æ°ã®è¡šçŸã«ã€ããŠ
ïŒâ¡ïŒïŒïŒïŒïŒïŒâŠïŒç¡éïŒâ¡ïŒ/2â¡âïŒãªã©ã
log3(4)ãâ3ã¯ãç¡çæ°ã
ç¡çæ°ïŒŸç¡çæ°ïŒâ3log3(4)(åºãïŒ)
ïŒ3^log3(2)â¡2
ç°ãªãã¿ã€ãã®è¡šçŸåéã
No.243ks2022幎9æ23æ¥ 15:10
æè¿ãã-1ïŒã»ã»ã»ïŒïŒïŒããšãã衚èšã«è§Šããäžæè°ããæããŸããã
No.244HP管çè
2022幎9æ23æ¥ 17:57 衚çŸãšããã®ã¯ãéåæãããŸããããŸã èšç®ã®éäžã¿ãããªã
åçã«ãªããšããããšã§ããã
ïŒsin(pai/4)cos(pai/4) ãåçã§ããã
No.245ks2022幎9æ23æ¥ 20:22
0.999âŠïŒïŒã¯ãå³å¯ã«ã¯ã極éã®åé¡ã§ããã
ïœãïŒïŒ.ïŒïŒïŒïŒâŠãšãããŠãïŒïŒåããŠ
ïŒ0ïœïŒïŒ.ïŒïŒïŒâŠïŒïŒïŒïŒ.ïŒïŒïŒâŠïŒïŒïŒïœããã
ïŒïœïŒïŒãã€ãŸããïœïŒïŒãæ°ã«å
¥ã£ãŠãŸãã
No.246ïœïœ2022幎9æ23æ¥ 20:29
ã¡ãã£ãšKSæ§ã®èšç®ã«çåã§ããã
x=aãšããã
ãnx=na
-) x= a
(n-1)x=(n-1)a
䞡蟺ã(n-1)ã§ãããšã
x=a
ããŠãããã§ãa=0.9999ã»ã»ã»ã»,n=10ã代å
¥ãããšãã
ã10x=9.999ã»ã»ã»ã»
-) x= 0.999ã»ã»ã»ã»
9x= 9 â 0.9999ã»ã»ã» ãªãå³èŸºã®âã¯æãç®ã®ããããšããèšå·ã§ãã
䞡蟺ã10-1ã§ãããšã
x=0.999ã»ã»ã»ã»
ãšãªããŸãããïŒ
No.247ããããã¯ã¡ã¹ã2022幎9æ24æ¥ 07:22
管ç人ããã®ã³ã¡ã³ãã«å¯ŸããŠã§ãããã代æ°åŠçã«ãx=aã¯ã10åããŠãåŒããŠããx=aãªã®ã§ãã
ã§ãããããã説æããã
ã10x=9.999ã»ã»ã»ã»
-) x= 0.999ã»ã»ã»ã»
9x=9
䞡蟺ã10-1ã§ãããšã
x=1
ãªããŠãçã£èµ€ãªåã§ãã
代æ°åŠççµè«ãåŠå®ãããã®èšç®ã¯ããããã®ã§ãã
å¥ã®ã¯ãªãã§èª¬æãããšã
x=1-0.1=0.9 ãšããã
ã10x= 9
-) x= 0.9
9x= 8.1
x=0.9
x=1-0.01=0.99ãšããã
ã10x= 9.9
-) x= 0.99
9x= 8.91
x=0.99
x=1-0.001=0.999ãšããã
ã10x= 9.99
-) x= 0.999
9x= 8.991
x=0.999
å æ§ã«ããŠãx=1-10^(-n)ãšãããšãïœãx=0.9999ã»ã»ã»ã»ã§ãããïœ
ã10x=10{1-10^(-n)}
-) x= 1-10^(-n)
9x= 9-10 10^(-n)+10^(-n)
9x= 9-9 10^(-n)
x= 1-10^(-n)
ãã£ãŠã10^(-n)ïŒ0ã§ããããã{ 10^(-n)ã«ãããŠnã¯ç¡é倧ã§ããããã10^(-n) ã¯ç¡éå°ã§ããã}
x<1
ã€ãŸãã
xâ 1
ããã§ãããã10^(-n)=0ãšãããšãïœããã10^(-n)=0 ã€ãŸããç¡éå°ã¯0ã§ãããªãïœ
x= 1-10^(-n)=1ãã€ãŸããx=1ã§ãããx=0.9999ã»ã»ã»ã»ãšã¯ãªããªãã
ç¡éå°ã䜿ã£ãŠãã ãã§ããã
ç§ã¯ã0.999ã»ã»ã»=1ã¯ãééãã ãšæããŸãã
No.249ããããã¯ã¡ã¹ã2022幎9æ25æ¥ 15:26
1/3ã¯ã0.333ã»ã»ã»ã»ãšãªããšããããšãããèãããšã1÷3ã¯ã ãŸããåºãŠããŠã0.333ã»ã»ã»ã»ã»ãšãããŸãïŒïŒïŒã»ã»ã»ã»1ã§ãããç¡éã«ïŒãç¶ããšããããšã¯ãããŸããç¡éã«ç¶ããšããããšã§ããããŸããã㪠ããªã£ãããïŒã¯çµããã§ãããšããããïŒïŒïŒïŒïŒã»ã»ã»ã»ã¯ãããŸãããããªãããªããªããšèšã£ãŠããã®ã§ãã
ãããã£ãŠã1/3â ïŒïŒïŒïŒïŒã»ã»ã»ã§ãã䞡蟺ãïŒåããã«ããŠãã巊蟺ã¯ïŒã§ãããå°æ°èšç®ã¯æ«äœããããã®ããèŠåã§ããããããç¡çãããïŒåããŠãïŒïŒïŒïŒïŒã»ã»ã»ã§ããã1/3â3=1â ïŒïŒ999ã»ã»ã»ãšãªãã1â ïŒïŒ999ã»ã»ã»ã§ãã
ãŸããε-ÎŽæ³ã¯ã宿°ãªãã䜿ãããããããªãããïŒïŒé²æ°ã§ã¯äœ¿ããªãã®ã§ããã
æ°çŽç·ã§èãããšãε-ÎŽæ³ã§ã§ãããšãªããã10鲿°ã§ã0.999ã»ã»ã»ãããã1ã«è¿ã¥ããããš9ãå¢ãããŠãã0.999ã»ã»ã»ã§ãããªã ã®ã§ãã
ãªããªãã0.999ã»ã»ã»ã»ã®9ã䜿ãæãããããæ¡äžããããŠ1ã«ãªãã®ã§ããããã§ãã
9ã䜿ãæãããšããããšã¯ã0.0ã»ã»ã»ã»1ããªããã°ããããªãã®ã§ãããããã£ãŠãε-ÎŽæ³ã§ã¯ãã©ããŸã§è¡ã£ãŠã0.999ã»ã»ã»ã«éã ãªãã®ã§ãã
ïŒïŒïŒïŒïŒã»ã»ã»ïŒïŒã®åé¡ã¯ïŒïŒé²æ°ã®åé¡ã§ãããããæããã«ãïŒïŒïŒïŒïŒã»ã»ã»ïŒïŒãªã®ã§ãã
No.250ããããã¯ã¡ã¹ã2022幎9æ25æ¥ 15:46
極éãªããïŒïŒïŒïŒïŒã»ã»ã»ã¯ã»ãŒïŒã§ãããã
ããããçå·ã§ãçµã¶ããšã¯ãã§ããŸããã
No.251ããããã¯ã¡ã¹ã2022幎9æ25æ¥ 15:52
100æ©è²ããŸãããã
NHK ã®BSPã§ã¿ããã³ ãºããã¯ãããã³ããçžå¯Ÿè«ïœïœïŒéåè«ãäºè±¡ã®å°å¹³ç·ãšâç°æ¬¡å
