1^x+2^x=3^x ãæºããxã¯ïŒãããx=1
3^x+4^x=5^xãæºããxã¯ïŒ ãããx=2
ã¯èŠã€ããã
ã§ã¯ããããã®åŒãæºããxã¯äœïŒ
(1)2^x+3^x=4^x
(2)4^x+5^x=6^x
(3)4^x+6^x=9^x
(4)9^x+12^x=16^x
No.2036GAI7æ29æ¥ 07:19
æ®éã«æ°å€èšç®ããã°ããã ããªããa^x+b^x=c^xã®è§£ã¯é©åœãªåæå€ãã
xâx-(a^x+b^x-c^x)/{(loga)a^x+(logb)b^x-(logc)c^x}
ãšãã挞ååŒã§æ±ããã°ãããè¿äŒŒå€(å°æ°ç¬¬61äœãåæšäºå
¥)ã¯
(1) 1.507126591638653133986883360838631164373994094485656896675364
(2) 2.487939173118174667543358494964101710715178304214349713989600
(3) 1.186814390280981717544988040147644615298932643889332006235330
(4) 1.672720934462332544585431252419794866784109546317415204907841
No.2037ãããã7æ29æ¥ 14:20
(3),(4)ã«ã¯æ瀺ç衚瀺ãå¯èœãšãªããšæããã§ãã(1),(2)ã§ã¯ç¡çã§ãããïŒ
No.2038GAI7æ30æ¥ 06:26
ãã(3)(4)ã¯è§£ãããã§ããã
(a^2)^x+(ab)^x=(b^2)^x
1+(b/a)^x=((b/a)^x)^2
(b/a)^x=(â5+1)/2
âŽx=log((â5+1)/2)/log(b/a)
ã«ãã
(3)ã¯log((â5+1)/2)/log(3/2)
(4)ã¯log((â5+1)/2)/log(4/3)
ããã(1)(2)ã¯è§£ããæ¹çšåŒã®åœ¢ã«ãªããªãã®ã§ç¡çãªæ°ãããŸãã
s(a^2)^x+t(ab)^x=u(b^2)^x
ã®ããã«ä¿æ°ãæãã£ãŠããŠã解ããŸããããã®åœ¢ã«ããªããªãã§ãããã
No.2039ãããã7æ30æ¥ 09:46
Né²æ³(N=4ïœ9,11ïœ17)ã§ä¹æ³æç¶ä¿æ°MP(Multiplicatve Persistence)ãèšç®ããŠã¿ãŸããã
4é²æ³ã§ã¯20000æ¡ãŸã§èšç®ããŠã¿ãŸããããMP=3ãæ倧ã§ãMPïŒ3ã®å Žåã¯èŠã€ãããŸããã§ããã
5é²æ³ã§ã¯4000æ¡ãŸã§èšç®ããŠã¿ãŸããããMP=6ãæ倧ã§ãMP=6ãšãªãã®ã¯5é²æ³è¡šèšã§3344444444444444444444(10é²æ³è¡šèšã§1811981201171874)ã§ããããå¯äžã®å Žåã§ããã
11é²æ³ã§ã¯130æ¡ãŸã§èšç®ããŠã¿ãŸããããMPã¯13ãæ倧ã§ãMP=13ãšãªãæå°æ°ã¯ã11é²æ³è¡šèšã§6777777777777777778888888999999AAAAAAAAAAAAAAAAAAAA(10é²æ³è¡šèšã§78651871429395862061789067874710687825489797403089215)ã§ããã
13é²æ³ã§ã¯60æ¡ãŸã§èšç®ããŠã¿ãŸããããMPã¯15ãæ倧ã§ãMP=15ãšãªãæå°æ°ã¯ã13é²æ³è¡šèšã§777999999999999999999999AAAAAAAACCCCC(10é²æ³è¡šèšã§95912962307468180493712530377442827510678)ã§ããã
14é²æ³ã§ã¯60æ¡ãŸã§èšç®ããŠã¿ãŸããããMPã¯13ãæ倧ã§ãMP=13ãšãªãæå°æ°ã¯ã14é²æ³è¡šèšã§55599999999999999AAAABBBBBB(10é²æ³è¡šèšã§3393205899117928970481629894345)ã§ããã
17é²æ³ã§ã¯60æ¡ãŸã§èšç®ããŠã¿ãŸããããMPã¯17ãæ倧ã§ãMP=17ãšãªãæå°æ°ã¯ã17é²æ³è¡šèšã§399999999BBBBBBBBBBBBEEEEFFFFFFFFFFFFFFFF(10é²æ³è¡šèšã§965269696920717530013264534629227512589511645392987)ã§ããã
ä»ã®é²æ³ã§ã¯å¹³æ23幎6æ17æ¥ä»ã®çµæãšåãã§ããã
No.2035kuiperbelt7æ27æ¥ 22:42 ååå€é
åŒx^n-1=0ã§n=3,5,17ã§ã¯æ ¹ãæéåã®å¹³æ¹æ ¹ãšååæŒç®ã§è¡šãããšãã§ããã®ã§ãå®èŠãšã³ã³ãã¹ã§äœå³ã§ããŸãããn=7,9,13,19ã®å Žåã¯ãæ ¹ã«ç«æ¹æ ¹ãçŸããã®ã§å®èŠãšã³ã³ãã¹ã§äœå³ãããããšãã§ããŸããã
ãŸããè§ã®äžçåæ¹çšåŒã¯äžæ¬¡æ¹çšåŒã§ãæ ¹ã«ç«æ¹æ ¹ãçŸããã®ã§ãäžè¬ã®è§ã®äžçåã¯å®èŠãšã³ã³ãã¹ã§äœå³ãããããšãã§ããŸããã
