n ã®å®å
šãªåå²ãšã¯ãç¹°ãè¿ãããéšåãåºå¥ã§ããªããšèŠãªããããšãã«ã
n ããå°ãããã¹ãŠã®æ°ã®åå²ã 1 ã€ã ãå«ãŸããåå²ã§ãã
ãããã£ãŠã1^n ã¯ãã¹ãŠã® n ã«å¯ŸããŠå®å
šãªåå²ã§ãã
äŸãã°n=5ã®å Žå
åå²æ¹æ³ã¯
1;[5]
2;[1, 4]
3;[2, 3]
4;[1, 1, 3]
5;[1, 2, 2]
6;[1, 1, 1, 2]
7;[1, 1, 1, 1, 1]
ãèããããã
[1, 1, 3]
ã§ã¯
1=1
2=1+1
3=3
4=3+1
5=3+1+1
ãš1ïœ5ããã®ææã§ãã äžéããã€ã§æ§æã§ããã
åãã
[1, 2, 2]ã
1=1
2=2
3=2+1
4=2+2
5=2+2+1
ã§1ïœ5ããã®ææã§ãã äžéããã€ã§æ§æã§ããã
ãŸãæããã«
[1, 1, 1, 1, 1]
ããããå¯èœ
ãã®3éããå®å
šãªåå²ãšåŒãŒãã
äžæ¹n=5ã®æ¬¡ã®æ°6ã§ã¯ããããç©ã§è¡šãæ¹æ³ã
6, 2*3, 3*2 (å Žæãéãã°ç°ãªããã®ãšã«ãŠã³ãããã)
ã®3éããšn=5ã§ã®å®å
šãªåå²æ°ãšåãæ°ã察å¿ããŠããã
ãŸããn=7ã®å Žåã¯
1;[7]
2;[1, 6]
3;[2, 5]
4;[3, 4]
5;[1, 1, 5](1,2,5,6,7)ããäœããªãã
6;[1, 2, 4](1,2,3,4,5,6,7)ãOK!
7;[1, 3, 3](1,3,4,6,7)ããäœããªãã
8;[2, 2, 3]
9;[1, 1, 1, 4](1,2,3,4,5,6,7) OK!
10;[1, 1, 2, 3](1,2,3,4,5,6,7)ããã2=1+1,3=1+2,4=1+1+2=1+3ãšéè€ã§ååš
11;[1, 2, 2, 2](1,2,3,4,5,6,7) OK!
12;[1, 1, 1, 1, 3](1,2,3,4,5,6,7)ããã4=1+1+1+1=1+3ãš2ã€ååš
13;[1, 1, 1, 2, 2](1,2,3,4,5,6,7)ããã4=1+1+2=2+2ãš2ã€ååš
14;[1, 1, 1, 1, 1, 2]ããã2=1+1,3=1+2=1+1+1ãšéè€ã§ååš
15;[1, 1, 1, 1, 1, 1, 1](1,2,3,4,5,6,7) OK!
ããå®å
šãªåå²ã¯
[1, 2, 4], [1, 1, 1, 4], [1, 2, 2, 2], [1, 1, 1, 1, 1, 1, 1]
ã®4éãååšããã
äžæ¹8ã§ã®ç©ã®åå²ã§ã¯
8, 2*4, 4*2, 2*2*2
ã®å
šéšã§4éãååšã§ããã
æ¬åœã«ãã®é¢ä¿ã¯åžžã«æç«ãããã®ã
n=11ã§ã®åã®å®å
šãªåå²ãš12ã§ã®ç©ã®åå²
n=23ã§ã®åã®å®å
šãªåå²ãš24ã§ã®ç©ã®åå²
ãå
·äœçã«ç€ºããŠã¿ãŠäžããã
11ã§ã®åã®å®å
šãªåå²ã¯ã
1,1,1,1,1,1,1,1,1,1,1
1,1,1,1,1,6
1,1,1,4,4
1,1,3,3,3
1,1,3,6
1,2,2,2,2,2
1,2,2,6
1,2,4,4
ã®8éãã§ã12ã§ã®ç©ã®åå²ãã
12,2*6,6*2,3*4,4*3,2*2*3,2*3*2,3*2*2
ã®8éãã