ã®ãã³ã¹âãããæããŸããã
è»ããã®å€©æã»ããŒãã³ã°å士ãæç€ºããããã©ãã¯ããŒã«æ
å ±ãã©ããã¯ã¹ãã§ããã©ãã¯ããŒã«ã¯ç±ãåºããŠãçž®ã¿æ¶æ»
ãããã¹ãŠã®æ
å ±ã¯å€±ããããšãã£ãã® ã«ãéåååŠè
ãã¡ã¯ãæ
å ±ã¯ç¡ããªããªããšãããè«äºã«ãªããäœå¹Žãããã£ãŠãè¶
匊çè«ã§ãæ
å ±ã¯ç¡ããªããªããšçµè«ãåºãã®ã§ãã
ã ãŠãèªç¶æ°ãïŒïŒïŒïŒïŒïŒã»ã»ã»ã»ãšç¡éãŸã§ãããšããŸããå¶æ°ã¯ã2nã§ãå¥ æ°ã¯2n+1ã§ããã§ã¯ãç¡é倧ã¯ãå¶æ°ã§ããã奿°ã§ããïŒãšãšããããšãç¡é倧ã¯ãã©ã¡ããããããªãã®ã§ãå¶æ°ã§ãã奿°ã§ããªããšãã説æã§ã¯é éã£ãŠãããšæããŸãã
ç¡éã§ã¯ãããŒãŒã«åé¡ã§ããæçæ°ïŒåæ°ïŒã¯ãååæŒç®ã§ãæçæ°ã§éããŠããã®ã«ãÏ^2/6ãšããç¡çæ°ã«ãªã£ãŠããã®ã§ãã
æçæ°ã§éããŠãããã®ããç¡éã§ãç¡çæ°ã«ãªããšããããšã¯ãæçæ°ãšããæ
å ±ãç¡éã§ãªããªã£ãŠããã®ã§ãã
ç¡éã§ã¯ãæ
å ±ã¯ãªããªãã®ã§ãã
ã§ããããèªç¶æ°ããæŽŸçããç¡é倧ãèªç¶æ°ãããããæ
å ±ãªã®ã§ãç¡é倧ã¯ãæ
å ±ããªããªã£ãŠãèªç¶æ°ãšããã ãšããããŸãããã ç¡çæ°ãããããªãããèæ°ãããããªãããè€çŽ æ°ãããããªããããããŸã§ã®æŠå¿µãè¶
ãããã®ãããããªããªããšããããšã§ãããããªããšã倧å°é¢ä¿ïŒæ
å ±ïŒããªããªããšããããšã§ãã
ãšããããšã«ããã°ã1/3=0.333ã»ã»ã»ã»ãšãªãã®ã§ãã
ïŒã§ããããã«ã¯æ ¹æ ããããŸãããç¡çæ°ããããã¯è€çŽ æ°ãããããŸããããã»ã»ã»ã»ïŒ
No.252ããããã¯ã¡ã¹ã2022幎9æ25æ¥ 16:12
10鲿°ã«ã€ããŠãæ³šææžããããŸãã
10鲿°ã¯ã10åã®èšå·ãã€ãããŸããïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒã§ãã
èšå·ã䜿ãæãããããæ¡äžããããŸããã€ãŸããïŒã®æ¬¡ãå¿
èŠã«ãªããªããšãæ¡äžããããŸããã
ïŒïŒïŒïŒïŒã»ã»ã»ãšïŒãç¡éã«äžŠã¹ãŠããïŒã®æ¬¡ã®èšå·ãå¿
èŠã«ãªããªãéããæ¡äžããã¯èµ·ãããïŒã«ã¯ãªããŸããã
No.253ããããã¯ã¡ã¹ã2022幎9æ25æ¥ 16:41
ãããè¶
匊çè«ã§ã§ãçµè«ã§ãç¡éã§ãæ
å ±ãç¡ããªããªããšãããšã
âïŒã¯ã
â2=1.414213562373095ã»ã»ã»
ãªã®ã§ãæ¡ããšã«è¡šããšã次ã®ããã«ãªããŸãã
=1+4/10+1/10^2-+4/10^3-+2/10^4-+1/10^5-+3/10^6-+5/10^7-+6/10^8-+2/10^9-+ã»ã»ã»ã»
ããŠãå³èŸºã¯ãæçæ°ã®ååæŒç®ãªã®ã§ãæçæ°ã§éããŠããŸããããç¡éã§ãã£ãŠãæçæ°ã®ã¯ãã§ãã
ãããã£ãŠã10é²å°æ°ã¯ãã¹ãŠãæçæ°ãšãªãã¯ãã§ãã
ã€ãŸãã10é²å°æ°ã¯ãç¡çæ°ãå«ãŸãªããããªãã¡ã10鲿°ã¯ãç¡çæ°ãå«ãŸãªããšãªãã®ã§ã¯ãªãã§ããããïŒ
åœç¶ã2鲿°ã§ããæ¡ããšã«è¡šãã°ãæçæ°ã®ååæŒç®ãªã®ã§ãæçæ°ã§éããŠããŸããããç¡éã§ãã£ãŠãæçæ°ã®ã¯ãã§ãããããã£ãŠãïŒé²æ°ã¯ãç¡çæ°ãå«ãŸãªããšãªãã®ã§ã¯ãªãã§ããããïŒ
åæ§ã«ããŠãèªç¶æ°é²æ°ã¯ãç¡çæ°ãå«ãŸãªããšãªãã®ã§ã¯ãªãã§ããããïŒ
åæ§ã«ããŠãæçæ°é²æ°ã¯ãç¡çæ°ãå«ãŸãªããšãªãã®ã§ã¯ãªãã§ããããïŒ
çµè«ãšããŠãæçæ°é²æ°ã¯ãç¡çæ°ãå«ãŸãªããšãªãã®ã§ã¯ãªãã§ããããïŒ
No.254ããããã¯ã¡ã¹ã2022幎9æ25æ¥ 16:51
ããããã¯ã¡ã¹ãããããæçš¿ããããšãããããŸããããããã¯ã¡ã¹ãããã®èšç®ã§
10x=9.999ã»ã»ã»ã»
-) x= 0.999ã»ã»ã»ã»
ã9x= 9Ã0.9999ã»ã»ã»
ãããåãããŸããã9.999ã»ã»ã»ãã0.999ã»ã»ã»ãåŒãããã9ã«ãªããšæãã®ã§ããããªãã
ã9Ã0.999ã»ã»ã»ããšããæžãæ¹ã«ãªãã®ã§ããããïŒ
No.255HP管çè
2022幎9æ25æ¥ 18:12 管ç人ããããè¿·æãããããŸãã飿ããŸããããšããèš±ããã ããã
管ç人ããã®è³ªåã§ãããããã¯ã次ã®ä»£æ°åŒã®èšç®ã«åœãŠã¯ããŠããããã§ãã
x=aãšããã
ãnx=na
-) x= a
(n-1)x=(n-1)a
䞡蟺ã(n-1)ã§ãããšã
x=a
No.256ããããã¯ã¡ã¹ã2022幎9æ25æ¥ 18:31
ä»®å®ããx=aãšããããã§ãçµè«ããx=aãã§ã¯ãäœãèšç®ããŠããªãããšã«ãªããªãã§
ããããïŒããããã¯ã¡ã¹ãããã®èšç®ã®çæã¯ïŒ
No.257HP管çè
2022幎9æ25æ¥ 18:46 Komornik-Loreti 宿° ãšããã®ããããŸããŠãå®çŸ©ããã©ããªæ°å€ã«ãªãã®ãã«ã€ããŠã OEISã®
ãA055060ãã§åç
§ã§ããŸãã
ä»åã¯ãã®å®æ°ã q ã§è¡šãããšãšããŸãã
