1/(k*(k+1)*(k+2))=(1/2)*(1/(k*(k+1))-1/((k+1)*(k+2)))
1/(k*(k+1)*(k+2)*(k+3))=(1/3)*(1/(k*(k+1)*(k+2))-1/((k+1)*(k+2)*(k+3)))
...
1/(k*(k+1)*(k+2)*...*(k+m))=(1/m)*(1/(k*(k+1)*...*(k+m-1))-1/((k+1)*(k+2)*...*(k+m)))
ãªã®ã§ã
1/(1*2*3)+1/(2*3*4)+...+1/(n*(n+1)*(n+2))=(1/2)*(1/(1*2)-1/((n+1)*(n+2)))
1/(1*2*3*4)+1/(2*3*4*5)+...+1/(n*(n+1)*(n+2)*(n+3))=(1/3)*(1/(1*2*3)-1/((n+1)*(n+2)*(n+3)))
...
1/(1*2*3*...*(m+1))+...+1/(n*(n+1)*(n+2)*...*(n+m))=(1/m)*(1/m!-n!/(n+m)!)
ãšããã®ããããŸããã
äžå®ã®éå¹
ãæã€éè·¯ã®äž¡é£ã«ã¯ïŒã€ã®åçŽãªå£ãç«ã¡ã¯ã ãã
ä»äž¡å£ã«äºæ¬ã®æ¢¯åïŒé·ããx,yãšããã)ã亀差ãã圢ã§ç«ãŠãããããŠ
ãããã®ãšãããã®äº€å·®ããŠããå Žæã®éè·¯ããã®é«ããhãšãããšã
ãããããéè·¯ã®å¹
wãç®åºãããã®ãšããã(梯åã¯éã®äž¡ç«¯ããããããå察åŽã®å£ã«æããããŠãããšããã)
1âŠ<x<yâŠ200ã§ããx,yãšhãå
šãп޿°ã§ããæãéå¹
ïœãæŽæ°ã§æ±ºå®ã§ããæŽæ°
(x,y,h)ã®çµåããæ¢ãåºããŠã»ããã
äžäŸ
(x,y,h)=(70,119,30)ã®æw=56ã§æ±ãŸãã
æŽã«
1âŠx<yâŠ1000ã®æ¡ä»¶x,yã®æŽæ°ã§
ãããŠhã®å€ãæŽæ°ã§ããæãéå¹
wãæŽæ°ãšãªããç°ãªãwã®å€ã¯äœéãå¯èœãïŒ
ããã°ã©ã ãæ£ãããã°
1âŠxïŒyâŠ200ã§ã¯
(x,y,h,w)=(70,119,30,56),(74,182,21,70),(87,105,35,63),(100,116,35,80),(119,175,40,105)
ã®5çµ (wã5éã)
1âŠxïŒyâŠ1000ã§ã¯ çµåãã¯77éããwã¯53éã
ã€ãã§ã«
1âŠxïŒyâŠ10000ã§ã¯ çµåãã¯1440éããwã¯632éã
1âŠxïŒyâŠ100000ã§ã¯ çµåãã¯18612éããwã¯6423éã
(远èš)
ã¡ãªã¿ã«åœ¢ãèããŠhãšwã®æ¯ã«æ³šç®ããŠã¿ããš
100000ãŸã§ã§h/wãæå€§ã§ãããã®ã¯
(57739,87989,34713,6061) (h/wâ5.73)
100000ãŸã§ã§w/hãæå€§ã§ãããã®ã¯
(10817,23999,206,10815) (w/h=52.5)
åŸè
ã¯æ¢¯åã10.817mãšããŠéå¹
ãšã®å·®ã2mmãªã®ã§
å®éã«ã¯ç¡çããã§ããã
ãŸã
100000ãŸã§ã§y/xãæå€§ã§ãããã®ã¯
(169,7081,118,119) (y/xâ41.9)
æå°ã§ãããã®ã¯
(83259,83358,2378,83160) (y/xâ1.0012)
ãšãªã£ãŠããŸããã
èªåãªãã«èª¿æ»ããŠãæ£è§£ã¯ããããªïŒ
ã®ç¶æ
ã§åºé¡ããŠãã®ã§ãããããããããã®è§£çãšåããã®ã§ãã£ãšã»ã£ãšããŸãã
5/5=1
53/77=0.68831168831
632/1440=0.43888888888
6423/18612=0.34509993552
ã§å²åããæžå°ããŠãããã ãªã
è§£ãçºãããšãæå°è§£ã®å®æ°åã®ãã®ãå€ãæ¬è³ªçã«ç°ãªãè§£ã§ã¯ãªãã®ã§
gcd(x,y,h,w)=1ã®è§£ã«éããš
200ãŸã§: çµåã5éããéå¹
5éã
1000ãŸã§: çµåã28éããéå¹
23éã
10000ãŸã§: çµåã263éããéå¹
221éã
100000ãŸã§: çµåã1613éããéå¹
1283éã
ã®ããã«ãªã£ãŠããŸããã
1000ãŸã§ã®çµåãã¯ä»¥äžã®éãã§ãã
(x,y,h,w)=(87,105,35,63),(100,116,35,80),(70,119,30,56),(119,175,40,105),(74,182,21,70),
(182,210,45,168),(156,219,44,144),(113,238,14,112),(175,273,90,105),(104,296,35,96),
(175,364,80,140),(58,401,38,40),(273,420,80,252),(187,429,72,165),(425,442,70,408),
(375,500,144,300),(195,533,120,117),(286,561,90,264),(533,650,90,520),(87,663,55,63),
(663,689,168,585),(365,715,176,275),(625,750,126,600),(275,814,70,264),(583,825,210,495),
(845,870,306,600),(429,915,275,165),(697,986,126,680)
確ãã«æå°è§£ã®å®æ°åã®ãã®ãã«ãŠã³ããããŠããŸã£ãŠããŸããã
gp > 23/28.
%210 = 0.82142857142857142857142857142857142857142857142857
gp > 221/263.
%211 = 0.84030418250950570342205323193916349809885931558935
gp > 1283/1613.