以åããããå®èŠãšã³ã³ãã¹ã«å ããŠãè§ã®äžçååšããšããéå
·ã䜿çšå¯èœãšããããã©ã®ããã«ããŠæ£7,13,19è§åœ¢ãäœå³ã§ããããšããã®ãèããŠã¿ãŸããã
No.2009kuiperbelt7æ14æ¥ 14:57 hXXp://kuiperbelt.la.coocan.jp/n-gon/n-gon.html
æèªããããŸããã
æ£11è§åœ¢ãäœå³ã§ããªãããšãæå€ã«æããŸããã
No.2015Dengan kesaktian Indukmu7æ15æ¥ 20:09
è§ã®äžçååšãå©çšããã°éç«ãã§ããã®ã¯æ£ãããšããŠã
éã«è§ã®äžçååšãå©çšããŠæ°ãã«ã§ããããã«ãªãããšã¯éç«ã ããªãã§ããããïŒ
No.2016DD++7æ16æ¥ 07:41
ãªãã»ã©ãè§ã®ïŒçåãèš±ããããšã m, n ãéè² æŽæ°ãšã㊠p ã
p = (2^m)*(3^n) +1
ãšæžãããªãã°
æ£ p è§åœ¢ã®äœå³ãåççã«ã¯å¯èœãšã
p 㯠11 ã«ã¯ãªãåŸãªãã
èå³æ·±ãããšã§ãã
No.2017Dengan kesaktian Indukmu7æ16æ¥ 14:09
[2017] ã§ç§ãè¿°ã¹ãããšã¯ã¡ãã£ãšçããã§èªè誀ãã
æ£ããã¯ããã¢ãã³ãçŽ æ°ã(WIKIpedia) ã®é
ã«æžãããŠããŸãã
https://ja.m.wikipedia.org/wiki/%E3%83%94%E3%82%A2%E3%83%9D%E3%83%B3%E3%83%88%E7%B4%A0%E6%95%B0
No.2018Dengan kesaktian Indukmu7æ16æ¥ 14:41
m, n ãéè² æŽæ°ãšããŠp=(2^m)*(3^n)+1ãšãã圢ã®çŽ æ°ããã¢ãã³ãçŽ æ°ãšããã®ã§ããã
kåã®çŽ æ°p1,p2,p3,...,pk(p1<p2<p3<...<pk)ã«å¯ŸããŠã(p1^n1)*(p2^n2)*(p3^n3)*...*(pk^nk)+1ã®åœ¢ã®çŽ æ°ãäžè¬åãã¢ãã³ãçŽ æ°ãšããããã§ããããŠã·ã¹äœå³ã§ã¯ãäžè¬ã®è§ã®äžçåãšãpããã¢ãã³ãçŽ æ°ã®ãšãã®æ£pè§åœ¢ã®äœå³ãã§ããŠãä»ã«æ£11è§åœ¢ã®äœå³ãã§ããããã§ãããp=(2^n1)*(3^n2)*(5^n3)+1ã®äžè¬åãã¢ãã³ãçŽ æ°ã®ãšãã®æ£pè§åœ¢ã®äœå³ãå¯èœãã©ããã¯æªè§£æ±ºåé¡ãªã®ã ããã§ãã
https://ja.wikipedia.org/wiki/ããŠã·ã¹äœå³
No.2034kuiperbelt7æ27æ¥ 22:29 ååšäžã«ãåã®ç¹ãé
眮ãããšããNåã®é ç¹ãïœïŒè¶³è·¡ã®é·ããšããïŒ
å
è§ã®ç·åïŒïŒN-ïŒïœïŒÏãäžè¬å
1ïŒæ£ïŒ®è§åœ¢é ç¹ã®å
è§ã®ç·åãïœïŒïŒïŒé£ãåãç¹ãçµã¶ïŒã®å Žå
察è§ç·ã«ãããïŒïŒåã®äžè§åœ¢ã«åå²ãããŸãã®ã§ã
å
è§ã®ç·åïŒïŒïŒ®ïŒïŒïŒÏã
2ïŒïŒ®è§åœ¢ã®é ç¹ã®å
è§ã®ç·åïŒïŒïŒ®ïŒïŒïŒÏãïœïŒïŒã®å Žå
é ç¹ããçåã«ããªããŠãæãç«ã€ã
ååšè§ãäžã€ãã€åãããŠããå
šäœã®è§ã®ç·åã¯ããããªãã
ïŒïŒæ圢ïŒïœåãã€çµãã å ŽåïŒNïŒïŒïœãïŒïŒïŒã®äžè¬å
å
¬çŽæ°ïŒïŒ®ïŒïœïŒïŒïŒã®å Žå
4ïŒå
¬çŽæ°ïŒïŒ®ïŒïœïŒïŒïœâïŒ1ãã®å Žå
5ïŒååšäžã«ãåã®ç¹ãåãã12æã®ç¹ããå§ãïŒäžè¬æ§ã倱ããªãïŒãæ£ã®å転ïŒå·Šåãã§æïŒçªå·ä»ãïŒ1ããNããŸãã¯ãïŒããN-1ïŒãããŠããããã¹ãŠé ç¹ïŒ¡ïŒïŒ¢ïŒïŒ£ã®é ã§çµãã æãçŽç·ïŒ¡ïŒ¢ãšçŽç·ïŒ¢ïŒ£ã®ãªãè§ãæ£ã®å転ãšããã
6ïŒãã®ä»ãè€æ°ã®å€è§åœ¢ã«åå²ãããå Žå
ååšè§ã®æ§è³ªããå©çšããŠèšŒæã§ããŸãã
No.2022ks7æ22æ¥ 18:17
3ã®èšŒæ
æèšã®ïŒïŒæã®äœçœ®ã«ç¹ãéžã³ãååšãçåãããã®ç¹ãéžã¶ã
ïŒïŒæã®ç¹ããå§ããäžå®ã®ééïœã§å¯Ÿè§ç·ãçµã¶ãšã
åç®ã«å
ã®ïŒïŒæã®äœçœ®ã«æ»ãããšãã§ããã
ïœâ¡ïŒ(mod N) N'<Nã§ã¯ãå
ã«æ»ããªãã
äžåºéã®äžå¿è§ã¯ãïŒÏ/Nã§ãååšè§ã¯ãÏ/ã§ããã
äžæ¹ããã®ååšè§ã¯ãåºéïŒïŒ®ïŒïŒïœïŒã®ååšè§ã§ãããåããã
æ圢å³åœ¢ã®å
è§ã®ç·åïŒ
ïŒÏ/ïŒïŒïŒïŒ®ïŒïŒïœïŒïŒïŒ®ïŒïŒïŒ®ïŒïŒïœïŒÏ