ããŠã1 ã® qé²è¡šçŸããèããŸããšã1 = 0.11010011001011010010110011010011âŠ
ãšãªããŸããŠããã®æ°ã¯ Thue-Morse å ãšãªããŸãã
Thue-Morse åã«ã€ããŸããŠã¯ãhttp://shochandas.xsrv.jp/mathbun/mathbun1053.html
ã«è²ã
ãªé¢é£äºé
ãèšèŒãããŠããŸãã
No.258Dengan kesaktian Indukmu2022幎9æ25æ¥ 18:53
ãã管ç人ãããèŠãã®ã¯ãâŠâŠ999=-1ããªãã§ãããïŒ
ããã¯ã0.999âŠâŠ=1ããšã¯å
šãå¥ã®çåŒãªããã§ããè°è«ãæåŸæ¥ã®æ¹åã«ãã£é£ãã§ãŸããããã
ïŒåè
ã¯è§£ææ¥ç¶ã®è©±ãåŸè
ã¯æ¥µéã®è©±ïŒ
No.259DD++2022幎9æ25æ¥ 19:50
ãŸããã¯ã¡ã¹ãããã®è«çã«å¯ŸããŠææã1ã€ã
ã¯ã¡ã¹ãããã¯ãæéåã®èšç®ã§ã¯éããŠããåŠçããç¡éåã§ã¯éããªããªãããšãããããšçè§£ããŠããããã§ãããã
ã§æåŸã«9ãä»ãè¶³ããšããåŠçãç¹°ãè¿ãããšãã«ãæéåã®åŠçã§ã¯å°æ°ç¹ã®åã®æ°ãå¿
ã0ã®ãŸãŸä¿ãããã®ã«å¯ŸããŠããããç¡éåãã£ããå°æ°ç¹ã®åã®æ°åã¯0ãšã¯éããªããªãã¯ããªãã§ãããã¯ã¡ã¹ãããã¯äœãè«æ ã«ããã0ã®ãŸãŸãšããŠããã®ã§ãããïŒ
No.260DD++2022幎9æ25æ¥ 19:59
管ç人ãããç§ã¯ã
ã10x=9.999ã»ã»ã»ã»
-) x= 0.999ã»ã»ã»ã»
9x=9
䞡蟺ã10-1ã§ãããšã
x=1
ãã®èšç®ã®ã10åãããã®ããåŒããŠã0.999ã»ã»ã»ãæ¶ãããšããèšç®ã«çåããã£ãã®ã§ãã
0.999ã»ã»ã»ãæ¡ç§»åããŠããç¡éã ãããå°æ°éšããå€ãããªããšããããšã代æ°èšç®ã§ãåŠå®ããã®ã§ãã
å°ãªããšããå°æ°èšç®ã¯ãååãšããŠæ«äœããè¡ããã®ã§ãç¡éã ãããæ«äœã¯ããããªãã®ã§ããã®èšç®ã¯ã§ããªããšææããŠããWebããããŸãã
ããããã£ãã®ã§ã代æ°èšç®ã§ãã£ãŠã¿ãããx=aã¯ãnåããŠåŒããŠããx=aã§ãããaã®å°æ°èšç®ãäžèŠã§ããããšãã瀺ãããŸããã
No.261ããããã¯ã¡ã¹ã2022幎9æ25æ¥ 20:02
DD++æ§ãã¯ãããŸããŠã
ïŒã¯ã¡ã¹ãããã¯ãæéåã®èšç®ã§ã¯éããŠããåŠçããç¡éåã§ã¯éããªããªãããšãããããšçè§£ããŠããããã§ãããã
ããã¯ãã©ãã®è©±ã§ããããïŒãããã飿ãããã®ã§ããã¿ãŸããã
ããŒãŒã«åé¡ã§ããããïŒ
ïŒã§æåŸã«9ãä»ãè¶³ããšããåŠçãç¹°ãè¿ãããšãã«ãæéåã®åŠçã§ã¯å°æ°ç¹ã®åã®æ°ãå¿
ã0ã®ãŸãŸä¿ãããã®ã«å¯ŸããŠããããç¡éåãã£ããå°æ°ç¹ã®åã®æ°åã¯0ãšã¯éããªããªãã¯ããªãã§ãããã¯ã¡ã¹ãããã¯äœãè«æ ã«ããã0ã®ãŸãŸãšããŠããã®ã§ãããïŒ
ããããã©ãã®è©±ã§ããããïŒã²ããããæªããŠãã¿ãŸããã
No.262ããããã¯ã¡ã¹ã2022幎9æ25æ¥ 20:10
äžã¯ããŒãŒã«åé¡ã®ãšããã®è©±ã§ããã
åãªãã¯ã¡ã¹ãããã®çè§£ã®ç¢ºèªçšåºŠã§ãã
äžã¯No253ã®è©±ã§ãã
No.263DD++2022幎9æ25æ¥ 22:14
1 ã®å€ã«ã€ããŠã®åé²è¡šçŸãšããŠèªæãª 1 ãšéèªæãª 0.99999⊠ãšãããããšã«ã€ããŠè©±é¡ã«ãªã£ãŠããããã§ããã
å®ã®ãšããã1 ã®å€ã«ã€ã㊠2 éãã®åé²è¡šçŸã蚱容ããããšãæšæºçãªã¢ãã«ãšãªã£ãŠããŸãã®ã§ãªããåé¡ãªããšããããšããã§ã¯ãããŸãã
åé²ã«éããªããã°ããã£ãã®2éãã§ã¯æžãŸãªãããšãããããŸãã
é»éæ¯ã q ã§è¡šãããšãšããŸãã
ããã§ã1 ã® qé²è¡šçŸãã«ã€ããŠããŸããŸãªè¡šçŸãåæãããåããŸãã
ããŸã衚çŸã®åŸªç°éšã()ã§å²ãããšãšããããŸãã
泚:10é²è¡šçŸã§()ã®äœ¿ãæ¹ãäŸç€ºããŸããšã
1/3=0.(3)
ã§ããã
1/7=0.(142857)
ãšããŸãã
æ¬åœã¯åŸªç°éšã®å§ããšçµããã®æ¡ã®æ°åã®äžã«ãã»ããæžãããã®ã§ãããä»åã¯è«Šããããšãšãã()ã§ä»£çšããŸãã
è©±ãæ»ããŸãã1ã®é»éæ¯é²è¡šçŸãããã€ã䞊ã¹ãŸãã
1
1.(0) âç¡éå°æ°
0.(10) âç¡éå°æ°
0.11
0.1011
0.101011
ãã®ä»ã«ã倿°ãããŸãã(äžã®äŸã§ã¯å¯ç®ç¡éåã®è¡šçŸããããŸããïŒ
以äžãåé²ã«éããªããã°ããã£ãã®2éãã§ã¯æžãŸãªãããšãããããããšããã話ãããŸããã
ãªããååã«æçš¿ãã Komornik-Loreti 宿°ãåºæ°ãšãã衚çŸãåããŸããšã1 ã®å€ã®è¡šçŸãšããŠéèªæãªãã®ã¯ãæçš¿æžã¿ã®ãã®è¡šçŸã®ãã£ãã®ïŒåãããªãããã§ãã
ãã£ãšé©ãã¹ãã¯ã åºæ°ãäžæã«éžã¹ã°ã1ã®å€ã®è¡šçŸããéãå¯ç®ç¡éåååšããããšãããããšããâŠâŠ
以äžã¯
https://ja.wikipedia.org/wiki/0.999...