%212 = 0.79541227526348419094854308741475511469311841289523
ã§éã«åãwã«å¯Ÿãã2éãã®ãã¿ãŒã³æ°ã®æ¯çã¯äœãå€ãããªãã®ããã
1000ãŸã§ã®ç¯å²ã§ã¯
w=63ã«ã¯(x,y,h)=(87,105,35),(87,663,55)
w=105ã«ã¯(x,y,h)=(119,175,40),(175,273,90)
w=165ã«ã¯(x,y,h)=(187,429,72),(429,915,275)
w=264ã«ã¯(x,y,h)=(275,814,70),(286,561,90)
w=600ã«ã¯(x,y,h)=(625,750,126),(845,870,306)
ããããã2éãã®ãã¿ãŒã³ãèµ·ãããã§ããã
w=63ã®2ãã¿ãŒã³ã¯87ãå
±éã§è峿·±ãã§ãã
éåé£ãšãã£ãŠãåå¿åãšçŽåŸãåãæ°ã ãæžããŠããã®äº€ç¹2n^2+1åã«æ°åã眮ããã®ããããŸãããçŽåŸäžã®2n+1åã®æ°åã®åïŒåŸåïŒãšãååšäžã®2nåã®æ°ãšäžå¿æ°ã®2n+1åã®æ°ã®å(åšå)ãå
šãŠçãããããã®ã§ããæ¥èŒç®æ³ãã«ã¯ãäžå¿ã®æ°ã9ãšããŠã4ã€ã®åå¿åäžã«{7,22,10,24,25,18,2,30},{19,13,23,3,11,26,29,14},{31,1,16,15,5,17,32,21},{12,33,20,27,28,8,6,4}ãé
ãã4æ¬ã®çŽåŸäžã«{12,31,19,7,9,25,11,5,28},{33,1,13,22,9,18,26,17,8},{20,16,23,10,9,2,29,32,6},{27,15,3,24,9,30,14,21,4}ãšãããæ
ä¹å³ããšããå³ãèŒã£ãŠããŸã(ãæ
ä¹ãã¯9ã«éãŸããšããæå³ã)ã
ãããå¿çšããŠãå³ã®ããã«å極ãšå極ã§äº€å·®ãã3ã€ã®å€§åãšãèµ€éãåç·¯45床ãåç·¯45床ã®3ã€ã®ç·¯ç·ã®åã®äº€ç¹ãšãªã20åã®ç¹ã«ã1ïœ20ã®æ°åãããã3ã€ã®å€§åäžã®æ°ã®åãšã3ã€ã®ç·¯ç·ã®åäžã®æ°ãšäž¡æ¥µã®æ°ã®åãå³ã®ããã«çãããããéçé£ããèããŠã¿ãŸããã1ïœ20ã®æ°åã®é
眮ã§ãå³ã®äž¡æ¥µã4ãš8ã®å Žåã®ä»ã«ãäž¡æ¥µã®æ°åãã©ã®ãããªãã®ãããã§ããããã
äž¡æ¥µã«æ¬¡ã®2ã€ã®æ°åãé
眮ããŠããã°ãä»ã®6çµã®åã=>ã§ã®å€ïŒèªç¶æ°)ã«ããæ®ãã®æ°åãã¡ããã©2床ãã€åºçŸãããããª
6çµã®6åãã€ã®æ°åã®çµåãã¯å±±ã»ã©æ§æå¯èœãšãªããšæããŸãã
1;1,2=>69
2;1,5=>68
3;1,8=>67
4;1,11=>66
5;1,14=>65
6;1,17=>64
7;1,20=>63
8;2,4=>68
9;2,7=>67
10;2,10=>66
11;2,13=>65
12;2,16=>64
13;2,19=>63
14;3,6=>67
15;3,9=>66
16;3,12=>65
17;3,15=>64
18;3,18=>63
19;4,5=>67
20;4,8=>66 (äŸã®å³ã®ãã¿ãŒã³)
21;4,11=>65
22;4,14=>64
23;4,17=>63
24;4,20=>62
25;5,7=>66
26;5,10=>65
27;5,13=>64
28;5,16=>63
29;5,19=>62
30;6,9=>65
31;6,12=>64
32;6,15=>63
33;6,18=>62
34;7,8=>65
35;7,11=>64
36;7,14=>63
37;7,17=>62
38;7,20=>61
39;8,10=>64
40;8,13=>63
41;8,16=>62
42;8,19=>61
43;9,12=>63
44;9,15=>62
45;9,18=>61
46;10,11=>63
47;10,14=>62
48;10,17=>61
49;10,20=>60
50;11,13=>62
51;11,16=>61
52;11,19=>60
53;12,15=>61
54;12,18=>60
55;13,14=>61
56;13,17=>60
57;13,20=>59
58;14,16=>60
59;14,19=>59
60;15,18=>59
61;16,17=>59
62;16,20=>58
63;17,19=>58
64;19,20=>57
ãæ£å£«ããã¥ãŒ70幎ã®å è€äžäºäžä¹æ®µ(84)ãè©°ãå°æ£åºé¡65幎éç¶ç¶ã§ã®ãã¹èšé²ãã£ãŠå
šæ°å綺éºã«åºãŠããªãããšãã倧çºèŠãShiromaruããã«ãã£ãŠX(æ§ãã€ãã¿ãŒ)ã§å ±åãã話é¡ãšãªããŸãããURLã¯ä»¥äžã
x.com/siromaru460/status/1859445122246816091?t=ZZ_dzmTIWt4uTDqThlkKCA&s=19
ãã®ãã€ãŒãããããŠãµã€ãšã³ã¹ã©ã€ã¿ãŒå
Œ vtuber ã®åœ©æµããæ°(@Science_Release)æ°ã玹ä»ãããã€ãã¢æ°ã®ã0ãã9ãŸã§ããã¶ããã«ããã¢ãžã¥ã€äœ¿ã£ãè¿äŒŒæ¹æ³ããšãŠã€ããªãã£ãã®ã§çæ§ã«ã玹ä»ããŸãã
åŒçš
eâ(1+0.2^(9^(7Ã6)))^(5^(3^(84)))
ãã€ãã¢æ°ãšå°æ°ç¹ä»¥äž8368æŸ4289æº8906ç©£8425ç§9438å1759京0916å
4450å0188äž7164æ¡ãŸã§äžèŽããè¿äŒŒå€
(Daniel Bamberger (2024) ã«ãã)
åŒçšçµãã
åŒçšã¯ x.com/Science_Release/status/1859877878701424740?t=O15lpwQYZYWpwwlEeZCTYw&s=19 ããã
