å
æ¥ãç§ã¯ãµãš 4374 ãš 4375 ãã©ã¡ãã 1 æ¡ã®çŽ å æ°ããæããªãããšã«æ°ã¥ããŸããã
ãããŠã224 ãš 225ã2400 ãš 2401 ãåæ§ã®æ§è³ªãæã€ãšç¥ã£ãŠããç§ã¯ã以äžã®ãããªèšç®ãåŸãŸããã
log ã¯å
šãŠåžžçšå¯Ÿæ°ã§ãã
224 â 225 ãã
5 log 2 + log 7 â 2 log 3 + 2 log 5
2400 â 2401 ãã
5 log 2 + log 3 + 2 log 5 â 4 log 7
4374 â 4375 ãã
log 2 + 7 log 3 â 4 log 5 + log 7
ãããŠã
log 2 + log 5 = 1
ããããé£ç«ã㊠4 å
1 次æ¹çšåŒãšæã£ãŠè§£ããšãå°æ°ç¬¬6äœåæšäºå
¥ã§
log 2 â 72/239 â 0.30126 ïŒçå€ 0.30103ïŒ
log 3 â 114/239 â 0.47699 ïŒçå€ 0.47712ïŒ
log 5 â 167/239 â 0.69874 ïŒçå€ 0.69897ïŒ
log 7 â 202/239 â 0.84519 ïŒçå€ 0.84510ïŒ
ããããŠæ¯èŒçç°¡åã«ããè¿äŒŒå€ãåŸãããããã§ãã
ãããèŠãŠçåãããã€ãã
(1)
忝 239 ãšããã®ã¯ã©ã®ãããã®åªç§ããªãã§ããããïŒ
ããªãã¡ã4 ã€ã®å¯Ÿæ°ã忝ãå
±éãªæçæ°ã§è¿äŒŒããå Žåã忝<1000 ãããã§äœçªç®ãããã«åªç§ãªè¿äŒŒå€ãåŸããã忝ãªãã§ããããïŒ
ïŒçµ¶å¯Ÿèª€å·®ã®åã§è©äŸ¡ãããçžå¯Ÿèª€å·®ã®åã§è©äŸ¡ãããã§ãå€ãããšæããŸããïŒ
(2)
4 æ¡ã§å·®ã 1 ã§ãããã®ãããã7æ¡ä»¥äžã§å·®ã 11 ã 13 ãããã¯ããããå«ã 2 æ¡ãããã®åææ°ã§ãããã®ãçšããæ¹ã粟床ããããªããããªæ°ãããŸãâŠâŠæ¬åœã§ããããïŒ
æ¬åœã ãšããŠãå
·äœçã«ã©ã®ããã粟床ãäžããããã§ãããïŒ
ïŒå·®ã 1 æ¡ã®çŽ å æ°ããæããªããã®ã¯ãABCäºæ³ã®èšŒæãä¿¡ãããªã 44100 ããå
ã«ã¯ååšããªãã¯ãïŒ
(3)
â ã§ã¯ãªããäžçå·ã§ã®è©äŸ¡ã¯åæ§ã®æ¹æ³ã§å¯èœã§ããããïŒ
(4)
䜿ãçŽ æ°ã« 11 ãå«ã㊠5 å
1 次ã«ããã䜿ãçŽ æ°ã« 13 ãŸã§å«ã㊠6 å
1 次ã«ããããªã©ã§ç²ŸåºŠã®åäžã¯å¯èœã§ããããïŒ
ç¹ã« (1) (2) (4) ã¯æäœæ¥ã§ã¯ç¡è¬ã«ãã»ã©ãããã®ã§ãã³ã³ãã¥ãŒã¿ç³»ã®æŽè»ããé¡ãããŸãã
No.2156DD++2024幎9æ15æ¥ 10:30
ãšãããã(1)ã ã
> 忝 239 ãšããã®ã¯ã©ã®ãããã®åªç§ããªãã§ããããïŒ
忝ïŒ1000ã§ã¯(çžå¯Ÿèª€å·®ã®åèšã§)70çªç®ã«åªç§ã§ããã
239ã§çžå¯Ÿèª€å·®ã®åèšã¯0.001457âŠã§ãã
1äœã¯568ã§ãçžå¯Ÿèª€å·®ã®åèšã¯0.0001758âŠã§ãã
2äœä»¥äžã¯897,960,807,794,âŠãšç¶ããŸããã忝ã倧ãããã°çžå¯Ÿèª€å·®ãå°ããã®ã¯åœç¶ã§ã
ããããæå³ã§ã¯69çªç®ãŸã§ã«åæ¯ã239æªæºã®ãã®ã¯ãããŸããã®ã§ã239ã¯çµæ§åªç§ãšèšãããšæããŸãã
忝ã®å€§ãããèæ
®ããŠãçžå¯Ÿèª€å·®ã®åèšÃ忝ãã§ã©ã³ãã³ã°ãäœããšã
1äœã®568ã2äœã®897ã¯å€ãããŸãããã3äœã329ããããŠ4äœã239ãšãªããŸãã
çžå¯Ÿèª€å·®ã®åèšÃ忝ã®å
·äœå€(5äœãŸã§)ã¯
568 0.099882607730
897 0.222871229356
329 0.285662258393
239 0.348293385746
103 0.383956736568
ã®ããã«ãªã£ãŠããŠããããèŠãŠã568ã ãçªåºããŠããæãã§ãã
ã¡ãªã¿ã«åæ¯ã568ã®å Žåã®å¯Ÿæ°ã®è¿äŒŒå€ã¯
log2 â 171/568 â 0.30106
log3 â 271/568 â 0.47711
log5 â 397/568 â 0.69894
log7 â 480/568 â 0.84507
ãªã®ã§ããªãè¯ãè¿äŒŒã«ãªã£ãŠããŸããã
忝ã568ã«ãªããããªçµåããé©åœã«æ¢ããŠã¿ããšã
(2400,2401),(4374,4375),(250000,250047)
ããåŒãç«ãŠãã°äžèšã®å€ã«ãªãããã§ãã
(æ€ç®ããŠããŸããã)
No.2157ãããã2024幎9æ15æ¥ 13:26
ãããŒã568 åªç§ã§ããã
ããã 250047 ã¯äººåããæµç³ã«ã¡ãã£ãšåºãŠããªãâŠâŠã
ãã£ã±ãæ¡æ°ãå€ããš 2 æ°ã®å·®ãå°ããã£ãŠãæ°ã«ãªããªããªã£ãŠããã®ã§ç²ŸåºŠäžããã£ãœãã§ããã
No.2159DD++2024幎9æ15æ¥ 14:35
(3)ã«ã€ããŠ
5log2 + log7 â 2log3 + 2log5
5log2 + log3 + 2log5 â 4log7
log2 + 7log3 â 4log5 + log7
ã
5log2 + log7 + a = 2log3 + 2log5
5log2 + log3 + 2log5 + b = 4log7
log2 + 7log3 + c = 4log5 + log7
ïŒa,b,cïŒ0ïŒ
ãšããŠèšç®ãããš
log2 = (72 - 27a - 5b - 7c) / 239
log3 = (114 + 17a + 12b - 31c) / 239
log5 = (167 + 27a + 5b + 7c) / 239
log7 = (202 - 16a + 59b - 13c) / 239
ãšãªããŸãããã®åŒãã
log2 ïŒ 72/239
log5 ïŒ 167/239
ã¯ãã ã¡ã«ããããŸãããlog3 ãš 114/239 ã®å€§å°é¢ä¿ã¯
17a + 12b - 31c ã®ç¬Šå·ã調ã¹ãªããšããããŸããã
ããã 17a + 12b - 31c ã®ç¬Šå·ã調ã¹ãããã«èšç®ãããš
17a + 12b - 31c = 239log3 - 114log10
ãšãªã£ãŠ 3^239 ãš 10^114 ã®å€§å°é¢ä¿ã調ã¹ãããšã«ãªããæ¬æ«è»¢åã§ãã
ãã£ãŠåæ§ã®æ¹æ³ã§äžçåŒã§äžäžããããããããã«ã¯
è¿äŒŒåŒã倿°çšæããŠããŸããŸå€§å°é¢ä¿ããããããšã«æåŸ
ããããããã
æãã€ããŸãããã远å ã®è¿äŒŒåŒãçšæããããšãããšæ¡æ°ãå¢ããŠ
æèšç®ã«äžåãã«ãªã£ãŠããŸãã®ã§ããšãããã
ããã®æ¹æ³ã§ã®äžçå·ã§ã®è©äŸ¡ã¯é£ããã
ãšèšã£ãŠããããšæããŸãã
No.2160ãããã2024幎9æ16æ¥ 02:52
> 17a + 12b - 31c ã®ç¬Šå·ã調ã¹ãªããšããããŸããã
ãªãã»ã©ãå·®åã宿°åããŠããŸãã°ããã£ãã®ã§ããã
é£ç«æ¹çšåŒãè§£ãæéã¯ãã£ããå¢ããŠããŸããŸãããã©ãã
æã§ãããªãéè¡åçšæããŠè§£ãã®ãäžçªæ©ãããªïŒ
{1/n - 1/(2*n^2)} log e < log{1+(1/n)} < {1/n} log e
ã䜿ãã°ãlog e ã¯æ¬ãåºããŠæŸçœ®ã§ããã®ã§ãa, b, c ã®ç·åçµåã®æ£è² è©äŸ¡ã¯ãªããšããªãã±ãŒã¹ãå€ããã«æããŸãã
(224, 225), (2400, 2401), (4374, 4375) ã®ã±ãŒã¹ã¯å®éããã§ãªããšããªãã¿ããã§ãã
No.2162DD++2024幎9æ16æ¥ 05:03
é·æã§ãã
(2)ã«ã€ããŠ
çŽ æ°2,3,5,7ã10æ¡ä»¥äžã§(2400,2401)ãã誀差çãå°ãããã®ã¯
以äžã®6åãããããŸããã§ããã巊端ã¯èª€å·®ç(倧ããæ¹ã®å€Ã·å°ããæ¹ã®å€ïŒ1)ã§ãã
0.000040616 78121827 78125000
0.000066758 645657712 645700815
0.000107377 3954653486 3955078125
0.000188000 250000 250047
0.000228624 4374 4375
0.000295397 184473632 184528125
0.000416667 2400 2401
78121827 = 3^13 * 7^2, 78125000 = 2^3 * 5^10, å·® = 3173 = 19 * 167
645657712 = 2^4 * 7^9, 645700815 = 3^17 * 5, å·® = 43103 (çŽ æ°)
3954653486 = 2 * 7^11, 3955078125 = 3^4 * 5^11, å·® = 424639 (çŽ æ°)
ããã䜿ã£ãŠ
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
4log2 + 9log7 = 17log3 + log5 (645657712, 645700815)
log2 + 11log7 = 4log3 + 11log5 (3954653486, 3955078125)
log2 + log5 = 1
ãè§£ããšäžæ¬¡åŸå±ã§è§£ããŸããã§ããã
ãããããŠ
78121827 = 3^13 * 7^2, 78125000 = 2^3 * 5^10, å·® = 3173 = 19 * 167
645657712 = 2^4 * 7^9, 645700815 = 3^17 * 5, å·® = 43103 (çŽ æ°)
250000 = 2^4 * 5^6, 250047 = 3^6 * 7^3, å·® = 47 (çŽ æ°)
ããã䜿ã£ãŠ
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
4log2 + 9log7 = 17log3 + log5 (645657712, 645700815)
4log2 + 6log5 = 6log3 + 3log7 (250000, 250047)
log2 + log5 = 1
ãè§£ããš
log2 = 171/568, log3 = 271/568, log5 = 397/568, log7 = 480/568
ããã¯èŠèŠãããããŸããã
ããããã®å€ã¯(2400,2401),(4374,4375),(250000,250047)
ãããåŸãããã®ã§ã¯ãªãããšæã£ãŠäžã§ãæ€ç®ããŠããŸããããšæžããã®ã
ãããããŠæ€ç®ããŠã¿ããšããªããš
5log2 + log3 + 2log5 = 4log7 (2400, 2401)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
4log2 + 6log5 = 6log3 + 3log7 (250000, 250047)
log2 + log5 = 1
ã¯äžæ¬¡åŸå±ã§è§£ããŸããã§ãããçµæ§è§£ããªãå ŽåãåºãŠããã®ã§ããã
ããã§ã¯ããããçµåããå€ããŠè©Šãããšã«ããŸãã
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
log2 + 11log7 = 4log3 + 11log5 (3954653486, 3955078125)
4log2 + 6log5 = 6log3 + 3log7 (250000, 250047)
log2 + log5 = 1
â log2 = 171/568, log3 = 271/568, log5 = 397/568, log7 = 480/568
4log2 + 9log7 = 17log3 + log5 (645657712, 645700815)
log2 + 11log7 = 4log3 + 11log5 (3954653486, 3955078125)
4log2 + 6log5 = 6log3 + 3log7 (250000, 250047)
log2 + log5 = 1
â log2 = 171/568, log3 = 271/568, log5 = 397/568, log7 = 480/568
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
4log2 + 9log7 = 17log3 + log5 (645657712, 645700815)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
log2 + log5 = 1
â log2 = 171/568, log3 = 271/568, log5 = 397/568, log7 = 480/568
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
log2 + 11log7 = 4log3 + 11log5 (3954653486, 3955078125)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
log2 + log5 = 1
â log2 = 171/568, log3 = 271/568, log5 = 397/568, log7 = 480/568
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
4log2 + 6log5 = 6log3 + 3log7 (250000, 250047)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
log2 + log5 = 1
