ïŒïŒŸ3ïŒïŒïŒŸ3ïŒïŒïŒŸïŒïŒïŒïŒŸïŒ
ã«ã€ããŠãä»»æã®ïœåã§ã3ä¹ã®åããèŠã€ãããŸããã
å¥ã®ïŒä¹ã®åããªãããå人ããèŠã€ããŠãããŸããã
ïŒïŒŸïŒïŒïŒïŒïŒŸïŒïŒïŒïŒïŒŸïŒïŒ203
ãã£ãšãå
¬åŒçã«èŠã€ããã°ããã®ã§ããã
No.2746ks8æ2æ¥ 15:58
a=3m^2+5mn-5n^2
b=4m^2-4mn+6n^2
c=5m^2-5mn-3n^2
d=6m^2-4mn+4n^2
ã®ãšã
a^3+b^3+c^3=d^3
ãšããäžè¬åŒãããïŒå
šè§£ã¯è¡šããªãããã§ãïŒã
(m,n)=(1,0)ã®ãšã 3^3+4^3+5^3=6^3
(m,n)=(2,1)ã®ãšã 17^3+14^3+7^3=20^3
ãšãªããŸãã
No.2747ãããã8æ2æ¥ 17:30
巊蟺ã(å
±éå æ°ãæããªã)ïŒåã®æŽæ°ã®ïŒä¹æ°ã®åã«æ¡åŒµãããšã3åã®æŽæ°ã®ïŒä¹åã6^2=216ãŸãã¯20^3=8000ã«ãªããã®ã¯ãä»ã«ãããã®ã§ãããã€ãæããŸãã
-1^3-8^3+9^3=216
3^3+4^3+5^3=216ã (巊蟺ã3åã®èªç¶æ°ã®ïŒä¹å)
-32^3-33^3+41^3=216
97^3+551^3-552^3=216
-121^3-768^3+769^3=216
-127^3-180^3+199^3=216
-179^3-216^3+251^3=216
-381^3-436^3+517^3=216
-479^3-718^3+783^3=216
521^3+1143^3-1178^3=216
-547^3-1685^3+1704^3=216
551^3+3337^3-3342^3=216
565^3+2144^3-2157^3=216
675^3+1244^3-1307^3=216
769^3+4650^3-4657^3=216
-828^3-1585^3+1657^3=216
-865^3-1119^3+1270^3=216
-865^3-1494^3+1585^3=216
-867^3-1597^3+1678^3=216
-900^3-1801^3+1873^3=216
-908^3-5581^3+5589^3=216
-911^3-1321^3+1452^3=216
-1647^3-2257^3+2518^3=216
1773^3+14363^3-14372^3=216
1890^3+3881^3-4025^3=216
2493^3+5410^3-5581^3=216
-2542^3-4091^3+4395^3=216
-2598^3-6299^3+6443^3=216
-2828^3-3297^3+3881^3=216
2983^3+4521^3-4918^3=216
3560^3+7663^3-7911^3=216
3743^3+13105^3-13206^3=216
4490^3+5175^3-6119^3=216
4897^3+23120^3-23193^3=216
-7387^3-31718^3+31851^3=216
-7695^3-11369^3+12440^3=216
8013^3+12115^3-13186^3=216
9027^3+18989^3-19646^3=216
-9577^3-23399^3+23922^3=216
10583^3+15409^3-16920^3=216
-11112^3-18715^3+19939^3=216
12973^3+14712^3-17509^3=216
13159^3+20961^3-22564^3=216
16395^3+77629^3-77872^3=216
19743^3+22825^3-26956^3=216
-19957^3-98742^3+99013^3=216
-21290^3-67243^3+67947^3=216
-23615^3-48241^3+50058^3=216
27739^3+60290^3-62187^3=216
28759^3+32558^3-38775^3=216
30813^3+74864^3-76565^3=216
31254^3+41689^3-46873^3=216
-35148^3-46873^3+52705^3=216
-35792^3-71299^3+74187^3=216
37837^3+86651^3-88992^3=216
-47328^3-49315^3+60907^3=216
-50876^3-78661^3+85197^3=216
-60213^3-74699^3+85958^3=216
-60629^3-78651^3+89186^3=216
-63281^3-92103^3+101144^3=216
-46525^3-106500^3+109381^3=216
-25439^3-109593^3+110048^3=216
-88342^3-134079^3+145807^3=216
43984^3+156887^3-158031^3=216
-45610^3-160665^3+161881^3=216
-80387^3-156790^3+163539^3=216
33311^3+164329^3-164784^3=216
64927^3+166953^3-170164^3=216
-124651^3-171341^3+190992^3=216
-30505^3-195602^3+195849^3=216
103746^3+194717^3-204077^3=216
137139^3+183637^3-206236^3=216
154333^3+190403^3-219522^3=216
-14203^3-224189^3+224208^3=216
39401^3+226999^3-227394^3=216
107715^3+229381^3-237040^3=216
-194643^3-211109^3+256028^3=216
109381^3+250350^3-257125^3=216
-165472^3-385053^3+394981^3=216
-307415^3-358369^3+421860^3=216
286513^3+378462^3-426769^3=216
-42361^3-436412^3+436545^3=216
-226666^3-487617^3+503425^3=216
-185557^3-540680^3+547869^3=216
-272665^3-541488^3+563617^3=216
-190409^3-572562^3+579497^3=216
272585^3+629631^3-646220^3=216
-600723^3-659810^3+795827^3=216
-135599^3-800457^3+801752^3=216
483908^3+769047^3-828239^3=216
-141457^3-850298^3+851601^3=216
128785^3+894480^3-895369^3=216
272029^3+898995^3-907222^3=216
-559773^3-841748^3+917285^3=216
337378^3+916521^3-931513^3=216
451881^3+998815^3-1028740^3=216
-117943^3-1115912^3+1116351^3=216
390785^3+1139719^3-1154832^3=216
737729^3+1073799^3-1179188^3=216
-862040^3-1005091^3+1183083^3=216
-885106^3-993455^3+1187343^3=216
-418889^3-1221487^3+1237692^3=216
-172619^3-1239480^3+1240595^3=216
404505^3+1402159^3-1413292^3=216
-299833^3-1433855^3+1438212^3=216
-1256803^3-1289234^3+1604163^3=216
-906011^3-1615690^3+1705563^3=216
-400093^3-1765446^3+1772269^3=216
700231^3+1745688^3-1782463^3=216
1036131^3+1775710^3-1886275^3=216
-1335296^3-1684797^3+1927685^3=216
-602957^3-1940038^3+1959261^3=216
320402^3+1988827^3-1991595^3=216
584900^3+1998153^3-2014721^3=216
318115^3+2019006^3-2021635^3=216
431687^3+2036865^3-2043308^3=216
474769^3+2037468^3-2046025^3=216
148882^3+2299595^3-2299803^3=216
-1173025^3-2208348^3+2313577^3=216
411594^3+2443061^3-2446949^3=216
-412878^3-2454511^3+2458399^3=216
1615967^3+2203140^3-2461463^3=216
845224^3+2459859^3-2492683^3=216
629830^3+2570381^3-2582925^3=216
1397665^3+2480490^3-2620369^3=216
825727^3+2626700^3-2653623^3=216
860845^3+2704227^3-2732998^3=216
1203628^3+2657723^3-2737587^3=216
1886265^3+2472631^3-2794750^3=216
2185760^3+2462631^3-2938655^3=216