ãåèã«ããŠãããŸãã
No.264Dengan kesaktian Indukmu2022幎9æ26æ¥ 05:03
ãååOã«å
æ¥ããåè§åœ¢ABCDã§ACâ¥BDã®ãšãã察è§ç·ã®äº€ç¹ïŒ°ãéãç·åããšåçŽã®ãšãããšïŒ¡ïŒ¢ãšã®äº€ç¹ïŒã¯ïŒ¡ïŒ¢ã®äžç¹ã§ãããã
ãã©ãã°ãã¿ã®å®çãšåã«å
æ¥ããŠãªããŠã䌌ãå®çãæãç«ã€ã
ãPAïŒPD,PBïŒPCã®ãšããåè§åœ¢ABCDã§ACâ¥BDã®ãšãã察è§ç·ã®äº€ç¹ïŒ°ãéãç·åããšåçŽã®ãšãããšïŒ¡ïŒ¢ãšã®äº€ç¹ïŒã¯ïŒ¡ïŒ¢ã®äžç¹ã§ãããã
Pãåç¹ãšããAïŒÎ±ïŒãBïŒÎ²ïŒãšãããšãPA,PBãå転ãã
CïŒÎ²iïŒãDïŒ-αiïŒãMïŒïŒÎ±ïŒÎ²ïŒ/2ïŒãšçœ®ãããšãã§ããã
CDæ¹åã¯ãïŒÎ²ïŒÎ±ïŒiãªã®ã§ãPMã¯ãCDã®åçŽã§ããã
ãã®çµæãã䜿ã£ãŠãABCDãåã«å
æ¥ããå Žåã¯ã
PA,PBã®çŽç·äžã«ãPAâïŒPD,PBâïŒPCãšãªãããã«AâãBâããšãã°ã
AâãBâã®äžç¹Mâãšããã°ãPMâã¯ãCDãšåçŽã«ãªãã
äžæ¹ãâ³PABâœâ³PDCãªã®ã§ãPAïŒPDïŒPBïŒPC
PA/PAâïŒPB/PBâã§ããã
â³PABâœâ³PAâBâãã€ãŸããABãšAâBâå¹³è¡ã§ããã®ã§ã
çŽç·PMâã¯ãABã®äžç¹Mãéãã
No.248ks2022幎9æ24æ¥ 18:43
ããããšãããããŸãã
çŽ æ°ã®åã®åé¡ã¯ãåäŸãããŸã ãèŠã€ãããŸããã
ããŸãæ¢çŽ¢æ³ããèŠã€ããã°ãããã§ããã©ã
ä»ã«ããçŽ æ°PãšïŒPã®éã«ãããçŽ æ°ã®åæ°ã¯ãå¢å 颿°ã§ãããã
ã¯çŽãã«èŠã€ãããŸããã
ãPïŒïŒã®çŽ å æ°ã®çš®é¡ã¯ãïŒãé€ããšãããã ããïŒçš®é¡ä»¥äžã§ããã
ããããä»ãèŠã€ãããŸããã
No.242ks2022幎9æ22æ¥ 10:45
ïŒä»¥äžã®çŽ æ°ã¯ãäºã€ã®çŽ æ°ã®å¥çŽ æ°ã®åãããïŒãåŒããŠè¡šããã
äŸãã°ãïŒïŒïŒïŒïŒïŒïŒãïŒïŒïŒïŒïŒïŒïŒãªã©
åäŸãã¿ã€ãããŸããïŒ
No.225ks2022幎9æ17æ¥ 12:44
ã3以äžãã§ãããšæããŸãã
No.226ãããã2022幎9æ17æ¥ 14:27
ãçŽ æ°ã®å¥çŽ æ°ãã®æå³ãããããããŸããïŒçŽ æ°çªç®ã®å¥çŽ æ°ãšãã®ã¿ã€ãããªããšæããŸããïŒãã
ä»®ã«å¥çŽ æ°ãå
šéšäœ¿ã£ãŠããå Žåã§ããã3以äžãã ãš3ãåäŸã«ãªãã®ã§ã¯ïŒ
No.227DD++2022幎9æ18æ¥ 14:10
ããå¥çŽ æ°ã ã£ããã§ããã倱瀌ããŸããã
# ãšããããå¥çŽ æ°ã«éãå¿
èŠã¯ãªããšæããŸããã©ãã
No.230ãããã2022幎9æ18æ¥ 17:08
ksããã®åé¡ã®ä»®å®ã«å ããŠãããã®äºã€ã®å¥çŽ æ°ã®ãã¡ãå°ãªããšãäžã€ãã¯ãååçŽ æ°ã®çå²ãããšããããšãã§ãããã
ãã¡ãã«ã¯åäŸãããã§ããããã
ïŒïŒïŒïŒïŒïŒïŒ
ïŒïŒïŒïŒïŒïŒïŒ
ïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
âŠâŠ
ãã®ããããŸã§ã¯ååçŽ æ°ã®çå²ããªããäž¡æ¹ãå³èŸºã«é¡ãåºãããã«ã§ããããã§ãã
ãã£ãšå·ŠèŸºã倧ããå Žåã«ã¯ã©ãã§ããããïŒ
No.231Dengan kesaktian Indukmu2022幎9æ19æ¥ 05:30
確ãã«ãïŒïŒïŒïŒïŒïŒïŒãªã®ã§ãããïŒã¯ãå¯äžå¶æ°ã®çŽ æ°ã§ã
ç¹å¥ãã®æä»¥å€ã¯ã䜿ããªãã®ã§ãå¥çŽ æ°ïŒå¥çŽ æ°ãŒïŒã®å Žåã ãã«ããŸãããããšåæã«ã
å§åŠ¹ç·šãïŒä»¥äžã®å¥çŽ æ°ã¯ãå¥çŽ æ°ïŒïŒã®ã¹ã乿°ã§è¡šãã
ãã¡ãã¯ãããã«èŠã€ãããŸãããæå°æ°ã¯ïŒ
è¬ã®å€ãçŽ æ°ããç°¡åãªåŒã§è¡šããã»ã©ãçãã¯ãªããšã
åçŽãªåŒã§ã¯ãããŸãåäŸããããšã¯æããŸããã
No.232ks2022幎9æ19æ¥ 09:55
åäŸãšãªãæå°ã®å¥çŽ æ°ã¯ãïŒïŒïŒã§ããïŒ
No.233HP管çè
2022幎9æ19æ¥ 15:10 ïœïœããããã®ã³ã¡ã³ã:
ãïŒä»¥äžã®çŽ æ°ã¯ãäºã€ã®å¥çŽ æ°ã®åãããïŒãåŒããŠè¡šããããã«ã€ããŠãããã«åäŸããããã©ããã«ã€ããŠã¯
ãŽãŒã«ããããäºæ³ã«ã€ããŠåç
§ããã°åèã«ãªããããšåããŸãã
ããã®äºã€ã®å¥çŽ æ°ã®ãã¡ãå°ãªããšãäžã€ãã¯ãååçŽ æ°ã®çå²ãããšããããšãã§ããããã«åäŸããããã©ã
ãã«ã€ããŠã¯ ãOEISã®ãA295424ãïŒ Number of distinct twin primes which are in Goldbach partitions of 2n
