABCã«é¢ãã)ç¹Pã®äžç·æ¥µç·ãšãããŸãã
ãŸããA,A'ã«é¢ããç¹Pã®èª¿åå
±åœ¹ç¹ãA''ïŒB,B'ã«é¢ããç¹Pã®èª¿åå
±åœ¹ç¹ãB''ïŒ
C,C'ã«é¢ããç¹Pã®èª¿åå
±åœ¹ç¹ãC''ãšãããšãã
â³A''B''C''ã(â³ABCã«é¢ãã)ç¹Pã®åãã§ãäžè§åœ¢ãšãããŸãã
4ç¹A,U,B'',C''ïŒ4ç¹B,V,C'',A''ïŒ4ç¹C,W,A'',B''ã¯ããããäžçŽç·äžã«ãããŸãã
åºæºäžè§åœ¢â³ABCãšåãã§ãäžè§åœ¢â³A''B''C''ã¯ç¹Pãäžå¿ãšããé
æ¯ã®äœçœ®ã«ããã®ã§
ãã¶ã«ã°ã®å®çã«ããé
æ¯ã®è»žãååšããŸãããããã¯çŽç·lã«äžèŽããŸãã
(2)[çŽç·lããå§ããå Žå]
åºæºäžè§åœ¢ãâ³ABCãšããŸãã
çŽç·lã¯ç¹A,B,CãéããªãçŽç·ãšãã
çŽç·lãšçŽç·BC,CA,ABã®äº€ç¹ãããããU,V,WãšããŸãã
3çŽç·AU,BV,CWã蟺ãšããäžè§åœ¢ãâ³A''B''C''ãšããŸãã
(BVãšCWã®äº€ç¹ãA''ïŒCWãšAUã®äº€ç¹ãB''ïŒAUãšBVã®äº€ç¹ãC''ãšããŸãã)
åºæºäžè§åœ¢â³ABCãšâ³A''B''C''ã¯çŽç·lã軞ãšããé
æ¯ã®äœçœ®ã«ããã®ã§
ãã¶ã«ã°ã®å®çã«ããé
æ¯ã®äžå¿ãååšããŸãã
ããªãã¡ã3çŽç·AA'',BB'',CC''ã¯ããç¹Pã§äº€ããã
ãã®ç¹Pã(â³ABCã«é¢ãã)çŽç·lã®äžç·æ¥µç¹ãšãããŸãã
ãŸããBC,AUã«é¢ããçŽç·lã®èª¿åå
±åœ¹ç·ãiïŒCA,BVã«é¢ããçŽç·lã®èª¿åå
±åœ¹ç·ãjïŒ
AB,CWã«é¢ããçŽç·lã®èª¿åå
±åœ¹ç·ãkãšãããšãã
3çŽç·i,j,kã蟺ãšããäžè§åœ¢ãâ³A'B'C'ãšããŸãã
(jãškã®äº€ç¹ãA'ïŒkãšiã®äº€ç¹ãB'ïŒiãšjã®äº€ç¹ãC'ãšããŸãã)
4çŽç·BC,AA'',j,kïŒ4çŽç·CA,BB'',k,iïŒ4çŽç·AB,CC'',i,jã¯ããããäžç¹ã§äº€ãããŸãã
åºæºäžè§åœ¢â³ABCãšâ³A'B'C'ã¯çŽç·lã軞ãšããé
æ¯ã®äœçœ®ã«ããã®ã§
ãã¶ã«ã°ã®å®çã«ããé
æ¯ã®äžå¿ãååšããŸãããããã¯ç¹Pã«äžèŽããŸãã
No.2539ããã²ã3æ11æ¥ 03:36
次ã®ãããªåé¡ãèããŠã¿ãŸããïŒ
ãåé¡ã
å¹³é¢äžã«æ Œåç¹ãé ç¹ãšããåè§åœ¢ABCDãããã
蟺ABäžãBCäžã«ã¯å¥æ°åã®æ Œåç¹ãããã蟺CDäžã«ã¯å¶æ°åã®æ Œåç¹ããããšãããšã蟺DAäžã«ããæ Œåç¹ã®åæ°ã¯å¥æ°åã§ãªããã°ãªããªããããããšãå¶æ°åã§ãªããã°ãªããªããïŒãããã¯ã©ã¡ããšãèšãããïŒãã ãã0ãå¶æ°ã«å«ãããã®ãšããã
è²ã
ãªè§£æ³ããããããããŸããã
No.2533Tabasco3æ10æ¥ 10:28
ãã¿ãŸãããæåŸã®äžæã®0ãå¶æ°ã«å«ãããã®ãšãããã¯äœèšã§ãããïŒ