1607829^3+2980211^3-3128684^3=216
867229^3+3774494^3-3789693^3=216
-585531^3-3865570^3+3870043^3=216
-2167259^3-3700512^3+3933347^3=216
-1260036^3-4072541^3+4112357^3=216
-2982769^3-3869471^3+4387746^3=216
-314917^3-4869470^3+4869909^3=216
1884752^3+4847391^3-4940567^3=216
2316655^3+4874588^3-5043111^3=216
-4030381^3-4295307^3+5250160^3=216
1731798^3+5219803^3-5282587^3=216
3170425^3+4886159^3-5295792^3=216
-3190888^3-5062983^3+5454415^3=216
4174756^3+4750085^3-5645565^3=216
3537560^3+5607381^3-6042125^3=216
-3015699^3-6077068^3+6315163^3=216
2887029^3+6275842^3-6473221^3=216
3786437^3+6545923^3-6943584^3=216
1531675^3+7117050^3-7140619^3=216
-471557^3-7454131^3+7454760^3=216
-5666025^3-6701455^3+7845256^3=216
3336672^3+7927939^3-8120251^3=216
-3889854^3-8077309^3+8367469^3=216
4134921^3+8136754^3-8478169^3=216
-1930493^3-8482875^3+8516072^3=216
2635872^3+8571463^3-8653759^3=216
3236089^3+9107663^3-9241860^3=216
-5633415^3-8802097^3+9512404^3=216
816857^3+9744472^3-9746385^3=216
-2400413^3-9928995^3+9975542^3=216
3220960^3+9963329^3-10074297^3=216
3875534^3+10112895^3-10299167^3=216
7041127^3+11266664^3-12117471^3=216
-7389901^3-11887955^3+12772398^3=216
4391454^3+13161305^3-13322297^3=216
-9192061^3-12632370^3+14082013^3=216
-1758245^3-14462547^3+14471204^3=216
3399645^3+15447403^3-15502096^3=216
-9459480^3-14887715^3+16065131^3=216
11003002^3+15120227^3-16855635^3=216
4929693^3+17077931^3-17213768^3=216
11121191^3+15715873^3-17387988^3=216
-10415820^3-17294119^3+18471535^3=216
-11188123^3-17174837^3+18630546^3=216
-3182467^3-18600368^3+18631371^3=216
12008131^3+17300540^3-19046715^3=216
-9243302^3-19545313^3+20211441^3=216
9872400^3+20833979^3-21548147^3=216
2695565^3+21936435^3-21949994^3=216
-9274213^3-23034492^3+23525101^3=216
12033943^3+23260628^3-24288207^3=216
-19466061^3-19877594^3+24787661^3=216
-4828737^3-25320887^3+25379288^3=216
-19194137^3-21965383^3+26045886^3=216
17930006^3+24432085^3-27300885^3=216
2361038^3+29548273^3-29553297^3=216
-9237993^3-29418191^3+29718764^3=216
11071689^3+31018642^3-31481881^3=216
-4817773^3-32272784^3+32308533^3=216
26453277^3+28691708^3-34796309^3=216
-18169249^3-33782648^3+35450793^3=216
21805392^3+32588779^3-35563171^3=216
4375839^3+36555142^3-36576031^3=216
-9072239^3-38275654^3+38444799^3=216
-10612063^3-39019674^3+39279583^3=216
21232607^3+43380049^3-45013326^3=216
-9498547^3-45316421^3+45455100^3=216
-23418939^3-48703237^3+50445142^3=216
32705145^3+45987506^3-50947145^3=216
-19013037^3-50817736^3+51689845^3=216
12514220^3+52686297^3-52920593^3=216
-7019517^3-55070816^3+55108805^3=216
-27790354^3-54289413^3+56615653^3=216
38395530^3+49990775^3-56622119^3=216
6417881^3+57045295^3-57072360^3=216
-39581857^3-49999688^3+57185961^3=216
21050844^3+57608587^3-58530691^3=216
15916325^3+58692579^3-59080172^3=216
23675762^3+58798195^3-60050883^3=216
9250045^3+60325131^3-60397540^3=216
43161071^3+54802201^3-62572416^3=216
44008279^3+55271153^3-63336900^3=216
-32646390^3-62326301^3+65179373^3=216
-18635465^3-65776966^3+66271833^3=216
-39757415^3-61758033^3+66823412^3=216
5176176^3+68958719^3-68968439^3=216
-36398131^3-65925741^3+69434062^3=216
37945783^3+66060476^3-69994863^3=216
-14460744^3-71315905^3+71513545^3=216
-11491084^3-72703857^3+72799417^3=216
51033161^3+70111719^3-78164174^3=216
-26263109^3-79046251^3+80001066^3=216
28454131^3+81570270^3-82708435^3=216
4356761^3+90106663^3-90110058^3=216
56779609^3+82181039^3-90372168^3=216
56000621^3+87576091^3-94626156^3=216
-13979821^3-100491075^3+100581178^3=216
-42625829^3-99416211^3+101962496^3=216
-54384565^3-100519683^3+105568312^3=216
-52095779^3-104697597^3+108831662^3=216
-68506971^3-106646405^3+115341278^3=216
-8505619^3-128220320^3+128232795^3=216
140387049^3+299533223^3-309478790^3=216
139989079^3+304309592^3-313880271^3=216
3073465^3+364099688^3-364099761^3=216
-32118201^3-380839526^3+380915657^3=216
26073361^3+394269879^3-394307884^3=216
62439690^3+417645869^3-418110557^3=216
121955818^3+426540357^3-429838069^3=216
129892934^3+430522725^3-434428517^3=216
-152866494^3-436383085^3+442548445^3=216
27755847^3+448145729^3-448181216^3=216
109692385^3+498497528^3-500261721^3=216
-45469243^3-505832885^3+505955322^3=216
133902324^3+512190901^3-515223469^3=216
No.2748H.Nakao8æ4æ¥ 07:48
7^3+14^3+17^3=8000 (巊蟺ã3åã®èªç¶æ°ã®ïŒä¹å)
33^3+96^3-97^3=8000
-54^3-79^3+87^3=8000
-89^3-487^3+488^3=8000