23ã§ã®åã®å®å
šãªåå²ã¯ã
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1,1,12
1,1,1,1,1,1,1,8,8
1,1,1,1,1,6,6,6
1,1,1,1,1,6,12
1,1,1,4,4,4,4,4
1,1,1,4,4,12
1,1,1,4,8,8
1,1,3,3,3,3,3,3,3
1,1,3,3,3,12
1,1,3,6,6,6
1,1,3,6,12
1,2,2,2,2,2,2,2,2,2,2,2,2
1,2,2,2,2,2,12
1,2,2,2,8,8
1,2,2,6,6,6
1,2,2,6,12
1,2,4,4,4,4,4
1,2,4,4,12
1,2,4,8,8
ã®20éãã§ã24ã§ã®ç©ã®åå²ãã
24,2*12,12*2,3*8,8*3,4*6,6*4,
2*2*6,2*6*2,6*2*2,
2*3*4,2*4*3,3*2*4,3*4*2,3*4*2,4*3*2
2*2*2*3,2*2*3*2,2*3*2*2,3*2*2*2
ã®20éãã
1+x+x^2+âŠ+x^11ãä¿æ°ãéè² æŽæ°ãšãªãããã«å æ°å解ãããšã
1+x+x^2+âŠ+x^11
=(1+x+x^2+x^3+x^4+x^5)(1+x^6)
=(1+x+x^2+x^3)(1+x^4+x^8)
=(1+x+x^2)(1+x^3+x^6+x^9)
=(1+x+x^2)(1+x^3)(1+x^6)
=(1+x)(1+x^2+x^4+x^6+x^8+x^10)
=(1+x)(1+x^2+x^4)(1+x^6)
=(1+x)(1+x^2)(1+x^4+x^8)
ã®8éãã®åœ¢ã§è¡šãããšãã§ããŸããããã®ããšãšé¢ä¿ããã®ã§ããããã
ãªãã»ã©
ãã®å®å
šåå²ã¯ãã®å±éåŒãšç¹ããããã§ããã
ã§ããã2ã€ãšãèªç¶æ°nã®çŽ å æ°å解圢ã®ã¿ã€ãããã£ãŠäžã€éãã®èªç¶æ°ã§
åã®å®å
šåå²ãšç©ã®åå²æ¹æ³ãåãæ°å€ãåã£ãŠãããã
<n(å)>; <ç©ã®åå²æ¹æ³>;<åã®å®å
šåå²æ¹æ³>;
1 ; 1; 1;
2(p) ; 1; 1;
3(p) ; 1; 2;
4(p^2) ; 2; 1;
5(p) ; 1; 3;
6(p*q) ; 3; 1;
7(p) ; 1; 4;
8(p^3) ; 4; 2;
9(p^2) ; 2; 3;
10(p*q); 3; 1;
11(p) ; 1; 8;
12(p^2*q); 8; 1;
13(p) ; 1; 3;
14(p*q); 3; 3;
15(p*q); 3; 8;
16(p^4); 8; 1;
17(p) ; 1; 8;
18(p^2*q); 8; 1;
19(p) ; 1; 8;
20(p^2*q); 8; 3;
21(p*q); 3; 3;
22(p*q); 3; 1;
23(p) ; 1; 20;
24(p^3*q); 20; 2;

以äžçŽ å æ°å解åãš<ç©ã®åå²æ¹æ³>ãšã¯äžå¯Ÿäžã®å¯Ÿå¿ãä»ãããã ã
äžã®äŸã«ãããæ§ã«
p^2*qåãšp^4åã¯åãå€ã®8ãåã£ãŠããŸãã
ä»ã«ã
p^6*qåãšp^9åã¯åãå€256ãšãªã£ãŠããŸãã
ããã§ä»åºŠã¯
ãã®ãããªå解åãç°ãªã£ãŠãåãå€ãåã£ãŠããŸã2çµããã以å€ã«
æ¢ããŠã»ããã
p^nã®ç©ã®åå²ã®æ°ã¯ãnåã®pã䞊ã¹ããšãã«ã(n-1)åã®ééã«åºåããé