No.2534Tabasco3æ10æ¥ 10:38
蟺äžã®æ Œåç¹ã奿°åâ蟺ã®äžç¹ãæ Œåç¹â蟺ã®äž¡ç«¯ã®åº§æšã®å¶å¥ãx,yãšãåã
蟺äžã®æ Œåç¹ãå¶æ°åâ蟺ã®äžç¹ãéæ Œåç¹â蟺ã®äž¡ç«¯ã®åº§æšã®å¶å¥ãx,yããããã§ç°ãªã
ãšãªããããåé¡ã®æ¡ä»¶ã§ã¯A,B,Cã®åº§æšã®å¶å¥ã¯x,yãšãåã
ãããŠDãšCã¯åº§æšã®å¶å¥ãx,yããããã§ç°ãªããã
DãšAã座æšã®å¶å¥ãx,yããããã§ç°ãªãããšã«ãªãã
蟺DAäžã®æ Œåç¹ã®åæ°ã¯å¿
ãå¶æ°åã
No.2536ãããã3æ10æ¥ 12:57
æ£è§£ã§ãïŒ
ã¡ãã£ãšç°¡åéããŸããããã
No.2537Tabasco3æ10æ¥ 13:34
åœé¡
n ãæ£ã®æŽæ°ãšãããä»»æã® n ã«ã€ããŠ
(10^{n}*1198 -1)/9
ã¯åææ°ã§ããã
æ¬æ¥æ°ã«ãªã£ãŠãã¡ãã¡èª¿ã¹ãŸãããŸããã
ã©ãããæªè§£æ±ºã®ããã§ãã
2000 以äžã® n ã«ã€ããŠã¯åææ°ãšå€æããŠã㊠2001 ãã 2500 ãŸã§ã®ç¯å²ã§ã¯ãäžèšã®å³ã«ç»å ŽããŠãã n 以å€ã§åææ°ãšå€æããŠããŸããäžèšå³ã® n ã«ã€ããŠã¯åææ°ãçŽ æ°ãã«ã€ããŠããã£ãŠããªãããã§ãã
No.2516Dengan kesaktian Indukmu3æ5æ¥ 23:18
133ã®åŸã«1ãnåç¶ããŠçŽ æ°ã«ãªãæå°ã®nã¯2890ã§ãããããããã®å€ã¯ãã¹ãŠåææ°ãšããã£ãŠããŸãã
å®éããããã®å€ãPari/GPã§isprime((10^2248*1198-1)/9)ã®ããã«èª¿ã¹ããšããã¹ãŠ(1ç§ä»¥å
ã§)0(ã€ãŸãåææ°)ãšå€å®ãããŸãã
åè: https://oeis.org/A069568
âãã®ããŒãžã®ããŒã¿ã¯ç§ã2023幎ã«a(119)ïœa(602)ã远å ãããŸã§ã¯a(1)ïœa(118)ãŸã§ãããããŸããã§ããã
603ã®åŸã«1ãäœåç¶ãããšçŽ æ°ã«ãªããã¯ããããã誰ãããã£ãŠããªããšæããŸãã
ïŒå°ãªããšã30äžåãŸã§ã¯åææ°ã§ãããïŒ
No.2517ãããã3æ6æ¥ 07:38
ããããããã忥ã§ããã
â» (11980000*(1000000^(n))-1)/9 â å®ã¯ãã¡ãã®å€çš®ã§ããããŠãããŸããã(â ãâ oâ ãâ ;
a(603) ãäžæãšã®ããšã倧å€ã«å¿æ¹ãããŸãã
No.2518Dengan kesaktian Indukmu3æ6æ¥ 13:37
çœç¶ããŸããš
MAGMA ã§ä»¥äžã®ã³ãŒãã§èµ°ãããŠçŽ æ°ãã¿ã€ãã£ãŠããªãã£ãã®ã§æ²ããã§ãã
for n in [4000] do
p := (1198 * 10^n - 1) div 9;
if IsPrime(p) then
printf "n = %o, candidate = %o\n", n, p;
end if;
end for;
No.2519Dengan kesaktian Indukmu3æ6æ¥ 14:08
Python ã§äžèšãèµ°ããããšããããããã«ã