-109^3-379^3+382^3=8000
118^3+257^3-265^3=8000
-151^3-353^3+362^3=8000
159^3+192^3-223^3=8000
-198^3-565^3+573^3=8000
-322^3-669^3+693^3=8000
381^3+443^3-522^3=8000
-646^3-1081^3+1153^3=8000
696^3+1293^3-1357^3=8000
813^3+1683^3-1744^3=8000
831^3+13830^3-13831^3=8000
1161^3+22839^3-22840^3=8000
-1241^3-25240^3+25241^3=8000
2453^3+15296^3-15317^3=8000
-3623^3-47584^3+47591^3=8000
4133^3+12579^3-12726^3=8000
4793^3+8591^3-9062^3=8000
-5077^3-21611^3+21704^3=8000
5274^3+8993^3-9561^3=8000
7119^3+17073^3-17476^3=8000
7683^3+39429^3-39526^3=8000
10036^3+25397^3-25909^3=8000
10137^3+34886^3-35169^3=8000
-10458^3-39085^3+39333^3=8000
13054^3+25865^3-26929^3=8000
13529^3+21471^3-23130^3=8000
-16567^3-23433^3+25920^3=8000
-17123^3-29524^3+31331^3=8000
-24858^3-30013^3+34869^3=8000
27437^3+27634^3-34693^3=8000
34758^3+90659^3-92331^3=8000
-40189^3-82088^3+85181^3=8000
51087^3+92441^3-97374^3=8000
-53778^3-70531^3+79707^3=8000
56964^3+69243^3-80251^3=8000
12591^3+104409^3-104470^3=8000
-26343^3-106657^3+107190^3=8000
-86325^3-105156^3+121781^3=8000
65061^3+118086^3-124333^3=8000
56455^3+122468^3-126343^3=8000
127731^3+138120^3-167731^3=8000
18072^3+175299^3-175363^3=8000
92441^3+167343^3-176262^3=8000
110225^3+167344^3-181969^3=8000
-140533^3-148842^3+182445^3=8000
83674^3+194153^3-199201^3=8000
93813^3+218658^3-224269^3=8000
161583^3+194969^3-226566^3=8000
-124333^3-225738^3+237669^3=8000
148029^3+227715^3-246904^3=8000
-38599^3-264849^3+265122^3=8000
-203650^3-248943^3+287943^3=8000
134436^3+287661^3-297133^3=8000
-86633^3-298492^3+300905^3=8000
199272^3+285561^3-314809^3=8000
230583^3+305664^3-344311^3=8000
277402^3+316037^3-375421^3=8000
52831^3+379490^3-379831^3=8000
197266^3+436859^3-449875^3=8000
22839^3+457161^3-457180^3=8000
-371273^3-376831^3+471302^3=8000
264890^3+465459^3-492459^3=8000
-382768^3-409857^3+499905^3=8000
25241^3+505220^3-505241^3=8000
-344311^3-456468^3+514167^3=8000
80048^3+544533^3-545109^3=8000
65031^3+546297^3-546604^3=8000
287696^3+549141^3-574293^3=8000
-266674^3-595745^3+613049^3=8000
-525519^3-540754^3+671847^3=8000
-508146^3-588135^3+694271^3=8000
-536538^3-578115^3+703163^3=8000
599402^3+601389^3-756453^3=8000
578458^3+665453^3-787429^3=8000
197721^3+833654^3-837345^3=8000
-451657^3-924799^3+959398^3=8000
208527^3+979697^3-982836^3=8000
330552^3+981075^3-993427^3=8000
549827^3+936436^3-995779^3=8000
-429811^3-971898^3+999147^3=8000
175206^3+1034651^3-1036323^3=8000
829505^3+858687^3-1063812^3=8000
-858824^3-880183^3+1095671^3=8000
78124^3+1114259^3-1114387^3=8000
659886^3+1111989^3-1184605^3=8000
137864^3+1231127^3-1231703^3=8000
-898615^3-1141633^3+1303258^3=8000
1001036^3+1160647^3-1369159^3=8000
1106831^3+1147801^3-1420798^3=8000
-180807^3-1515825^3+1516682^3=8000
-740161^3-1512191^3+1569128^3=8000
1112733^3+1393866^3-1598677^3=8000
-114718^3-1730657^3+1730825^3=8000
743699^3+1852022^3-1891163^3=8000
-1404363^3-1757293^3+2016234^3=8000
-1551081^3-1720663^3+2066592^3=8000
-1281493^3-2032739^3+2190026^3=8000
106881^3+2269703^3-2269782^3=8000
-962049^3-2322888^3+2376641^3=8000
1891472^3+2140445^3-2549597^3=8000
-1901082^3-2375949^3+2727173^3=8000
819908^3+2861009^3-2883281^3=8000
-1705303^3-3088801^3+3253162^3=8000
2380017^3+2869212^3-3335281^3=8000
2517662^3+2870427^3-3408771^3=8000
341741^3+3420051^3-3421188^3=8000
-1782687^3-3578889^3+3720638^3=8000
-434099^3-3936340^3+3938099^3=8000
-2818272^3-3509685^3+4033397^3=8000
2455031^3+4023132^3-4307319^3=8000
3513170^3+4061919^3-4796919^3=8000
-3471945^3-4293304^3+4945929^3=8000
-1942153^3-4878847^3+4979350^3=8000
-1200257^3-5082751^3+5104964^3=8000
-3637819^3-4795589^3+5411012^3=8000
-3126971^3-5236285^3+5584346^3=8000
-4633638^3-4791609^3+5939201^3=8000
639209^3+7256343^3-7257996^3=8000
3402707^3+7000304^3-7258643^3=8000
-789768^3-7386885^3+7389893^3=8000
984006^3+7458993^3-7464697^3=8000
-574414^3-7483239^3+7484367^3=8000
4754328^3+6859047^3-7548775^3=8000
6037175^3+6672258^3-8026383^3=8000
4323152^3+7751973^3-8176485^3=8000
876633^3+8513664^3-8516761^3=8000
-3425887^3-8405296^3+8590879^3=8000
-1336497^3-8893744^3+8903793^3=8000
4337031^3+8614752^3-8966599^3=8000
-1477261^3-9060614^3+9073685^3=8000
5312942^3+8908325^3-9498317^3=8000
4496257^3+10015766^3-10309129^3=8000
-2930851^3-10655332^3+10728739^3=8000
-7683455^3-9848449^3+11210324^3=8000
7526609^3+10104082^3-11339113^3=8000
-2754689^3-11423938^3+11477081^3=8000