眮ãã
æ¹æ³ã®æ°ãšçãããªãã®ã§ã
1+C(n-1,1)+C(n-1,2)+...+C(n-1,n-1)=2^(n-1)
ããã2^(n-1)éãã
p^n*qã®ç©ã®åå²ã®æ°ã¯ãnåã®pã䞊ã¹ããšãã«ã(n-1)åã®ééã«åºåããé
眮ãã
ããã«ãkåã®åºåããé
眮ããŠãnåã®pã(k+1)åã®ã°ã«ãŒãã«åå²ãããšãã«ã
qã䞡端ãã(k+1)åã®ã°ã«ãŒãå
ããkåã®åºåãäžã«é
眮ããæ¹æ³ã®æ°ãšçãã
ãªãã®ã§ã
3+5*C(n-1,1)+7*C(n-1,2)+...+(2*n+1)*C(n-1,n-1)
=3*(1+C(n-1,1)+C(n-1,2)+...+C(n-1,n-1))
+2*(C(n-1,1)+2*C(n-1,2)+...+(n-1)*C(n-1,n-1))
=3*2^(n-1)+(n-1)*2^(n-1)=(n+2)*2^(n-1)
ããã(n+2)*2^(n-1)éãã
p^mã®ç©ã®åå²ã®æ°2^(m-1)ãšp^n*qã®ç©ã®åå²ã®æ°(n+2)*2^(n-1)ãçãããªãã®ã¯ã
(n+2)*2^(n-1)=2^(m-1)
n+2=2^(m-n)
ãããn=2^k-2(kâ§2)ã®ãšãã§ããã®ãšããm=n+k=2^k+k-2
k=2ã®ãšã(m,n)=(4,2)ãk=3ã®ãšã(m,n)=(9,6)ã§ããã以äžã
k=4ã®ãšã(m,n)=(18,14)ãk=5ã®ãšã(m,n)=(35,30)ãâŠãšãªãã
p^n*q^2ã®ç©ã®åå²ã®æ°ã¯ãnåã®pã䞊ã¹ããšãã«ã(n-1)åã®ééã«åºåããé
眮ãã
ããã«ãkåã®åºåããé
眮ããŠãnåã®pã(k+1)åã®ã°ã«ãŒãã«åå²ãããšãã«ã
2åã®qã䞡端ãã(k+1)åã®ã°ã«ãŒãå
ããkåã®åºåãäžã«é
眮ããæ¹æ³ã®æ°ãšçãã
ãªããããã«ã䞡端ãšåºåãäžã«2åé
眮ããå Žåã¯ã2åã®qãåå²ããŠé
眮ããå Žåãš
åå²ããã«é
眮ããå Žåãããã®ã§ã®ã§ãæ¹æ³ã®æ°ã¯ã
(C(4,2)+2)+(C(5,2)+3)*C(n-1,1)+(C(6,2)+4)*C(n-1,2)
+...+(C(n+3,2)+n+1)*C(n-1,n-1)
=8*(1+C(n-1,1)+C(n-1,2)+...+C(n-1,n-1))
+(9/2)*(C(n-1,1)+2*C(n-1,2)+...+(n-1)*C(n-1,n-1))
+(1/2)*(C(n-1,1)+2^2*C(n-1,2)+...+(n-1)^2*C(n-1,n-1))
=8*2^(n-1)+(9/2)*(n-1)*2^(n-2)+(1/2)*n(n-1)*2^(n-3)
=(n^2+17*n+46)*2^(n-4)
ããã(n^2+17*n+46)*2^(n-4)éãã
p^n*q*rã®ç©ã®åå²ã®æ°ã¯ãnåã®pã䞊ã¹ããšãã«ã(n-1)åã®ééã«åºåããé
眮ãã
ããã«ãkåã®åºåããé
眮ããŠãnåã®pã(k+1)åã®ã°ã«ãŒãã«åå²ãããšãã«ã
q,rã䞡端ãã(k+1)åã®ã°ã«ãŒãå
ããkåã®åºåãäžã«é
眮ããæ¹æ³ã®æ°ãšçãã
ãªããããã«ã䞡端ãšåºåãäžã«q,rãé
眮ããå Žåã¯ãq*rãšããŠé
眮ããå Žåãšã