â äžæ¬¡åŸå±
4log2 + 9log7 = 17log3 + log5 (645657712, 645700815)
4log2 + 6log5 = 6log3 + 3log7 (250000, 250047)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
log2 + log5 = 1
â log2 = 171/568, log3 = 271/568, log5 = 397/568, log7 = 480/568
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
5log2 + log3 + 2log5 = 4log7 (2400, 2401)
log2 + log5 = 1
â äžæ¬¡åŸå±
è§£ãåŸãããŠãåããã®ã°ããã§ãããã¡ãã£ãšç²ŸåºŠãè¯ããããã ãš
ããŸãå€ãããªãããã§ãã
ã§ã¯ããã«ç²ŸåºŠãè¯ããã®ãèŠã€ããŠè©ŠããŸãã
ãããã10æ¡ä»¥äžãã11æ¡ä»¥äžã12æ¡ä»¥äžãã»ã»ã»ãšå¢ãããŠããªããªãèŠã€ãããŸããã
ã15æ¡ä»¥äžããŸã§å¢ãããŠããã£ãš
0.000026141 205885750000000 205891132094649
0.000033563 281474976710656 281484423828125
ã®äºã€ãèŠã€ãããŸããã®ã§ããããš(78121827, 78125000)ã§è©ŠããŸãã
205885750000000 = 2^7 * 5^9 * 7^7, 205891132094649 = 3^30,
å·® = 5382094649 = 3673 * 1465313
281474976710656 = 2^48, 281484423828125 = 5^11 * 7^8,
å·® = 9447117469 (çŽ æ°)
7log2 + 9log5 + 7log7 = 30log3 (205885750000000, 205891132094649)
48log2 = 11log5 + 8log7 (281474976710656, 281484423828125)
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
log2 + log5 = 1
â
log2 = 3125/10381 = 0.30103073 (çå€ 0.30103000)
log3 = 4953/10381 = 0.47712166 (çå€ 0.47712125)
log5 = 7256/10381 = 0.69896927 (çå€ 0.69897000)
log7 = 8773/10381 = 0.84510163 (çå€ 0.84509804)
ããããå°ã粟床ãäžãããŸããã
ã¡ãªã¿ã«ããäžæ¡äžã®
0.000007053 2251783932057135 2251799813685248
2251783932057135 = 3^13 * 5 * 7^10, 2251799813685248 = 2^51,
å·® = 15881628113 = 13 * 71 * 17206531
ã䜿ã£ãŠ
13log3 + log5 + 10log7 = 51log2 (2251783932057135, 2251799813685248)
7log2 + 9log5 + 7log7 = 30log3 (205885750000000, 205891132094649)
48log2 = 11log5 + 8log7 (281474976710656, 281484423828125)
log2 + log5 = 1
ãšããŠãäžãšåã忝10381ã®å€ã«ãªããŸããã
ãšããããã§ã
äœ¿ãæ°åã®æ¡æ°ãããªãå¢ãããŠãçµæã®ç²ŸåºŠãããŸãäžãããªãããã
ãšããããšãããããŸããã
No.2167ãããã2024幎9æ16æ¥ 08:53
äœ¿ãæ¡æ°ãäžãã£ãŠãã2, 3, 5, 7 ã§äœããåææ°ã®å²åãæžãããšã§æã¡æ¶ãããŠããŸãã誀差çããªããªãå°ãããªããªããã§ããã
ãããªããšã11ã13ã®äœ¿çšãæ€èšããæ¹ã粟床äžãã«ã¯éèŠãªã®ããªïŒ
No.2168DD++2024幎9æ16æ¥ 13:02
ãŸãé·æã§ããããã§åœåã®èª²é¡ã¯ãšããããå®çµã
(4)
ã11ã远å ããå Žåã
(1äžãŸã§)
0.000102041 9800 9801
0.000228624 4374 4375
0.000330688 3024 3025
0.000416667 2400 2401
0.001244444 5625 5632
9800 = 2^3 * 5^2 * 7^2, 9801 = 3^4 * 11^2
4374 = 2 * 3^7, 4375 = 5^4 * 7
3024 = 2^4 * 3^3 * 7, 3025 = 5^2 * 11^2
2400 = 2^5 * 3 * 5^2, 2401 = 7^4
3log2 + 2log5 + 2log7 = 4log3 + 2log11 (9800, 9801)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
4log2 + 3log3 + log7 = 2log5 + 2log11 (3024, 3025)
5log2 + log3 + 2log5 = 4log7 (2400, 2401)
log2 + log5 = 1
â äžæ¬¡åŸå±
5625 = 3^2 * 5^4, 5632 = 2^9 * 11, å·® = 7
3log2 + 2log5 + 2log7 = 4log3 + 2log11 (9800, 9801)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
5log2 + log3 + 2log5 = 4log7 (2400, 2401)
2log3 + 4log5 = 9log2 + log11 (5625, 5632)
log2 + log5 = 1
â
log2 = 270/897 = 0.301003 (çå€ 0.301030)
log3 = 428/897 = 0.477146 (çå€ 0.477121)
log5 = 627/897 = 0.698997 (çå€ 0.698970)
log7 = 758/897 = 0.845039 (çå€ 0.845098)
log11 = 934/897 = 1.041249 (çå€ 1.041393)
897ã¯äžã®æ¹ã§568ã«æ¬¡ãã§ç²ŸåºŠã®è¯ã忝ã§ãã
(1åãŸã§)
0.000016089 3294172 3294225
0.000022158 67108864 67110351
0.000040616 78121827 78125000
0.000050668 14348180 14348907
3294172 = 2^2 * 7^7, 3294225 = 3^2 * 5^2 * 11^4, å·® = 53 (çŽ æ°)
67108864 = 2^26, 67110351 = 3 * 7^5 * 11^3, å·® = 1487 (çŽ æ°)
78121827 = 3^13 * 7^2, 78125000 = 2^3 * 5^10, å·® = 3173 = 19 * 167
14348180 = 2^2 * 5 * 7^2 * 11^4, 14348907 = 3^15, å·® = 727 (çŽ æ°)
2log2 + 7log7 = 2log3 + 2log5 + 4log11 (3294172, 3294225)
26log2 = log3 + 5log7 + 3log11 (67108864, 67110351)
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
2log2 + log5 + 2log7 + 4log11 = 15log3 (14348180, 14348907)
log2 + log5 = 1
â
log2 = 6421/21330 = 0.3010314 (çå€ 0.3010300)
log3 = 10177/21330 = 0.4771214 (çå€ 0.4771213)
log5 = 14909/21330 = 0.6989686 (çå€ 0.6989700)
log7 = 18026/21330 = 0.8451008 (çå€ 0.8450980)
log11 = 22213/21330 = 1,0413971 (çå€ 1.0413927)
çµæ§ç²ŸåºŠãäžãããŸããã
ã13ã远å ããå Žåã
(1äžãŸã§)
0.000102041 9800 9801
0.000150263 6655 6656
0.000228624 4374 4375
0.000236742 4224 4225
0.000244200 4095 4096
0.000330688 3024 3025
0.000416667 2400 2401
9800 = 2^3 * 5^2 * 7^2, 9801 = 3^4 * 11^2
6655 = 5 * 11^3, 6656 = 2^9 * 13
4374 = 2 * 3^7, 4375 = 5^4 * 7
4224 = 2^7 * 3 * 11, 4225 = 5^2 * 13^2
4095 = 3^2 * 5 * 7 * 13, 4096 = 2^12
3024 = 2^4 * 3^3 * 7, 3025 = 5^2 * 11^2
2400 = 2^5 * 3 * 5^2, 2401 = 7^4
3log2 + 2log5 + 2log7 = 4log3 + 2log11 (9800, 9801)
log5 + 3log11 = 9log2 + log13 (6655, 6656)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
7log2 + log3 + log11 = 2log5 + 2log13 (4224, 4225)
2log3 + log5 + log7 + log13 = 12log2 (4095, 4096)
log2 + log5 = 1
â äžæ¬¡åŸå±
3log2 + 2log5 + 2log7 = 4log3 + 2log11 (9800, 9801)
log5 + 3log11 = 9log2 + log13 (6655, 6656)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
7log2 + log3 + log11 = 2log5 + 2log13 (4224, 4225)
2log3 + log5 + log7 + log13 = 12log2 (4095, 4096)
4log2 + 3log3 + log7 = 2log5 + 2log11 (3024, 3025)
log2 + log5 = 1
â äžæ¬¡åŸå± (åŒãäžã€å€ããŠããªãäžæ¬¡åŸå±ãªã®ã§ä»ã®åŒãå¿
èŠ)
3log2 + 2log5 + 2log7 = 4log3 + 2log11 (9800, 9801)
log5 + 3log11 = 9log2 + log13 (6655, 6656)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
7log2 + log3 + log11 = 2log5 + 2log13 (4224, 4225)
5log2 + log3 + 2log5 = 4log7 (2400, 2401)
log2 + log5 = 1
â
log2 = 270/897 = 0.301003 (çå€ 0.301030)
log3 = 428/897 = 0.477146 (çå€ 0.477121)
log5 = 627/897 = 0.698997 (çå€ 0.698970)
log7 = 758/897 = 0.845039 (çå€ 0.845098)
log11 = 934/897 = 1.041249 (çå€ 1.041393)
log13 = 999/897 = 1.113712 (çå€ 1.113943)
11ã ã远å ãããšããšåã粟床ã§ãã
(1åãŸã§)
0.000007456 5767125 5767168
0.000008117 123200 123201
0.000013783 72772425 72773428
0.000015573 1990625 1990656
0.000016089 3294172 3294225
0.000018861 19140264 19140625
0.000022158 67108864 67110351
5767125 = 3 * 5^3 * 7 * 13^3, 5767168 = 2^19 * 11, å·® = 43 (çŽ æ°)
123200 = 2^6 * 5^2 * 7 * 11, 123201 = 3^6 * 13^2
72772425 = 3^7 * 5^2 * 11^3, 72773428 = 2^2 * 7^2 * 13^5, å·® = 1003 = 17 * 59
1990625 = 5^5 * 7^2 * 13, 1990656 = 2^13 * 3^5, å·® = 31 (çŽ æ°)
3294172 = 2^2 * 7^7, 3294225 = 3^2 * 5^2 * 11^4, å·® = 53 (çŽ æ°)
19140264 = 2^3 * 3^2 * 11^2 * 13^3, 19140625 = 5^8 * 7^2, å·® = 361 = 19^2
67108864 = 2^26, 67110351 = 3 * 7^5 * 11^3, å·® = 1487 (çŽ æ°)
log3 + 3log5 + log7 + 3log13 = 19log2 + log11 (5767125, 5767168)
6log2 + 2log5 + log7 + log11 = 6log3 + 2log13 (123200, 123201)
7log3 + 2log5 + 3log11 = 2log2 + 2log7 + 5log13 (72772425, 72773428)
5log5 + 2log7 + log13 = 13log2 + 5log3 (1990625, 1990656)
2log2 + 7log7 = 2log3 + 2log5 + 4log11 (3294172, 3294225)