N>2dã®æ¡ä»¶ã¯ãåã圢ã®éé ãé¿ããããã§ãã
No.2023ks7æ23æ¥ 08:16
ïŒã®èšŒæ
d=d'ã®ãšããã€ãŸããïœãã®çŽæ°ãN=de
ãã®ãšããé ç¹ãeåã®å€è§åœ¢ãïœåã§ããã®ã§ã
å
è§ã®ç·åïŒïœïŒïŒe-2ïŒÏïŒïŒde-2dïŒÏïŒïŒïŒ®ïŒïŒïœïŒÏã
No.2024ks7æ24æ¥ 16:55
4ã®èšŒæãïœïŒïœâã®ãšã
N/d',ãd/d'ã¯ããšãã«æŽæ°ã§ã
é ç¹ã®æ°N/d'åã足跡ã®é·ãd/d'ãã®è§ã¯(N/d'-2d/d')Ïãšãªãã
åãå³åœ¢ããïœâåã§ããã®ã§ã
åºæ¥ãå³åœ¢ã®å
è§ã®ç·åïŒdâïŒN/d'-ïŒd/d'ïŒÏ
ïŒïŒN-ïŒdïŒÏã
No.2029ks7æ25æ¥ 12:06
5ã®èšŒæ
é ç¹è¡šç€ºïŒÏ1,âŠÏn,(oïœn-1ã®çœ®æ)
足跡衚瀺ïŒd1,âŠdnãïœ(i)=Ï(i+1)-Ï(i)ãÏ(n+1)=Ï(1)
Σd(i)=Σ(Ï(i+1)-Ï(i))=0ãïŒÎ£ã¯ãïŒïœïŒ®ãŸã§ïŒ
äœããÏ(i)>Ï(i+1)ã®ãšãããã€ãã¹ã«ãªãããå·Šåãã§æ°ããã®ã§ã
ïœ(i)ãN+ïœ(i)ã«çœ®ãæãããšãΣd(i)ã¯ãNã®åæ°ãšãªãã
ã€ãŸããΣd(i)ïŒNïœïŒïœã¯ãå¹³åå€ïŒ
é ç¹è§è¡šç€ºïŒe(i)=Ï/N(N-(d(i)+d(i+1)))
N-(d(i)+d(i+1)>0ã(æ£ã®è§ãå·Šåãã®è§ãªã®ã§,
åãçç±ã§ãN/2>d(i+1),N/2>d(i))ãã)
ååšè§ã®ç·åïŒÎ£e(i)=Ï/NΣ(N-(d(i)+d(i+1)))
ããããããïŒÏ/N(N^2-ΣïŒd(i)+d(i+1)ïŒ)
ããããããïŒÏ/N(N^2-2Nd)=(N-2d)Ïã
äºãæä¿®æ£ããŸããã
No.2032ks7æ26æ¥ 20:59
6ã®èšŒæ
NïŒn1ïŒâŠnk,nk>ïŒã®ãšã
ånkã¯ããµã€ã¯ã«ã®å³åœ¢ãªã®ã§ãïŒã®èšŒæãšåãã
説æäžè¶³ãããã°ããããããé¡ãããŸãã
No.2033ks7æ27æ¥ 17:09
â 145ã®digitsã®1,4,5ã䜿ã£ãŠ
1!+4!+5!=1+24+120=145
ãªãé¢ä¿ãçããã
ããã§ä»ã®æ°åã§ã¯äœããããïŒ
â¡871->8!+7!+1!=40320+5040+1=45361
45361->4!+5!+3!+6!+1!=24+120+6+720+1=871
ããã§ä»ã®çµåãã¯äœããããïŒ
â¢äžèšã®é¢ä¿ã®
A->B
B->C
C->A
ã§ã¯ã©ããª(A.B,C)ãååšã§ãããïŒ
No.2030GAI7æ25æ¥ 17:40
èªåèªèº«ã«ãªããã®: 1,2,145,40585 ã®4ã€
2åã«ãŒã: 871â45361â871 ãš 872â45362â872 ã®2ã€
3åã«ãŒã: 169â363601â1454â169 ã®1ã€
ä»»æã®èªç¶æ°ããå§ããŠã1,2,145,169,871,872,40585 ã®ããããã«å°éããŸãã
ãã ã1ã«ãªããã®ã¯1ã ãïŒ0ãå«ãããš0ãš1ïŒã§ãã倧åã¯169ã«ãªãããã§ãã
No.2031ãããã7æ26æ¥ 00:10
ä»åºŠã¯é åé¢æ°PãçšããŠ
å·Šã§ã®æ°ã¯10ã§åºå®ã
12->10P1+10P2=10+90=100
éã«
100->10P1+10P0+10P0=10+1+1=12
ãã®æ§ã«
A->B
B->A
ãšãäºã埪ç°ãç¹°ãè¿ãã
ããã§ä»åºŠã¯
A->B
B->C
C->D
D->A
ãš4ã€ã§åŸªç°ãç¹°ãè¿ããããã®æ§ãªæ§è³ªãæã€4ã€ã®æ°å(A,B,C,D)ã®çºèŠãé¡ãã
No.2027GAI7æ25æ¥ 06:31
ã«ãŒããããã®ã¯ããããããã®ããšæã£ããããªãå°ãªããã§ããã
ïŒéäžããã«ãŒããããã®ãé€ãïŒ
2åã§ã«ãŒã
12â100â12
4åã§ã«ãŒã
756822â2600820â1965783â6230170â756822
26åã§ã«ãŒã
5242â35460â187201â2419311â3634680â2123281â1815410
â1849711â6053070â786963â6351120â182271â2419400â3638982
â7410330â611292â3780200â2420013â5952â3689370â6200641
â307542â640891â5599451â7353370â1242001â5242
39åã§ã«ãŒã
5861â1995850â9132491â7263470â1366651â484580â3669121
â3932030â3631052â182981â7257710â1844741â2434340â16651
â332660â303931â3630971â4386251â2001700â604904â3790082
â6048812â3785141â2455220â65791â4415050â70572â1239931