r*qãšããŠé
眮ããå Žåãšãåå²ããã«é
眮ããå Žåãããã®ã§ãæ¹æ³ã®æ°ã¯ã
(3^2+2*2)+(5^2+2*3)*C(n-1,1)+(7^2+2*4)*C(n-1,2)
+...+((2*n+1)^2+2*(n+1))*C(n-1,n-1)
=13*(1+C(n-1,1)+C(n-1,2)+...+C(n-1,n-1))
+14*(C(n-1,1)+2*C(n-1,2)+...+(n-1)*C(n-1,n-1))
+4*(C(n-1,1)+2^2*C(n-1,2)+...+(n-1)^2*C(n-1,n-1))
=13*2^(n-1)+7*(n-1)*2^(n-1)+n(n-1)*2^(n-1)
=(n^2+6*n+6)*2^(n-1)
ããã(n^2+6*n+6)*2^(n-1)éãã
p^n*q^2ãp^n*q*rã®å Žåã調ã¹ãŠã¿ãŸããããp^nãp^n*qã®å ŽåãšçãããªãäŸã¯
ã¿ã€ãããŸããã§ãããp^n*q^2ãšp^n*q*rã®çžäºéã§ãã¿ã€ãããŸããã§ããã
ãèå¯ããããšãããããŸãã
ãã®æ§ã«åŒã§è©äŸ¡ããŠããããããªãã§ããã
èªåã¯ã²ãããå¯èœãªéãã§p^a;p^b*q (p=2,q=3ã§åŠçïŒã§åãæ°å€ãçŸããéšåã
æŸãéããŠ
(a,b)=(4,2),(9,6),(18,14),(35,30),(68,62)
ãŸã§äœãšããã€ããŠã¿ãŸããã
èŠãŠãããš{a}ãš{ïœïœã¯2,3,4,5,6ã®å·®ã§çµã°ããŠããã
4=2^2,9=2^3+1,18=2^4+2,35=2^5+3,68=2^6+4
ãèŠããŠããã®ã§n=1,2,3,
a(n)=2^(n+1)+n-1
b(n)=2^(n+1)-2
ãããå
ã«å
ãæŸããš
(a,b)=(133,126),(262,254),(519,510),(1032,1022),(2057,2046),
ãšç¡éã«éãªãéšåã¯ååšããŠããããšã«ãªãã
åœåã®ç®çã¯èªç¶æ°nãçŽ å æ°å解ããæã«çŽ æ°ã«ã¯åœ±é¿ããããã®çŽ å æ°ã¿ã€ãïŒææ°éšåã§ã®åé¡)
ãããæ°å€ãšäžå¯Ÿäžã«åœãŠã¯ãããã®ã§ããããåã
åã®èª¿æ»ã§ã®
<ç©ã®åå²æ¹æ³>;<åã®å®å
šåå²æ¹æ³>
ã®ã©ã¡ãã䜿ã£ãŠããäžèšã®éè€ãèµ·ãã£ãŠããŸãã
A034776;Gozinta numbersïŒA074206ã§çŸããæ°åããœãŒãããŠäžŠã¹ããã®)
ããã«å¯ŸãIndukmuãããæ瀺ãã
0~ïœ^2-1ã®æ°åããã äžéãã ãnåã®èŠçŽ ãæã€ïŒã€ã®éåã®åã§ã§ããå¯èœæ§ãäžãã
A273013ã§ã®æ°å€ã䜿ãã°
p^4â35
p^2*qâ42ã;A034776ã§ã¯ã©ã¡ãã8ã®å€ããšãã
p^9â24310
p^6*qâ28644ãã;A034776ã§ã¯ã©ã¡ãã256ã®å€ããšãã
p^18â4537567650
p14*qâ5094808200 ;A034776ã§ã¯ã©ã¡ãã131072ã®å€ããšãã
p^35â 56093138908331422716
p^30*qâ60433201179644187664 ;A034776ã§ã¯ã©ã¡ãã17179869184ã®å€ããšãã