log2 + log5 = 1
â äžæ¬¡åŸå±
log3 + 3log5 + log7 + 3log13 = 19log2 + log11 (5767125, 5767168)
6log2 + 2log5 + log7 + log11 = 6log3 + 2log13 (123200, 123201)
7log3 + 2log5 + 3log11 = 2log2 + 2log7 + 5log13 (72772425, 72773428)
2log2 + 7log7 = 2log3 + 2log5 + 4log11 (3294172, 3294225)
3log2 + 2log3 + 2log11 + 3log13 = 8log5 + 2log7 (19140264, 19140625)
log2 + log5 = 1
â
log2 = 6079/20194 = 0.3010300089 (çå€ 0.3010299957)
log3 = 9635/20194 = 0.4771219174 (çå€ 0.4771212547)
log5 = 14115/20194 = 0.6989699911 (çå€ 0.6989700043)
log7 = 17066/20194 = 0.8451025057 (çå€ 0.8450980400)
log11 = 21030/20194 = 1.0413984352 (çå€ 1.0413926852)
log13 = 22495/20194 = 1.1139447361 (çå€ 1.1139433523)
粟床ã¯11ã ã远å ã®ãšããšåçšåºŠã§ãã
ïŒlog2ãšlog5ã¯ç²ŸåºŠãããã§ãããä»ã¯ãããŸã§è¯ããããŸããïŒ
ã29ãŸã§è¿œå ããå ŽåïŒçŽ æ°10åïŒã
(1åãŸã§)
0.000000010 96059600 96059601
0.000000055 18085704 18085705
0.000000075 26578123 26578125
0.000000084 11859210 11859211
0.000000095 10556000 10556001
0.000000121 8268799 8268800
0.000000155 12901779 12901781
0.000000169 5909760 5909761
0.000000194 5142500 5142501
0.000000244 4096575 4096576
0.000000244 4090624 4090625
0.000000250 4004000 4004001
0.000000315 22194425 22194432
0.000000365 13697019 13697024
0.000000365 90312467 90312500
0.000000371 2697695 2697696
0.000000485 8254125 8254129
0.000000489 88012332 88012375
0.000000494 2023424 2023425
0.000000520 90312453 90312500
0.000000540 1852200 1852201
0.000000560 67874587 67874625
0.000000569 75557027 75557070
0.000000587 46000759 46000786
96059600 = 2^4 * 5^2 * 7^2 * 13^2 * 29, 96059601 = 3^8 * 11^4
18085704 = 2^3 * 3 * 7^3 * 13^3, 18085705 = 5 * 11 * 17 * 23 * 29^2
26578123 = 11 * 13^2 * 17 * 29^2, 26578125 = 3^5 * 5^6 * 7
11859210 = 2 * 3^4 * 5 * 11^4, 11859211 = 7 * 13 * 19^4
10556000 = 2^5 * 5^3 * 7 * 13 * 29, 10556001 = 3^4 * 19^4
8268799 = 7^2 * 11 * 23^2 * 29, 8268800 = 2^10 * 5^2 * 17 * 19
12901779 = 3^2 * 11 * 19^4, 12901781 = 23^2 * 29^3
5909760 = 2^8 * 3^5 * 5 * 19, 5909761 = 11^2 * 13^2 * 17^2
5142500 = 2^2 * 5^4 * 11^2 * 17, 5142501 = 3^3 * 7^2 * 13^2 * 23
4096575 = 3^4 * 5^2 * 7 * 17^2, 4096576 = 2^6 * 11^2 * 23^2
4090624 = 2^8 * 19 * 29^2, 4090625 = 5^5 * 7 * 11 * 17
4004000 = 2^5 * 5^3 * 7 * 11 * 13, 4004001 = 3^2 * 23^2 * 29^2
22194425 = 5^2 * 11^3 * 23 * 29, 22194432 = 2^8 * 3^3 * 13^2 * 19
13697019 = 3^4 * 7^3 * 17 * 29, 13697024 = 2^16 * 11 * 19
90312467 = 7 * 23^2 * 29^3, 90312500 = 2^2 * 5^7 * 17^2
2697695 = 5 * 7^3 * 11^2 * 13, 2697696 = 2^5 * 3^2 * 17 * 19 * 29
8254125 = 3^2 * 5^3 * 11 * 23 * 29, 8254129 = 13^4 * 17^2
88012332 = 2^2 * 3^4 * 17 * 19 * 29^2, 88012375 = 5^3 * 11^3 * 23^2
2023424 = 2^13 * 13 * 19, 2023425 = 3^2 * 5^2 * 17 * 23^2
90312453 = 3^2 * 7 * 11 * 19^4, 90312500 = 2^2 * 5^7 * 17^2
1852200 = 2^3 * 3^3 * 5^2 * 7^3, 1852201 = 13 * 17^3 * 29
67874587 = 11^2 * 23 * 29^3, 67874625 = 3^3 * 5^3 * 7 * 13^2 * 17
75557027 = 7 * 13^3 * 17^3, 75557070 = 2 * 3^3 * 5 * 23^4
46000759 = 7^6 * 17 * 23, 46000786 = 2 * 13^3 * 19^2 * 29
4log2 + 2log5 + 2log7 + 2log13 + log29 = 8log3 + 4log11 (96059600, 96059601)
3log2 + log3 + 3log7 + 3log13 = log5 + log11 + log17 + log23 + 2log29 (18085704, 18085705)
log11 + 2log13 + log17 + 2log29 = 5log3 + 6log5 + log7 (26578123, 26578125)
log2 + 4log3 + log5 + 4log11 = log7 + log13 + 4log19 (11859210, 11859211)
2log7 + log11 + 2log23 + log29 = 10log2 + 2log5 + log17 + log19 (8268799, 8268800)
2log3 + log11 + 4log19 = 2log23 + 3log29 (12901779, 12901781)
8log2 + 5log3 + log5 + log19 = 2log11 + 2log13 + 2log17 (5909760, 5909761)
4log3 + 2log5 + log7 + 2log17 = 6log2 + 2log11 + 2log23 (4096575, 4096576)
6log7 + log17 + log23 = log2 + 3log13 + 2log19 + log29 (46000759, 46000786)
log2 + log5 = 1
â
log2 = 360565/1197771 = 0.3010299966 (çå€ 0.3010299957)
log3 = 571482/1197771 = 0.4771212527 (çå€ 0.4771212547)
log5 = 837206/1197771 = 0.6989700034 (çå€ 0.6989700043)
log7 = 1012234/1197771 = 0.8450981031 (çå€ 0.8450980400)
log11 = 1247350/1197771 = 1.0413927203 (çå€ 1.0413926852)
log13 = 1334249/1197771 = 1.1139433164 (çå€ 1.1139433523)
log17 = 1473796/1197771 = 1.2304488922 (çå€ 1.2304489214)
log19 = 1531654/1197771 = 1.2787536182 (çå€ 1.2787536010)
log23 = 1631038/1197771 = 1.3617277426 (çå€ 1.3617278360)
log29 = 1751618/1197771 = 1.4623980711 (çå€ 1.4623979979)
忝ã®1197771ã¯10000000ãŸã§ã§æã誀差ãå°ãªããªãå€ã§ãã
# 誀差ã®å°ãªãé ã«9å+(log2+log5=1)ã ãšäžæ¬¡åŸå±ã«ãªããŸãã
# ãããã1åãã€è¿œå ããŠãã£ãŠããã°ããäžæ¬¡åŸå±ã®ãŸãŸã§ã
# 24åç®ã®(46000759,46000786)ã®åŒã远å ããŠããããäžæ¬¡ç¬ç«ã«ãªããŸãã
# ãããŠããããéé ã«æ¶ããè¡ãæ¶ããŠãã£ãŠ10è¡ã«æžãããã®ã
# äžã«æžããåŒã§ãã
çµè«ãšããŠãçŽ æ°ã2,3,5,7ã«éå®ããŠããŸããšå·šå€§ãªæ°ã«ããŠã
ããŸã粟床ãåäžããŸããããçŽ æ°ã®åæ°ãå¢ãããŠããã°
çŸå®çãªå€ïŒãšãã£ãŠãæèšç®ã¯ç¡çïŒã§ç²ŸåºŠãäžããããããšã
ããããŸããã
No.2170ãããã2024幎9æ16æ¥ 14:15
éåžžã«æ·±ã調æ»ããŠãã ãããããããšãããããŸããã
ã ãã ããšæ¹çšåŒãäžæåŸå±ã«ãªã£ãŠããŸãåé¡ã匷æµã«ãªã£ãŠããã®ã¯æãããããŸããã§ããã
æèšç®ã§ãã倧å€ããšåŸããããã®ã®ãã©ã³ã¹çã«ã¯ãæåã®ãã€ãæã£ã以äžã«åªç§ã ã£ããã§ãããâŠâŠã
No.2175DD++2024幎9æ17æ¥ 02:05
ã¯ãœæãå€äŒã¿ã«è±èªã®è£ç¿ãåè¬ãã«ç»æ ¡ããŠããããšãæãåºããŸããã
ããŸã«ã¯è±æã§ã
There are eight gold coins, one of which is a forgery containing radioactive material. The task is to identify this forgery using a series of measurements conducted by technicians with Geiger counters. The problem is structured as follows:
1. Coins: There are 8 gold coins, numbered 1 through 8. Exactly one coin is a forgery.
2. Forgery Characteristics: The forged coin contains radioactive material, detectable by a Geiger counter.
3. Technicians: There are 10 technicians available to perform measurements.
4. Measurement Process:
Each technician selects a subset of the 8 coins for measurement.
The technician uses a Geiger counter to test the selected coins simultaneously.
The Geiger counter reacts if and only if the forgery is among the selected coins.
Only the technician operating the device knows the result of the measurement.
5. Measurement Constraints:
Each technician performs exactly one measurement.
A total of 10 measurements are conducted.
6. Reporting:
After each measurement, the technician reports either "positive" (radioactivity detected) or "negative" (no radioactivity detected).
7. Reliability Issue: Up to two technicians may provide unreliable reports, either due to intentional deception or unintentional error.
8. Objective: Identify the forged coin with certainty, despite the possibility of up to two unreliable reports.
Challenge
The challenge is to design a measurement strategy and analysis algorithm that can definitively identify the forged coin, given these constraints and potential inaccuracies in the technicians' reports.