â7259150â4294181â5453390â3695761â4566970â4571281â2454590
â3699451â7444810â2434331â12340â5861
(è¿œèš)
ã©ã®æ°ããéå§ããŠãããã¹ãŠå¿
ãäžèšã®ã©ããã«çªå
¥ããããã§ãã
ã€ãŸããã©ã®æ°ããéå§ããŠãå¿
ã12,5242,5861,756822ã®ããããã«å°éãããšããããšã§ãã
ã«ãŒãã¯4çš®é¡ããååšããªããšããããšã«ãªããŸããã
No.2028ãããã7æ25æ¥ 08:07
134ã®æ°ã¯1+3+4=8ã§ããã®ã§
ãããçµåãé¢æ°Cã䜿ã£ãŠ
8C1+8C3+8C4 ïŒåæ°åãå©çšããŠããã)
=8 + 56 + 70
=134
ãšå
ã®æ°åã«æ»ãã
ãã®æ§ãªæ§è³ªãæã€ä»ã®æ°åãçºèŠé¡ãã
No.2025GAI7æ24æ¥ 20:19
1, 18, 72, 134, 505, 6008, 84304, 23873542
ãã®å
1000åãŸã§æ¡ä»¶ãæºããæ°ã¯ãããŸããã§ããïŒã®ã§æ¢çŽ¢ãäžæ¢ããŸããïŒã
(è¿œèš)
næ¡ã®ãšãçµåãã®ç·åã®æ倧ã¯nã»(9n)C(9)ã§ãã
nâ§16ã®ãšã10^(n-1)ïŒnã»(9n)C(9)ãæãç«ã€ã®ã§è§£ãªãã
åæ§ã«çŽ°ãã調ã¹ãããšã«ãã
2Ã10^14(200å
)以äžã§ã¯è§£ãååšããªãããšãããããŸãã
ãã£ãŠè§£ã¯æéåã§ããã200å
ãŸã§èª¿ã¹ãã°å
šè§£ãããããŸãã
ããã200å
ãŸã§èª¿ã¹ãã®ã¯ïŒäžå¯èœã§ã¯ãããŸãããïŒã¡ãã£ãšå€§å€ãªã®ã§ãããŠãããŸãã
â»7æ25æ¥23:44 解ã®ç¯å²ã®äžéã400å
â200å
ã«æŽæ°
No.2026ãããã7æ24æ¥ 22:09
æ²çãããããšããæ£ãšãªãéæ²ç·Cäžã«ãnãèªç¶æ°ãšããŠ
ç°ãªã(3*n+4)ç¹ãä»»æã«ãšããããç¹ããé£ã®2ç¹ãé£ã°ã
次ã®ç¹ãçµã¶ç·ã次ã
ãšåŒããŠãããšéæ²ç·Cã®å
éšã«
åç¹ãç¹ããæå(3*n+4)è§åœ¢ã®å³åœ¢ãçŸããã
ãã®æè§æã«åœããéšåã®å
è§ããã¹ãŠè¶³ãåããããš
180*(3*n-2)°ãšãªãã
å³ã¡
æå7è§åœ¢ã§ã¯180°
æå10è§åœ¢ã§ã¯720°
æå13è§åœ¢ã§ã¯1260°
æå16è§åœ¢ã§ã¯1800°

ãšãªããããªãã§ãã
(äœåãã®äœå³å¶äœãšå床åã«ãã枬éçµæãåºã«äºæž¬)
ãã®äž»åŒµã¯çãåœãïŒ
No.1968GAI6æ25æ¥ 05:22
(å
šé ç¹ã®å
è§ã®å)ïŒ(å
šé ç¹ã®å€è§ã®å)
ïŒ(å
šé ç¹ã®ãå
è§+å€è§ãã®å)
ïŒ(é ç¹æ°)Ã180°
å
šéšã®èŸºããªãã£ãŠãããš3åšããŸãã®ã§
(å
šé ç¹ã®å€è§ã®å)ïŒ360°Ã3
âŽ(å
šé ç¹ã®å
è§ã®å)ïŒ(é ç¹æ°)Ã180°ïŒ360°Ã3
ïŒ(é ç¹æ°ïŒ6)Ã180°
ãšãªããŸããäžè¬ã«ã¯
pn+qç¹ïŒpãšqã¯äºãã«çŽ ïŒããšãp-1ç¹é£ã°ãã§ã€ãªãããš
å
è§ã®åã¯180(p(n-2)+q)°ãšãªããŸããã
No.1969ãããã6æ25æ¥ 06:35
ãããªèŠäºãªèšŒæãã§ãããã ã
ã©ãã3åšããŠãããªããŠæã£ãŠãããªãã£ãã
äŸãæ°ä»ããŠããŠããäœã®å©çšãèãä»ããªãã£ããšæãã
ãããŒãã£ãšäžè¬ã«ä»ã®ãã¿ãŒã³ã§ãæãç«ã€æ§è³ªã«çµã³ã€ããããããšã«ææ¿ã§ãã
ãããå©çšãããŠããããšäžè¬ã«
2*t+3(t=1,2,3,)åã®ç¹ãCäžã«é
眮ããããã®ã§ã¯
ããç¹ããé£ã®tåã®ç¹ãé£ã°ããŠæ¬¡ã
ãšç¹ãã§ãã£ãŠè¡ã£ãŠåºæ¥ãæå(2*t+3)è§åœ¢ã®
å
è§ã®åã¯å
šãŠ180°ãäœãããšãåºæ¥ãã
ã€ãŸã
æå5è§åœ¢ã¯åç¹ã1ã€é£ã°ãã§ç¹ã
æå7è§åœ¢ã¯åç¹ã2ã€é£ã°ãã§ç¹ã
æå9è§åœ¢ã¯åç¹ã3ã€é£ã°ãã§ç¹ã
æå11è§åœ¢ã¯åç¹ã4ã€é£ã°ãã§ç¹ã

æå2*t+3è§åœ¢ã¯åç¹ãtåé£ã°ãã§ç¹ãã§ãã(t=1,2,3,)
ããšã§ãããã®å
è§ã®åã¯å
šãŠ180°ãšãªã£ãŠããŸãããšãèµ·ããïŒ
No.1970GAI6æ25æ¥ 07:44
> "GAI"ãããæžãããŸãã:
> æ²çãããããšããæ£ãšãªãéæ²ç·Cäžã«ãnãèªç¶æ°ãšããŠ
> ç°ãªã(3*n+4)ç¹ãä»»æã«ãšããããç¹ããé£ã®2ç¹ãé£ã°ã
> 次ã®ç¹ãçµã¶ç·ã次ã
ãšåŒããŠãããšéæ²ç·Cã®å
éšã«