7232973^3+11022059^3-11975466^3=8000
-9594600^3-10252843^3+12516843^3=8000
-8908243^3-11138730^3+12783243^3=8000
4883254^3+12952967^3-13180303^3=8000
2591174^3+13182333^3-13215621^3=8000
5013011^3+13147430^3-13386011^3=8000
4299933^3+14249931^3-14379262^3=8000
6545997^3+14404800^3-14841997^3=8000
-10691046^3-12901111^3+14991423^3=8000
973901^3+15118491^3-15119838^3=8000
-7959759^3-14664360^3+15407759^3=8000
-12279138^3-12336523^3+15506979^3=8000
-9460357^3-14564915^3+15789482^3=8000
-7791998^3-15970021^3+16565837^3=8000
-3892975^3-17480426^3+17544551^3=8000
14032737^3+14402207^3-17915916^3=8000
14183196^3+16037097^3-19108969^3=8000
-12821797^3-17989724^3+19941413^3=8000
-11777694^3-18576681^3+20036945^3=8000
10023277^3+19170152^3-20043181^3=8000
4836282^3+20160839^3-20253183^3=8000
11129165^3+21119492^3-22103117^3=8000
9427389^3+21933972^3-22499773^3=8000
-16470141^3-19080963^3+22515932^3=8000
12495101^3+22047451^3-23311378^3=8000
-15998092^3-20772915^3+23548467^3=8000
-17284633^3-21697575^3+24868008^3=8000
-7081099^3-24843789^3+25034082^3=8000
-12336784^3-25059735^3+26019159^3=8000
-8782926^3-26735199^3+27047495^3=8000
5065141^3+30508043^3-30554512^3=8000
11604746^3+30008847^3-30576519^3=8000
7966437^3+31076571^3-31250104^3=8000
20935037^3+27951684^3-31418493^3=8000
-15579015^3-31082169^3+32335544^3=8000
-18568097^3-33631351^3+35421074^3=8000
-7867089^3-35410120^3+35539089^3=8000
19191777^3+34767879^3-36617038^3=8000
-5906643^3-39306093^3+39350504^3=8000
8383863^3+39910641^3-40033582^3=8000
4447236^3+41335877^3-41353029^3=8000
2269703^3+48207969^3-48209646^3=8000
17726483^3+49421973^3-50170734^3=8000
22836748^3+49172735^3-50762623^3=8000
-36020275^3-46608756^3+52894131^3=8000
-31306004^3-49499959^3+53364407^3=8000
-11970177^3-53483175^3+53682302^3=8000
-22499773^3-52348584^3+53698941^3=8000
24184263^3+52241850^3-53915263^3=8000
-32659974^3-50738901^3+54899165^3=8000
24845063^3+53730178^3-55445599^3=8000
-17785367^3-61053745^3+61552742^3=8000
-34001070^3-62037943^3+65270943^3=8000
39145844^3+61731177^3-66586473^3=8000
-42224776^3-66586473^3+71823657^3=8000
-44900052^3-72367323^3+77722715^3=8000
1843259^3+74021062^3-74021443^3=8000
-4102633^3-84013591^3+84016852^3=8000
3957929^3+89972503^3-89975056^3=8000
-25204644^3-91065165^3+91704269^3=8000
-41270026^3-90205423^3+92997607^3=8000
27292038^3+93622119^3-94388911^3=8000
-12190529^3-97020487^3+97084598^3=8000
-60458957^3-90884266^3+99047429^3=8000
-32936367^3-99443310^3+100633367^3=8000
-37721205^3-100437451^3+102180576^3=8000
-13886818^3-121628109^3+121688421^3=8000
-46081415^3-259863634^3+260345759^3=8000
-68057876^3-303087373^3+304226957^3=8000
-50266232^3-307911991^3+308357879^3=8000
-88694134^3-409726241^3+411106985^3=8000
126055431^3+414033657^3-417892444^3=8000
-65488116^3-420919713^3+421447457^3=8000
126339945^3+440369138^3-443808513^3=8000
23436159^3+444875841^3-444897520^3=8000
94424006^3+529136217^3-530136609^3=8000
No.2749H.Nakao8æ4æ¥ 07:49 äžå®æ¹çšåŒ
x^3+y^3+z^3=w^3
ã®èªç¶æ°è§£ã(x,y,z,w)ã§ã
gcd(x,y,z)=1, 0<x<y<z, 0<w<=123
ãæºãããã®ãæ±ããŠã¿ããšã以äžã®ããã«ãªããŸãã
3^3+4^3+5^3=6^3
1^3+6^3+8^3=9^3
3^3+10^3+18^3=19^3
7^3+14^3+17^3=20^3
4^3+17^3+22^3=25^3
18^3+19^3+21^3=28^3
11^3+15^3+27^3=29^3
2^3+17^3+40^3=6^3+32^3+33^3=41^3
16^3+23^3+41^3=44^3
3^3+36^3+37^3=7^3+30^3+37^3=46^3
29^3+34^3+44^3=53^3
12^3+19^3+53^3=54^3
15^3+42^3+49^3=58^3
22^3+51^3+54^3=67^3
36^3+38^3+61^3=69^3
7^3+54^3+57^3=70^3
4^3+39^3+65^3=72^3
38^3+43^3+66^3=75^3
31^3+33^3+72^3=76^3
25^3+48^3+74^3=81^3
19^3+60^3+69^3=82^3
28^3+53^3+75^3=84^3
50^3+61^3+64^3=95^3
20^3+54^3+79^3=26^3+55^3+78^3=38^3+48^3+79^3=87^3
21^3+43^3+84^3=17^3+40^3+86^3=89^3
25^3+38^3+87^3=58^3+59^3+69^3=90^3
32^3+54^3+85^3=93^3
19^3+53^3+90^3=96^3
45^3+69^3+79^3=97^3
12^3+31^3+102^3=103^3
33^3+70^3+92^3=105^3
13^3+51^3+104^3=15^3+82^3+89^3=108^3
29^3+75^3+96^3=110^3
50^3+74^3+97^3=113^3
3^3+34^3+114^3=115^3
23^3+86^3+97^3=116^3
9^3+55^3+116^3=120^3
49^3+84^3+102^3=121^3
19^3+92^3+101^3=122^3
No.2750H.Nakao8æ6æ¥ 15:23 以äžã®4ã€ãè¶³ããªããšæããŸãã
14^3+23^3+70^3=71^3
25^3+31^3+86^3=88^3
16^3+47^3+108^3=111^3
44^3+51^3+118^3=123^3
以äžã®4ã€ã«æã¡ééãïŒãããã1æåäžè¶³ã1æåéãïŒããããŸãã
7^3+30^3+37^3=46^3 â 27^3+30^3+37^3=46^3
4^3+39^3+65^3=72^3 â 34^3+39^3+65^3=72^3
50^3+61^3+64^3=95^3 â 50^3+61^3+64^3=85^3
21^3+43^3+84^3=89^3 â 21^3+43^3+84^3=88^3
No.2751ãããã8æ7æ¥ 00:36
ããããæ°æç€ºã®é¢ä¿åŒ
m,nããã©ã¡ãŒã¿ãšããŠ
A(m,n)=3*m^2+5*m*n-5*n^2