No.2129Dengan kesaktian Indukmu2024幎9æ8æ¥ 00:09
10人ãããç°¡åã ãšããŠã9人解ãã§ãããã§ã§ããªãâŠâŠ
å¿
èŠãªæå°äººæ°ã£ãŠäœäººãªãã§ããããïŒ
No.2132DD++2024幎9æ9æ¥ 02:19
DD++ããã«ãšã£ãŠã¯ 10人ã¯ç°¡åâŠâŠãããã
9äººè§£ã®æ¢çŽ¢ãããããšæãããã¡ãå¹³é¢ã¯äœ¿ããªãããšæãã€ããŸããŠã
"000 000 000 ", 0,0,0,
"110 011 101 ", 6,3,5,
"111 110 001 ", 7,6,1,
"010 100 110 ", 2,4,6,
"011 001 010 ", 3,1,2,
"100 111 011 ", 4,7,3,
"001 101 100 ", 1,5,4,
"101 010 111 ", 5,2,7
ããã䜿ããŸããããããã«ãªã«ã1ãããã远å ããŠãã©ãã«ããªããªãã®ã§ããã
ããšãã°
"010 100 110 ", 2,4,6,
"011 001 010 ", 3,1,2,
"001 101 100 ", 1,5,4,
ã®éšåã ãã§ãã1ããããå¢ããããããã§ã¯ã2人ã®åã€ãã確å®ã§ããŸããã
No.2135Dengan kesaktian Indukmu2024幎9æ10æ¥ 00:47
ã¯ãã10人ãªãç°¡åã§ãã
9人ã®å Žåãåã€ããã確å®2人ããªãå¯èœãªãã§ããã©ããâŠâŠ
No.2136DD++2024幎9æ10æ¥ 04:28
ã確å®ïŒäººããšãããèšèã«é©ããŸããã
æ¢ããã®ã§ãããèŠã€ããããã§ãã
å¯ç£ç©ãšããŠã以äžã®éãã®å€ãªãã®ãèŠã€ããŸããã
3 ãããã® 7 ã€ã®æ°ãæ°ç ã€ãªãã«ããŸãã
" 100 111 010 110 001 011 101 "
æ°ç ã§ãã®ã§ãæåŸå°Ÿã® 101 ã®æ¬¡ã«ã¯ å
é ã® 100 ã«ã€ãªããããšãšããŸãã
ãã®æ°ç ã®ãäžé£ç¶ããæ°ã®çµã¿ã¯ãäžéãããããã§ãããããããã®çµã®ãªãã®3ã€ã®æ°ã XOR æŒç®ãããšã被ããã« 001 ãã 111 ãŸã§ãæŒããªã墿ãããŸãã(äžèšã«äžèЧããŸã)
onst codes = [
"100 111 010 ", // XORçµæ 001
"111 010 110 ", // XORçµæ 011
"010 110 001 ", // XORçµæ 101
"110 001 011 ", // XORçµæ 100
"001 011 101 ", // XORçµæ 111
"011 101 100 ", // XORçµæ 010
"101 100 111 ", // XORçµæ 110
];
ãã®çµæã¯ãããããããŸããããããããéåé£ã®ããªãšãŒã·ã§ã³ã§ããã
ããŠãäžã®äžèЧãããæŸå°èœæ€æ»ã®ããã«9人ããããã«å²ãåœãŠãé貚ã®äžèЧ(äœãã0ãã¬ã€ã¬ãŒã«ãŠã³ã¿ãŒã§ã¯ããå°ãšããäžèЧã«ã¯ãªããå
šå¡ãã¯ããé貚ãïŒæãã)ããšèŠç«ãŠããšâŠâŠ
ã»ããšã«æãããã§ãã
æ®ãã®ã²ãšãã®10çªç®ã®æè¡è
ãæ€æ»ããã°åœé é貚ã¯èŠã€ããã®ã§ãããã©ã
ããŒãæ®å¿µãããšã²ãšããã©ãããŠãçååãããã®ã§ããã
No.2137Dengan kesaktian Indukmu2024幎9æ10æ¥ 16:55
9人ã§åã€ãã確å®2人ã®å Žåã®æé ã¯ã以äžã§ãã
ãŸãã
1人ç®ãš2人ç®ïŒ1,2,3,4
3人ç®ãš4人ç®ïŒ1,2,5,6
5人ç®ãš6人ç®ïŒ1,3,5,7
ãšæž¬å®ããŸãã
ãã¡1åã§ã2人ããäžäžèŽãªå ±åãããå Žåã¯ã7人ç®ãš8人ç®ã«ããïŒã®ãã¡ã®1ã€ïŒãšåãæž¬å®ããŠããããŸãã
äžäžèŽãªå ±åãäžåºŠã§ããã£ããªãã2人ãäžèŽããå ±åã¯å
šãŠä¿¡é Œã§ããã®ã§ãããã§
ã»äžèš3ãã¿ãŒã³ã®ä¿¡é Œã§ããçµæãåºæã£ãŠãã
ã»äžèš3ãã¿ãŒã³ã®ãã¡2ãã¿ãŒã³ã®ä¿¡é Œã§ããçµæãããã9人ç®ãæ£çŽè
確å®
ã®ããããã«ãªã£ãŠããŸãã
åè
ã¯ãã§ã«åœç©ç¢ºå®ãåŸè
ã¯çµæãåŸãããŠããªããã®ã9人ç®ã«é Œãã°ããã§ãã
3çµå
šãŠã§äžèŽããçµæãå ±åãããå ŽåãäŸãã°å
šãŠæŸå°ç·æ€åºããããšå ±åãããå Žåã¯ä»¥äžã®4ã€ã®å¯èœæ§ããããŸããïŒä»ã®ãã¿ãŒã³ãçªå·ãå€ããã ãã§è«çã¯åãå®è³ªåãïŒ
ã»1ãåœç©ã§ãæ®ã3人ã«ã確å®ã§2人ãåã€ãããã
ã»2ãåœç©ã§ãæ®ã3人ã«åã€ãã¯ããªã
ã»3ãåœç©ã§ãæ®ã3人ã«åã€ãã¯ããªã
ã»5ãåœç©ã§ãæ®ã3人ã«åã€ãã¯ããªã
ãã®å Žåãæ®ã3人ã«ã2ãš3ãš5ãããããåäœã§èª¿ã¹ãŠããããŸãã
1人ã ããæŸå°ç·æ€åºãå ±åããå Žåããã®äººã®èª¿ã¹ãã³ã€ã³ãåœç©ã§ããïŒâ»ïŒ
2äººãæŸå°ç·æ€åºãå ±åããå Žåããã®2人ãåã€ãã§ã1ãåœç©ã§ãã
åã€ãããæå€§ã§2人ãã®å Žåãâ»ã®ãšããã§1ãåœç©ã§åã€ãã1人ããããªãã£ãå¯èœæ§ãæ¶ãåããŸããã
No.2138DD++2024幎9æ10æ¥ 21:12
DD++ ããã
ãããã§ããïŒïŒïŒ
ãŠã£ããããªãã£ããããäœããã®çç±ã§äžèŠã«ãªã£ãŠããŸã£ã 9 ãããã®ç¬Šå·ãªã®ããšäºæ³ããŠãããŸãããå
šç¬Šå·ã®ã笊å·å
šäœã®ããªãã£ãåäžãªãã°ããã® 1 ãããã¯äžèŠãšãªããŸãã®ã§ãããã§çšŒãã ã®ããšâŠâŠ
ãŸããã®ãé ã®åºãç§ã«ã¯ç¡çãªçºæ³ã§ãã
ãæç€ºãããããšãããããŸãã
No.2139Dengan kesaktian Indukmu2024幎9æ10æ¥ 23:06
æ°ç ã€ãªãã®ä»¶ãäžéå端ãªèšè¿°ã§ããã®ã§
粟ãã£ã±ããã¡ããšæçš¿ãããŠããã ããã
æãç·ŽããŸããã以äžã§ãã
3 ãããã®ãããåã 7 ã€ãããããããã a, b, c, d, e, f, g ãšåä»ããŸãããã®ä»ã«ã3ãããã®ãããåã 1 ã€ãããããã z ãšããŸãã
z = 000
ãšããŸãããŸãã
a = 100
b = 111
c = 010
d = 110
e = 001
f = 011
g = 101
ãšããŸãã
ãã®ãšã以äžã®æ§è³ªããããŸãã(ããã§ã¯âãæä»çè«çåãšããŸãã)
e = aâbâc
f = bâcâd
g = câdâe
a = dâeâf
b = eâfâg
c = fâgâa
d = gâaâb
ãâ»ãµã€ã¯ãªãã¯ãšãªã£ãŠããŸããã
3ãããã®ãããå x ã®ããªãã£ãããã§ã¯ p(x) ãšæžãããšãšããŸãã
ãããåã®çµåãâ¥ã§è¡šããŸããããšãã°
x = 011, y = 101 ã®ãšã
xâ¥y = 011101 ãšãªããŸãã
e, f, g, a, b, c, d, z ããšã³ã³ãŒãã㊠10 ãããã«ãããã®ããããããE, F, G, A, B, C, D, Z ãšåä»ããŸãã
ããã»ã©ã®ãµã€ã¯ãªãã¯ãªè¡šãã¿ãªããã
E = aâ¥bâ¥câ¥p(c)
F = bâ¥câ¥dâ¥p(d)
G = câ¥dâ¥eâ¥p(e)
A = dâ¥eâ¥fâ¥p(f)
B = eâ¥fâ¥gâ¥p(g)
C = fâ¥gâ¥aâ¥p(a)
D = gâ¥aâ¥bâ¥p(b)
Z = zâ¥zâ¥zâ¥p(z)
ãšããŸãã
å
·äœçã«ã¯
E=100â¥111â¥010â¥1 âe=001
F=111â¥010â¥110â¥0 âf=011
G=010â¥110â¥001â¥1 âg=101
A=110â¥001â¥011â¥0 âa=100
B=001â¥011â¥101â¥0 âb=111
C=011â¥101â¥100â¥1 âc=010
D=101â¥100â¥111â¥1 âd=110
Z=000â¥000â¥000â¥0 âz=000
ãšãªããŸãã
ãã®ããã«ãµã€ã¯ãªãã¯ã«äœæãã笊å·ã¯ã
æå°ããã³ã°è·é¢ã 5 ãšãªã£ãŠããŸãã
ããã§ãäžæ£ç¢ºãªã¬ã€ã¬ãŒã«ãŠã³ã¿ãŒå ±åã®æ°ã 0 ãã 2 ãŸã§ã®éãªãã°ããã®èª€ãããããèšæ£å¯èœã§ãã
ä»ã«ãè²ã
ãªäœãæ¹ãããŠã¯ã¿ãã®ã§ãããäžçªäžæè°ãªèžããèžã£ãŠããã®ãäžèšã®ãã®ã§ãããªãããŸãããã®ãããããªãã®ã§ãã¿ãã¿ããªã®ããïŒããããŸããã
ä»ã®äœãæ¹ã®ãã®ããè¿ã
ãã玹ä»ãããŠãã ããã
No.2140Dengan kesaktian Indukmu2024幎9æ10æ¥ 23:16
æ
å ±ãããã3ãããã§ã³ãŒãé·ã10ãããã®ã³ãŒãã§ãæå°ããã³ã°è·é¢ã5ã®ã³ãŒãã§ããã°ã2ããããŸã§ã®èª€ããæ€åºããŠèšæ£ããããšãã§ããŸããããã®ãããªã³ãŒããšããŠã
0,0,0,0,0,0,0,0,0,0
1,0,0,1,1,0,0,1,1,1
0,1,0,1,0,1,0,1,1,0
1,1,0,0,1,1,0,0,0,1
0,0,1,1,0,0,1,1,0,1
1,0,1,0,1,0,1,0,1,0
0,1,1,0,0,1,1,0,1,1
1,1,1,1,1,1,1,1,0,0
ãšããã³ãŒããèããããŸãã10äººã®æè¡è
ãAïœJãšããŠã
æè¡è
AãšEã¯ã1,3,5,7çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
BãšFã¯ã2,3,6,7çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
CãšGã¯ã4,5,6,7çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
DãšHã¯ã1,2,4,7çªã®éè²šãæ€åºããŠæž¬å®ã
æè¡è
Iã¯1,2,5,6çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Jã¯1,3,4,6çªã®é貚ãéžæããŠæž¬å®ããããšã«ããŠã
åæè¡è
ã®éœæ§ã®å ±åãã1ããé°æ§ã®å ±åãã0ãã§è¡šããšã
ãã¹ãŠã®å ±åãæ£ããã£ããšãããšã以äžã®8éãã®çµã¿åãã
ããã£ãŠãããããã1ïœ8çªã®ãããããåœé åã§ããå Žå
ãšå¯Ÿå¿ããŸãã
-|A,B,C,D,E,F,G,H,I,J
0|0,0,0,0,0,0,0,0,0,0 â8çªãåœé å
1|1,0,0,1,1,0,0,1,1,1 â1çªãåœé å