ãåèã«ãªããŸãã
åŒçšããŸãã
âConjecture. Further empirical examinations lead to a hypothesis that all even numbers n ïŒ 4 have at least 1 twin prime in GP(n).â
以äžãšãªããŸãã
No.240Dengan kesaktian Indukmu2022幎9æ22æ¥ 05:36
æŽæ°Zã§ã¯ãäžæçã«çŽ æ°ã®ç©ã«åè§£ãããŸãã
æ¡å€§ãããZïŒâãŒïŒïŒÏïŒâãŒ5ãšããã
ïŒïŒïŒÃïŒïŒïŒïŒïŒÏïŒïŒïŒïŒÏïŒäºéãã®åè§£ã«ãªãã
諊ããªãã§ãïŒïŒPPâãïŒïŒQQâãšçŽ ã€ãã¢ã«ã§åè§£ãããšã
ïŒ1ïŒÏïŒïŒPQãïŒïŒïŒÏïŒïŒPâQâãšãªãã
ïŒïŒPQPâQâããšäžæçã«åè§£ããããã¢ã¡ãŒãžã³ã°ïŒ
PïŒïŒïŒïŒïŒïŒÏïŒãPâïŒïŒïŒïŒïŒïŒÏïŒ
QïŒïŒ3ïŒïŒïŒÏïŒãQâïŒïŒïŒïŒïŒïŒÏïŒ
PPâïŒïŒ2ïŒïŒïŒÏïŒïŒ2ïŒïŒïŒÏïŒ
ïŒïŒ4ïŒïŒãŒïŒÏãïŒïŒïŒÏãïŒïŒ
=ïŒ2ïŒïŒïŒãïŒïŒÏãïŒïŒÏã3ïŒ
ïŒïŒ2ïŒïŒ1ïŒïŒïŒ2ïŒãä»ãåæ§
ä»ã®äºæ¬¡äœã§ãZã§çŽ æ°ã®ãçŽ ã€ãã¢ã«åè§£ã®äŸããææãã ããã
No.239ks2022幎9æ20æ¥ 13:51
ããã«ã¡ã¯ããã€ã楜ããæèŠããŠãããŸãã
以äžã§ïŒïŒ¡ïŒïŒ¢ïŒïŒ£ïŒâŠâŠã¯ïŒä»¥äžïŒä»¥äžã®çžç°ãªãæŽæ°ã§ïŒãããã䞊ã¹ããã®ã¯å鲿°è¡šèšã§ãããã®ãšããããã ãïŒæé«äœã¯ïŒã§ã¯ãªãããŸãïŒpïŒqïŒrïŒâŠâŠã¯çžç°ãªãçŽ æ°ãšãããïŒåŒãåæã«æºããïŒïŒ¢ïŒïŒ£ïŒâŠâŠããã³pïŒqïŒrïŒâŠâŠã¯äœãã
(1)ãïŒ(p^3)Ã(q^3)
ãã ïŒ(p^4)Ãq
(2)ãïŒ(p^4)Ãq
ãã ïŒ(r^2)Ãq
(3)ãïŒpÃqãããã ïŒãã ãïŒp<qïŒ
ãã ïŒrÃsÃtÃuããïŒãã ãïŒr<s<t<uïŒ
(4)ãïŒpÃqÃrããïŒãã ãïŒp<q<rïŒ
ãã ïŒ(s^2)Ãt
(5)ãïŒ(p^2)Ã(q^2)Ãr
ã ïŒ(p^3)Ã(q^3)ÃrããïŒãã ãïŒp<qïŒ
(6)ãïŒ(p^2)Ãq
ã ïŒ(p^2)ÃqÃ(r^2)
(7)ãïŒp^3
ãã ïŒq^9
(8)ãïŒp^4
ãã ïŒq^8
(9)ãïŒp^4
ãã ïŒq^10
(7)ïœ(9)ã¯ããŸããã»ãã«ãããããªåœ¢ãããããã§ãã
No.221ïŒïŒïŒïŒ2022幎9æ16æ¥ 20:07
é¢çœãåé¡ã§ããã
(1) 216 = 3^3 * 2^3, 162 = 3^4 * 2
(2) 592 = 2^4 * 37, 925 = 5^2 * 37
(3) 901 = 17 * 53, 910 = 2 * 5 * 7 * 13
(4)
(5) 180 = 2^2 * 3^2 * 5, 1080 = 2^3 * 3^3 *5
(6) 175 = 5^2 * 7, 1575 = 5^2 * 7 * 3^2
(7) 125 = 5^3, 512 = 2^9
(8) 625 = 5^4, 256 = 2^8
(9) 2401 = 7^4, 1024 = 2^10
(4) ã ãã¯çè©°ãã§ãåœãŠãã£ãœãã§ãå³ãããâŠâŠã
ããã綺éºã§ãããã
ç¥ããªããé£åã ãšæããŸããã
ABC = p^2 * q^2 (p<q)
ACB = r^2
BCA = s^2
No.223DD++2022幎9æ17æ¥ 05:55
管ç人æ§ãDD++æ§
ããåçããããšãããããŸããæ£è§£ã§ãïŒ
DD++æ§
ãïŒp^4ããã§ããã
ãæ°åã®äžŠã³ãç¥ã£ãŠãããåãããŸãããçè©°ãã§è§£ããªãã°çŽ æ°ã®å¹³æ¹ã3æ¡ã«ãªããã®ãæžãåºããŠçµãããã§ãã
ã(4) ã«ã€ããŠã¯ã
ããããšãã®ã¢ãã°ã©ã ãäºãã«çŽ ã§ããã°çŽ å æ°3ãå«ãŸãªãããšã
ããã7*11*13ïŒ1001ïŒ999ãããpã¯2ãŸãã¯5ã§ããããš
ãããªã©ãçšããã°å€å°çµã蟌ããŸãããæåŸã¯ããã¿ã€ã¶ãããªãšæããŸãã
ïŒè¿œèšïŒ
æçµçã«ã¯ã
ãïŒp*q*rïŒãïŒïŒ¡ïŒ¢ïŒ£ã®ã¢ãã°ã©ã ïŒïŒs*t*u
ã®ãããªãã®ãäœãããã£ãã®ã§ãããç§ãæèšç®ããéãã§ã¯ååšããŸããã§ããã
No.224ïŒïŒïŒïŒ2022幎9æ17æ¥ 12:03
(4) 874 = 2 * 19 * 23, 847 = 11^2 * 7
s ãã2 æ¡ã«ãªãã®ã¯æ³å®ããŠãªãã£ãâŠâŠã
No.228DD++2022幎9æ18æ¥ 14:14
(4)ã®è§£ã¯ããäžã€ãããŸããã
No.229ãããã2022幎9æ18æ¥ 17:06
DD++æ§
ãããããšãããããŸããç§ã®æ³å®è§£ã§ããã
ããããæ§
ãããããšãããããŸãã
ãå¯äžè§£ãšæã£ãŠããŸãããã確ãã« s ãïŒæ¡ã®è§£ãããïŒã€ãããŸãããã
No.235ïŒïŒïŒïŒ2022幎9æ19æ¥ 15:36