B(m,n)=4*m^2-4*m*n+6*n^2
C(m,n)=5*m^2-5*m*n-3*n^2
D(m,n)=6*m^2-4*m*n+4*n^2
ã§å®çŸ©ããã°
gp > A(m,n)^3+B(m,n)^3+C(m,n)^3
%129 = 216*m^6 - 432*n*m^5 + 720*n^2*m^4 - 640*n^3*m^3 + 480*n^4*m^2 - 192*n^5*m + 64*n^6
gp > D(m,n)^3
%130 = 216*m^6 - 432*n*m^5 + 720*n^2*m^4 - 640*n^3*m^3 + 480*n^4*m^2 - 192*n^5*m + 64*n^6
ã§èŠäº
A(m,n)^3+B(m,n)^3+C(m,n)^3=D(m,n)^3
ãæç«ããã
ã©ããªèãã§ãããªåŒãçãŸããã®ãæ³åãã§ããªãã仿µè¡ãã®AIã«2ãã©ã¡ãŒã¿è§£ãããããå°ãããš
A(m,n)=3*m^2-5*m*n-5*n^2
B(m,n)=4*m^2-4*m*n+6*n^2
C(m,n)=5*m^2+5*m*n-3*n^2
D(m,n)=6*m^2-4*m*n+4*n^2
ãªããã®ãè¿ããŠãããïŒEuler åãªã©ã®åç§°ãä»ããŠããã)
ããããããã®æç€ºã®åŒãšãã£ããã§ãã2ãæã®ç¬Šå·ãç°ãªã£ãŠããŸãã
ããã§åãã§ããã§èšç®ãããŠãããåããªãã®ã§ãã
ã»ãã®å
ããªéããæ±ºå®çã«å
šäœã«åœ±é¿ãäžããããšã«æ¹ããŠå
ã®åŒã粟å¯ã«çµã¿ç«ãŠãããŠããããšã«é©ããŸãã
ããã«Nakaoæ°ããããããªå
·äœççåŒãäœãå ±åãããŠããã®ãèŠãŠããã¹ãŠã®æç«ããçåŒã¯brute forceã§ãã
æ±ãŸããªãã®ããšæã£ãŠããŸããŸãã
ãããã®çµæãå©çšããŠOEISã«æ€çŽ¢ãæããŠè²ã
調ã¹ãŠã¿ãçµææ¬¡ã®ãããªãã©ã¡ãŒã¿è§£ã1826幎(äœã𿱿žæä»£ïŒ
ç®é¡ã§å¥çŽããŠãã人ç©(Shiraishi Chochu)ãããããšãå€åœäººã®ç ç©¶è
ãšYoshio Mikamiã®å
±èã§1914幎
A HISTOTY of JAPANESE MATHEMATICS ã®èåã§åºçãããŠãããšããã
æ°ããçåŒã®äžã«
P(n)=3*n^2
Q1(n)=6*n^2-3*n+1
Q2(n)=6*n^2+3*n+1
R1(n)=9*n^3-6*n^2+3*n-1
R2(n)=9*n^3+6*n^2+3*n
S1(n)=R1(n)+1
S2(n)=R2(n)+1
ã§å®çŸ©ããŠããã°
P(n)^3+Q1(n)^3+R1(n)^3
%138 = 729*n^9 - 1458*n^8 + 1701*n^7 - 1188*n^6 + 567*n^5 - 162*n^4 + 27*n^3
gp > S1(n)^3
%139 = 729*n^9 - 1458*n^8 + 1701*n^7 - 1188*n^6 + 567*n^5 - 162*n^4 + 27*n^3
ãŸãã¯
P(n)^3+Q2(n)^3+R2(n)^3
%140 = 729*n^9 + 1458*n^8 + 1701*n^7 + 1431*n^6 + 891*n^5 + 432*n^4 + 162*n^3 + 45*n^2 + 9*n + 1
S2(n)^3
%141 = 729*n^9 + 1458*n^8 + 1701*n^7 + 1431*n^6 + 891*n^5 + 432*n^4 + 162*n^3 + 45*n^2 + 9*n + 1
ãšãªã
P(n)^3+Q1(n)^3+R1(n)^3=S1(n)
P(n)^3+Q2(n)^3+R2(n)^3=S2(n)
ã®çåŒãæç«ããããšã«ãªãã
ããããã
3^3+4^3+5^3=6^3
3^3+10^3+18^3=19^3
12^3+19^3+53^3=54^3
12^3+31^3+102^3=103^3
27^3+46^3+197^3=198^3
27^3+64^3+306^3=307^3
48^3+85^3+491^3=492^3
48^3+109^3+684^3=685^3
--------------------
--------------------
ãªã©ã®çåŒãå°ããã
ããïœæ¥æ¬äººãæšãŠããããããªããïŒïŒ(A226903åç
§)
No.2752GAI8æ7æ¥ 18:13
aãšbããäºãã«çŽ ã®ãšãã
an+bã®åœ¢ã®çŽ æ°ã¯ãç¡éã«ååšããã(ãã£ãªã¯ã¬)ã¯ã蚌æãé£ãããšæããŸããã
éšåçã«éå®ãããäŸãã°ã5n+1,5n+2,5n+3,5n+4ã®ãããããã®åœ¢ã®ãçŽ æ°ã¯ãç¡éã«ååšãããã«ã€ããŠã蚌æã¯ã©ãã§ããããïŒ
No.2740ks7æ2æ¥ 21:44
ããæ¬ã«ã6n+5ã®çŽ æ°ããç¡éã«ãååšããã蚌æããèŒã£ãŠãŸããã
6n+1ã®ãçŽ æ°ããç¡éã«ååšãããäºå®ã¯ãç¥ãããŠããŸããã蚌æã¯ãé£ããã§ããïŒ
No.2743ks7æ11æ¥ 12:47
6n+1åã®çŽ æ°ãæéå(må)ãšä»®å®ããp[1]ïœp[m]ãšããã
a=6p[1]p[2]âŠp[m], b=a^3+1ãšãããš
bã¯2,3,6n+1åã®çŽ æ°ã§å²ãåããªãã®ã§bã®çŽ å æ°ã¯6n+5åã®ã¿ã
bã®çŽ å æ°ã®äžã€ãq=6k+5ãšãããšbâ¡0(mod q)ãªã®ã§a^3â¡-1 (mod q)
ãã£ãŠa^(6k+3)â¡(a^3)^(2k+1)â¡-1 (mod q)
äžæ¹ããã§ã«ããŒã®å°å®çããa^(q-1)=a^(6k+4)â¡1 (mod q)ãªã®ã§
aâ¡-1 (mod q)
ã€ãŸãa^3+1ã®çŽ å æ°ã¯ãã¹ãŠa+1ã®çŽ å æ°ã§ããããšã«ãªããã
b=a^3+1=(a+1)(a^2-a+1)ã§a^2-a+1ã®çŽ å æ°ãa+1ã®çŽ å æ°ãšãªãççŸã
ïŒâµa+1ãša^2-a+1ã¯äºãã«çŽ ïŒ
åŸã£ãŠ6n+1åã®çŽ æ°ã¯ç¡éåã
# ããäžèšã®èšŒæã«èª€ãããããŸããããææäžããã
No.2744ãããã7æ17æ¥ 14:24
ããããããããã€ããæé£ãããããŸãã
蚌æãã詊ã¿ãŸããããåäžè¶³ã§ãã
No.2745ks7æ26æ¥ 05:50
以äžãå
šãŠã®æåã¯æ£ã§ãããšããŸãã
(1)
a^2 + b^2 â§ 2ab ã§ããããšãïŒå·ŠèŸºããå³èŸºãåŒãæ¹æ³ã§ïŒèšŒæããŠãã ããã
(2-1)
ååã®çµæãå©çšããŠã(a/b)(a/c) â§ 2(a/c) - (b/c) ã§ããããšã蚌æããŠãã ããã
(2-2)
ååã®çµæãå©çšããŠã(a^3+b^3)/(abc) â§ (a/c) + (b/c) ã§ããããšã蚌æããŠãã ããã
(2-3)
ååã®çµæã®ãå³èŸºã®åæ¯ãcã§ã¯ãªãaãbã§ãããã®ãåæ§ã«äœããããã3ã€ãè¶³ãåãããããšã§ããã®é¢ä¿åŒãã®3倿°ã®å Žåã蚌æããŠãã ããã
(3-1)
ååã®çµæãå©çšããŠã(a/b)(a/c)(a/d) â§ 3(a/d) - (b/d) - (c/d) ã§ããããšã蚌æããŠãã ããã
(3-2)
ååã®çµæãå©çšããŠã(a^4+b^4+c^4)/(abcd) â§ (a/d) + (b/d) + (c/d) ã§ããããšã蚌æããŠãã ããã
(3-3)
ååã®çµæã®ãå³èŸºã®åæ¯ãdã§ã¯ãªãaãbãcã§ãããã®ãåæ§ã«äœããããã4ã€ãè¶³ãåãããããšã§ããã®é¢ä¿åŒãã®4倿°ã®å Žåã蚌æããŠãã ããã
(4以é)
åæ§ã«ãã奜ããªãšãããŸã§ã©ããã
ãããã¯æ°åŠçåž°çŽæ³ã§2以äžã®ä»»æã®nãŸã§ã©ããã
ãã£ãšæ€çŽ¢ããæããåæ§ã®æ¹æ³ã§èšŒæããäŸã¯èŠåœãããŸããã§ããã
å
è¡äŸã¯ããã§ããããïŒ
No.2741DD++7æ4æ¥ 23:39
æ°æ¥çµã¡ãŸãããã§ãè§£çãã
ããã®é¢ä¿åŒããšã¯çžå å¹³åãšçžä¹å¹³åã®å€§å°é¢ä¿ã§ããã
(1)
巊蟺 - å³èŸº = (a^2+b^2) - 2ab = (a-b)^2 â§ 0
(2-1)
(1) ã®çµæã§ãa^2 ã (a/b)(a/c) ã«ãb^2 ã (b/c) ã«æžãæãããšã
(a/b)(a/c)*(b/c) = (a/c)^2 ãšãªãããšããã
(a/b)(a/c) + (b/c) â§ 2(a/c)
ããªãã¡
(a/b)(a/c) â§ 2(a/c) - (b/c)
(2-2)
(2-1) ã®çµæã§aãšbãå
¥ãæ¿ãããã®ã䞊ã¹ããš
(a/b)(a/c) â§ 2(a/c) - (b/c)
(b/a)(b/c) â§ 2(b/c) - (a/c)
ãããã®äž¡èŸºãè¶³ããš
(a^3+b^3)/(abc) â§ (a/c) + (b/c)
(2-3)
(2-2) ã®çµæã§æåããµã€ã¯ãªãã¯ãå
¥ãæ¿ããŠ
(a^3+b^3)/(abc) â§ (a/c) + (b/c)
(b^3+c^3)/(abc) â§ (b/a) + (c/a)
(c^3+a^3)/(abc) â§ (c/b) + (a/b)
ããããå
šãŠå ããŠ