2|0,1,0,1,0,1,0,1,1,0 â2çªãåœé å
3|1,1,0,0,1,1,0,0,0,1 â3çªãåœé å
4|0,0,1,1,0,0,1,1,0,1 â4çªãåœé å
5|1,0,1,0,1,0,1,0,1,0 â5çªãåœé å
6|0,1,1,0,0,1,1,0,1,1 â6çªãåœé å
7|1,1,1,1,1,1,1,1,0,0 â7çªãåœé å
10äººã®æè¡è
ã®å ±åã®ãã¡2人ã®å ±åã誀ãã§ããå Žåã¯ã
10ãããã®ãã¡2ãããã誀ãã§ããå Žåã«çžåœããŸããã
äžèšã®8ç¶æ
ã¯æå°ããã³ã°è·é¢ã5ãªã®ã§ãããã5ããã
以äžã®å·®ãããã2ãããã®èª€ããããªãã¡ã2人ã®å ±åã
誀ãã§ããå ŽåãŸã§ã¯èšæ£ããããšãã§ããŸãã
No.2141kuiperbelt2024幎9æ10æ¥ 23:23
æè¡è
ã 10 â 21 人ã«å¢å¡ããããšãã«ãæå€§ 5人 ãŸã§ã®ç¯å²ã§èª€ã£ãå ±åãããŠããŠãåœé貚ãçªãæ¢ããããšãã§ãããšå€æããŸããã
"100 111 010 110 001 011 101",
"111 010 110 001 011 101 100",
"010 110 001 011 101 100 111",
"110 001 011 101 100 111 010",
"001 011 101 100 111 010 110",
"011 101 100 111 010 110 001",
"101 100 111 010 110 001 011",
"000 000 000 000 000 000 000",
Minimum Hamming Distance: 12
ãªããäžèšã§ã¯ 21 äžã«ã誀ããªãæè¡è
ã1äººå ±åããã¹ãããŠã倧äžå€«ã§ãã
1人ãã¹ããã€ïŒäººèª€ãå ±åã§ãã
察称æ§ãé«ãã®ã§ã
å¥ã®èšãæ¹ãããã°
æè¡è
ã 10 â 20 人ã«å¢å¡ããããšãã«ãæå€§ 5人 ãŸã§ã®ç¯å²ã§èª€ã£ãå ±åãããŠããŠãåœé貚ãçªãæ¢ããããšãã§ããŸãã
Minimum Hamming Distance: 11
ãšãªããŸãã®ã§ã
å
ã®åé¡ããã¿ããšã
æè¡è
ã2åã«å¢ããŠ
蚱容ã§ãã誀ãå ±åæ°ã2.5åã§ãã
ãããªã®ãã¿ããšãã¯ã
9äººã®æè¡è
(ãã¡æå€§2åã¯åã€ã)
ã§ãã§ããã®ã§ã¯ïŒãšå€ãªäºæ³ãããŠãŠããŸããããªããŸãã
No.2145Dengan kesaktian Indukmu2024幎9æ11æ¥ 21:18
æ
å ±ãããã3ããããæå°ããã³ã°è·é¢ã7ã®ã³ãŒãã§ãæçãªã®ã¯ã³ãŒãé·ã13ãããã®ã³ãŒãã§ã以äžã®ãããªãã®ã§ããã
A,B,C,D,E,F,G,H,I,J,K,L,M
-------------------------
0,0,0,0,0,0,0,0,0,0,0,0,0
1,0,0,1,1,0,1,0,0,1,1,0,1
0,1,0,1,0,1,0,1,0,1,0,1,1
1,1,0,0,1,1,1,1,0,0,1,1,0
0,0,1,0,1,1,0,0,1,0,1,1,1
1,0,1,1,0,1,1,0,1,1,0,1,0
0,1,1,1,1,0,0,1,1,1,1,0,0
1,1,1,0,0,0,1,1,1,0,0,0,1
13äººã®æè¡è
ãAïœMãšããŠã
æè¡è
AãšGã¯ã1,3,5,7çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
BãšHã¯ã2,3,6,7çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
CãšIã¯ã4,5,6,7çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
DãšJã¯ã1,2,5,6çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
EãšKã¯ã1,3,4,6çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
FãšLã¯ã2,3,4,5çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Mã¯ã1,2,4,7çªã®éè²šãæ€åºããŠæž¬å®ããããšã«ããã°ã
æå€§ã§3人ãŸã§ã誀ãã®å ±åãããŠã8æã®é貚ãã1æã®åœé åãç¹å®ã§ããŸãã
ãŸããæ
å ±ãããã3ããããæå°ããã³ã°è·é¢ã9ã®ã³ãŒãã§ãæçãªã®ã¯ã³ãŒãé·ã17ãããã®ã³ãŒãã§ã以äžã®ãããªãã®ã§ããã
A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q
---------------------------------
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,1,0,0,1,1,1,0,1,1,1,0
0,1,0,0,1,0,0,1,0,1,1,0,1,1,1,0,1
1,1,0,1,1,0,1,1,0,0,0,1,1,0,0,1,1
0,0,1,0,0,1,0,0,1,1,0,1,1,1,0,1,1
1,0,1,1,0,1,1,0,1,0,1,0,1,0,1,0,1
0,1,1,0,1,1,0,1,1,0,1,1,0,0,1,1,0
1,1,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0
17äººã®æè¡è
ãAïœQãšããŠã
æè¡è
AãšDãšGã¯ã1,3,5,7çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
BãšEãšHã¯ã2,3,6,7çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
CãšFãšIã¯ã4,5,6,7çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
JãšNã¯ã1,2,4,7çªã®éè²šãæ€åºããŠæž¬å®ã
æè¡è
KãšOã¯ã1,2,5,6çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
LãšPã¯ã1,3,4,6çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
MãšQã¯ã2,3,4,5çªã®é貚ãéžæããŠæž¬å®ããããšã«ããã°ã
æå€§ã§4人ãŸã§ã誀ãã®å ±åãããŠã8æã®é貚ãã1æã®åœé åãç¹å®ã§ããŸãã
ãªããæ
å ±ãããã3ããããæå°ããã³ã°è·é¢ã3ã®ã³ãŒãã§ãæçãªã®ã¯ã³ãŒãé·ã6ãããã®ã³ãŒãã§ã以äžã®ãããªãã®ã§ããã
A,B,C,D,E,F
-----------
0,0,0,0,0,0
1,0,0,1,1,0
0,1,0,1,0,1
1,1,0,0,1,1
0,0,1,0,1,1
1,0,1,1,0,1
0,1,1,1,1,0
1,1,1,0,0,0
6äººã®æè¡è
ãAïœFãšããŠã
æè¡è
Aã¯ã1,3,5,7çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Bã¯ã2,3,6,7çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Cã¯ã4,5,6,7çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Dã¯ã1,2,5,6çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Eã¯ã1,3,4,6çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Fã¯ã2,3,4,5çªã®é貚ãéžæããŠæž¬å®ããããšã«ããã°ã
1人ãŸã§ã誀ãã®å ±åãããŠã8æã®é貚ãã1æã®åœé åãç¹å®ã§ããŸãã
No.2147kuiperbelt2024幎9æ12æ¥ 21:25
DD++ ããããã£ããã£ãŠããã
ã10人ã§ã¯ãªã9 人ããã¡2åã¯ãå¿
ããåãã€ããå Žåã«è§£ãããããšãç§ã確èªããŸãããå¥è§£ã§ããã
9äººã®æè¡è
ãååçµ6人ãåŸåçµ3人ã«ãããŸãã
ååã§ã¯â ãšâ¡ãšâ¢ãšã®ã©ãããçºçããŸããã©ããçºçãããã¯æã
ã«ã¯ããããŸãã
åŸåã§ã¯ãâ â¡â¢ããšã«ã察åŠçããããŸãã
ã»ååéš
8æã®é貚ãïŒæã¥ã€ãã¢ã«ããŠèš4ãã¢ãšããŸãã(A,a), (B,b),(C ,c ),(D,d)ãšåä»ããŸãããããã¯(X,x)ã®ããã«ãŸãšããŠæžãããšããããŸãã
ïŒåã®æè¡è
ã«ä»¥äžã®ããã«æž¬å®ã®æç€ºãåºããŸãã1 ã®ããŒã¯ãã€ããéè²šãæž¬ããŸãã
[
"0 0 0 0 0 0" ,//(A,a)
"0 0 1 1 1 1" ,//(B,b)
"1 1 0 0 1 1" ,//(C,c)
"1 1 1 1 0 0" ,//(D,d)
]
äžã¯ããã³ã°è·é¢ã 4 ãªã®ã§
以äžã®3ã€ã®ã±ãŒã¹ãçµæãšããŠå€æããŸãã
â
éœæ§å€å®ã¯å¶æ°åã§ããã
ãããã®ãã®ãºããªã®å€å®çµæãåŸãããªãã
ããªãã¡ãåå6人çµã«ïŒäººåã€ããããã
åœç©ã®å
¥ã£ã(X,x)ã¯ãã®æç¹ã§ã¯ãŸã£ããäžæã
â¡
éœæ§å€å®ã¯å¶æ°åã§ããããã€ã
äžã®4ã±ãŒã¹ããããã®ãã¡ã©ããã²ãšã€ã
ãã®ãã®ãºããªã®çµæãšãªãã
ãã®ãšãåå6人çµã«åã€ããããªãã
åœç©ã®å
¥ã£ã(X,x)ã確å®ããã
â¢
éœæ§å€å®ã¯å¥æ°åã§ããã
ãããã®ãã®ãºããªã®å€å®çµæãåŸãããªãã
ããªãã¡ãåå6人çµã«ïŒäººã®åã€ããããã
ãã®å Žåã«ã¯åã€ããç¹å®ã§ããŠã
åœç©ã®å
¥ã£ã(X,x)ã確å®ããã
以äžãååéšã§ãã
次ã¯åŸåéšã§ã®å¯ŸåŠã
â :
åŸåéš3åã®æè¡è
ãæ£çŽè
ãªã®ã§ã
ïŒæã®é貚ããïŒæã®åœé貚ãèŠä»ããã«ã¯
äºåæšã§æçŽ¢ããã°ããã
ãç®ççµäºã
â¡
åœç©ã®å
¥ã£ã(X,x)ã確å®ããŠããã
æ®ãã®ïŒåã®æè¡è
ã®ãã¡ïŒåãåã€ãã§ããã
ïŒåã«Xãåœé ã調ã¹ãããåŸãããçµæãïŒå¯ŸïŒã§å€æ°æ±ºããšãããã®çµæã®å€å®ãå転ããããã®ãçã®æž¬å®çµæãšãªãã
ãç®ççµäºã
â¢
åœç©ã®å
¥ã£ã(X,x)ã確å®ããŠããã
æ®ãã®ïŒåã®æè¡è
ã®ãã¡ïŒåãåã€ãã§ããã
ïŒåã«Xãåœé ã調ã¹ãããåŸãããçµæãïŒå¯ŸïŒã§å€æ°æ±ºããšãããã®çµæãçã®æž¬å®çµæãšãªãã
ãç®ççµäºã
â»ä»¥äžãå¥è§£ã§ã.