管ç人ããã®è§£çã§ãã 174 ãš 147 ã¯ãçŽ å æ°ã® 3 ãéè€ããŠãã®ã§
ãpãqãrãâŠâŠ ã¯ãçžç°ãªã
çŽ æ°ãšãããã
ã«åããŠããŸããã
No.237DD++2022幎9æ19æ¥ 21:35
DD++ããããææããããšãããããŸãã確ãã«ãæ¡ä»¶ã«åããŠããŸãããïŒ
No.238HP管çè
2022幎9æ19æ¥ 23:37 ãšã¯ã»ã«ãã䜿ã£ãŠã7åã®çޝä¹åãèŠã€ããŸããã
No.202ïœïœ2022幎9æ7æ¥ 15:25
ã²ãã£ãšããŠã以äžã®åŒã§ããããã
1^k+19^k+20^k+51^k+57^k+80^k+82^k ïŒ 2^k+12^k+31^k+40^k+69^k+71^k+85^k
( k = 1, 2, 3, 4, 5, 6 )
â»äžã®åŒã¯æ¬æ¥ãGoogleåŸåŸãããŠããŠå¶ããã«ã¿ã€ããŸããã
â Chen Shuwen's Equal Sums of Like Powers Page http://euler.free.fr/eslp/
ãŸããããªã€ã©ãŒãããžã§ã¯ãã§ãã
ãã®ããã¥ã¡ã³ãã«ã¯ã12åã®çޝä¹åããäŸç€ºãããŠããŸããâŠâŠ
No.215Dengan kesaktian Indukmu2022幎9æ14æ¥ 19:58
以ååºäŒã£ãçåŒã®äžã«a,b,cãä»»æã®èªç¶æ°ãšã
(6*a-3*b-8*c)^k+(5*a-9*c)^k+(4*a-4*b-3*c)^k+(2*a+2*b-5*c)^k+(a-2*b+c)^k+b^k
=(6*a-2*b-9*c)^k+(5*a-4*b-5*c)^k+(4*a+b-8*c)^k+(2*a-3*b)^k+(a+2*b-3*c)^k+c^k
(äœãk=0,1,2,3,4,5)
ãšãããã®ããããŸããã
ãããªã«ãèªç±åºŠããããªããæç«ã§ãããªããŠãšæã£ãŠããããa,b,cã®ãã©ã¡ãŒã¿ãå€åãããŠã¿ãŠç¢ºããããã§ãã
確ãã«çå·ãæç«ããŠãããŸãã
äžã«ã¯a,b,cã®åãæ¹ã«ãã£ãŠã¯k=6,7,8,9,10,ã§ãçå·OKãšãããã®ãã§ãŠããŸãã
ãããªåŒãããæãã€ããŸãããïœ
No.217GAI2022幎9æ16æ¥ 07:54
貎éãªãã¹ãã·ã£ã«ãªè§£ããèŠã€ããŠãã ãã£ãŠãããããšãããããŸãã
ç§ã®ãæ¢çŽ¢ã®äžã§ã¯ãäºãã以å
ã®èªç¶æ°è§£ã¯ãããŸããã§ããã
èŠã€ããã®ã¯ãäºçµã
ïŒ1ïŒ19ïŒ28ïŒ59ïŒ65ïŒ90ïŒ102ïŒ
â¡ïŒ2ïŒ14ïŒ39ïŒ45ïŒ76ïŒ85ïŒ103ïŒ
ïŒ1ïŒ16ïŒ26ïŒ62ïŒ75ïŒ105ïŒ107ïŒ
â¡ïŒ5ïŒ7ã37ïŒ50ïŒ86ïŒ96ïŒ111ïŒ
No.220ïœïœ2022幎9æ16æ¥ 15:06
ãã¬ããŒã®å®ç
ååšäžã«ãç°ãªãåç¹ããå·Šåãã«
AïŒÎ±ïŒBïŒÎ²ïŒCïŒÎ³ïŒDïŒÎŽïŒããããšãã
ABã»CDïŒACã»BDâ§ADã»BCããæãç«ã€ã
åç幟äœç蚌æããããŸãããè€çŽ å¹³é¢ãå©çšããŠ
ïœïœïœïŒïœïœïœâ§ïœïœïŒïœïœã䜿ã£ãŠ
ïœÎ±ïŒÎ²ïœïœÎ³ãŒÎŽïœïŒïœÎ±ãŒÎŽïœïœÎ²ãŒÎ³ïœ
â§ïœ(αïŒÎ²)(γãŒÎŽ)ïŒ(αãŒÎŽ)(βãŒÎ³)ïœ
ïŒïœÎ±Î³ïŒÎ±ÎŽãŒÎ²Î³ïŒÎ²ÎŽïŒÎ±Î²ãŒÎ±Î³ãŒÎŽÎ²ïŒÎŽÎ³ïœ
ïŒïœÎ±Î²ãŒÎ±ÎŽïŒÎŽÎ³ãŒÎ²Î³ïœ
ïŒïœÎ±(βãŒÎŽ)ïŒÎ³ïŒÎŽãŒÎ²ïŒïœ
ïŒïœïŒÎ±ãŒÎ³ïŒïŒÎ²ãŒÎŽïŒïœïŒïœÎ±ãŒÎ³ïœïœÎ²ãŒÎŽ
ãã£ãŠãäžåŒã瀺ããããïœ
No.213ks2022幎9æ14æ¥ 12:17
æåã®åŒããééããŠãŸããã
ABCDïŒADBCïŒïŒACBDãã§ãã
ãã¬ããŒã®äžçåŒã§ããã
çåŒã®éšåãäžè¶³ããŠãŸãã
No.214ks2022幎9æ14æ¥ 15:30
çå·ãæãç«ã€âïŒÎ±ïŒÎ²ïŒïŒÎ³ãŒÎŽïŒïŒïœïŒÎ±ãŒÎŽïŒïŒÎ²ãŒÎ³ïŒ
âïŒÎ±ïŒÎ²ïŒïŒÎ³ãŒÎŽïŒ/ïŒÎ±ãŒÎŽïŒïŒÎ³ãŒÎ²ïŒ=ãŒkïŒå®æ°ïŒ
âåè§ãåããšãïŒã§ã¯ãªããïŒïŒïŒÂ°ã®å Žåã«ãªã
âïŒïŒÎ±ïŒÎ²ïŒïŒÎ³ãŒÎŽïŒ/ïŒÎ±ãŒÎŽïŒïŒÎ³ãŒÎ²ïŒïŒïŒÏ
âïŒÎ±ïŒÎ²/αãŒÎŽïŒïŒïŒ¡ïŒ²ïŒ§ïŒÎ³ãŒÎŽ/γãŒÎ²ïŒïŒÏ
ââ ïŒâ ïŒÏã察è§ã®åãÏ
âããCãDã¯åäžååšäžã®ç¹
No.218ks2022幎9æ16æ¥ 14:36
ïŒÃïŒã«0ãã35ãŸã§ãäžã€ãã€å
¥ããããšããã
30ãå
¥ãããã®ä»£ãã36ãå
¥ããŠããŸãã
[ 2 1 36 5 0 35]
[ 6 33 20 29 4 13]
[25 7 14 24 31 12]
[21 32 11 15 22 16]
[34 18 23 10 19 9]
[17 8 3 28 27 26]
ãŸãã¯1ãã36ãäžã€ãã€å
¥ããããšããã
34ã䜿ãã代ããã«40ãå
¥ããŠããã
[20 21 9 36 19 14]
[ 5 26 6 33 18 25]
[22 24 35 15 12 11]