2*(a^3+b^3+c^3)/(abc) â§ (a/b+b/a) + (b/c+c/b) + (c/a+a/c)
å³èŸºã¯ (1) ã®é¢ä¿åŒã䜿ãã°
(a/b+b/a) + (b/c+c/b) + (c/a+a/c) â§ 2 + 2 + 2 = 6
ãšãªãã®ã§ã
2*(a^3+b^3+c^3)/(abc) â§ 6
ããªãã¡
a^3+b^3+c^3 â§ 3abc
(3) ãåæ§ã
ä»»æã®nåã®å€æ°ã«å¯Ÿãã蚌æã¯ãåæ¹åã«é²ãåž°çŽæ³ããè§£ææ¹é¢ã®ç¥èãé Œããã倧äœãã®ã©ã¡ããã§ãã
çŽç²ãªååæŒç®ãšçޝä¹ã ãã§1ã€ãã€åé²ããåž°çŽæ³ã¯æžããªããããªã®ïŒãšé·å¹Žæã£ãŠããŸãããããµãšè§£æ±ºããã®ã§æçš¿ããæ¬¡ç¬¬ã§ããã
ç°¡åã«æãã€ããã®ã§ãããšèšããããšãããŒãšãããããŸãâŠâŠãã
No.2742DD++7æ9æ¥ 07:09
2ÃïŒã®æ Œåã«ã1ïŒ2ïŒ3ïŒ4ãé
眮ããåºå®ããŸããïŒïŒïŒïŒïŒéã
ïŒããïŒãŸã§ãé£å士ã®ãšãããªãã£ãŠããããšãã§ããã®ã¯ãïŒéãã
ïŒâïŒ
ããâ
ïŒâïŒ
ïŒÃïŒã®å Žå ïŒïœïŒãŸã§é
眮ãåæ§ã«èãããš
ïŒã€ã®ãã¿ãŒã³ããããå
šéšã§ïŒÃïŒéã
ã§ããããïŒ
No.2734ks6æ21æ¥ 09:55
1ãå·Šäžé
ã®ãã¿ãŒã³ã8éãã1ãäžå€®ã®ãã¿ãŒã³ã8éããªã®ã§
8Ã4+8=40éãã ãšæããŸãã
(åè: oeis.org/A096969)
No.2735ãããã6æ21æ¥ 18:53
管ç人ããã«ããèšäºãåºæ¬ã®äœå³ã( http://shochandas.xsrv.jp/figure/construction.htm ) ãããäžèšãåŒçšããããŸããæ·»ä»ã®å³ã¯åãããŒãžããã®ã¹ã¯ãªãŒã³ã·ã§ããã§ãã
ãåŒçšã
宿šãšã³ã³ãã¹ãçšããŠãçŽç·å€ã®1ç¹ããçŽç·ã«å¹³è¡ãªçŽç·ãäœå³ããããšã¯æããã
ããã§ã¯ã宿šã®ã¿ã䜿ã£ãŠãå¹³è¡ç· l ãšmãäžãããããšããçŽç·å€ã®1ç¹PããçŽç·ã«å¹³è¡ãªçŽç·ãäœå³ããæ¹æ³ãèããã
ãåŒçšçµããã
P ãå¹³è¡ç·ã«æãŸããŠããªãé åã«çœ®ãããŠããå Žåã®äœå³æ¹æ³ãåèšäºã«è©³ãã説æããŠãããŸãããã§ã¯ãå¹³è¡ç·ã«ã¯ããŸããŠããé åã®ãšãã«ã¯ã©ããããããã®ã§ããããïŒ
ãã®ä»¶ã«ã€ããŠäžå®ã®è§£æ±ºæ¹æ³ãèŠããã€ããã«ãªããŸããã®ã§ä»¥äžã«ç®é¡ãšããŠãæ¡å
ããããŸãã
ãç®é¡ã
å¹³è¡ç· j ãš k ãšããäžããããŠããŸãã
ãŸãããããã«ã¯ããŸããé åå
ã«ãç¹ O ãäžããããŠããŸãã
ã³ã³ãã¹ã䜿ããã«å®æšã®ã¿ã§ãç¹ O ãéã çŽç· j ã«å¹³è¡ãªçŽç· h ãäœå³ããŠãã ããã
â»ç§ã®ã¢ã€ãã¢ã§ã¯ãO ãš j ãšã®éã®è·é¢ãšãO ãš k ãšã®éã®è·é¢ãšãçãããšãäœå³ã«ã²ãšæéäœèšã«ããã£ãŠããŸããŸãããã£ãšè¯ãã¢ã€ãã¢ãããã®ã§ã¯ãšæåŸ
ããŠããŸããŸãããŸããäœå³ãããŸãããããšã瀺ãããã®è£é¡ã®èšŒæãããã¯ãã«è§£æã䜿ã£ããŽãªãŽãªèšç®ã«ãããã®ã§ããŠããšã¬ã¬ã³ãã§ã¯ãããŸããã§ãããããããããæ¬è³ªãã€ããŠããªãå¯èœæ§ããããŸãã
çæ§ããå¯ããããçŽ æŽãããäœå³ãæåŸ
ããŠãããŸãã
âââ æ·»ä»ã¯ãå¹³è¡ç·ã®å€ã«æäžã®ç¹ãããåé¡ã®ã¹ã¯ãªãŒã³ã·ã§ããã§ãã
![]()
No.2728Dengan kesaktian Indukmu6æ11æ¥ 22:46
å€ã«ããå Žåãšå
šãåãæ¹æ³ã䜿ããããã«æãã®ã§ãããäœããã¡ãªçç±ããããã§ããã£ãïŒ
No.2729DD++6æ12æ¥ 09:57
ããã DD++ ããã
ç§ã®ããŒã³ãããã§ãããâŠâŠ
å€ã«ããå Žåã«ã¯ãã»ãŒïŒåã®ææ°ãããããšã°ããæã蟌ãã§ããŸããã
ä»ã¯åºå
ã§ãã®ã§ãããšã§ç¢ºèªããŸãã
No.2730Dengan kesaktian Indukmu6æ12æ¥ 12:15
DD++ãããããææé ããä»¶ã¯ãåäžè¶³ã®ããç§ã«ã¯ãŸã ãŸã çžåœã«æéããããããã§ããããããã¡ãã®æ¹ãæ¬ç·ã§æ¬è³ªãã€ããŠããããšã¯ééããªãããšãšæããŸãã
ãŸãã¯æ©ãã«çæªãªææ¡ããäœå³æ¹æ³ã®ã¿ããæ«é²ããããšãšããããŸããæ·»ä»ã®å³ãã芧ãã ããã
â å¹³è¡ç· j, k ã«ã¯ããŸããç¹ O ãäžããããŸããO ã¯ãj ã®æ¹ã«ããè¿ããã®ãšããŸãã
â¡ O ãéãç·å AT, BS ãäœå³ããŸãã
⢠çŽç· AS, BT ã®äº€ç¹ã Q ãšããŸãã
⣠Q ããçŽç· CU ãåŒããŸãã C 㯠j ãšã®äº€ç¹ãU 㯠k ãšã®äº€ç¹ãšããŸããj äžã§ A,B,C ã¯ãã®é ã«äžŠã¶ãã®ãšããŸãã
†ç·å BU ãšç·å CT ãšã®äº€ç¹ã P ãšããŸãã
⥠çŽç· OP ã«ååãã€ã㊠h ãšããŸããh ã¯ãJ ãšå¹³è¡ãšãªããŸãã
( ä»åã¯äœå³ã®ã¿ã®ãæ¡å
ã§ã )
â» O ã j, k ã®ã©çãäžã«ããå Žåã«ã¯ãQ ã®äœå³ããã§ããŸãããç¡éé ã«ãªããŸããããããã®äœå³ã®æ¬ ç¹ã§ããåé¿çãšããŠãO ãšã¯å¥ã® O' ã j, k ã®éã®é åãããããã©çãäžã§ãªãããã«ãããŒã§é
眮ããO' ãééãã j ã«å¹³è¡ãªçŽç· j' ããã£ããäœå³ããŸãã
j' ãš k ãšã®çµã¿ãªãã°ãO ãééããå¹³è¡ç·ãåŒããŸãããïŒåã®æé ãããããŸãã
仿¥ã¯ãããŸã§ãšãããŠãã ããã
![]()
No.2731Dengan kesaktian Indukmu6æ12æ¥ 22:00
ã©ãã§ãè¯ãæ
å ±ã§ãããããã»ã©ã®æ·»ä»ã®å³ã¯ãçæAI ã«äœããã HTLMã«è¡šç€ºããããã®ã§ããcanvasèŠçŽ ãš JavaScript ããã³ã«ãåããŠèŠãæç»ã®ããã®ã©ã€ãã©ãªã䜿ã£ãŠããããã§ãã
Gemini ã«ããããªã®ã®å³ãäœãããšæç€ºãåºããŸãããããããªã®ãã¯ä»¥äžã®è±æã§ããçæAIã«çè§£ã§ããããã«è±æãæžãã»ãããæ®éã«ããŒã«ã§äœå³
ãããããæéããããããšè«ãåãã§ãã
Let two parallel lines j and k be given. Consider a point Q located on the same side of both lines, such that line j is closer to Q than line k.
From point Q, draw three distinct lines a, b, and c, each intersecting both j and k, in such a way that each line intersects j before it intersects k as we move away from Q.
Specifically, let line a intersect j at point A and k at point S; line b intersect j at point B and k at point T; and line c intersect j at point C and k at point U.
Assume that the points A, B, and C appear in this order along line j, as we move along j in a fixed direction.
Let O be the point of intersection of segments AT and BS, and let P be the point of intersection of segments BU and CT.
Define line h as the line passing through points and P.
No.2732Dengan kesaktian Indukmu6æ12æ¥ 22:09
j ãš k ãšããã¯ãªããå®ã¯å¹³è¡ã§ã¯ãªãã£ããšããŸããåãäœå³ããããš
j, k, h ã¯ïŒç¹ã§äº€ããããã§ã (å
±ç¹)
No.2733Dengan kesaktian Indukmu6æ14æ¥ 17:11
> DD++ãããããããããŠããã®ã¯ãã®è§£æ±ºã«åèã«ãªãããšã¯äžå衚ã«ã¯åºããŠã¯ãããªããã®ã ãšãã
ãèãããæã¡ã ãããªã®ã§ããïŒ
ãããã£ãŠãªã©ããŸããã