> åç¹ãç¹ããæå(3*n+4)è§åœ¢ã®å³åœ¢ãçŸããã
> ãã®æè§æã«åœããéšåã®å
è§ããã¹ãŠè¶³ãåããããš
> 180*(3*n-2)°ãšãªãã
> å³ã¡
> æå7è§åœ¢ã§ã¯180°
> æå10è§åœ¢ã§ã¯720°
> æå13è§åœ¢ã§ã¯1260°
> æå16è§åœ¢ã§ã¯1800°
æ圢å³åœ¢ã®å
¬åŒãïŒN-ïŒïœïŒÏã«ããã°ã
ïŒïŒïœïŒïŒãïœïŒïŒãšããŠãåºãŠããŸãã
No.2021ks7æ20æ¥ 11:13
2/65 ãïŒã€ã®åäœåæ°ã®åãšããŠè¡šçŸããæ¹æ³ãäœéãããã®ãã«ã€ããŠçããã«äŒºããããšåããŸãã
twitter ãšããååã®ã€ããæž
æ¿äœµãæã€ã¬ã³ãžã¹å·ã«ããã³ãã©ã³ãšæµããŠãã tweet ã«è§Šçºãããåãã§ãã
ãªããšãªãã§ãããå°ãªããšã 5 éã以äžã¯ããããã§ããééã£ãŠãããããããªããããã£ãšãããŸãããïŒ
No.1976Dengan kesaktian Indukmu6æ30æ¥ 00:27
æçåŒ
2/(a*(2*b -a)) = 1/(a*b) +1/(b*(2*b -a))
ããã
(a, b) = (1, 33) or (5, 9) or (13, 9) or (65, 33)
ã® 4 éãã
äžèšã«åœãŠã¯ãŸããªããã®ã
2/65 = 1/35 +1/455
No.1977Dengan kesaktian Indukmu6æ30æ¥ 00:33
4éãã«èŠããŸããã代å
¥ãããš
2/65=1/33+1/2145
2/65=1/45+1/117
2/65=1/117+1/45
2/65=1/2145+1/33
ãšãªããŸãã®ã§2éããããªãã§ããã
ä»ã«ã¯
2/65=1/39+1/195
ãš
2/65=1/65+1/65
ããã£ãŠãèš5éãã§ãã
(è¿œèš)
æçåŒã®åæ¯ã«cãæããŠ
2/(a*(2*b-a)*c)=1/(a*b*c)+1/(b*(2*b-a)*c)
ãšããã°ã
(a,b,c)=(1,33,1) â 2/65=1/33+1/2145
(a,b,c)=(1,7,5) â 2/65=1/35+1/455
(a,b,c)=(1,3,13) â 2/65=1/39+1/195
(a,b,c)=(5,9,1) â 2/65=1/45+1/117
(a,b,c)=(1,1,65) â 2/65=1/65+1/65
ã®ããã«å
šè§£ãåºãŠããŸããã
ã¡ãªã¿ã«é
ã®å
¥ãæ¿ãã¯
(a,b,c)=(5,3,13) â 2/65=1/195+1/39
(a,b,c)=(13,7,5) â 2/65=1/455+1/35
(a,b,c)=(13,9,1) â 2/65=1/117+1/45
(a,b,c)=(65,33,1) â 2/65=1/2145+1/33
ã®ããã«ãªããŸãã
No.1978ãããã6æ30æ¥ 00:40
ããã£ïŒïŒ
EXCELLENTïŒ
No.1979Dengan kesaktian Indukmu6æ30æ¥ 01:16
2/65 = 1/x + 1/y
ãã
2xy = 65x + 65y
ããªãã¡
(2x-65)(2y-65) = 65^2
x, y ã®å°ãªããšãäžæ¹ã¯ 65 以äžã§ããããšãã巊蟺ãè² ã®æ°å士ã®ç©ã«ãªãããšã¯ãªãã®ã§ã
2x-65 =ã65^2 ã®æ£ã®çŽæ°ã
ãå
šãŠè§£ããŠããã° 5 çš® 9 åã®è§£ãåŸãããŸãã
No.1980DD++6æ30æ¥ 10:17
DD++ããããšãŠãæ Œå¥œããã§ããææããŸããã
No.1981Dengan kesaktian Indukmu6æ30æ¥ 21:35
ãããã«ã³ã¹ã«ããæ¥çžŸãããšã«
ããã¬ãã€ãªã¹ã¯ 1 å垰幎ã®é·ãã
365 +1/4 -1/300 (åäœã¯æ¥æ°)
ãšããŠãããšã®ã§ãã
ãšãžããåŒåæ°ã®æµããæ±²ãã§ããæš¡æ§ã§
æŽæ°ãšåäœåæ°ãšã§è¡šçŸããŠããã®ã§ããã
äœããäžè¬ã«ãšãžããåæ°ã§ã¯åäœåæ°ã®åãšããŠããã®ã«å¯ŸããŠãããã¬ãã€ãªã¹ã«ããå垰幎ã®é·ãã§ã¯ãåäœåæ°ãæžç®ããæäœãèš±ããŠããããã§ã¯ãããŸãã
以äžãèžãŸããŸããŠä»åã¯ååšç(ã®è¿äŒŒå€)ãèªç¶æ°ãšåäœåæ°ãšã®å æžç®ã§è¡šçŸããŠã¿ãŸããããªãã¡ã
Ï â 3 +1/7 -1/791
第äºé
ãŸã§ã§æã¡åããŸããšæåãªæçæ°è¿äŒŒå€
22/7
ãšçãã
第äžé
ãŸã§ãèšç®ããŸããšããããŸãæåãªæçæ°è¿äŒŒå€
355/113
ãšçãããªããŸãã
é¢çœãããšã§ãã
æç®äžã§ã¯ç¥ãããŠããªãã ãã§åå€ã
3 +1/7 -1/791
ã¯ãã²ãã£ãšããŠå€ä»£ã§ããããã¯ç¥ãããŠããã®ã§ã¯ãªãããããšå€¢æ³ããŠã¿ããããªããŸãã