[32 3 30 7 27 8]
[ 1 17 23 10 16 40]
[29 28 2 4 31 13]
ãããããããããšã§ãåæ°åãå¹³æ¹ããŠã¿ããš
ã©ã¡ããïŒæ¬¡ã®éæ¹é£ãæ§æããŠãããã
ïŒïŒã€ã®å¯Ÿè§ç·ã®åãå«ãïŒ
ãšããã§ãããæŽã«åºããŠ
7Ã7ã®ãã®ãèããŠäžã«
0ãã48ã®æ°åãäžã€ãã€å
¥ãããïŒäŸå€ãå«ãŸãªããïŒ
[25 45 15 14 44 5 20]
[16 10 22 6 46 26 42]
[48 9 18 41 27 13 12]
[34 37 31 33 0 29 4]
[19 7 35 30 1 36 40]
[21 32 2 39 23 43 8]
[17 28 47 3 11 24 38]
ïŒïŒåè¡ã§ã®åã¯ã©ãã168ã§äžå®ã§ããïŒ
ããããŠãããã®æ°åã®å¹³æ¹ãäœã£ãŠã¿ããš
[ 625 2025 225 196 1936 25 400]
[ 256 100 484 36 2116 676 1764]
[2304 81 324 1681 729 169 144]
[1156 1369 961 1089 0 841 16]
[ 361 49 1225 900 1 1296 1600]
[ 441 1024 4 1521 529 1849 64]
[ 289 784 2209 9 121 576 1444]
ãšãªããèŠäºã«7次ã®éæ¹é£ãåºæ¥äžããããšã«é©æããŸãã
å¹³æ¹æ°ãš7ÃïŒã®çžæ§ã¯æçŸ€ã§ãã
ãªãå
¥ããæ°åã1ïœ64ã«ããã°ã次ã®8Ã8ã«é
眮ãã
[16 41 36 5 27 62 55 18]
[26 63 54 19 13 44 33 8]
[ 1 40 45 12 22 51 58 31]
[23 50 59 30 4 37 48 9]
[38 3 10 47 49 24 29 60]
[52 21 32 57 39 2 11 46]
[43 14 7 34 64 25 20 53]
[61 28 17 56 42 15 6 35]
ã§ã¯ããèªèº«8次ã®éæ¹é£ïŒå®å260)ã§ãã
ããã«ããã®äœçœ®ã§ãããããå¹³æ¹ããæ°ã§ã
ãã¯ã8次ã®éæ¹é£(å®å11180)ãæ§æããããšãããããè
°ãæãããïŒ
No.216GAI2022幎9æ15æ¥ 09:50
A^3+B^3=C^3
ã«ã¯èªç¶æ°è§£ãååšããªãããšã蚌æãããŸããã
A^4+B^4+C^4=D^4ãã«ã¯
95800^4+217519^4+414560^4=422481^4
2682440^4+15365639^4+18796760^4=20615673^4
ãªã©ç«æŽŸã«èªç¶æ°è§£ãããã
åãã
A^5+B^5+C^5+D^5=E^5 ã§ã¯
27^5+84^5+110^5+133^5=144^5
55^5+3183^5+28969^5+85282^5=85359^5
ãšãã¯ãè§£ã¯ååšããã
ããã§
A^6+B^6+C^6+D^6+E^6=F^6
ã«ã¯æãããŠèªç¶æ°è§£ã¯ååšããã®ãããªãã®ãïŒ
ããã¯èª¿æ»äžãªã®ããããšãååšã§ããªãããšã蚌æãããŠããã®ãïŒ
è²ã
調ã¹ãŠã¿ãŸãããããã®çåŒã§ã®å®äŸã¯æ¢ããŸããã§ããã
ãªãïŒåã®ïŒä¹æ°ã®åã§
74^6+234^6+402^6+474^6+702^6+894^6+1077^6=1141^6
ã¯èŠã€ããããŠããæ§ã§ãã
ããã«ã€ããŠã®æ
å ±ããç¥ãã®æ¹ã¯ç¥ãããŠäžããã
No.203GAI2022幎9æ9æ¥ 10:24
ãããååšã§ããªãããšã蚌æãããŠããããšããã
âãã¡ãã®ç¬¬5é
ã«ã0ããå
¥ããããã¯ããªã®ã§ã
https://oeis.org/A264764
å°ãªããšãéååšã®èšŒæã¯ãããŠããªããšæããŸãã
No.204ãããã2022幎9æ9æ¥ 12:01
7é
ã®6乿°ã®ç·åã6乿°ãšãªãåŒã¯
GAIãããã埡æç€ºé ããåŒã®ä»ã«ããããšãã°
1645^6 = 1560^6 + 1299^6 + 864^6 + 702^6 + 618^6 + 430^6 + 150^6
ãªã©ã幟ã€ããèŠã€ããããŠããããã§ããã
ããããåŒãããŒã¿ããŒã¹åããŠãããµã€ãããããŸããŠãäžèšã¯ããããåŒããŸããã
äžæ¹
ã»6é
ã®6乿°ã®ç·åã6乿°ãšãªãåŒ
ã»5é
ã®6乿°ã®ç·åã6乿°ãšãªãåŒ
ã¯ããã®ããŒã¿ããŒã¹ã«ã¯ç»é²ãããŠããªãããã§ãã
â 埡åèããŒã¿ããŒã¹
Computing Minimal Equal Sums Of Like Powers
http://euler.free.fr/database.txt
No.205Dengan kesaktian Indukmu2022幎9æ9æ¥ 23:39
ãã®ãµã€ãã§ã®æ
å ±ã¯ç©åãã§ããã
è²ã
ãªäººãäžçåå°ã§èšå€§ãªæéãè²»ãããŠããµãšããçåã«çå£ã«åãçµãã§ããææ§ã¯äœæž¡éå±±ãç³èŠéå±±ã«èŠããããªå°äžã«åŒµãå·¡ããããŠãã
é±èãæã£ãŠçªãé²ãé±å±±åž«ã®å§¿ãåœ·åœ¿ãšæãèµ·ããããŸãã