åŸåéšã®å€æ°æ±ºãå¹ããŠããããã«ããåã€ãïŒåã¯å¿
ãåãã€ãããšãå¿
èŠãšãªããŸãã
=====
ãªããæã£ãŠåãã€ããšã¯éããªãå Žåã«
9åã§è¶³ããããšããã話ãã«ã€ããŠã¯ã
ç§ã¯ãããªãåŠå®çã«æããããã«ãªããŸããã
å人çã«ã¯æ¢çŽ¢ã¯ããããŸãã
No.2150Dengan kesaktian Indukmu2024幎9æ13æ¥ 15:56
æè¡è
ã1人å¢ãããŠ11人ã«ãããšãåœé å1æãå«ã16æã®é貚ãããæå€§2人ã®èª€ããå«ãå ±åãçšããŠç¹å®ããããšãã§ããŸãã
æ
å ±ãããã4ããããæå°ããã³ã°è·é¢ã5ã®ã³ãŒãã§ãæçãªã®ã¯ã³ãŒãé·ã11ãããã®ä»¥äžã®ã³ãŒãã§ããããçšãããšã
-|A,B,C,D,E,F,G,H,I,J,K
-----------------------
0|0,0,0,0,0,0,0,0,0,0,0â16çªãåœé å
1|1,0,0,0,1,1,1,0,0,1,0â1çªãåœé å
2|0,1,0,0,1,1,0,1,1,0,1â2çªãåœé å
3|1,1,0,0,0,0,1,1,1,1,1â3çªãåœé å
4|0,0,1,0,1,0,1,1,1,0,0â4çªãåœé å
5|1,0,1,0,0,1,0,1,1,1,0â5çªãåœé å
6|0,1,1,0,0,1,1,0,0,0,1â6çªãåœé å
7|1,1,1,0,1,0,0,0,0,1,1â7çªãåœé å
8|0,0,0,1,0,1,1,0,1,1,1â8çªãåœé å
9|1,0,0,1,1,0,0,0,1,0,1â9çªãåœé å
a|0,1,0,1,1,0,1,1,0,1,0â10çªãåœé å
b|1,1,0,1,0,1,0,1,0,0,0â11çªãåœé å
c|0,0,1,1,1,1,0,1,0,1,1â12çªãåœé å
d|1,0,1,1,0,0,1,1,0,0,1â13çªãåœé å
e|0,1,1,1,0,0,0,0,1,1,0â14çªãåœé å
f|1,1,1,1,1,1,1,0,1,0,0â15çªãåœé å
11äººã®æè¡è
ãAïœKãšããŠã
æè¡è
Aã¯ã1,3,5,7,9,11,13,15çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Bã¯ã2,3,6,7,10,11,14,15çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Cã¯ã4,5,6,7,12,13,14,15çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Dã¯ã8,9,10,11,12,13,14,15çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Eã¯ã1,2,4,7,9,10,12,15çªã®éè²šãæ€åºããŠæž¬å®ã
æè¡è
Fã¯ã1,2,5,6,8,11,12,15çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Gã¯ã1,3,4,6,8,10,13,15çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Hã¯ã2,3,4,5,10,11,12,13çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Iã¯ã2,3,4,5,8,9,14,15çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Jã¯ã1,3,5,7,8,10,12,14çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Kã¯ã2,3,6,7,8,9,12,13çªã®éè²šãæ€åºããŠæž¬å®ããããšã«ããã°ã
æå€§ã§2人ãŸã§ã誀ãã®å ±åãããŠã16æã®é貚ãã1æã®åœé åãç¹å®ã§ããŸãã
No.2151kuiperbelt2024幎9æ13æ¥ 22:07
kuiperbeltããã«ãã[2151]ã®ãæçš¿ãžã®ã³ã¡ã³ãã§ãã
8 çªãã 15 çªãŸã§ã¯æ¬ç©ããšããæ
å ±ããããããäžããããŠããã°
æè¡è
Dã«ããèšæž¬ã¯äžèŠãšãªããæè¡è
ã®ç·äººæ°ã¯ 10 人ã§ããããšãšãªããŸãã
ããªãã¡
0çª(=16çª)ãã7çªãŸã§ã®8æã®é貚ããæè¡è
10åã§ïŒæã®åœé é貚ãã¿ã€ããæ¹æ³ã«ããªã£ãŠããŸãã(æå€§2人ãŸã§åãã€ãããšãšããŠ)
No.2152Dengan kesaktian Indukmu2024幎9æ14æ¥ 00:31
ç§ã®[2140]ã®æçš¿ã®ç¶ãã§ãã
å¥è§£ã§ããŠãæãããåœ¢ãæ¶ãããããã®ã§ãã
æ
å ±ããã㯠3 ããããšããŸããããã w ãšèšããŸãã
w ã«ã€ããŠå
šãŠã®ããããå転ãããã®ã W ãšããŸãã
3 ãããåã®ããŒã¿ã®ããªãã£(1ããã)ãæ±ãã颿°ã p(ã»)ãšæžããŸãã
ãããå x ãšãããå y ãšãçµåããèšå·ãâ¥ãšããŸãã
w ããšã³ã³ãŒãã㊠10 ãããã®ãããåãæ¬¡ã®ããã«äœããŸãã
wâ¥wâ¥p(w)â¥w âŠâŠãã ãp(w)=0 ã®ãšãã
wâ¥wâ¥p(w)â¥W âŠâŠãã ãp(w)=1 ã®ãšãã
ãããç®çãæãããŸãã
ã¿ã€ãããšãã«ã¯ç©åãããã¯ãªããŸããã
ãªãã³ã¬ã§ããŸãããããšãããšãŽãã§ãŽãã§ã§ãã
No.2153Dengan kesaktian Indukmu2024幎9æ14æ¥ 00:50
> ãªãã³ã¬ã§ããŸãããããšãããšãŽãã§ãŽãã§ã§ãã
3ãããã® w ãïŒãããã¥ã€ã«åè§£ãããš
w=w1â¥w2â¥w3
ããã®ãšã³ã³ãŒãã¯
w1â¥w2â¥w3â¥w1â¥w2â¥w3â¥w1+w2+w3â¥w2+w3â¥w1+w3â¥w2+w3
ããªã£ãŠããŸãã
â»ãã ãå ç®èšå·ã¯ ãããæ¯ã®æä»çè«çåã«ãŠãã
No.2154Dengan kesaktian Indukmu2024幎9æ14æ¥ 01:08
ãã®ã¹ã¬ããã®è¶£æšããã¯è±ç·äžã§ãã
æ¬æ¥èãã[2154]ãžã®å人çãªæ°ã¥ãã§ãã
ãã³ã¬ãã§ããŸãè¡ãïŒããšãã芳å¯ããå®éšæ°åŠçã«ãããããã£ãŠãããŸããã
笊å·èªã®æ°ã 16 ã§æ
å ±ãããã 4 ãæ€æ»ãããã 3 ã笊å·é·ã 7 ãæå°ããã³ã°è·é¢ã 3 ããã«ãããå転誀ãã 1 ããããŸã§èšæ£å¯èœãªã(7,4,3)ããã³ã°ç¬Šå·ã¯ãããç¥ãããŠããŠäžã®äžã«å®éã«å¿çšãããŠããæ¯ããæè¡ã®ããã§ãã
ããã«å¯ŸæããŠïŒïŒ
笊å·èªã®æ°ã 16 ã§æ
å ±ãããã 4 ãæ€æ»ãããã 10 ã笊å·é·ã 14 ãæå°ããã³ã°è·é¢ã 7 ããã«ãããå転誀ãã 3 ããããŸã§èšæ£å¯èœãªããã®ãããªç¬Šå·ããã£ãä»ã¿ã€ããŸããã(è»èŒªã®åçºæããïŒ)
æ
å ±ãããããã®ãŸãŸã«ã笊å·é·ã 7 ãã 14 ãš2åã«ãªãã®ãçèŽã«ããŠã
ãããå転誀ããžã®èšæ£èœåã 1 ããããã 3 ããããžãšã 3 åã«ã§ãããšããã
éä¿¡è·¯ã®ç¶æ³ãæªããšãã«ã¯ããªãæå¹ãªã®ã§ã¯ïŒããšã
"0000 000000 0000",
"0001 001011 0111",
"0011 011110 1100",
"0010 010101 1011",
"0110 110011 0110",
"0111 111000 0001",
"0101 101101 1010",
"0100 100110 1101",
"1100 011110 0011",
"1101 010101 0100",
"1111 000000 1111",
"1110 001011 1000",
"1010 101101 0101",
"1011 100110 0010",
"1001 110011 1001",
"1000 111000 1110",
ã16ãããããžã®è¿œå ãæ«å°Ÿã«å
šäœãžã®ããªãã£ãã€ããã®ãä¹ãªãã®ã§ããã
ãšã«ããåããããæ ããããªããä»ã®ããããšçžé¢ãããããããªäœæŠãè¯ãã®ãããããŸããã
No.2155Dengan kesaktian Indukmu2024幎9æ15æ¥ 00:49
DD++ ãããæèµ·ãªãã£ã
ãæè¡è
ã 9 人ã§ã倧äžå€«ïŒããšããåã
ã«ã€ããŠäœåºŠã諊ããããšåªããã®ã§ãã
ãªããªãé ãé¢ãããããæãåã£ãŠãšããšãèããŠã¿ãããšè©Šã¿ãŸããã
çµæãšããŠããããã²ãšã€ã®ãäºæ³ããæ£ãããã°ã 9 äººã®æè¡è
(ãã¡ãåã€ã㯠0 人ãã 2 人ã®å¯èœæ§ããã)ã§ãã8æäžïŒæã®åœé貚ãçªãæ¢ããããããšèãã€ããŸããã
åœé貚ãã€ããšããæ®µéãšããŠãç¬¬äžæ®µéãšç¬¬äºæ®µéãšã«åããŸãã
ç¬¬äºæ®µéã§ã¯ç¬¬äžæ®µéãŸã§ã®äžéçµæãã¿ãŠããæž¬å®æ¹æ³ãéœåºŠèããããšã«ããŸãã
(ãªãäºæ®µéã«ãããã«äžçºã§ããããšãããªãã°æè¡è
ã¯10人å¿
èŠã ããããšã¯ã»ãŒééããªããšããæè§ŠãåŸãŠããŸãã)
ç¬¬äžæ®µéã§ã¯ãïŒäººã®æè¡è
ã䜿ã
ç¬¬äºæ®µéã§ã¯ãïŒäººã®æè¡è
ã䜿ããŸãã
ç¬¬äžæ®µéçµäºæç¹ã§æ¢ã«åœé é貚ãç¢ºå®æžã¿ãªãã°ç¬¬äºæ®µéã¯å®è¡ããŸããããã®å Žåã®çºçæ¡ä»¶ã¯ãïŒäººäžåã€ããïŒäººä»¥äžã§ããããšã§ãã(å¿
èŠå忡件)
ç¬¬äžæ®µéçµäºæç¹ã§ïŒåäžåã€ããïŒåãããšç¢ºå®ã§ããã°ããã€ã8æäžå°ãªããšã4æãæ¬ç©ã§ãããšç¢ºå®ã§ããã°ãæ®ãã®ïŒæã«ã€ããŠç¬¬äºæ®µéã§æ£çŽè