No.1982Dengan kesaktian Indukmu7æ1æ¥ 21:15
Ïã®ãšãžããåŒåæ°ã«ããè¿äŒŒã
æžç®ãèš±ããªããã°ä»¥äžã®ããã«ãªããš OEIS ãæããŠãããŸããã A001466
3+1/8+1/61+1/5020+1/128541455+1/162924332716605980+1/28783052231699298507846309644849796+1/871295615653899563300996782209332544845605756266650946342214549769447+ãâŠâŠâŠã
æã«å®å®è¹ãçéžãããã¢ããèšç»ã§ããèšç®ã«ã¯ 3.1416 ã䜿ã£ãŠãããããã®ã§ãå·¥åŠçãªå®çšäžã§ã¯ã
3+1/8+1/61+1/5020
ã§ãåºãç¯å²ã§å
åã§ããããšããšã
No.1987Dengan kesaktian Indukmu7æ2æ¥ 23:20
ãã¯ãæžç®ãèš±ããã»ãããåæïŒã¯éããããã§ãåæ¯ã倧ãããªãéããâŠâŠ
3 +1/7 -1/791 -1/3748629 +1/151648960887729 -1/1323497544567561138595307148089 +1/41444465282455711991644958522615049159671653083333293470875123 âŠâŠâŠ
OEIS A001467 ããã
No.1988Dengan kesaktian Indukmu7æ2æ¥ 23:48
> 以äžãèžãŸããŸããŠä»åã¯ååšç(ã®è¿äŒŒå€)ãèªç¶æ°ãšåäœåæ°ãšã®å æžç®ã§è¡šçŸããŠã¿ãŸããããªãã¡ã
> Ï â 3 +1/7 -1/791
> 第äºé
ãŸã§ã§æã¡åããŸããšæåãªæçæ°è¿äŒŒå€
> 22/7
> ãšçãã
> 第äžé
ãŸã§ãèšç®ããŸããšããããŸãæåãªæçæ°è¿äŒŒå€
> 355/113
> ãšçãããªããŸãã
> é¢çœãããšã§ãã
ããã§ãã£ãã®ããš
S=[1,1,1,7,-791,-3740526,1099482930,-2202719155,6600663644,-26413901692,96840976853,-496325469560,2346251883960,-44006595799206,]
ãšããŠ
gp > for(n=4,14,print1(sum(k=1,n,1/S[k])","))
22/7,355/113,103993/33102,104348/33215,208341/66317,312689/99532,833719/265381,1146408/364913,4272943/1360120,5419351/1725033,80143857/25510582,
ãšååšçÏã®è¿äŒŒåæ° (A002485/A002486)ã䞊ãã§ãããã(åæã¹ããŒãã¯é
ãã)
A006784ã«ã¯åæãéãããªãã®ãèŒã£ãŠããŸãã
No.1990GAI7æ3æ¥ 08:45
â 亀代çŽæ°ã®ããã«åäœåæ°ããããããã足ãããåŒããããããŠååšçã®è¿äŒŒå€ãè¡šããŠã¿ãŸãã
â»ãããã§ãé
æ°ã®å€ããã®ãäœããããã§ãããããŸã§ã¯âŠâŠ
Ï â 3 +1/7 -1/784 +1/90160 -1/14155120 +1/5265704640 -1/2274784404480
= 1429289194723/454956880896ã
â 3.14159265359
âŠâŠãåŸãããŸãã
â æ±ãæ¹
https://oeis.org/A061233
ãåèã«ããŸããã
PARI/gp ãå©çšããŸããããA061233 ã«æžãããŠããããã°ã©ã ã¯ããããããªãã£ãã®ã§ä»¥äžã®ãã®ã䜿ããŸããã
(PARI)? r=1/(4-Pi) ; for(n=1, 6, r=r/(r-floor(r)); print1(floor(r), ", "))
åºåã¯
7, 112, 115, 157, 372, 432,
ã§ããã
ããããã次ã®ããã«ããŸãã
Ï â 4 -1/1 +1/7 -1/(7*112) +1/(7*112*115) -1/(7*112*115*157) +1/(7*112*115*157*372) -1/(7*112*115*157*372*432)
= 3 +1/7 -1/784 +1/90160 -1/14155120 +1/5265704640 -1/2274784404480
= 1429289194723/454956880896ã
â 3.14159265359
Android ã¹ããçšã® PARI ã®ã¢ããªãã¿ã€ããã®ã§ãè©Šãã«äœ¿ããããªããäžã®ããã«éãã§ã¿ãŸããã
No.1991Dengan kesaktian Indukmu7æ3æ¥ 15:15
[1988] ã§ã [1991] ã§ã
亀代çŽæ°ã®åäœåæ°ã®äžè¬é
ã¯å®ãé£ããã®ããããŸãã
ãšããããããç°¡åãªäžè¬é