Daniel Bambergerã«ãããªãªãžãã«ã¯ãã®æçš¿ã®Denganã®ååã®URLãžã£ã³ãã®å
ã®ããŒãžã§ç¢ºèªã§ããŸããããã¡ãã¯ãããã£ãŒããã€è¶£å³çãªããŒã¿ããŒã¹ã«ãªã£ãŠããŸãã
â» 0.2=1/5ã ããã
èšãæãããš
N=5^(3^84)ã«å¯ŸããŠ
eâ(1+1/N)^N
ã§ããã
ãšã®è§£èª¬ã @hironino ããã«ãããã€ãã¿ãŒäžã§æ«é²ãããŸããã
1ïœïŒã«ãã ãã£ãŠã¿ãŸããã
(15768/3942)Ã(12345/9876)=13485/2697
(18534/9267)Ã(17469/5823)=34182/5697
(17469/5823)Ã(31689/4527)Ã(65934/1782)=748251/963=615384/792
ãªãæããã«æçš¿ãããŠããèšäºãã¡ã¢ããŠããããŒããèŠçŽããŠããã
ãã¶ã2017幎ãã
DD++æ°ã
eâ(1+.2^(3^84))^(5^(9^(6*7)))
ãæçš¿ãããŠãããšæããŸãã
ãŸãããã
(1+9^(-4^(6*7)))^(3^(2^85))
(1+2^(-76))^(4^38+.5)
çã«ãã§ããååšçÏã
Ïâ2^5^.4-.6-(.3^9/7)^.8^.1
(((2^7+8)/(90-1))^5.4+.6)*.3 (ããã²ãæ°çºèŠïŒ
(8-(1+.6/(.2*.5+9))/(.3+7))*.4 (ããããæ°çºèŠïŒ
ãªã©ã®åžžé£ããã®é©ãã¹ãæã玹ä»ãããŠããŸããã
ãå°çºç®ã§ç¡çæ°è¿äŒŒãã®èšäºã§ãããã
> "DD++"ãããæžãããŸãã:
> ãå°çºç®ã§ç¡çæ°è¿äŒŒãã®èšäºã§ãããã
ãã®éšåãèªã¿è¿ããŠããã
ãã€ãã¢æ°ãšå°æ°ç¹ä»¥äž8368æŸ4289æº8906ç©£8425ç§9438å1759京0916å
4450å0188äž7164æ¡ãŸã§äžèŽããè¿äŒŒå€
ã®ç²ŸåºŠãã©ããã£ãŠå°ããã®ãã®è¬ã
ãã¯ããŒãªã³å±éã
1/e*(1+x)^(1/x)=1-1/2*x+11/24*x^2-7/16*x^3+2447/5760*x^4-959/2304*x^5+O(x^6)
ãããã
e-(1+x)^1/xâ1/2*e*x
ããã«x=.2^(3^84)=(1/5)^(3^84) ãªã埮å°ãªå€ãåãããšã§
䞡蟺ã®log[10]ããšããšå³èŸºã
gp > log(exp(1)/2)/log(10)-3^84*log(5)/log(10)
%139 = -8368428989068425943817590916445001887164.5053429251
æ£ã«eãšã®èª€å·®ã
1/10^(8368428989068425943817590916445001887164)
ã€ãŸã
8368æŸ4289æº8906ç©£8425ç§9438å1759京0916å
4450å0188äž7164æ¡ãŸã§äžèŽãšããããšã瀺ãã
ãšããèšç®ãªã®ã§ããã
éæ¹é£ã®æ¬ã§ããæ¹é£ã®ç ç©¶ãïŒå¹³å±±è«Š,é¿éšæ¥œæ¹ãå€§éªæè²å³æžïŒã®äžã§ã幞ç°é²äŒŽã®ãæ¹é£ç§èª¬ãã§ç޹ä»ãããŠãããã¹ãã«ãæ°ã®äžæ¹é£ãšãããã®ããããŸãã(https://userweb.pep.ne.jp/c6v00030/r128.htmlã®ã説æç¬¬ä¹ããåç
§)
40 39 08 34 09 25 20
03 12 47 07 45 33 28
16 42 11 22 10 48 26
31 17 15 49 13 18 32
27 41 21 04 14 44 24
35 19 37 30 46 06 02
23 05 36 29 31 01 43
ãã®æ¹é£ã§ã¯çžŠã»æšªã»å¯Ÿè§ç·ã®ç·åã ãã§ãªããæ£è§ãšç§°ããäžå¿ã®ãã¹ã§çŽè§ã«æãæ²ãã7ãã¹(äŸ:34,7,22,49,15,17,31ãããã³ã40,12,11,49,21,19,23)ãéè§ãšç§°ãã45åºŠã§æãæ²ãã7ãã¹(äŸ:40,12,11,49,15,17,31)ãéè§ãšç§°ãã135åºŠã§æãæ²ãã7ãã¹(äŸ:34,7,22,49,21,19,23)ã®ç·åãçãããããã«ãäžå¿ãšåé
ã®èš5ãã¹ã®åãäžå¿ãšå蟺ã®äžå€®ã®èš5ãã¹ã®åãçãããªã£ãŠãããšãããã®ã§ããããæ¹é£ã®ç ç©¶ãã§ã¯äžå¿ã®ãã¹ã47ã®å Žåãã€ããããšãã§ããããã§ããã45ã®å Žåã¯ã§ããŠããªãããã§ãã
ã¹ãã«ãæ°ã®æ¹é£ãäºæ¹é£ã«ãããšãäŸãã°ã
10 04 25 09 17
05 22 07 15 16
08 24 01 21 11
23 13 12 14 03
19 02 20 06 18
ãšãããã®ããããŸãããäžå¿ã®ãã¹ã1以å€ã®3,5,7,9,11,13ã®å Žåã¯å¯èœã§ããããã
ãŸããã¹ãã«ãæ°ã®æ¹é£ã乿¹é£ãåäžæ¹é£ã...ãšãããã®ã¯å¯èœã§ããããã
16åã®ã¢ã«ãã¡ããã
E,F,G,H,I,L,N,O,R,S,T,U,V,W,X,Z
ãæããŠããã°0ïœ12ã®è±åèª
ZERO
ONE
TWO
THREE
FOUR
FIVE
SIX
SEVEN
EIGHT
NINE
TEN
ELEVEN
TWELVE
ãæ§æã§ããã
ããã§ãã®16åã®ã¢ã«ãã¡ãããã«é©åœã«ããæŽæ°ãå²ãåœãŠãŠãããš
Z+E+R+O=0
O+N+E=1
T+W+O=2
T+H+R+E+E=3

E+L+E+V+E+N=11
T+W+E+L+V+E=12
ãšããçåŒãæç«ããããã«ããã«ã¯
