é£ç¶ããå¹³æ¹æ°ã®åã§åæçæ°(åãããåŸããããåãæ°åãšãªããã®)ãäœãããšãèããŠã¿ãã
äŸ
9^2+10^2=181
11^2+12^2+13^2=434
6^2+7^2+8^2+9^2+10^2+11^2+12^2=595

ãªã©ãªã©æ°å€ãã®åæçæ°ãæ§æã§ããã
ããã§
ãã®åæçæ°ã®å€§ããã10000000以äžã§ãããã®ãšããæ¡ä»¶ã®ãšã
ãã®æ§ææ¹æ³ã2éãååšãããã®åæçæ°ã¯äœããããïŒ
ãŸããã®æ§ææ¹æ³ãå
·äœçã«ç€ºããŠäžããã
äœæ°ã«èª¿æ»ãããŠè¡ã£ãããçµæ§ããã°ã©ã çã«æ··ä¹±ããŠãããæã£ãããæéåã£ãŠããŸããŸããã
åãæ°ã誰ããèŠã€ããŠãããããèå³ãæ¹§ããã®ã§åºé¡ããŠã¿ãŸããã
10000000以äžã§ã¯554455ãš9343439ã®2åã§ãããã
ã10000000以äžãã
ã100000000000000以äžãã«ããŠã1åããå¢ããŸããã§ããã
9^2+10^2+âŠ+118^2 = 554455
331^2+332^2+âŠ+335^2 = 554455
102^2+103^2+âŠ+307^2 = 9343439
657^2+658^2+âŠ+677^2 = 9343439
2967^2+2968^2+âŠ+14087^2 = 923222222329
42462^2+42463^2+âŠ+42967^2 = 923222222329
(远èš)
çããâããã«ãããŸããã
https://oeis.org/A267600
æšå¹ŽããProject Eulerã®åé¡ãproblem1 ããé çªã«ããã°ã©ã ã®ç·Žç¿ã«ãšè§£ããŠããŠ
https://projecteuler.net/about
problem=125ã«Palindromic Sumsã®ããŒãã®åé¡ã«ïŒhttps://projecteuler.net/problem=125ïŒ
åœãã£ãŠããã
ããããèŠåŽããªãã3æ¥äœãããã£ãš
the sum of all the numbers less than 10^8
that are both palindromic and can be written as the sum of consecutive squares.
ã®å€ãç®åºãçãåããããããšééã£ãŠãããšã®çµæããããã
ãããèŠçŽããŠãã©ããééã£ãŠããããã©ãããŠãåããããäœæéãæ©ã¿ãšã¯ã»ã«ã«èŠã€ãã
ãã®åæçæ°ã貌ãä»ã(168åååš)ã©ãã«èŠèœãšããããã®ãæ©ãã§ããã
ãµãšéè€ããŠããããã®çåãæã¡éè€ããå€ãããã®ããã³ãã³ãã®æ©èœãå©çšãããš
ãªããš2ãæã§å°ãä»ãã§ã¯ãªããïŒ
ããã¯åãå€ã2ã€ã®äœãæ¹ãååšããŠããããšã瀺ããŠããããšã«çžåœãããã®éè€ããå€ã
ããããåé€ããããäžåºŠåèšæ°ãæ±ããã®å€ã§å°ããããã£ãšã®ããšã§æ£è§£ã®è¿äºãããã£ãã
(168åããã£ãã®ã§éè€ããŠããããšãå
šãèŠããŠããªãã£ãã)
ãã®çµéšãå
ã«åé¡ãäœãå°ããããšã§ããã
ãã以äžã®éè€ããããšã¯æããããä»ãŸã§ããã£ãæéãèãããšå
ã«é²ãåæ°ãåºãªãã£ãã
OEISã®A267600ã«ãããèŒã£ãŠãããšã¯äžã®äžèª°ãã調ã¹ãŠãããã®ã§ããã
a(4) > 10^18, if it exists
ã®ã¡ã¢ãèŠãã ãã§ããè
°ãåŒããŠããŸããŸãã
ãããçæéã§èŠåºãããããããã®æè
ã«æ¬æã§ãã