n = 2890 ã§çŽ æ°ãšãªããŸããã
from sympy import isprime
# n ã 2889 ãã 2891 ã®ç¯å²ã§èª¿ã¹ã
n_range = range(2889, 2892)
# çµæãæ ŒçŽãã倿°
prime_results = []
for n in n_range:
P_n = (1198 * 10**n - 1) // 9 # æŽæ°å€ãèšç®
if isprime(P_n):
prime_results.append((n, P_n)) # n ãšãã®çŽ æ°ãèšé²
prime_results # çµæãåºå
No.2520Dengan kesaktian Indukmu3æ6æ¥ 14:31
> â» (11980000*(1000000^(n))-1)/9 â å®ã¯ãã¡ãã®å€çš®ã§ããããŠãããŸããã(?ã?o?ã?;
(10^n*1198-1)/9 ã¯
nã奿°ã®ãšã11ã§å²ãåãã
nâ¡0 (mod 6)ã®ãšã7ã§å²ãåãã
nâ¡2 (mod 6)ã®ãšã3ã§å²ãåããŸãã®ã§ã
çŽ æ°ã«ãªããšããã
nâ¡4 (mod 6)ãããããŸããã
ããã衚ããã®ã
(11980000*(1000000^(n))-1)/9
ã§ããã
ïŒã€ãŸããå€çš®ãããªãã¡ãã®åœ¢ã«ãªããªã(10^n*1198-1)/9ã¯åææ°ãªã®ã§ã調ã¹ãå¿
èŠããªããšããããšã§ãïŒ
No.2521ãããã3æ6æ¥ 14:39
n=2890ã®æ¬¡ã«çŽ æ°ã«ãªãã®ã¯n=17710ã§ããã
ãã ããn=17710ã®ãšãã®å€ã¯ç¢ºçççŽ æ°ã§ãã
No.2527ãããã3æ7æ¥ 17:11
ãããããããæé£ãããããŸãã
Cèšèªã§çµãŸããŠããŸããïŒ
No.2528Dengan kesaktian Indukmu3æ8æ¥ 14:45
ã¯ããCèšèªã§ãã
No.2530ãããã3æ8æ¥ 23:42
ããããããã
埡åçãããããšãããããŸããã
No.2532Dengan kesaktian Indukmu3æ9æ¥ 09:50
2ïœ9ã®åŸã«1ãç¶ãæ°ã§çŽ æ°ã«ãªããã®ã調ã¹ãŠã¿ãããçŽ æ°ã«ãªãã®ã¯ã1ã100å以äžã®å Žåã§
2ã®åŸã«1ã2,3,12,18,23,57å
3ã®åŸã«1ã1,2,5,10,11,13,34,47,52,77,88å
4ã®åŸã«1ã1,3,13,25,72å
5ã®åŸã«1ã5,12,15,84å
6ã®åŸã«1ã1,5,7,25,31å
7ã®åŸã«1ã1,7,55å
8ã®åŸã«1ã2,3,26å
9ã®åŸã«1ã2,5,20,41,47,92å
ãšãªããŸããã7ãš8ã®å Žåãå°ãªãã®ã§ã7ãš8ã«ã€ããŠ1ã1000å以äžã®å ŽåãŸã§èª¿ã¹ãŠã¿ããšã
7ã«ã€ããŠã¯1ã1,7,55åã®ä»ã¯çŽ æ°ã¯çŸããã8ã«ã€ããŠã¯1ã110,141,474,902åã®å ŽåãçŽ æ°ã«ãªããŸããã
ãã ãã474åã®å Žåãš902åã®å Žåã¯ãOnline MAGMA calculatorã§ã¯æ±ºå®ççŽ æ°å€å®æ³ã§ããECPPæ³ã§èšç®ãçµãããªãã£ãã®ã§ã確çççŽ æ°ã§ãã