ãæã¡åŸããšç¥ã£ãŠãPARI/GP ã§ç¢ºèªããŠã¿ãŸããã以äžã察話ã§ããâââ
? \p 300
realprecision = 308 significant digits (300 digits displayed)
? A = 3 +sumalt(n=1,((-1)^(n+1))/(n*(n+1)*(2*n+1)))
%1 = 3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097566593344612847564823378678316527120190914564856692346034861045432664821339360726024914127
? B = Pi - A
%2 = 0.E-307
No.1992Dengan kesaktian Indukmu7æ3æ¥ 20:37
ãã®ãã¿ãŒã³ã¯åããŠã¿ãŸãããïŒç¢ºãã«èŠãããããïŒ
調ã¹ãŠã¿ããšåãã®3ãå«ã
48*sumalt(n=0,(-1)^n/((6*n+1)*(6*n+3)*(6*n+5)))
ã«ãã£ãŠãÏãæ§æãããã¿ããã§ããã
äºãéãã®åã£ãŠå€§ããã§ããã
No.1993GAI7æ4æ¥ 07:46
GAI ããã
1/((6*n+1)*(6*n+3)*(6*n+5))
ãã¡ããç§ãåèŠã§ãã
äžæè°ãªåœ¢ã§ããâŠâŠ
No.1994Dengan kesaktian Indukmu7æ4æ¥ 13:35
GAI ããã
[1993] ã«é¢ä¿ããŸãããã©ãã
48*(1/(1*3*5)-1/(7*9*11)+1/(13*15*17)-1/(19*21*23)+1/(25*27*29)-1/(31*33*35)) -4*(1-1/3+1/5-1/7+1/9-1/11+1/13-1/15+1/17-1/19+1/21-1/23+1/25-1/27+1/29-1/31+1/33-1/35)
= 248269474984/4512611027925
â 0.0550168125388
é
æ°ãå¢ãããŠãããšã0 ã«åæããæ°é
ãæããŸããã蚌æãã§ããªãã§ãããŸãã
No.1998Dengan kesaktian Indukmu7æ7æ¥ 23:24
48/((6k+1)(6k+3)(6k+5)) = { 6/(6k+1) - 6/(6k+3) + 6/(6k+5) } - 2/(2k+1)
ãšå€åœ¢ããã°ãããã®äº€ä»£ç¡éçŽæ°ã
6*(Ï/4) - 2*(Ï/4) = Ï
ãš 2 çµã®ã©ã€ããããçŽæ°ã§èšç®ã§ããŸããã
ããããã®çŽæ°ã¯çµ¶å¯Ÿåæããããã§ã¯ãªãã®ã§ãåãæ±ãã«å°ã泚æãå¿
èŠã§ããã
No.2001DD++7æ9æ¥ 16:12
DD++ ããã
ããããšãããããŸããïŒ
No.2002Dengan kesaktian Indukmu7æ9æ¥ 21:21
> "DD++"ãããæžãããŸãã:
> 48/((6k+1)(6k+3)(6k+5)) = { 6/(6k+1) - 6/(6k+3) + 6/(6k+5) } - 2/(2k+1)
> ãšå€åœ¢ããã°ãããã®äº€ä»£ç¡éçŽæ°ã
> 6*(Ï/4) - 2*(Ï/4) = Ï
> ãš 2 çµã®ã©ã€ããããçŽæ°ã§èšç®ã§ããŸããã
> ããããã®çŽæ°ã¯çµ¶å¯Ÿåæããããã§ã¯ãªãã®ã§ãåãæ±ãã«å°ã泚æãå¿
èŠã§ããã
ã©ããã£ãŠæ£åœåããã°ããã®ãããããªãã£ãã®ã§
f(x) = 6*arctan(x) -2*arctan(x^3)
ãããŒã©ãŒå±éããŠïŒé
ã¥ã€åºåãããšã§
ãªããšããªããããšæããŸããã
f(x) = (6*x-4*x^3+(6*x^5)/5)
-((6*x^7)/7-(4*x^9)/3+(6*x^11)/11)
+((6*x^13)/13-(4*x^15)/5+(6*x^17)/17)
-((6*x^19)/19-(4*x^21)/7+(6*x^23)/23)
+âŠâŠ
= (6*x-(12*x^3)/3+(6*x^5)/5)
-((6*x^7)/7-(12*x^9)/9+(6*x^11)/11)
+((6*x^13)/13-(12*x^15)/15+(6*x^17)/17)
-((6*x^19)/19-(12*x^21)/21+(6*x^23)/23)
+âŠâŠ
ããšã¯ã6*k+1, 6*k+3, 6*k+5
ãããŸã 䜿ã£ãŠãã£ãŠæŽçããŠãããŠ
æåŸã« x=1 ãšããŠãããŸãã
No.2019Dengan kesaktian Indukmu7æ16æ¥ 18:27
ãããé£ãããšããã§ãçŽæ°ã絶察åæããªãã®ã§ãåã®é åºå
¥ãæ¿ãäžå¯ãªã®ã§ãâŠâŠã
ãã¯ããŒãªã³å±éã®ç¬¬ n é
ãŸã§ã®åãäžçåŒè©äŸ¡ããæã¿æã¡ããæãã«ãªããŸããã
No.2020DD++7æ17æ¥ 02:25
2*nåã®Aãš2*nåã®Bãš2*nåã®Cãã3*nåã®æåãéžã¶éžã³æ¹ã¯äœéãïŒ
No.2003GAI7æ14æ¥ 07:15
åæ°å¶éãªãã§3çš®é¡ã®æåãã3*nåéžã¶éžã³æ¹ã¯ã