以äžäžã®åŒãå©çšããŠå€ãå®ãŸã£ãŠããã
ïŒãããã®èšç®ã§ã¯ã©ããªçŽ æ°p,qã§ã
p^aâbinomial(2*a,a)/2
p^b*qâ(b^2+4*b+2)*binomial(2*b.b)/2
ã䜿ããã
A273013åç
§
ãšéãªãå€ã¯åãããŠè¡ãããã¹ãŠã®çŽ å æ°å解ã§ã®ã¿ã€ãã¯
ãã®æ°å€ã§äžå¯Ÿäžã®å¯Ÿå¿ãåºæ¥ãããšã«ãªãããšæãããŸãã
ãªã
n=2ïœ1000ãŸã§ã®æ°åãåé¡ãããã®ã
nã®ä»£è¡š ;çŽ å æ°ã®ã¿ã€ã ;ææšã®å€(A277013ã§æ±ºãŸãå€)ãã
2 ;[1]~(p) ;1ã(ä»ã®çŽ æ°ããã¹ãŠ)
4 ;[2]~(p^2) ;3ã(9,25,49,ãªã©)
6 ;[1, 1]~(p*q) ;7 (10,14,15,ãªã©)
8 ;[3]~(p^3) ;10 (27,125,343,ãªã©)
16 ;[4]~(p^4) ;35
12 ;[2, 1]~(p^2*q) ;42
30 ;[1, 1, 1]~(p*q*r);115
32 ;[5]~ 以äžåæ§ ;126
24 ;[3, 1]~ ;230
36 ;[2, 2]~ ;393
64 ;[6]~ ;462
60 ;[2, 1, 1]~ ;1158
48 ;[4, 1]~ ;1190
128 ;[7]~ ;1716
72 ;[3, 2]~ ;3030
210 ;[1, 1, 1, 1]~ ;3451
96 ;[5, 1]~ ;5922
256 ;[8]~ ;6435
120 ;[3, 1, 1]~ ;9350
180 ;[2, 2, 1]~ ;16782
144 ;[4, 2]~ ;20790
192 ;[6, 1]~ ;28644
216 ;[3, 3]~ ;30670
420 ;[2, 1, 1, 1]~ ;52422
240 ;[4, 1, 1]~ ;66290
288 ;[5, 2]~ ;131796
384 ;[7, 1]~ ;135564
360 ;[3, 2, 1]~ ;180990
432 ;[4, 3]~ ;264740
900 ;[2, 2, 2]~ ;334833
480 ;[5, 1, 1]~ ;430794
840 ;[3, 1, 1, 1]~ ;583670
768 ;[8, 1]~ ;630630
576 ;[6, 2]~ ;788634
720 ;[4, 2, 1]~ ;1636740
864 ;[5, 3]~ ;2050020
960 ;[6, 1, 1]~ ;2628780
ã§åé¡ãããŠããã
p^n*qãkåã®çŽæ°ã«é åºãåºå¥ããŠåå²ããæ¹æ³ã®æ°ãb_1,b_2,b_3,âŠ,b_n,b_(n+1)ãšãããšã
äžåå²ã®å Žåã¯ãããŸã§ããªãb_1=1ã§ã
2åå²ã®å Žåã¯ãnåã®pã2ã°ã«ãŒãã«åå²ããŠqãããããã®ã°ã«ãŒãã«é
眮ããå Žåãšã
nåã®pãäžåå²ã§äž¡ç«¯ã®ããããã«qãé
眮ããå Žåãããã®ã§ã
b_2=2*C(n-1,1)+2=2*C(n,1)
3åå²ã®å Žåã¯ãnåã®pã3ã°ã«ãŒãã«åå²ããŠqãããããã®ã°ã«ãŒãã«é
眮ããå Žåãšã
nåã®pã2ã°ã«ãŒãã«åå²ããŠäž¡ç«¯ãšéã®1åã®ééã®ããããã«qãé
眮ããå Žåãããã®ã§ã
b_3=3*C(n-1,2)+3*C(n-1,1)=3*C(n,2)
âŠ