ããã«7ã«ã€ããŠ1ã6000å以äžã®å ŽåãŸã§èª¿ã¹ãŸãããã1ã1,7,55åã®ä»ã¯çŽ æ°ã«ãªããŸããã§ããã
ã¬ãã¥ãããæ°ã®æ°åã1ã€ã ãå¥ã®æ°ã«çœ®ãæããæ°ã§ãçŽ æ°ãšãªããã®ããã¢ã¬ãã¥ãããçŽ æ°(Near Repunit Prime)ãšããããã§ããçŸåšèŠã€ãã£ãŠããæå€§ã®ãã¢ã¬ãã¥ãããçŽ æ°ïŒç¢ºçççŽ æ°ïŒã¯2014幎12æã«çºèŠããã(64*10^762811â1)/9=711111...111ã ããã§ãã
No.2529kuiperbelt3æ8æ¥ 15:31
ãããã¯æ°åãµã€ãïŒhttps://oeis.org/AxxxxxxïŒã®ä»¥äžã®é
ç®ã«ãããŸããã
21111âŠ111ãçŽ æ°: A056700
31111âŠ111ãçŽ æ°: A056704
41111âŠ111ãçŽ æ°: A056706
51111âŠ111ãçŽ æ°: A056713
61111âŠ111ãçŽ æ°: A056717
71111âŠ111ãçŽ æ°: A056719
81111âŠ111ãçŽ æ°: A056722
91111âŠ111ãçŽ æ°: A056726
ãŸããé¢é£ãããã®ã¯ä»¥äžã®éãã§ãã
13333âŠ333ãçŽ æ°: A056698
23333âŠ333ãçŽ æ°: A056701
43333âŠ333ãçŽ æ°: A056707
53333âŠ333ãçŽ æ°: A056714
73333âŠ333ãçŽ æ°: A056720
83333âŠ333ãçŽ æ°: A056723
17777âŠ777ãçŽ æ°: A089147
27777âŠ777ãçŽ æ°: A056702
37777âŠ777ãçŽ æ°: A056705
47777âŠ777ãçŽ æ°: A056708
57777âŠ777ãçŽ æ°: A056715
67777âŠ777ãçŽ æ°: A056718
87777âŠ777ãçŽ æ°: A056724
97777âŠ777ãçŽ æ°: A056727
19999âŠ999ãçŽ æ°: A002957
29999âŠ999ãçŽ æ°: A056703
49999âŠ999ãçŽ æ°: A056712
59999âŠ999ãçŽ æ°: A056716
79999âŠ999ãçŽ æ°: A056721
89999âŠ999ãçŽ æ°: A056725
ã¡ããã©ä»ããããã®æªéæãªéšåã«ã€ããŠèšç®ããŠãããšããã§ãã
17777âŠ777ã¯äžã€èŠã€ããŸããã®ã§ãå
æè¿œå ããŸããã
ããšãPari/GPã§ã¯4500æ¡ããããŸã§ã¯æ±ºå®ççŽ æ°å€å®æ³ã§çŽ æ°ãã©ãã調ã¹ãããŸãã
ãã ãã4500æ¡ãšãªããšã¡ã¢ãªã12GBãæéãïŒæè¿ã®PCã§ïŒ15æéçšåºŠå¿
èŠã§ãã
ç§ã®PCã¯ã¡ã¢ãªã16GBãããããŸããã®ã§ãã®çšåºŠãéçã§ããã
ããã«ã¡ã¢ãªãããã°5000æ¡ããããŸã§ã¯ããããšæããŸãïŒãã ãæ°æ¥ïœ1é±éãããããããŸãïŒã
ãããªæããªã®ã§ã8111âŠ111ã®474åã902åã¯Pari/GPã§ã¯1åçšåºŠã§æ±ºå®ççŽ æ°ãšå€å®ã§ããŸãã
No.2531ãããã3æ9æ¥ 00:16
åèš2586ä»¶ (æçš¿446, è¿ä¿¡2140)