ãããããŸã§ããªãããã®å Žã§ã¯çµ¶å¯Ÿã«æãããªã倿ãããŸããã®ã§ã
åé¡çªå·ãšçããã»ããã§èŒããã®ã¯ããã¹ããªå°èª¬ã®ç¯äººããã¿ãã¬ããã®ãšåãã§ãã
ãã¡ãªã®ã¯åœããåã§ãããã
ãŸããŠProject Eulerã¯ãæè²ã®ãããªãè§£æ³ïŒçŽæ¥ã®çãã§ã¯ãªãïŒããã¿ãã¬ããŠããåé¡ãããã¿ãã¬å³çŠãªåé¡ããå³å¯ã«åºåããŠãå©çšäžã®æ³šæãšããŠæèšããŠããŸãã
éå¶ã®ãã®æåãå°éã§ããªããªãGAIããã¯Project Eulerãå©çšãã¹ãã§ã¯ãªããšæããŸãã
No.2724DD++6æ7æ¥ 23:17
æ¹ããŠProject Euler.netã®aboutéšåã®é·ãè±æã§æžããããã®ãæ¥æ¬èªã«ç¿»èš³ãããäžã§èªãã§ã¿ãŸããã
ïŒéåžžé»å補åçã®åæ±ãèª¬ææžãªã©æ¥æ¬èªã§æžãããŠããå Žåã§ããé
ã
ãŸã§èªãããšãªã©ã»ãšãã©ãªã
ãŸããŠãè±æã§æžãããŠããã°å°æŽã®ç¿æ
£ããå
šãç®ã«ãçããŸããã§ããã)
確ãã«æåã®100é¡ã¯ãããã®åé¡ãšãã®è§£æ±ºçãä»ã®å Žæã§è°è«ããããšãèš±å¯ããŸãã
ã®å
容ã瀺ããŠãããŸããã
ãšèšãããšã¯101ããã¯ä»ã§ã¯è°è«ãããªãšãªããããªã®ãã
ãã®ç®çãDD++ããã¯æšçå°èª¬ã«ãªã©ãããŠè§£èª¬ãããŠããã®ã§ãç§ããã®çã§èª¬æããŸããš
ç¯äººã¯èª°ãªã®ãïŒ
å®ã¯å°èª¬ãæåŸãŸã§èªãã°ãèªããšå€æããããŸããããæåŸãŸã§èªãã§ã¿ãã匷ãåæ©ãšããªããŸãã
ãšãããæ°åŠçåé¡ïŒç¹ã«101çªä»¥éãªã©ïŒã§ã¯ãéäžãŸã§ã¯ãã®ãã®è¶³ãäžæ©ãã€åã«èžã¿åºããŠè¡ãã°
ããå°ç¹ãŸã§ã¯èŸ¿ãçããã®ã§ãããåŠäœããäžæ©ãåã«é²ããªããªãããšããã°ãã°çºçããã®ã§ãã
ãããšãµã€ããããããæ€çŽ¢ãã ãããããããã¯AIãé Œãã«è³ªåãããã峿žé€šã«æ¬ãåãã«è¡ã£ãã
ä»äººæ§ã®ãç¥æµãå©çšã§ããªãããšããããŸãã
èããŠã¿ããšèªåç¬èªã§äœãçºèŠã§ããŠããããšæããšæ®ãã©ã®äºé
ãå
人ã®ç¥æµãéå
·ã«é Œã£ãŠãã
ããšã«æ¹ããŠæ°ä»ããããŸãã
äžé±éèãäœæ¥ãåé¡ã®Answeræ¬ã«èªåãªãã®çããå
¥åããŠãÃã®å€å®ãäœåºŠãåãããããªããšå¿ãæã
ãã©ã¹ãã¬ãŒã·ã§ã³ãæºãŸãã°ããã®ç¶æ
ãç¶ããŸãã
éã«æ£è§£ãåŸããšãããã解決ããäžçäžã®äººãã¡ããã®ã¢ã€ãã¢ãæ¹æ³è«ãåèã«èŠããä»çµã¿ããããŠããŠ
èŠåŽããåŸã«ã¯ãªããŠçŽ æŽãããæ¹æ³ãé ããŠãããã ãšããããã°ã©ã ã®ä»æ¹ãèšèªã«ãããããéãããã ãšã
ã»ããšã«å¿ã«æã¿ããããŸãã
ãšãããæã
ãã®åé¡ã«éåžžã«é¢é£ããæ
å ±ãå€ãå«ãŸãããµã€ãã«åºäŒãããšãèµ·ããã®ã§ãã
äŸã®OEISã«ããããç»å ŽããŠããããšããã°ãã°ãªã®ã§ãã
ãããã¯DD++ããã«ã¯ä¿¡ããããªãããç¥ããŸããããååé¡ã®æ£è§£ã ããèŒããŠãã人ãããã®ã§ãã
Euler é²è¡è»ã®æ¹ã«ã¯ãç®ããããã®ã§ããããäœåŠã«ãããã解決ããæ
å ±ããªããæãè¶³ãã§ãªããŸãŸã§ã¯
è£ã«æœãã§ãããã€ã¢ã¢ã³ãã®èŒããèŠãããšãå¶ããŸããã
ãããªæã人ã®å£ã«ã¯æžãç«ãŠããã¬ãšã¯ããèšã£ããã®ã§ãç§ã®ãããªè
ã«ã¯ãããªæ
å ±ã¯ãšãŠãæé£ãã®ã§ãã
ç§ãç¬åã§äœæ¥ããããŠèãç¶ãèªåã®åã§ããéãããã®ã§ããã§ãéçããããŸãã
ãããšã¯ç¥ããããã®å Žã§è²ã
質åããŠããããšããè©«ã³ããŸãã
No.2725GAI6æ10æ¥ 08:45
ãŸããããããæåããPEã®è§£çãæ±ããŠãã人ããæ¥ãªããããªå Žæã§è©±ãã®ã§ããã°ãããçšåºŠãããåŸãªã話ãªã®ããªãšãæããŸãã
ãã¹ããªã®ç¯äººã«ã€ããŠã®è©±ã§ãããã¹ããªã®ãã¿ãã¬ãããã§æ¥œããå Žæããšåæã§ãã€ããã»ã©æããå
¥ããäžã§ãªãããŸãèš±ãããã ãããªãšã
ã§ããããã¯æ°åŠå
šè¬ãæ±ãå Žæã§ãã
ãã ãéä¹ã®æ°ã®äžŠã³ã«æ³åæ§ã£ãŠããã®ããªïŒããšæ°ã«ãªã£ãã ãã®äººãæ¥ãå Žæã§ãã
ããã«è§£çãæžãã®ã¯ãæ¬å±ããã§ãäœãé¢çœãæ¬ãªãããªããšæã£ãŠãã ãã®äººã«ãããªããã¿ãã¬ãããããªãã®ã§ã¯ãªãã§ããïŒ
ãšããããå®éã«ç§ã¯160ã¯æªææŠãšãããåé¡èªãã§ãããŸããã§ããã
ããŸããŸ160ã®ãã¿ãã¬ã ãšèšãããåã«èªåã§è§£ããã®ã§ç§ã¯ããããã»ãŒãã§ããããç§ä»¥å€ã®äººïŒäŸãã°ãèšäºãèªã¿ã«æ¥ãã ãã®äººãšãïŒã«ã¯ãã¿ãã¬è¢«å®³ãåããæ¹ããããããããŸããã
ããã«éããŠã159ã«é¢ããŠã¯ãç§ã¯çªç¶ãã¿ãã¬ã®URLã ãæŒãã€ããããŸããã
ããç§ãæ¬æãå
ãŸã§èªãŸãã«OEISã®URLãéããŠããã100%èªåæ£è§£ã®æš©å©ãGAIããã«ãã£ãŠåæã«å¥å¥ªããããšããã§ããã
ãŸã åé¡ããèªãã§ããªã段éã§ã§ããã
ããã¯èš±ããŸãããã¯ã£ãããšæããèŠããŸãã
ã¢ã¯ã»ã¹ããããã°å¯èœã§ããããšãšãã¢ã¯ã»ã¹ããããšæã£ãŠããªã人ã®ç®ã«ãŸã§å
¥ããããããšã¯å
šãéããšããã®ãçè§£ããŠãã ããã
ãããããé¡ãããŸãã
âŠâŠèªæã蟌ããŠã
No.2726DD++6æ10æ¥ 12:00
èšæ£ã
æŒãä»ããããã®ã¯URLãããªããŠOEISã®çªå·ã ãã§ãããã倱瀌ããŸããã
ææã¯éãããšæããŸãã®ã§âŠâŠã
No.2727DD++6æ10æ¥ 12:05
æ¥éã«å€§ãããªãæ°ã®ä»£è¡šãšããŠéä¹ã®æ°ãããç»å Žããã
8! = 40320
9! = 362880
10! = 3628800
11! = 39916800
12! = 479001600
13! = 6227020800
14! = 87178291200
15! = 1307674368000
16! = 20922789888000
17! = 355687428096000
18! = 6402373705728000
19! = 121645100408832000
20! = 2432902008176640000
ã®æ§ã«5!以éã¯æåŸã«ã¯0ãããã€ã䞊ãã§ããŸããã®ãšãªã£ãŠããã
ããã§æåŸã«äžŠã¶0ãåãé€ãã°
14!->871782912 ã®9åã®æ°åã䞊ã³
15!->1307674368ã®10åã®æ°ã䞊ã¶
ããã§ãã®å
äžè¬ã«n!ã«ãããŠæåŸã«äžŠã¶0ã¯çããŠãã®æåã«äžŠã¶ããšã«æã10åã®äžŠã³ãF(n)ã§è¡šãããšã«ãããš
F(16)=0922789888=>922789888
F(17)=5687428096
F(18)=2373705728
F(19)=5100408832
F(20)=200817664
ãªããã®ãšèšå·ãå®çŸ©ããŠããã
ãããäŸãæå
ã«ã³ã³ãã¥ãŒã¿ãããã«ããŠã
F(100000000)
F(10^9)
F(10^10)
蟺ãããéåžžã®ã¡ã¢ãªãŒã®æèŒã§ã¯ããåãä»ããªããªã£ãŠæ¥ããããã®èšç®ãæ³å以äžã«æéããããã
æã§n!ã®å€ã¯ãã®å
ããã£ãšç¶ããå®çŸ©ã¯ã¡ãããšãããŠããã®ã§ããã®åŸæ¥ã®æ¢ãæ¹ã«é Œããªãæ¹æ³ã
ç·šã¿åºããæ¬¡ã®éä¹ã§ã®æåŸã«äžŠã¶ã§ããã10åã®æ°åãèŠã€ããŠã»ããã
(1)F(100)
(2)F(10^12)
(3)F(10^100)
No.2703GAI6æ4æ¥ 17:30
ãšãããã10åãŸã§ã
åã£ãŠãŸãããïŒ
f(20) = 200817664
f(30) = 5863630848
f(40) = 6115894272
f(50) = 1568960512
f(60) = 2776964096
f(70) = 8984531968
f(80) = 6728081408
f(90) = 4469978112
f(100) = 5210916864
f(200) = 389737472
f(300) = 8808170496
f(400) = 5032491008
f(500) = 5547812864
f(600) = 3891178496
f(700) = 2517264384
f(800) = 8969450496