kåå²ã®å Žåã¯ãnåã®pãkã°ã«ãŒãã«åå²ããŠqãããããã®ã°ã«ãŒãã«é
眮ããå Žåãšã
nåã®pã(k-1)ã°ã«ãŒãã«åå²ããŠäž¡ç«¯ãšéã®(k-2)åã®ééã®ããããã«qãé
眮ããå Žåãããã®ã§ã
b_k=k*C(n-1,k-1)+k*C(n-1,k-2)=k*C(n,k-1)
âŠ
nåå²ã®å Žåã¯ãnåã®pãnã°ã«ãŒãã«åå²ããŠqãããããã®ã°ã«ãŒãã«é
眮ããå Žåãšã
nåã®pã(n-1)ã°ã«ãŒãã«åå²ããŠäž¡ç«¯ãšéã®(n-2)åã®ééã®ããããã«qãé
眮ããå Žåãããã®ã§ã
b_n=n*C(n-1,n-1)+n*C(n-1,n-2)=n*C(n,n-1)
(n+1)åå²ã®å Žåã¯ãnåã®pãnã°ã«ãŒãã«åå²ããŠäž¡ç«¯ãšéã®(n-1)åã®ééã®ããããã«qãé
眮ããå Žåã®ã¿ãªã®ã§ã
b_(n+1)=(n+1)*C(n-1,n-1)=(n+1)*C(n,n)
ãšãªããŸãã
p^n*qãkåã®çŽæ°ã«é åºãåºå¥ããŠåå²ããæ¹æ³ã®æ°ã¯b_1+b_2+b_3+âŠ+b_n+b_(n+1)ãªã®ã§ã
b_1+b_2+b_3+âŠ+b_n+b_(n+1)
=1+2*C(n,1)+3*C(n,2)+âŠ+k*C(n,k-1)+âŠ+n*C(n,n-1)+(n+1)*C(n,n)
=(1+C(n,1)+âŠ+C(n,n))+(C(n,1)+2*C(n,2)+âŠ+n*C(n,n))
=2^n+n*2^(n-1)=(n+2)*2^(n-1)
ãšãªããŸãã
0ïœN^2-1ã®æ°åããã äžéãã ãNåã®èŠçŽ ãæã€2ã€ã®éåã®åã§ã§ããå¯èœæ§ãäžããA273013ã§ã®æ°å€ã¯ã
b_1^2+b_2^2+âŠ+b_n^2+b_(n+1)^2+b_1*b_2+b_2*b_3+âŠ+b_(n-1)*b_n+b_n*b_(n+1)ãªã®ã§ã
N=p^n*qã®å Žåã
b_1^2+b_2^2+âŠ+b_n^2+b_(n+1)^2+b_1*b_2+b_2*b_3+âŠ+b_(n-1)*b_n+b_n*b_(n+1)
=(1/2)*[b_1^2+(b_1+b_2)^2+(b_2+b_3)^2+âŠ+(b_n+b_(n+1))^2+b_(n+1)^2]
=(1/2)*[1^2+(2*C(n,1)+1)^2+(3*C(n,2)+2*C(n,1))^2
+âŠ+(k*C(n,k-1)+(k-1)*C(n,k-2))^2+âŠ+(n*C(n,n-1)+(n-1)*C(n,n-2))^2
+((n+1)*C(n,n)+n*C(n,n-1))^2+((n+1)*C(n,n))^2]
=(1/2)*[1^2+(2*C(n,1)+C(n,0))^2+(3*C(n,2)+2*C(n,1))^2
+âŠ+(k*C(n,k-1)+(k-1)*C(n,k-2))^2
+âŠ+(n*C(n,n-1)+(n-1)*C(n,n-2))^2
+((n+1)*C(n,n)+n*C(n,n-1))^2+((n+1)*C(n,n))^2]
ã§ããã
k*C(n,k-1)+(k-1)*C(n,k-2)
=k*n!/(n-k+1)!/(k-1)!+(k-1)*n!/(n-k+2)!/(k-2)!
=k*(n-k+2)*n!/(n-k+2)!(k-1)!+(k-1)^2*n!/(n-k+2)!/(k-1)!
=(n*k+1)*n!/(n-k+2)!/(k-1)!