ã®ã¿ã§æ§æãããïŒåã®æè¡è
ããã¡ïŒæã®åœé貚ã確å®ã§ããããšã§ãããã
ç¬¬äžæ®µéã®ã¢ã«ãŽãªãºã ã«ãªã«ãå¿
èŠãããŸãšããªãããŸãã
以äžã®ïŒãã¿ãŒã³ã®ã©ãããå¿
ãçºçãããã®ãšããŸãã
â åã€ããã¡ããã©ïŒäººçºçããããšã®æ€ç¥ç¢ºå®ãšãåæã«äžæã®åœé貚ã®ç¢ºå®ã
[ç¬¬äºæ®µéäžèŠ]
â¡åã€ããã¡ããã©ïŒäººã§ããããšã®æ€ç¥ç¢ºå®ãšãåæã«äžæã®åœé貚ã®ç¢ºå®ã
[ç¬¬äºæ®µéäžèŠ]
â¢åã€ããã¡ããã©ïŒäººã§ããããšã®æ€ç¥ç¢ºå®ãšãåæã«ãæ¬ç©ã®é貚(å°ãªããšã)ïŒæã®ç¢ºå®ãåœéè²šã¯æ®ããã®ã®ãªãã«ãããšçµããã
[ç¬¬äºæ®µéã§ã¯ïŒäººã®æ£çŽè
ãæ®ããã®ããåœé貚ãã€ããšããããšã«ãªããŸããããã¯ååã«å¯èœã§ããããšã§ãããã]
äžã®ãããªã¢ã«ãŽãªãºã ãã¿ã€ããã°ã10人ãªãã9人ã§ãåœé貚ã確å®ã§ããããšãšãªããŸãã
â ãâ¢ãŸã§ã§ããã£ãšãé£è§£ãªã®ãâ¢ãçºçããã±ãŒã¹ã§ãã
ç§ã¯æ¬¡ã®ãããªãã®ããšããããèããŠã¿ãŸããã
(é·ããªã£ãã®ã§æ¬¡ã«æçš¿ããŸãã)
No.2171Dengan kesaktian Indukmu2024幎9æ16æ¥ 14:27
ç¬¬äžæ®µéã®èšèšã«ã€ããŠã
ïŒæã®ç¡¬è²šã«ããããŠïŒåã®æè¡è
ã以äžã®ãªã¹ãã«ããããã«æž¬å®ããŸãã
(1 )ã¯ã¬ã€ã¬ãŒã«ãŠã³ã¿ãŒã§æž¬ããŸãã
"0 0 0 0 0 0 0",
"0 0 1 0 1 1 1",
"1 0 0 1 0 1 1",
"1 1 0 0 1 0 1",
"1 1 1 0 0 1 0",
"0 1 1 1 0 0 1",
"1 0 1 1 1 0 0",
"0 1 0 1 1 1 0",
ã±ãŒã¹â
ïŒã€ã®æž¬å®çµæãåŸãããæ
éœæ§(1)ãã奿°åãåŸãããã±ãŒã¹ã§ãã
ãã®ãšããïŒåäžã«åã€ãã¯å¿
ãïŒåã§ãã
äžã®ããŒãã«ã§ã¯æå°ããã³ã°è·é¢ãïŒãªã®ã§åã€ãã確å®ãåœé貚ã確å®ããŸãã
ç¬¬äºæ®µéã¯äžèŠã§ãã
ã±ãŒã¹â¡
ïŒã€ã®æž¬å®çµæãåŸãããæã
éœæ§(1)ããå¶æ°åãåŸããããã€ã
äžã®ããŒãã«ãšäžèŽããã±ãŒã¹ã§ãã
ãã®ãšããïŒåäžã«åã€ãã¯ããŸããã
åœé貚ã確å®ããŸãã
ç¬¬äºæ®µéã¯äžèŠã§ãã
ã±ãŒã¹â¢
ïŒã€ã®æž¬å®çµæãåŸãããæã
éœæ§(1)ããå¶æ°åãåŸããããã€ã
äžã®ããŒãã«ãšãäžèŽããªããã±ãŒã¹ã§ãã
ãã®ãšããïŒåäžã®åã€ãã¯å¿
ãïŒåã§ãã
åœé貚ã¯ç¢ºå®ããŸããã
ïŒåã®æ£çŽè
ãåŸ
ã£ãŠããç¬¬äºæ®µéãå¿
èŠã§ãã
=====
ããã§å®éšçã«ããªããã蟌ãã§ã¿ãã®ã§ãã (æå)
åœæž¬å®å€ãïŒåå«ãïŒåã®ããŒã¿ãåŸããããšãã«ã
åœé貚ã®åè£ã¯ããã€ããïŒæãªã®ã§ãã
ãšããããšã¯ç¬¬äºæ®µéã§åœé貚ã確å®ã§ããããšãšãªããŸãã
以äžãç§ã®ãäºæ³ãã§ãã
åœæž¬å®å€ãïŒåå«ãïŒåã®ããŒã¿ãåŸããããšãã«ã
åœé貚ã®åè£ã¯ããã€ããïŒæã§ãã
============
äžèšã®äºæ³ã«åäŸããã£ããã蚌æãããããã§ãããªãã°ãæ¯éãšãããæç€ºããã ããã
æ°ã«ãªã£ãŠæ°ã«ãªã£ãŠä»æ¹ããããŸããã
ãœãã€ããªç§ã®ããšã§ããã
ããŒã³ãããããããã(æ¥ãããã)ã§ãããã©ãã
çæ§ãäœåãæç€ºãè³ããããå®ãããé¡ãç³ãäžããŸãã
â»èšŒæã®èŠéãããããªããã©ããããããŸãããäžèšã®ããŒãã«ã¯å·¡åçã«äœã£ãŠãããŸãã
No.2172Dengan kesaktian Indukmu2024幎9æ16æ¥ 15:02
ãªãã»ã©ãã«ãŒã¯ãã³ã®çµåãåé¡ã®è§£ãå©çšããã°ç¢ºãã«ãããŸããã
蚌æã¯ãéœæ§å ±åã®äººæ°ããšã«å Žååããããã°å®¹æããšæããŸãã
ãããã§ãããïŒ
No.2173DD++2024幎9æ16æ¥ 16:55
DD++ ããã
æ©éã®ã³ã¡ã³ãããã³ãã³ããæé£ãããããŸãã
éœæ§å ±åã®äººæ°ã§å ŽååãâŠâŠã§ããâŠâŠ
ãã£ãŠã¿ãŸãã
ãææã©ããã«ãŒã¯ãã³ã§ãããâŠâŠ
èªåãšããŠã¯ãã¡ãå¹³é¢ã䜿ã£ãã€ããã§ããã(0ã®ããžã·ã§ã³)
No.2174Dengan kesaktian Indukmu2024幎9æ16æ¥ 18:19
Aæ°ã¯æ¯æ¥ä»äºçµããã«é
å Žã«ç«ã¡å¯ã
ããŒã«ã®éæX,Y,Z,Wã®äœããäžã€ãéžãã§é£²ãããšã«æ±ºããŠããã
åéæã®ä»£éã¯100,200,300,400(å)ã§ãããšããã
Aæ°ã®ãå°é£ãã¯1500(å)ãšãããšã
ãå°é£ãã䜿ãåã£ããšããå°ãªããšãå
šéšã®éæã飲ã¿çµããããã«ã¯
Aæ°ã®ãéã®äœ¿ãæ¹ã¯äœéãèãããããïŒ(æ¥ã«ãã£ãŠæ¯æãéé¡ãç°ãªãã°éãæ¹æ³ãšã«ãŠã³ãããŠäžããã)
No.2097GAI2024幎8æ26æ¥ 08:04
2544éãã§ããïŒ
No.2098HP管çè
2024幎8æ26æ¥ 16:25 æ£è§£ã§ãã
No.2099GAI2024幎8æ26æ¥ 16:59
X,Y,Z,Wã®éæã1åãã€é£²ããš100+200+300+400=1000åã§ãæ®ãã®500åãåé
ããæ¹æ³ã¯ã
XW,YZ,XXZ,XYY,XXXY,XXXXXã®6ã€ã®å Žåãããã
XYZWãšXWã®å Žåã6!/(2!*1!*1!*2!)=180éã
XYZWãšYZã®å Žåã6!/(1!*2!*2!*1!)=180éã
XYZWãšXXZã®å Žåã7!/(3!*1!*2!*1!)=420éã
XYZWãšXYYã®å Žåã7!/(2!*3!*1!*1!)=420éã
XYZWãšXXXYã®å Žåã8!/(4!*2!*1!*1!)=840éã
XYZWãšXXXXXã®å Žåã9!/(6!*1!*1!*1!)=504éã
ãããåèš180+180+420+420+840+504=2544éã
No.2100kuiperbelt2024幎8æ26æ¥ 21:58
ãããäžè¬åããŠ
n(å)ã®è³éããã£ãŠ
æ¯æ¥å䟡ã1,2,3,,k (å) ãã ãk<n
ã®åããŒã«ã®éæãã©ããäžã€ãã€æ¯æ¥é£²ãã§ãã
è³éã䜿ãæããããšããå°ãªããšãå
šéæã®ããŒã«ã¯é£²ãã ããšãèµ·ãã
ãéã®äœ¿ãæ¹ã®æ¹æ³ã¯ç·èšã©ãã ãïŒ
ãããæç€ºåŒã§ç€ºãããïŒ
ãŸãã¯ãããèªã¿åããæ¯é¢æ°ã¯äœããã®ãïŒ
ã¡ãªã¿ã«
k=2ã®ãšã
gf=1+1/(1-x-x^2)-1/(1-x)-1/(1-x^2)
k=3ã®ãšã
gf= x^6/(1-x-x^2-x^3)*(1/((1-x)*(1-x-x^2))+1/((1-x^2)*(1-x-x^2))+1/((1-x)*(1-x-x^3))+1/((1-x^3)*(1-x-x^3))+1/((1-x^2)*(1-x^2-x^3))+1/((1-x^3)*(1-x^2-x^3)))
k=4ã®ãšãã®æ¯é¢æ°ã¯åŠäœã«ïŒ
ã©ãªãããã³ãã
No.2103GAI2024幎8æ27æ¥ 06:41
>n(å)ã®è³éããã£ãŠ
>æ¯æ¥å䟡ã1,2,3,,k (å) ãã ãk<n
>ã®åããŒã«ã®éæãã©ããäžã€ãã€æ¯æ¥é£²ãã§ãã
>è³éã䜿ãæããããšããå°ãªããšãå
šéæã®ããŒã«ã¯é£²ãã ããšãèµ·ãã
>ãéã®äœ¿ãæ¹ã®æ¹æ³ã¯ç·èšã©ãã ãïŒ
>ãããæç€ºåŒã§ç€ºãããïŒ
ãéã®äœ¿ãæ¹ã®ç·æ°ãa(n)ãšãããšãa(n)ã¯æ¬¡ã®åŒã§èšç®ã§ããŸãã
a(n)=[x^n](â«_[z=0,â]exp(-z)*Î [j=1ïœk](exp(x^j*z)-1)dz)ïŒ
äŸãã°k=4ã®å ŽåïŒ
exp(-z)*Î [j=1ïœ4](exp(x^j*z)-1)ãå±éãããšã次ã®ããã«ãªããŸãã
exp(-z)*Î [j=1ïœ4](exp(x^j*z)-1)
=exp(-z)*(exp(x*z)-1)*(exp(x^2*z)-1)*(exp(x^3*z)-1)*(exp(x^4*z)-1)
=exp((-1+x+x^2+x^3+x^4)*z)
-exp((-1+x+x^2+x^3)*z)-exp(-1+x+x^2+x^4)-exp(-1+x+x^3+x^4)-exp(-1x^2+x^3+x^4)
+exp((-1+x+x^2)*z)+exp((-1+x+x^3)*z)+exp((-1+x+x^4)*z)+exp((-1+x^2+x^3)*z)+exp((-1+x^2+x^4)*z)+exp((-1+x^3+x^4)*z)
-exp((-1+x)*z)-exp((-1+x^2)*z)-exp((-1+x^3)*z)-exp((-1+4)*z)
+exp((-1)*z).
ãã®å±éåŒãz=0ïœâã®ç¯å²ã§ç©åããã°xã®æç颿°ãåŸãããŸãã
ãã®æç颿°ããã¯ããŒãªã³å±éãããšãã®x^nã®ä¿æ°ãa(n)ã§ãã
a(n)
=[x^n](-1/(-1+x+x^2+x^3+x^4)
+1/(-1+x+x^2+x^3)+1/(-1+x+x^2+x^4)+1/(-1+x+x^3+x^4)+1/(-1+x^2+x^3+x^4)
-1/(-1+x+x^2)-1/(-1+x+x^3)-1/(-1+x+x^4)-1/(-1+x^2+x^3)-1/(-1+x^2+x^4)-1/(-1+x^3+x^4)
+1/(-1+x)+1/(-1+x^2)+1/(-1+x^3)+1/(-1+x^4)
-1/(-1)).