E,F,G,H,I,L,N,O,R,S,T,U,V,W,X,Zã«ã©ããªæŽæ°ãå²ãåœãŠãã°è¯ãã§ããããïŒ
#ä»ãŸã§æ°å€ãåºé¡ããŠããŠããã®ã§ããããããŠéå»ã«åºé¡ããŠããããç¥ããŸãããæªããããã
ã¢ããåŸæ¢ãããåºé¡ããŠãããŸããã
äžå®æ¹çšåŒãšãªãã®ã§è§£ã¯ç¡æ°ã«ããäºã«ãªã£ãŠããŸãã®ã§
åæŽæ°ã
-11ïœ11ã®ç¯å²ã§çŽãŸãéšåã§ã®çµåãã§æ¢ãã ããŠãããŠäžããã
æŽçãããš
e+o+r+z=0
e+n+o=1
o+t+w=2
2e+h+r+t=3
f+o+r+u=4
e+f+i+v=5
i+s+x=6
2e+n+s+v=7
e+g+h+i+t=8
e+i+2n=9
e+n+t=10
3e+l+n+v=11
2e+l+t+v+w=12
ããããã®æåãå«ãŸããæ¹çšåŒã®æ°ãæ°ããŠåæ°ã®æé ã«ãããš
1å: g,u,x,z
2å: f,h,l,s,w
3å: r
4å: i,o,v
5å: n,t
10å: e
g,u,x,zã¯äžåºŠããç»å Žããªãã®ã§
e+o+r+z=0
f+o+r+u=4
i+s+x=6
e+g+h+i+t=8
ã®4ã€ã¯åŸåãã§æ®ãã¯
e+n+o=1
o+t+w=2
2e+h+r+t=3
e+f+i+v=5
2e+n+s+v=7
e+i+2n=9
e+n+t=10
3e+l+n+v=11
2e+l+t+v+w=12
æ®ã£ãæ¹çšåŒã§ååºŠåæ°ãæ°ãããš
1å: f,h,r,s
2å: i,l,o,w
4å: t,v
5å: n
8å: e
f,h,r,sã¯äžåºŠããç»å Žããªãã®ã§
2e+h+r+t=3
e+f+i+v=5
2e+n+s+v=7
ã®3ã€ã¯åŸåãã§æ®ãã¯
e+n+o=1
o+t+w=2
e+i+2n=9
e+n+t=10
3e+l+n+v=11
2e+l+t+v+w=12
æ®ã£ãæ¹çšåŒã§ååºŠåæ°ãæ°ãããš
1å: i
2å: l,o,v,w
3å: t
4å: n
5å: e
iã¯äžåºŠããç»å Žããªãã®ã§
e+i+2n=9
ã¯åŸåãã§æ®ãã¯
e+n+o=1
o+t+w=2
e+n+t=10
3e+l+n+v=11
2e+l+t+v+w=12
æ®ã£ãæ¹çšåŒã§ååºŠåæ°ãæ°ãããš
2å: l,o,v,w
3å: n,t
4å: e
2ã®åŒãã1ã®åŒãåŒããŠoãæ¶å»
t+w-e-n=1
12ã®åŒãããã®åŒãåŒããŠwãæ¶å»
3e+l+n+v=11
ããã¯11ã®åŒãšåããªã®ã§æ®ã£ãåŒã¯
e+n+t=10
3e+l+n+v=11
nãštãåºå®ããŠ
e=10-n-t
11ã®åŒã«ä»£å
¥ããŠeãæ¶å»
l+v=2n+3t-19
åŸåãã«ããåŒã«vã¯ç»å Žãlã¯ç»å Žããªãã®ã§vãåºå®ããŠ
l=2n+3t-v-19
12ã®åŒã®eã«e=10-n-tãšl=2n+3t-v-19ã代å
¥ããŠwãç®åºãããš
w=11-2t
2ã®åŒã«w=11-2tã代å
¥ããŠoãç®åºãããš
o=t-9
9ã®åŒãã
i=t-n-1
7ã®åŒãã
s=2n+2t-n-v-13
5ã®åŒãã
f=2n-v-4
3ã®åŒã«æªç¥æ°h,rãåæã«ç»å Žããã®ã§ç»å Žåæ°ã®å€ãrãåºå®ããŠ
h=2n-r+t-17
åŸã¯æåã«åŸåãã«ãã4åŒãã
z=n-r-1
u=v-2n-r-t+17
x=v-3t+20
g=r-2t+16
以äžãã
n,r,t,vã¯åºå®
e=10-n-t
f=2n-v-4
g=r-2t+16
h=2n-r+t-17
i=t-n-1
l=2n+3t-v-19
o=t-9
s=n+2t-v-13
u=v-2n-r-t+17
w=11-2t
x=v-3t+20
z=n-r-1
å
ã®åŒã«ä»£å
¥ãããš0ïœ12ãåºãŠãã¹ãŠæ£ããã®ã§ãåŸã¯
æ¡ä»¶(-11ïœ11)ãæºããããã«n,r,t,vãå®ããã°ããã®ã ãã
è§£ã¯å€æ°ãããããªã®ã§é©åœãªè§£äžã€ã ãã«ããã
絶察å€ãæå°ã«ãªãããã«é©åœã«å€ã決ãããš
(e,f,g,h,i,l,n,o,r,s,t,u,v,w,x,z)=
(1,4,5,-3,0,4,4,-4,-1,1,5,5,0,1,5,4)
â»o+t=9ãªã®ã§çµ¶å¯Ÿå€ã4以äžã«ããã®ã¯äžå¯èœ
ããç°ãªãã¢ã«ãã¡ãããã«ã¯ç°ãªãæŽæ°(-11ïœ11ãå«ã)ãšããæ¡ä»¶ãå ãããš
ã©ãã»ã©ã®çµåãã®å¯èœæ§ãçºçããããã§ããïŒ
ãã®å Žåã¯3éãã§ããã
(e,f,g,h,i,l,n,o,r,s,t,u,v,w,x,z)=
(-2,-6,0,-7,7,9,2,1,4,3,10,5,6,-9,-4,-3),
(-1,-4,5,-11,6,8,2,0,7,3,9,1,4,-7,-3,-6),
(3,9,6,1,-4,0,5,-7,-6,-1,2,8,-3,7,11,10)
-10ïœ10ãªãã°1éãã§ããã
16åã®å€æ°ã§13åã®æ¹çšåŒããéåžžã§ã¯å€æ°ã®äžã®3ã€ãåºå®ããŠ(宿°ãšã¿ãã)
13倿°ã®é£ç«æ¹çšåŒãšããŠè§£ãããšããŠãããããããããè¡åMãå©çšããŠ
ãããšããæ£ã«ãã®ä¿æ°ãåºãšããè¡åãmatdet(M)=0 ãšãªã£ãŠããŸãã
ãŸãmatrank(M)ã調ã¹ããšã12ãè¿ãããã®ã¯ãã®äºã ã£ãã®ã§ããã
ã§ãã©ã®2ã€ã®åŒãããæ¢åã®åŒãç£ã¿åºããã®ãããããªãã£ãã
å
šãŠã®æµãã詳ãã瀺ããŠé ãç®çã®çµåããã3ã€ãç¥ããã®ã¯ã©ãããŒã§ããã
远䌞
ãã®æããããã詊ããŠããã
[ E, F, G, H, I, L, N, O, R, S, T, U, V, W, X, Z]=