=(n*k+1)/(n+1)*C(n+1,k-1)
ããã
b_1^2+b_2^2+âŠ+b_n^2+b_(n+1)^2+b_1*b_2+b_2*b_3+âŠ+b_(n-1)*b_n+b_n*b_(n+1)
=(1/2)*[1^2+((2*n+1)^2+âŠ+((n*k+1)*n!/(n-k+2)!/(k-1)!)^2+âŠ+(n^2+n+1)^2+(n+1)^2)]
=(1/2)*[(n+1)/(n+1)*C(n+1,0)^2+((n*2+1)/(n+1)*C(n+1,1))^2+âŠ+((n*k+1)/(n+1)*C(n+1,k-1))^2
+((n*(k+1)+1)/(n+1)*C(n+1,k))^2+âŠ+((n^2+n+1)/(n+1)*C(n+1,n))^2+((n^2+2n+1)/(n+1)*C(n+1,n+1))^2]
ãšãªããŸãã
(1+x)^m*(1+x)^(n-m)=(1+x)^nã®x^kã®ä¿æ°ãæ¯èŒãããšã
C(m,0)*C(n-m,k)+âŠ+C(m,k)*C(n-m,0)=C(n,k)ã§ãn=2m,k=mãšãããšã
C(m,0)*C(m,m)+âŠ+C(m,m)*C(m,0)=C(m,0)^2+âŠ+C(m,m)^2=C(2m,m)
(d/dx)[(1+x)^m]*(1+x)^(n-m)=m(1+x)^(m-1)*(1+x)^(n-m)=m*(1+x)^(n-1)ã®x^kã®ä¿æ°ãæ¯èŒãããšã
C(m,1)*C(n-m,k)+2*C(m,2)*C(n-m,k-1)+âŠ+k*C(m,k)*C(n-m,1)+(k+1)*C(m,k+1)*C(n-m,0)=m*C(n-1,k)ã§ãn=2m,k=mãšãããšã
C(m,1)*C(m,m-1)+2*C(m,2)*C(m,m-2)+âŠ+(m-1)*C(m,m-1)*C(m,1)+m*C(m,m)*C(m,0)
=C(m,1)^2+âŠ+m*C(m,m)^2=m*C(2*m-1,m-1)=m*C(2m-1,m)=m*(2m-1)!/m!/(m-1)!=(m/2)*C(2m,m)
(d^2/dx^2)[(1+x)^m]*(1+x)^(n-m)=m(m-1)(1+x)^(m-2)*(1+x)^(n-m)=m(m-1)*(1+x)^(n-2)ã®x^kã®ä¿æ°ãæ¯èŒãããšã
2*C(m,2)*C(n-m,k)+3*2*C(m,3)*C(n-m,k-1)+âŠ+(k+1)*k*C(m,k+1)*C(n-m,1)+(k+2)*(k+1)*C(m,k+2)*C(n-m,0)=m(m-1)*C(n-2,k)ã§ãn=2m,k=mãšãããšã
2*C(m,2)*C(m,m-2)+3*2*C(m,3)*C(m,m-3)+âŠ+(m-1)*(m-2)*C(m,m-1)*C(m,1)+m*(m-1)*C(m,m)*C(m,0)
2*C(m,2)^2+3*2*C(m,3)^2+âŠ+m*(m-1)*C(m,m)^2
=m(m-1)*C(2m-2,m-2)=m*(m-1)*C(2m-2,m)=m*(m-1)*(2m-2)!/m!/(m-2)!=(m-1)*(2m-2)!/(m-1)!/(m-2)!
=(m-1)^2*C(2*m-2,m-1)
ããããçšãããšã
(n*(k+1)+1)^2=n^2*k^2+2*n*k+1=n^2*k(k-1)+n(3*n+2)*k+(n+1)^2
ãã
Σ_(k=0)^(n+1)[1/(n+1)^2*C(n+1,k)^2]=C(2n+2,n+1)
Σ_(k=0)^(n+1)[n(3n+2)*k/(n+1)^2*C(n+1,k)^2]=n(3n+2)/(n+1)/2*C(2n+2,n+1)
Σ_(k=0)^(n+1)[n^2*k(k-1)/(n+1)^2*C(n+1,k)^2]=n^4/(n+1)^2*C(2n,n)
ãªã®ã§ã
b_1^2+b_2^2+âŠ+b_n^2+b_(n+1)^2+b_1*b_2+b_2*b_3+âŠ+b_(n-1)*b_n+b_n*b_(n+1)
=(1/2)[C(2n+2,n+1)+n(3n+2)/(n+1)/2*C(2n+2,n+1)+n^4/(n+1)^2*C(2n,n)]
=(1/2)[((2n+2)(2n+1)+n(3n+2)(2n+1)+n^4)/(n+1)^2*C(2n,n)]
=(1/2)*(n^4+6n^3+11n^2+8n+2)/(n+1)^2*C(2n,n)
=(1/2)*(n^2+4n+2)*C(2n,n)
ãšãªããŸãã