No.2104at2024幎8æ28æ¥ 15:32
atããåãã§ãã
仿¹ãªãn=10ãã20ãŸã§ã®æ°å€ãã²ãšã€ãã€ç®åºããŠïŒåŸ¡èã§çµæçã«ïŒãµæèšç®ãã¹ãèµ·ãããŠããããšãçºèŠ)
k=3ã§ã®æ¯é¢æ°ãç䌌ããŠè²ã
詊ããŠãããã§ãããã®ãã¹ãŠã匟ãããŠããŸããéæ¹ã«æ®ããŠããŸããã
æåã®é
ã ããäžèŽããŠãããåŸã¯ç¡é§ãªåªåã§ããã
ç©åã®åã§è§£æ±ºããããšã¯æã£ãŠããªãéçã§ããã
æçµåã¯éåã®èŠçŽ ã®åæ°ãæ±ããåŒã«é¡äŒŒããŠããŸãããïŒçµæ§èŠãæã)
ãšããããšã¯k=3ã§ã®æ¯é¢æ°gfã¯ããã¹ãããªãã
1/(1-x-x^2-x^3)-1/(1-x-x^2)-1/(1-x-x^3)-1/(1-x^2-x^3)+1/(1-x)+1/(1-x^2)+1/(1-x^3)-1
ã§ãå¯èœãšããããã§ããã
äžã®äžã«ã¯ç©äºã®æ¬è³ªãèŠäºã«æŽãã§ããŸã人ãããããšã«ææ¿ã§ãã
ç®ããé±ã§ãããªäžè¬åŒãŸã§åãã£ãŠããŸãããšãé©ç°ã§ããããã§ãã
倧å€ããããšãããããŸããã
æ¯é¢æ°ã®åœ¢ã«ããªããŠãã³ã³ãã¥ãŒã¿ã§æ°å€ã ãæ±ããããªãçŽæ¥ç©ååãã
gp > F(k)=intnum(z=0,[oo,1],exp(-z)*prod(j=1,k,exp(x^j*z)-1))
ã§å®çŸ©ããŠããã°k=9ã§ã®å€ã¯
gp > for(n=45,60,print(n";"round(polcoeff(F(9),n))))
45;362880
46;1814400
47;8467200
48;31752000
49;110255040
50;352416960
51;1073580480
52;3125969280
53;8808347520
54;24105906720
55;64431521280
56;168662148480
57;433730626560
58;1097903933280
59;2740858737120
60;6757827995520
çã§äžçºã§æ±ãŸã£ãŠããã®ã§ãããïŒãã®ããã©ãããäœæ¥ã倢ã®ããã§ãã)
No.2105GAI2024幎8æ28æ¥ 17:41
æ¯æ¥å䟡ã1åã2åã®åããŒã«ã®éæãã©ããäžã€ãã€æ¯æ¥é£²ããšãã®å Žåã®æ°ã®çæé¢æ°ã«ã€ããŠã¯ã
1+(x+x^2)+(x+x^2)^2+âŠ=1/(1-x-x^2)
ã§è¡šãããå°ãªããšãäž¡éæã®ããŒã«ã飲ãã ãšãã®å Žåã®æ°ã®çæé¢æ°ã«ã€ããŠã¯ã
(1+(x+x^2)+(x+x^2)^2+âŠ)-(1+x+x^2+âŠ)-(1+x^2+x^4+âŠ)+1
=1/(1-x-x^2)-1/(1-x)-1/(1-x^2)+1
ã§è¡šãããŸãã
(x+x^2)^m=C(m,0)x^m+C(m,1)x^(m+1)+...+C(m,j)x^(m+j)+...+C(m,m)x^(2m)
ãªã®ã§ãn(å)ã®è³éããã£ãŠæ¯æ¥å䟡ã1åã2åã®åããŒã«ã®éæãã©ããäžã€ãã€æ¯æ¥é£²ãã§ãã
è³éã䜿ãæããããšãã®ãéã®äœ¿ãæ¹ã®æ¹æ³ã®æ°ã¯ã
Σ_{k=0ïœfloor(n/2)}C(n-k,k)
ã§è¡šãããå°ãªããšãäž¡éæã®ããŒã«ã飲ãã ãšãã®å Žåã®æ°ã«ã€ããŠã¯ã
n=2q+1ã®ãšã
Σ_{k=0ïœfloor(n/2)}C(n-k,k) - C(n,0)
n=2qã®ãšã
Σ_{k=0ïœfloor(n/2)}C(n-k,k) - C(n,0) -C(q,q)
ãšãªããŸããF(n)=Σ_{k=0ïœfloor(n/2)}C(n-k,k)ãšãããšã
F(1)=1,F(2)=2,F(n)=F(n-1)+F(n-2)
ãšãªã£ãŠãF(n)ã¯ãã£ããããæ°åãšãªããŸããå°ãªããšãäž¡éæã®ããŒã«ã飲ãã ãšãã®å Žåã®æ°ã«ã€ããŠã¯ã
n=2q+1ã®ãšãF(n)-1ãn=2qã®ãšãF(n)-2ãšãªããŸãã
æ¯æ¥å䟡ã1å,2å,3åã®åããŒã«ã®éæãã©ããäžã€ãã€æ¯æ¥é£²ããšãã®å Žåã®æ°ã®çæé¢æ°ã«ã€ããŠã¯ã
1+(x+x^2+x^3)+(x+x^2+x^3)^2+âŠ=1/(1-x-x^2-x^3)
ã§è¡šãããå°ãªããšãå
šéæã®ããŒã«ã飲ãã ãšãã®å Žåã®æ°ã®çæé¢æ°ã«ã€ããŠã¯ã
(1+(x+x^2+x^3)+(x+x^2+x^3)^2+âŠ)
-(1+(x+x^2)+(x+x^2)^2+âŠ)-(1+(x+x^3)+(x+x^3)^2+âŠ)-(1+(x^2+x^3)+(x^2+x^3)^2+âŠ)
+(1+x+x^2+âŠ)+(1+x^2+x^4+âŠ)+(1+x^3+x^6+âŠ)-1
=1/(1-x-x^2-x^3)-1/(1-x-x^2)-1/(1-x-x^3)-1/(1-x^2-x^3)+1/(1-x)+1/(1-x^2)+1/(1-x^3)-1
ã§è¡šãããŸãã
2é
ä¿æ°C(n,k)ã«å£ã£ãŠ3é
ä¿æ°C(n,k1,k2)=n!/(k1!k2!(n-k1-k2)!)ãçšãããšã
(x+x^2+x^3)^m=Σ_{k1â§0,k2â§0,k1+k2âŠm}C(m,k1,k2)[x^(m-k1-k2)*x^(2*k1)*x^(3*k2)]
ãªã®ã§ãn(å)ã®è³éããã£ãŠæ¯æ¥å䟡ã1å,2å,3åã®åããŒã«ã®éæãã©ããäžã€ãã€æ¯æ¥é£²ãã§ãã
è³éã䜿ãæããããšãã®ãéã®äœ¿ãæ¹ã®æ¹æ³ã®æ°ã¯ã
T(n)=Σ_{i=0ïœfloor(n/2),j=0ïœfloor(n/3),i+jâŠn}C(n-i-j,i,j)
ã§è¡šãããT(1)=1,T(2)=2,T(3)=4,T(n)=T(n-1)+T(n-2)+T(n-3)ãšããããªããããæ°åãšãªããŸãã
n(å)ã®è³éããã£ãŠæ¯æ¥å䟡ã1åã3åã®åããŒã«ã®éæãã©ããäžã€ãã€æ¯æ¥é£²ãã§ãã
è³éã䜿ãæããããšãã®ãéã®äœ¿ãæ¹ã®æ¹æ³ã®æ°ã«ã€ããŠã¯ã
(x+x^3)^m=C(m,0)x^m+C(m,1)x^(m+2)+...+C(m,j)x^(m+2*j)+...+C(m,m)x^(3m)
ããã
n=1ã®ãšãC(1,0)
n=2ã®ãšãC(2,0)
n=3ã®ãšãC(3,0)+C(1,1)
n=4ã®ãšãC(4,0)+C(2,1)
n=5ã®ãšãC(5,0)+C(3,1)
n=6ã®ãšãC(6,0)+C(4,1)+C(2,2)
n=7ã®ãšãC(7,0)+C(5,1)+C(3,2)
n=8ã®ãšãC(8,0)+C(6,1)+C(4,2)
ãšãªã£ãŠãäžè¬ã«ã¯ã
Σ_{k=0ïœfloor(n/3)}C(n-2*k,k)
ã§è¡šãããΣ_{k=0ïœfloor(n/3)}C(n-2*k,k)=G(n+1)ãšãããšã
G(1)=1,G(2)=1,G(3)=2,G(n)=G(n-1)+G(n-3)ãšãªã£ãŠãããã¯ãã©ã€ãæ°å(Narayana sequence)ãšãããŸãã
n(å)ã®è³éããã£ãŠæ¯æ¥å䟡ã2åã3åã®åããŒã«ã®éæãã©ããäžã€ãã€æ¯æ¥é£²ãã§ãã
è³éã䜿ãæããããšãã®ãéã®äœ¿ãæ¹ã®æ¹æ³ã®æ°ã«ã€ããŠã¯ã
(x^2+x^3)^m=C(m,0)x^2m+C(m,1)x^(2m+1)+...+C(m,j)x^(1m+j)+...+C(m,m)x^(3m)
ããã
n=2ã®ãšãC(1,0)
n=3ã®ãšãC(1,1)
n=4ã®ãšãC(2,0)
n=5ã®ãšãC(2,1)
n=6ã®ãšãC(3,0)+C(2,2)
n=7ã®ãšãC(3,1)
n=8ã®ãšãC(4,0)+C(3,2)
n=9ã®ãšãC(4,1)+C(3,3)
n=10ã®ãšãC(5,0)+C(4,2)
n=11ã®ãšãC(5,1)+C(4,3)
n=12ã®ãšãC(6,0)+C(5,2)+C(4,4)
ãšãªã£ãŠãäžè¬ã«ã¯ã
Σ_{ceil(n/3)âŠkâŠfloor(n/2)}C(k,n-2*k)
ã§è¡šããããããH(n)ãšãããšãH(2)=1,H(3)=1,H(4)=1,H(n)=H(n-2)+H(n-3)
ãšãªã£ãŠãããã¯ãããŽã¡ã³æ°å(Padovan sequence)ãšãããŸãã
n(å)ã®è³éããã£ãŠæ¯æ¥å䟡ã1å,2å,3åã®åããŒã«ã®éæãã©ããäžã€ãã€æ¯æ¥é£²ãã§ãã
è³éã䜿ãæããããšããå°ãªããšãå
šéæã®ããŒã«ã飲ãã ãšãã®ãéã®äœ¿ãæ¹ã®æ¹æ³ã®æ°ã«ã€ããŠã¯ã
T(n)-F(n)-G(n)-H(n)+r(n)
r(n)=3(n mod 6=0),1(n mod 6=1,5),2(n mod 6=2,3,4)
ãšãªããŸããn=1ïœ10ã§ã
T(n) 1,2,4,7,13,24,44,81,149,274
F(n) 1,2,3,5, 8,13,21,34, 55, 89
G(n) 1,1,2,3, 4, 6, 9,13, 19, 28
H(n) 0,1,1,1, 2, 2, 3, 4, 5, 7
ãšãªããŸãããT(n)-F(n)-G(n)-H(n)+r(n)ã¯ãn=1ïœ10ã§ã
0,0,0,0,0,6,12,32,72,152ãšãªããŸãã
æ¯æ¥å䟡ã1å,2å,3å,4åã®åããŒã«ã®éæãã©ããäžã€ãã€æ¯æ¥é£²ããšãã®å Žåã®æ°ã®çæé¢æ°ã«ã€ããŠã¯ã
1+(x+x^2+x^3+x^4)+(x+x^2+x^3+x^4)^2+âŠ=1/(1-x-x^2-x^3-x^4)
ã§è¡šãããå°ãªããšãå
šéæã®ããŒã«ã飲ãã ãšãã®å Žåã®æ°ã®çæé¢æ°ã«ã€ããŠã¯ã
(1+(x+x^2+x^3+x^4)+(x+x^2+x^3+x^4)^2+âŠ)
-(1+(x+x^2+x^3)+(x+x^2+x^3)^2+âŠ)-(1+(x+x^2+x^4)+(x+x^2+x^4)^2+âŠ)
-(1+(x+x^3+x^4)+(x+x^3+x^4)^2+âŠ)-(1+(x^2+x^3+x^4)+(x^2+x^3+x^4)^2+âŠ)
+(1+(x+x^2)+(x+x^2)^2+âŠ)+(1+(x+x^3)+(x+x^3)^2+âŠ)+(1+(x^2+x^3)+(x^2+x^3)^2+âŠ)
+(1+(x+x^4)+(x+x^4)^2+âŠ)+(1+(x^2+x^4)+(x^2+x^4)^2+âŠ)+(1+(x^3+x^4)+(x^3+x^4)^2+âŠ)
-(1+x+x^2+âŠ)-(1+x^2+x^4+âŠ)-(1+x^3+x^6+âŠ)-(1+x^4+x^8+âŠ)+1
=1/(1-x-x^2-x^3-x^4)
-1/(1-x-x^2-x^3)-1/(1-x-x^2-x^4)-1/(1-x-x^3-x^4)-1/(1-x^2-x^3-x^4)
+1/(1-x-x^2)+1/(1-x-x^3)+1/(1-x^2-x^3)+1/(1-x-x^4)+1/(1-x^2-x^4)+1/(1-x^3-x^4)
-1/(1-x)-1/(1-x^2)-1/(1-x^3)-1/(1-x^4)
+1
ã§è¡šãããŸãã
No.2106kuiperbelt2024幎8æ29æ¥ 10:47