1;[3/4, 15/4, 3, -11/4, 5/4, 6, 7/2, -13/4, -3/2, 11/4, 23/4, 5, -3/4, -1/2, 2, 4]
2;[9/4, 17/4, 3, -17/4, 7/4, 5, 5/2, -15/4, -5/2, 13/4, 21/4, 6, -13/4, 1/2, 1, 4]
ãªã©ã®åæ°ã«ãã察å¿ã§ãå¯èœãªçµåããçãŸããŠããŸããã
å
šãŠçŽ æ°ã察象ãšããŠ[p1,p2,p3],[q1,q2,q3]ã®2çµã§
p1^k+p2^k+p3^k=q1^k+q2^k+q3^k (k=1,2)
ãæãç«ã€çµåãã100ãŸã§ã®çŽ æ°ã®ç¯å²ã§æ¢ããš
çµæ§å€ãã®çµåãããååšã
1;[5, 31, 41] VS [13, 17, 47]
2;[5, 41, 71] VS [7, 37, 73]
3;[5, 43, 53] VS [11, 29, 61]
4;[5, 53, 83] VS [11, 41, 89]
5;[5, 59, 79] VS [7, 53, 83]
6;[5, 59, 89] VS [13, 43, 97]
7;[7, 19, 29] VS [11, 13, 31]
8;[7, 23, 41] VS [11, 17, 43]
9;[7, 29, 31] VS [11, 19, 37]
10;[7, 29, 43] VS [13, 19, 47]

91;[31, 67, 73] VS [41, 47, 83]
92;[37, 53, 71] VS [41, 47, 73]
93;[37, 67, 71] VS [43, 53, 79]
94;[37, 73, 79] VS [47, 53, 89]
95;[41, 71, 83] VS [47, 59, 89]
96;[41, 79, 83] VS [43, 71, 89]
97;[43, 61, 67] VS [47, 53, 71]
98;[43, 67, 79] VS [47, 59, 83]
99;[43, 83, 89] VS [47, 71, 97]
100;[53, 71, 79] VS [59, 61, 83]
101;[53, 83, 89] VS [61, 67, 97]
ãèŠã€ãã£ãã
ãªããã®äžã§åãæå°ãšããçµåããã¯
[7,19,29] VS [11,13,31]
ãåœãŠã¯ãŸãã
åãã
[p1,p2,p3,p4],[q1,q2,q3,q4]ã®2çµã§
p1^k+p2^k+p3^k+p4^k=q1^k+q2^k+q3^k+q4^k (k=1,2,3)
ã100ãŸã§ã®çŽ æ°ã®ç¯å²ã§èª¿ã¹ãã
1;[7, 31, 59, 83] VS [11, 23, 67, 79]
2;[11, 29, 47, 73] VS [17, 19, 53, 71]
3;[11, 37, 47, 73] VS [17, 23, 61, 67]
4;[11, 41, 43, 73] VS [13, 31, 53, 71]
5;[11, 43, 47, 79] VS [19, 23, 67, 71]
6;[11, 47, 53, 89] VS [17, 29, 71, 83]
7;[13, 29, 31, 47] VS [17, 19, 41, 43]
8;[13, 29, 67, 83] VS [17, 23, 73, 79]
9;[13, 43, 59, 89] VS [19, 29, 73, 83]
10;[17, 29, 31, 43] VS [19, 23, 37, 41]
11;[17, 43, 53, 79] VS [23, 29, 67, 73]
12;[17, 43, 61, 79] VS [19, 37, 71, 73]
13;[19, 37, 53, 71] VS [23, 29, 61, 67]
14;[19, 43, 47, 71] VS [23, 31, 59, 67]
15;[23, 41, 61, 79] VS [29, 31, 71, 73]
16;[23, 59, 61, 97] VS [31, 37, 83, 89]
17;[29, 43, 47, 61] VS [31, 37, 53, 59]
18;[31, 53, 67, 89] VS [37, 41, 79, 83]
19;[37, 59, 61, 83] VS [41, 47, 73, 79]
ãèŠã€ãã£ãã
ãªãæå°å€ã®åãæ§æããã®ã¯
[13, 29, 31, 47] VS [17, 19, 41, 43]
[17, 29, 31, 43] VS [19, 23, 37, 41]
ã®2ãã¿ãŒã³ãåœãŠã¯ãŸãã(2,3ä¹ãŸã§ãèãããšäžã®æ¹ãæé©)
ããã§æ¬¡ã¯ãšæã
p1^k+p2^k+p3^k+p4^k+p5^k=q1^k+q2^k+q3^k+q4^k+q5^k (k=1,2,3,4)
p1^k+p2^k+p3^k+p4^k+p5^k+p6^k=q1^k+q2^k+q3^k+q4^k+q5^k+q6^k (k=1,2,3,4,5)
ãæºãããçµåãã¯ã©ããªãã ããããšæ€çŽ¢ãå§ãããä»åºŠã¯äœãã«ãç¯å²ãåºããéããŠ
äžžäžæ¥ã³ã³ãã¥ãŒã¿ãèµ°ãããŠãäžã€ããããããŠããªãã
ãªãåã®æå°å€ãäžãã2çµã®ãã®ã¯
[13,59,67,131,163] VS [23,31,103,109,167]
[17,37,43,83,89,109] VS [19,29,53,73,97,107]
ã§ãããšã®æ
å ±ã¯ãããããå
¥æã§ããã
åŸã£ãŠæ€çŽ¢ç¯å²ã200ãŸã§ã®çŽ æ°ã«éå®ããŠããã以å€ã«ãçºèŠã§ããããšæãããã
åŠäœããå
šæ€çŽ¢ã®æ¹æ³ã§æ¢ãåã£ãŠããã®ã§ä»ã®ãšããäžã€ãèŠã€ããããã«ããŸãã
äœæ¹ãå¹çããæ€çŽ¢ããã°ã©ã ããä»ã®ãã¿ãŒã³ãæ¢ãåºããããæããŠäžããã
ãã¡ãã®ãªããã·ã®ç¶ç·šã§ããïŒ
http://shochandas.xsrv.jp/mathbun/mathbun1164.html
200ãŸã§ã®çŽ æ°ã§ã®å