3H[3*n]
=[3*n+2]C2
=(3*n+2)*(3*n+1)/2
éãã
ãã®äžã§äžé©ãªãã®ã¯ã©ãã1çš®é¡ã®æåã2n+1å以äžã«ãªã£ãå Žåã§ããã
ãã®ãšãæ®ã2çš®é¡ã®æåã2*nåãè¶
ããããšã¯ãªãã®ã§ã
äžé©ãšãªãéžã³æ¹ã®æ°ã¯ã
3*{Σ[k=2n+1ïœ3*n]2H[3*n-k]}
=3*{Σ[k=2n+1ïœ3*n][3*n-k+1]C1}
=3*{Σ[k=2n+1ïœ3*n](3*n-k+1)}
=3*{Σ[m=1ïœn](n-m+1)}
=3*{Σ[m=1ïœn](n+1) - Σ[m=1ïœn]m}
=3*{(n+1)*n - n*(n+1)/2}
=3*n*(n+1)/2
éãã
ãã£ãŠã2*nåã®Aãš2*nåã®Bãš2*nåã®Cãã3*nåã®æåãéžã¶éžã³æ¹ã¯ã
(3*n+2)*(3*n+1)/2 - 3*n*(n+1)/2
=3*n^2+3*n+1
éãã
No.2004ããã²ã7æ14æ¥ 08:47
A ã®åæ°ã§å ŽååãããŠã
(n+1) + (n+2) + (n+3) + âŠâŠ + 2n + (2n+1) + 2n + âŠâŠ + (n+2) + (n+1)
= (1/2)*n*(3n+1)*2 + (2n+1)
= 3n^2 + 3n + 1 éã
No.2005DD++7æ14æ¥ 09:22
2è²ã§åæ§ã®ããšããããš 2n+1 éãã«ãªããšããããšã¯ã
ããã (n+1)^3 - n^3 ãšããåŒããå°ããããšããäž»æšã§ããããïŒ
No.2006DD++7æ14æ¥ 09:29
4è²ã®å Žå (16/3)n^3 + 8n^2 + (14/3)n + 1 éãã£ãœãã®ã§ã
3 è²ãŸã§ (n+1)^k - n^k ã«äžèŽããã®ã¯ãã ã®å¶ç¶ã ã£ãããã§ãâŠâŠã¡ãã£ãšæ®å¿µã
No.2007DD++7æ14æ¥ 09:45
4è²ã®å Žå (16/3)n^3 + 8n^2 + (14/3)n + 1 éã
n=1ãªã19ã§ãããã
A,A,B,B,C,C,D,D
ãã3ã€ãéžã¶æ¹æ³ã¯
[A,A,B],[A,A,C].[A,A,D]
åæ§ã«[B,B,*],[C,C,*],[D,D,*]åã§12éã
åŸã¯4C3=4éãã§
èš16éãããäœããªããã§ã¯ãªãããšæããããã§ããåŸ3éãã¯äœã§ããïŒ
No.2010GAI7æ14æ¥ 23:11
4è²ã®å Žåã¯
(23/6)n^3+7n^2+(25/6)n+1
ã§ããããã
(è¿œèš)
äžè¬ã«kè²ã®ãšã
(k)H(3n)-(k)H(n-1)Ãk
=(3n+k-1)C(k-1)-(n+k-2)C(k-1)Ãk
ãšãªãã
2è²: n+1
3è²: 3n^2+3n+1
4è²: (23/6)n^3+7n^2+(25/6)n+1
5è²: (19/6)n^4+10n^3+(65/6)n^2+5n+1
ã»ã»ã»
ã®ããã«ãªããšæããŸãã
No.2011ãããã7æ15æ¥ 00:27
å
ã®åé¡ã®ã6nåãã3nååããããã¡ããã©åååãããšè§£éããŠã
4è²ã®å Žåã¯ã8nåãã4nååããã§èããŠããŸãã
No.2012DD++7æ15æ¥ 05:55
çãããçºèŠãããçµæã䜿ã£ãŠã次ã®äºãæç«ããããšã6è²ãŸã§ç¢ºèªã§ããŸããã
確èªã¯ããŠããŸããã以äžåæ§ãªèšãæãã§æ¢ãããã®ãšæãããŸãã
3è²ã§ã¯
-nâŠa,b,câŠnã§ãa+b+c==0 ãæºãã(a,b,c)ã®åæ°ãæ±ããããšã«åãã
4è²ã§ã¯
-nâŠa,b,c,dâŠnã§ãa+b+c+d==n ãæºãã(a,b,c,d)ã®åæ°ãæ±ããããšã«åãã
5è²ã§ã¯
-nâŠa,b,c,d,eâŠnã§ãa+b+c+d+e==2*n ãæºãã(a,b,c,d,e)ã®åæ°ãæ±ããããšã«åãã
6è²ã§ã¯
-nâŠa,b,c,d,e,fâŠnã§ãa+b+c+d+e+f==3*n ãæºãã(a,b,c,d,e,f)ã®åæ°ãæ±ããããšã«åãã
No.2013GAI7æ15æ¥ 05:59
> "DD++"ãããæžãããŸãã:
> å
ã®åé¡ã®ã6nåãã3nååããããã¡ããã©åååãããšè§£éããŠã
> 4è²ã®å Žåã¯ã8nåãã4nååããã§èããŠããŸãã
ãªãã»ã©ãã®è§£éã§ãããš
4è²ã§ã¯n=1,2,3,ã§
19,85,231,489,,(2*n+1)*(8*n^2+8*n+3)/3
5è²ã§ã¯
51,381,1451,3951,,1 + 5*n*(n+1)*(23*n^2 + 23*n + 14)/12
ãšãªãããã§ããã
ãã®å Žåã ãš
4è²ã§ã¯
-nâŠa,b,c,dâŠnãã§ãa+b+c+d==0 ãæºãã(a,b,c,d)ã®çµã®åæ°
5è²ã§ã¯
-nâŠa,b,c,d,eâŠnãã§ãa+b+c+d+e==0 ãæºãã(a,b,c,d,e)ã®çµã®åæ°
ãšåçãšãªãæš¡æ§ã§ãã
No.2014GAI7æ15æ¥ 07:01