çŸä»£ã«ãããŠã¯åäººã§æãé²ããšãããããã©ãã ãä»äººãæã£ãç¹è²ã系統ãç·åçã«èгå¯ãåé¡ããŠãããããéèŠãªããããªãããšæããŠããŸãããããªæ
å ±ãéããããªãã©ã·ãŒãéããã°ãšæããŸãã
ãªããã®ããŒã¿ããœãŒãããŠèгå¯ããŠããã
taxi cab çé ãã§(6,3,3)ã®ãã¿ãŒã³ã1934幎Subba Raoæ°ãèŠã€ãããšãã
3^6+19^6+22^6=10^6+15^6+23^6
ã ãããç»é²ãããŠããªãã£ãã®ã§ãå°ãç¯å²ãåºããŠæ€çŽ¢ããŠã¿ãã
36^6+37^6+67^6=15^6+52^6+65^6
33^6+47^6+74^6=23^6+54^6+73^6
32^6+43^6+81^6=3^6+55^6+80^6
37^6+50^6+81^6=11^6+65^6+78^6
ãªã©ãæ¯èŒçç°¡åã«æ¢ãããšãã§ããŸããã
ããããã°
Degan ããã®ãã³ããŒã ã¯ãã¢ã¹ã©ã®æãããããŠããã®ã§ããïŒ
No.206GAI2022幎9æ10æ¥ 06:49
å
åã®å Žåã
a^6+b^6+c^6+d^6+e^6+f^6+y^6=x^6
a^6+b^6+c^6+d^6+e^6+f^6=x^6-y^6
a^6+b^6+c^6+d^6+e^6+f^6=(x^3+y^3)(x^3-y^3)
a^6+b^6+c^6+d^6+e^6+f^6=(x+y)(x^2-xy+y^2)(x-y)(x^2+xy+y^2)
æ
ã«
a^6+b^6+c^6+d^6+e^6+f^6=x^6-y^6=g^6
ãšãªãgã¯ååšããªãã
ãŸããäºåã®å Žåã
a^6+b^6+c^6+d^6+e^6+y^6=x^6
a^6+b^6+c^6+d^6+e^6=x^6-y^6
a^6+b^6+c^6+d^6+e^6=(x^3+y^3)(x^3-y^3)
a^6+b^6+c^6+d^6+e^6=(x+y)(x^2-xy+y^2)(x-y)(x^2+xy+y^2)
æ
ã«
a^6+b^6+c^6+d^6+e^6=x^6-y^6=f^6
ãšãªãfã¯ååšããªãã
ãšããã®ã¯ãã©ãã§ãããïŒ
No.207ããããã¯ã¡ã¹ã2022幎9æ10æ¥ 11:25
7åã§ãã
a^6+b^6+c^6+d^6+e^6+f^6+g^6+y^6=x^6
a^6+b^6+c^6+d^6+e^6+f^6+g^6=x^6-y^6
a^6+b^6+c^6+d^6+e^6+f^6+g^6=(x+y)(x^2-xy+y^2)(x-y)(x^2+xy+y^2)
æ
ã«
a^6+b^6+c^6+d^6+e^6+f^6+g^6=x^6-y^6=h^6
ãšãªãhã¯ååšããªãã
ãšãªã£ãŠããŸããªã
ã ãã§ããã
No.208ããããã¯ã¡ã¹ã2022幎9æ10æ¥ 11:38
a^3+b^3+y^3=x^3
a^3+b^3=x^3-y^3
a^3+b^3=(x-y)(x^2+xy+y^2)
æ
ã«ã
a^3+b^3=C^3
ãšãªãcã¯ååšããªãã
ãšããå
·åã«ããã§ã«ããŒã®æçµå®çãã§ããŠããŸããªãïŒ
No.209ããããã¯ã¡ã¹ã2022幎9æ10æ¥ 11:49
ããããx^6-y^6ãšãªãå¿
èŠã¯ãªããã ãx^3-y^3ãããªãã
7åã®å Žåãåèšæ°ã®çŽ å æ°åè§£ãu^6 v^6 z^6ã»ã»ã»ã§ããã°è¯ãã 6åã§ãã5åã§ããããªãã
ãã§ã«ããŒã®æçµå®çãããªãã§ãa^3+b^3+y^3=x^3ã§ãªããŠãa^3+b~3=c^3ã§ããã°ãããã ãªã
ãã£ããã§ããã
No.210ããããã¯ã¡ã¹ã2022幎9æ10æ¥ 13:03
GAIããã埡æå¯ã§ãããã³ããŒã ã¯ãã¢ã¹ã©ã®æãããã§ãã
ãã®æ²ã®ã«ããŒã¯ããã€ãåºãŠããŸããããã¯ã埡å代æ§ã«ãããã®ãäžçªã®å¥œã¿ã§ãã
ããŠã話é¡ãæ»ããŸãããã©ãã
GAI ãããæ¢ããŠãããã (6,1,5)ã®ä»ã (6,2,4)ãããæ¢çŽ¢ãã¹ãããšããããŒãºããã£ãæš¡æ§ã§ããŠã
ããã§äžæäž¡åŸã®æ¢çŽ¢ãšããŠ(6,2,5)ãçµç¹çã«è©Šã¿ããããžã§ã¯ãããã£ãããã§ãã
ïŒå€æ°ã®ã²ãšã€ã 0 ã§ããã°ãšããïŒ
ãããŠ(6, 2, 5)ã¯å€éã«ã¿ã€ãããŸãããã(6,1,5)ã (6,2,4)ãèŠã€ãããªãã£ãããã§ãã
ä»åã¯ä»¥äžãèŠãŠæçš¿ããŠãããŸãã
arXiv:1108.0462v1[math.NT]2Aug2011
All solutions of the Diophantine equation
a^6 + b^6 = c^6 + d^6 + e^6 + f^6 + g^6ãfor a, b, c, d, e, f, g < 250000
found with a distributed Boinc project
Robert Gerbicz
Jean-Charles Meyrignac
Uwe Beckert
August, 2011
â»æªæ¥ããèŠããå°ããã¬ã³ãžã§ã®æ¢çŽ¢ãªã®ã§ãããããã©ãâŠ
(6,1,5)ã (6,2,4)ãã²ãšã€ããµãã€èŠã€ãã£ãããŠãã仮宿³éå»ãç§ã«ã¯äžæè°ãšã¯æããŸããã
以äžã§ãã
No.212Dengan kesaktian Indukmu2022幎9æ11æ¥ 17:31