šè§£(äžã«ããè§£ãå«ã)
5åçµ
[13,59,67,131,163] ãš [23,31,103,109,167]
[11,59,71,149,173] ãš [23,29,101,131,179]
[19,79,101,173,191] ãš [23,61,131,149,199]
[31,67,103,149,197] ãš [37,53,127,131,199]
6åçµ
[19,29,53,73,97,107] ãš [17,37,43,83,89,109]
[19,29,83,103,157,167] ãš [13,47,59,127,139,173]
[43,47,101,109,163,167] ãš [37,59,83,127,151,173]
[29,31,103,107,179,181] ãš [19,53,71,139,157,191]
[43,53,107,127,181,191] ãš [37,71,83,151,163,197]
ã¡ãªã¿ã«200ãè¶
ããæ¬¡ã®è§£ã¯
5åçµ
[61,79,151,197,227] ãš [67,71,157,191,229]
6åçµ
[19,53,89,157,193,227] ãš [17,67,73,173,179,229]
# æäœã£ãããã°ã©ã ããŸã æ®ã£ãŠããŸããã
éå»ãã®è©±é¡ã«ã€ããŠã®æçš¿ããã£ãŠããŸãããã
äžè¬ã«Prouhet-Tarry-Escott problem ãšåŒã°ããããšããããç¹ã«äœ¿ãæ°ãçŽ æ°ã«éå®ãããã®ã
äœãç¹å¥ã«èŠããŠé¢çœããšæã£ãŠããŸããã
ãšèšãã®ãäžè¬ã§ã®æŽæ°ã§ã¯å
¬åŒãååšã§ããã®ã§ã幟ã€ãçµåããçºèŠã§ãããçŽ æ°ã§ã¯ããã¯ãããªããªãã
ãµãšéå»ã®ããŒããæŽçããŠãããããã®çŽ æ°ã«é¢ãã2çµã®è§£ãèŠãŠããããä»ã®è§£ã¯æããã®ãïŒ
ã®çåãããå®éã«ããœã³ã³ã§æ¢ããŠã¿ããæã£ããã®ããå€ãã®çµåããååšããŠããããšã«é©ããã®ã§ããã
æ¬ã«ç޹ä»ãããŠããã®ã¯ãç¹ã«ãã®äžã«ããæå°æ°ã§ã®çµåããšãªã£ãŠããããšã«ãããªãã®ããšèªèã§ã
ã§ã¯æ¢ããã ãæ¢ããŠã¿ãããšææŠãå§ããŠã¿ãã®ãæçš¿ã®åæ©ã§ããã
ãªã«ãåªæ°ãé«ãŸãã°é«ãŸãã ãæ¢çŽ¢ç¯å²ãææ°é¢æ°çã«å¢å€§ããŠãããã¡ãã£ãšããã£ãšã§ã¯æéæéã§ã¯
æ¢ãåºããªããªã£ãŠå£ã«çªãåœãã£ãŠããŸã£ãç¶æ
ã«ãªã£ãŠãããŸãã
ããããããããããšãããããŸãã
ïŒä¹ãŸã§ã®çºèŠã§ããããã°ã©ã ïŒäžåäœã§ã®èšç®æéã§ã¯çµäºããã)
ã®å»¶é·ã®æå³ã§ã®4ä¹ã§ã®æ€çŽ¢ã§ã¯3æ¥èšç®ãç¶ããŠãäžã€ãçºèŠã§ããã«ããŸããã
200ãŸã§ã®çŽ æ°ã§ã®çµæãç¥ããŸã§ã®æéã¯ã©ãã»ã©ãªãã§ããïŒ
çµæãç¹æ€ããŠããã
5ä¹ãŸã§ã®åãçãã6åçµã®æå°çµ
S1=[19,29,53,73,97,107] ãš
S2=[17,37,43,83,89,109]
ã«å¯Ÿã
M1=[-22,-17,-5,5,17,22]
M2=[-23,-13,-10,10,13,23]
ãªã察ç
§çé
åãš
q=2,r=63
ã®å®æ°ãéžã¹ã°
S1[n]=q*M1[n]+r
S2[n]=q*M2[n]+r
(n=1,2,3,4,5,6)
ã®é¢ä¿ã§çµã°ããããã§ãã
ãŸã
S1=[19,53,89,157,193,227]
S2=[17,67,73,173,179,229]
ãªã
M1=[-52,-35,-17,17,35,52]
M2=[-53,-28,-25,25,28,53]
q=2,r=123
ãšãªãããã§ãã
æé枬ã£ãŠãªãã£ãã®ã§å床å®è¡ããŠç¢ºããããšããã
5åçµã§20ç§ã6åçµã§3ååã§ããã
5æ¡åå¿ã®ç©ã2æ¡ã®5ã€ã®é£ç¶ããçŽ æ°ãäžŠã¶æ°ãæ§æããçµåãã®2æ°ãçºèŠããŠãã ããã
[äŸ]
26837*41479=1113171923
38123*45097=1719232931 ã§ããïŒ
ããš
56809*76529=4347535961
78623*91243=7173798389
78443*94079=7379838997
(1)â«[x=0->1](1-x^2)^5dx
(2)â«[x=0->1](x*(1-x))^5dx
(3)â«[x=0->1](x*(1-x))^5/(1+x^2)dx
äœãæç€ºçè§£ã§ç€ºããŠäžããã
(1) 256/693
(2)1/2772
(3)11411/2520-2*log(2)-Pi
ã ãšæããŸãã
(1),(2)
ã¯
äžè¬ã«
â«[x=0,1](x*(1-x))^ndx=â«[x=0,1](1-x^2)^ndx/4^n
=Beta(n+1,n+1)
äœã
Beta(s,t)=Î(s)*Î(t)/Î(s+t)
(ããŒã¿é¢æ°)
ã§ç¹ãã£ãŠããŠ
gp > bestappr(intnum(x=0,1,(1-x^2)^5))
%470 = 256/693
gp > bestappr(intnum(x=0,1,(1-x^2)^5)/4^5)
%471 = 1/2772
gp > bestappr(intnum(x=0,1,(x*(1-x))^5))
%472 = 1/2772
gp > Beta(s,t)=gamma(s)*gamma(t)/gamma(s+t);
gp > bestappr(Beta(6,6))
%475 = 1/2772
(3)ã¯
â«[x=0,1]x^n/(1+x^2)dx=â«[t=0,Pi/4]tan(t)^ndt
ã®çœ®æç©åã§
ããã§
gp > (x*(1-x))^5
%476 = -x^10 + 5*x^9 - 10*x^8 + 10*x^7 - 5*x^6 + x^5
=(5*x^9+10*x^7+x^5)-(x^10+10*x^8+5*x^6)
ããã§
I=â«[x=0,1](x*(1-x))^5/(1+x^2)dx
ããã§
x=tan(t) ãšçœ®ããšdx=dt/cos(t)^2=dt*(1+tan(t)^2)=dt*(1+x^2)
x=0-->t=0 ; x=1-->t=Pi/4
ãã£ãŠ
I=â«[t=0,Pi/4](5*tan(t)^9+10*tan(t)^7+tan(t)^5)dt
-â«[t=0,Pi/4](tan(x)^10+10*tan(t)^8+5*tan(t)^6)dt
=5*(1/2*log(2)-7/24)+10*(-1/2*log(2)+5/12)+(1/2*log(2)-1/4)
-(-1/4*Pi+263/315)-10*(1/4*Pi-76/105)-5*(-1/4*Pi+13/15)
=11411/2520-2*log(2)-Pi
(ãã®èšç®ã¯ã»ãšã»ãšããã©ãããã)
gp > intnum(x=0,1,(x*(1-x))^5/(1+x^2))
%480 = 0.00028758846491931730606697697874715425500493507898685
gp > 11411/2520-2*log(2)-Pi
%481 = 0.00028758846491931730606697697874715425500493507898685
ç§ãããŒã¿é¢æ°ã§èããŸããã
(1)ã«ã€ããŠã¯ã
â«[x=0â1](1-x^2)^5dx=(1/2)â«[x=-1â1]((1+x)*(1-x))^5dx
=â«[t=0â1](2t*2(1-t))^5dt=2^10*Î(6,6)=2^10*Î(6)^2/Î(12)
=2^10*(5!)^2/(11!)=1024/2772=256/693
ãšãªããŸããã
(2)ã«ã€ããŠã¯ã
â«[x=0â1](x*(1-x))^5dx=â«[x=0â1](x^5*(1-x)^5)dx
=Î(6,6)=Î(6)^2/Î(12)=(5!)^2/(11!)=(5*4*3*2*1)/(11*10*9*8*7*6)
=1/(11*2*3*2*7*3)=1/2772
ãšãªãã®ã§ã¯ãªãã§ããããã
(3)ã«ã€ããŠã¯ãâ«[x=0â1](x*(1-x))^n/(1+x^2)dx (n=1,2,3,4,5)ãé æ¬¡æ±ããŠã¿ãŸããã
(x(1-x))/(1+x^2)=(x-x^2)/(1+x^2)=(x+1)/(1+x^2)-1
ãã
â«[x=0â1](x*(1-x))/(1+x^2)dx=â«[x=0â1]((x+1)/(1+x^2)-1)dx
=ln(2)/2+Ï/4-1
(x(1-x))^2/(1+x^2)=((x+1)/(1+x^2)-1)*(x(1-x))
((x+1)x(1-x))/(1+x^2)=(x-x^3)/(1+x^2)=2x/(1+x^2)-x
ãã
â«[x=0â1](x*(1-x))^2/(1+x^2)dx=â«[x=0â1](2x/(1+x^2)-x-x(1-x))dx
=ln(2)-Î(2,1)-Î(2,2)=ln(2)-Î(2)Î(1)/Î(3)-Î(2)^2/Î(4)
=ln(2)-(1!*0!)/2!-(1!)^2/(3!)=ln(2)-1/2-1/6=ln(2)-2/3
(x(1-x))^3/(1+x^2)=(2x/(1+x^2)-x-x(1-x))*(x(1-x))
(x^2(1-x))/(1+x^2)=(x^2-x^3)/(1+x^2)=(x-1)/(1+x^2)-(x-1)
ãã
â«[x=0â1](x*(1-x))^3/(1+x^2)dx
=â«[x=0â1](2(x-1)/(1+x^2)+2(1-x)-x^2(1-x)-x^2(1-x)^2)dx
=ln(2)-Ï/2+2Î(1,2)-Î(3,2)-Î(3,3)
=ln(2)-Ï/2+2Î(1)Î(2)/Î(3)-Î(3)Î(2)/Î(5)-Î(3)^2/Î(6)
=ln(2)-Ï/2+2*(0!1!)/2!-(2!1!)/4!-(2!)^2/5!
=ln(2)-Ï/2+1-1/12-1/30=ln(2)-Ï/2+53/60
(x(1-x))^4/(1+x^2)=(2(x-1)/(1+x^2)+2(1-x)-x^2(1-x)-x^2(1-x)^2)*(x(1-x))
-(x-1)^2*x/(1+x^2)=-x*(1-2x+x^2)/(1+x^2)=2x^2/(1+x^2)-x=-2/(1+x^2)+2-x
ãã
â«[x=0â1](x*(1-x))^4/(1+x^2)dx
=â«[x=0â1](-4/(1+x^2)+4-2x+2x(1-x)^2-x^3(1-x)^2-x^3(1-x)^3)dx
=-Ï+4Î(1,1)-2Î(2,1)+2Î(2,3)-Î(4,3)-Î(4,4)
=-Ï+4Î(1)^2/Î(2)-2Î(2)Î(1)/Î(3)+2Î(2)Î(3)/Î(5)-Î(4)Î(3)/Î(7)-Î(4)^2/Î(8)
=-Ï+4(0!)^2/1!-2(1!0!)/2!+2(1!2!)/4!+(3!2!)/6!-(3!)^2/7!
=-Ï+4-1+1/6-1/60-1/140=-Ï+22/7
(x(1-x))^5/(1+x^2)=(-4/(1+x^2)+4-2x+2x(1-x)^2-x^3(1-x)^2-x^3(1-x)^3)*(x(1-x))
(x(1-x))/(1+x^2)=(x-x^2)/(1+x^2)=(x+1)/(1+x^2)-1
ãã
=â«[x=0â1](-4(x+1)/(1+x^2)+4+4x(1-x)-2x^2(1-x)+2x^2(1-x)^3-x^4(1-x)^3-x^4(1-x)^4)dx
=-2*ln(2)/2-Ï+4Î(1,1)+4Î(2,2)-2Î(3,2)+2Î(3,4)-Î(5,4)-Î(5,5)
=-2*ln(2)/2-Ï+4Î(1)^2/Î(2)+4Î(2)^2/Î(4)-2Î(3)Î(2)/Î(5)+2Î(3)Î(4)/Î(7)-Î(5)Î(4)/Î(9)-Î(5)^2/Î(10)
=-2*ln(2)/2-Ï+4(0!)^2/1!+4(1!)^2/3!-2(2!1!)/4!+2(2!3!)/6!-(4!3!)/8!-(4!)^2/9!
=-2*ln(2)/2-Ï+4+2/3-1/6+1/30-1/280-1/630=-2*ln(2)-Ï+11411/2520
> "kuiperbelt"ãããæžãããŸãã:
> ç§ãããŒã¿é¢æ°ã§èããŸããã
(3)ãããŒã¿é¢æ°ã«ç¹ãããã§ããã
åèã«n=6,7,8,9,10
ã§ãã£ãŠã¿ãŸããã
I6=38429/13860-4*ln(2)
I7=2*Ï-4*ln(2)-421691/120120
I8=4*Ï-188684/15015
I9=8*ln(2)+4*Ï-17069771/942480
I10=16*ln(2)-1290876029/116396280
管ç人ããã®è§£çãšæ°å€ãåããªããŠæ©ãã§ãŸãããããã£ã±ã (2) 㯠1/2772 ã§ãããïŒ
(1)ãš(2)ã¯ããŒã¿é¢æ°ãªããŠæã¡åºããªããŠãã5åéšåç©åããã°é«æ ¡çã§ãããçããããåé¡ã§ããã
(1)
â«[x=0->1] (1-x^2)^5 dx
= (1/2) â«[x=-1->1] (1+x)^5*(1-x)^5 dx
= (1/2)*(5/6) â«[x=-1->1] (1+x)^6*(1-x)^4 dx
= (1/2)*(5/6)*(4/7) â«[x=-1->1] (1+x)^7*(1-x)^3 dx
= (1/2)*(5/6)*(4/7)*(3/8) â«[x=-1->1] (1+x)^8*(1-x)^2 dx
= (1/2)*(5/6)*(4/7)*(3/8)*(2/9) â«[x=-1->1] (1+x)^9*(1-x) dx
= (1/2)*(5/6)*(4/7)*(3/8)*(2/9)*(1/10) â«[x=-1->1] (1+x)^10 dx
= (1/2)*(5/6)*(4/7)*(3/8)*(2/9)*(1/10)*(1/11)*2^11
= 256/693
(2) (1) ãšåæ§ã«ããŠ
â«[x=0->1] (x*(1-x))^5 dx
= (5/6)*(4/7)*(3/8)*(2/9)*(1/10)*(1/11)*1^11
= 1/2772
(3)
ãŸãã
(x*(1-x))^5 = (1+x^2)Q(x) + ax + b
ãšãããx = ±i ã代å
¥ãããšã
-4 - 4i = b + ai
-4 + 4i = b - ai
ãšãªãã®ã§ãa = b = -4
ãŸãã
â«[x=0->1] 1/(1+x^2) dx = Ï/4ïŒx=tanΞã®çœ®æç©åã«ããïŒ
ãš
â«[x=0->1] 2x/(1+x^2) dx = log2
ãæãç«ã¡ãŸãã
ãã£ãŠã
â«[x=0->1] (x*(1-x))^5/(1+x^2) dx
= â«[x=0->1] {x^5*(1-x)^5+4x+4}/(1+x^2) dx - 4 â«[x=0->1] 1/(1+x^2) dx - 2 â«[x=0->1] 2x/(1+x^2) dx
= Σ[n=0->â] â«[x=0->1] {x^(2n+5)*(1-x)^5+4*x^(2n+1)+4*x^(2n)}*(-1)^n dx - Ï - 2log2
= Σ[n=0->â] {120/((2n+11)(2n+10)(2n+9)(2n+8)(2n+7)(2n+6))+4/(2n+2)+4/(2n+1)}*(-1)^n - Ï - 2log2
= Σ[n=0->â] {-1/(2n+11)+5/(2n+10)-10/(2n+9)+10/(2n+8)-5/(2n+7)+1/(2n+6)+4/(2n+2)+4/(2n+1)}*(-1)^n - Ï - 2log2
= 4/1 + 4/2 - 4/3 - 4/4 + 4/5 + 5/6 - 9/7 + 5/8 - 1/9 - Ï - 2log2
= 11411/2520 - Ï - 2log2
æåŸã®1è¡ã¯æèšç®ããå³ããâŠâŠã
11411/2520ã®æ£äœã
4/1 + 4/2 - 4/3 - 4/4 + 4/5 + 5/6 - 9/7 + 5/8 - 1/9
ã§ããããšã«ã¯é©ããŸããã
(x*(1-x))^6,(x*(1-x))^7
ã«çŸããåæ°å€
38429/13860ã- 421691/120120
ã«ã€ããŠDD++ããã®å·§ã¿ãªæ¹æ³ãåèã«æ¢ããš
2 + 4/3 - 7/4 - 3/5 + 1/7 + 14/9 + 1/11 = 38429/13860
- 6 + 7/3 + 6/5 + 8/7 - 7/8 - 20/11 + 17/12 - 1/13 = - 421691/120120
ã«ãã£ãŠæ§æãããŠããããšã«ãªããã§ããã
ãªãkuperbeltããã®ããŒã¿é¢æ°å©çšã§ã¯
2 + 2/3 + 2/15 - 1/30 + 1/140 - 1/1260 - 1/2772 = 38429/13860
- 4 + 1/3 +2/15 + 1/35 - 1/140 + 1/630 - 1/5544 - 1/12012 = - 421691/120120
ã®æ§æã«ãªãããã§ãã
ããããããã
â«[x=0,1]1/(x^2+1)dx=â[n=0,oo]((-1)^n*â«[x=0,1]x^(2*n)dx)
â«[x=0,1]x/(x^2+1)dx=â[n=0,oo](-1)^n*â«[x=0,1](x^(2*n+1)dx)
â«[x=0,1]x^2/(x^2+1)dx=â[n=0,oo]((-1)^n*â«[x=0,1]x^(2*n+2)dx)
â«[x=0,1]x^s*(1-x)^sdx=â[n=0,oo]((-1)^n*â«[x=0,1]x^(2*n+s)*(1-x)^sdx)
ãªããŠåŒãã©ãããæãã€ãããã§ããïŒ
åçŽã«ã
1/(1+x^2) ãããã ãªãâŠâŠ
âx ã 1-x ã ããå æ°ã«æã€ãã®ã®ç·åã§æžããããªãâŠâŠ
âåé
1 ã§å
¬æ¯ -x^2 ã®ç¡éçæ¯çŽæ°ã«å±éããã°ãããã§ãããããïŒ
ãšããã ãã§ãã
ãšããã§ãããšããæ°ãã€ãããã§ãããæ®éã« x^5*(1-x)^5 ã 1+x^2 ã§å²ã£ãåãæ®éã«ç©åããã°åãå
容ã®åæ°ã®åã«åž°çããã£ãœãã§ããã
åŒå€åœ¢é 匵ã£ãã®ããããŸãæå³ãªãã£ãçæã
å°åŠçãžã®å®¿é¡åé¡
18035 * 68454
21642 * 57045
22818 * 54105
32463 * 38030
34227 * 36070
ã®ä»ã«ããäžé¡5æ¡åå¿ã®æãç®ã®åé¡ãäœã£ãŠäžããã
19015*64926
ã§ããããã