f(900) = 2530962432
f(1000) = 27753472
f(2000) = 807339008
f(3000) = 4872042496
f(4000) = 5802602496
f(5000) = 937833472
f(6000) = 8127287296
f(7000) = 993752064
f(8000) = 4026732544
f(9000) = 9915703296
f(10000) = 8001579008
f(100000) = 4957162496
f(1000000) = 5058412544
f(10000000) = 2574194688
f(100000000) = 2840754176
f(1000000000) = 933638144
ããããå
ã®æŠç¥ãé ã®äžã«ã¯ãããŸããããããŸã§ã確èªããåŸã«ãããã®ã§ã
No.2704DD++6æ5æ¥ 10:59
å®å
šã«åãã«ãªã£ãŠããŸãã
ããã£ããåèã«ãããã®ã§ã³ãŒããæ²èŒããŠãããŠãããŸãããïŒ
No.2705GAI6æ5æ¥ 13:42
ããã£ãã§ãã
ã³ãŒããããã¢ã«ãŽãªãºã ãæ¥æ¬èªã§æžããšããæ¹ããããšæããŸãã®ã§ããã£ã¡çœ®ããšããŸããã
16âŠnâŠæ°åã®å Žåãæ³å®ããŸãã
æŽæ°nãçŽ å æ°ã«5ãmåãã€ãšããŠãg(n) = n*(4882813/5)^mãšããŸãã
éä¹ã®ä»£ããã«g(1)ããg(n)ãŸã§ã®ãã¹ãŠã®ç©ããšã£ãŠ5^10ã§å²ã£ãäœããæ±ãããšãf(n)ã5^10ã§å²ã£ãäœããåŸãããŸãã
ããã¯ãç©ãèšç®ãããã³ã«äœããæ±ããããšã§éãããæ¡æ°å
ã§ã§èšç®ã§ããŸãã
ïŒå®éã¯4882813ã®çޝä¹ãåŸãããŸãšããŠèšç®ããŠããŸãïŒ
æ±ããå€ã«1787109376ãæããŠ10^10ã§å²ã£ãäœããåããšãf(n)ã®å€ãããããŸãã
ïŒnâ§16ã ãšf(n)ãå¿
ã2^10ã®åæ°ã§ããããšãå©çšããŠããã®ã§ãnâŠ15ã§ã¯èª€ã£ãå€ãåºãŸãïŒ
No.2706DD++6æ5æ¥ 15:34
DD++æ°ã®ã¢ã€ãã¢ãããã°ã©ã ããŠã¿ãã
gp > f(n)={r1=4882813;r2=1787109376;}lift(Mod(lift(Mod(prod(i=1,n,i*(r1/5)^valuation(i,5)),5^10))*r2,10^10))
gp > for(n=1,9,print("10^"n";"f(10^n)))
10^1;625036288
10^2;5210916864
10^3;27753472
10^4;8001579008
10^5;4957162496
10^6;5058412544
ããããå
ã¯ãšãŠãæéãå¿
èŠãšãªã£ãŠãããŸããã
確ãã«æ£ç¢ºã«0ãããªã ãããåŸã®äž10åã®æ°ã䞊ã¶ããšãã§ããŸããã
ãšããã§äžæè°ãªã®ã¯r1,r2ã®å€ã¯äœåŠããçŸããã®ã§ããããïŒ
r1,r2以å€ã«ããã®ãããªæ§è³ªãæãã(r1,r2)ã®çµã¯åããã®ã§ããããïŒ
No.2707GAI6æ6æ¥ 07:59
C++ã ãš10^9ã§ãã¡ãã£ãšäžæãããã®æéã§åºãŠããŸããããèšèªã«ããé床差ã£ãŠæå€ãšå€§ããã®ã§ããã
ãããã¯ã(r1/5)ã®çޝä¹ã®ãšããã§mod5^10ã®çµæã ããããã°ããã®ã«åŸåã«çޝä¹ã®çµæãåºããŠããmodåã£ãŠãããã§äžéšæ°å€ã§æ¡æ°ãççºããŠãã圱é¿ããªïŒ
r1ãšr2ã¯ã
r1 = (5^10+1)/2
r2 = 183*5^10+1 = 1745224*2^10
ã§ãã
ã€ãŸãã
mod5^10ã«ãããŠr1ãæããè¡çºã¯å®è³ª2ã§å²ãæäœã«çžåœããŸãã
ãŸããr2ã¯
xâ¡k (mod5^10)
xâ¡0 (mod2^10)
ãé£ç«ããçµæã
xâ¡r2*k (mod10^10)
ã§ããããšã«ç±æ¥ããŸãã
No.2708DD++6æ6æ¥ 08:51
ããŸãèªä¿¡ããããŸãããã
F(10^100)=3738735616
ã§ããïŒ
No.2709ãããã6æ6æ¥ 16:56
åãïŒ
ããã¿ãªåãå€ã§ãã
ã©ãã»ã©ã®æéãããããŸãããïŒ
ããã°ã©ã ã®æŠèŠã解説ãé¡ãããŸãã
No.2710GAI6æ6æ¥ 17:23
çŽ2åã§ããâåŸã«é«éåããŠçŽ16ç§ã«ãªããŸãã
(10^100)!ããçŽ å æ°2ãš5ãé€ãããã®ãmod10^10ã§èšç®ãã
2^(75*10^98-87)ãmod10^10ã§èšç®ããŠæãåãããäžäœ10æ¡ã§ãã
åŸè
ã¯ç°¡åã§ããã
åè
ã¯
1ïœ10^100ã2^mÃ5^nÃNïŒNã¯2ã§ã5ã§ãå²ãåããªãæ°ïŒã®
m,nã§24002éãã«åé¡ãããããããmod10^10ã§èšç®ããŠmod10^10ã§æããŸãã
ãšãããã10^10ãŸã§ãèšç®ããã
1Ã3Ã7Ã9Ã11Ã13ÃâŠÃ9999999999â¡1 (mod10^10)
ãšããããšãããããŸããã®ã§ãäŸãã°
1Ã3Ã7Ã9ÃâŠÃ3141592653589793238462643383279 (mod10^10)
ãèšç®ããããšãã¯çµå€ã¯äžäœ10æ¡ã ããšã£ãŠ
1Ã3Ã7Ã9ÃâŠÃ2643383279 (mod10^10)
ãèšç®ããã°ååã§ããããã䜿ã£ãŠ
(m,n)=(0,0): 1Ã3Ã7Ã9ÃâŠÃ(10^100-1) â¡ 1Ã3Ã7Ã9ÃâŠÃ9999999999 â¡ 1
(m,n)=(1,0): 1Ã3Ã7Ã9ÃâŠÃ(10^50-1) â¡ åæ§ã«1
ã»ã»ã»
(m,n)=(191,44): çµå€(10^100/2^191/5^44äœãåãæšãŠ)ã®äžäœ10æ¡ããšã£ãŠ 1Ã3ÃâŠÃ519385729 â¡ 9917681069
âããã¯åãªãäŸã§ã
ã»ã»ã»
ãããŠããã24002åã®æ°ãmod10^10ã§æãåããããš5385817123ã§ã
2^(75*10^98-87)â¡6813576192ãæããŠ3738735616ãç®åºããŸããã
1Ã3Ã7Ã9ÃâŠÃ9999999999 ã®mod10^10ã§ã®èšç®ã2å匱ã§ã
24002éãã®èšç®ãé«éåããããã«éäžèšç®ã§åŸããã
1Ã3Ã7Ã9ÃâŠÃ9999
1Ã3Ã7Ã9ÃâŠÃ19999
1Ã3Ã7Ã9ÃâŠÃ29999
ã»ã»ã»
1Ã3Ã7Ã9ÃâŠÃ9999999999
ïŒå
šãŠmod10^10ïŒãèŠçŽ æ°1000000ã®é
åã«ä¿æãã
24002éããããããæå€§çŽ4000åã®ä¹ç®ã§æžãããã«ããçµæã
1Ã3Ã7Ã9ÃâŠÃ9999999999ã®èšç®ä»¥å€ã¯èª€å·®çšåºŠã®æéã«ãªããŸããã
(22:28远èš)
1Ã3Ã7Ã9Ã11ÃâŠ(mod 10^10)ã®èšç®ã§10^10æªæºã®æ°ã®ç©ãæ±ããã®ã«
64ãããã§ã¯è¶³ãã128ãããæŒç®ããŠããã®ã§ããã
128ãããã®modæŒç®ããããé
ãã£ãã®ã§mod 2^10ãšmod 5^10ãå¥ã
ã«æ±ããŠ
nâ¡a (mod 2^10), nâ¡b (mod 5^10) ã®ãšã
nâ¡8212890625a+1787109376b (mod 10^10)
ã§æ±ããããã«ãããšãããå®è¡æéã¯çŽ2åâçŽ16ç§ã«ãªããŸããã
No.2711ãããã6æ6æ¥ 18:04
é«éåã«ãããO(n)ã ã£ãã®ãO(logn)ã«æ¹åã
10^18ã«å¯ŸããŠpaiza.ioç°å¢ã§0.08sã§æ±ãŸãããã«ãªããŸããã
ïŒçµæèªäœã¯ããããããã«å£ããã®ã§ãããä»åŸã®èªåã®ãããã°çšãå
ŒããŠïŒ
f(10^2) = 5210916864
f(10^3) = 27753472
f(10^4) = 8001579008
f(10^5) = 4957162496
f(10^6) = 5058412544
f(10^7) = 2574194688
f(10^8) = 2840754176
f(10^9) = 933638144
f(10^10) = 6441946112
f(10^11) = 1378167808
f(10^12) = 283416576
f(10^13) = 9067109376
f(10^14) = 4534834176
f(10^15) = 2576510976
f(10^16) = 9755143168
f(10^17) = 3894653952
f(10^18) = 5407435776
ããšã¯å€å鷿޿°ã䜿ãã°10^100ã§ãäžç¬ã ãšæããŸããã
ããããçŸãããªãã®ã§2^63以å
ã®èšç®ã ãã§ãªããšããªããªãã詊è¡é¯èª€äžã
No.2712DD++6æ7æ¥ 01:41
ãã£ããããã°ã©ã ãäœã£ãã®ã§å€§ããæ¹ãã
F(10^100) = 3738735616
F(10^200) = 6923037696
F(10^300) = 9519908864
F(10^400) = 2065393664
F(10^500) = 6678018048
F(10^600) = 9989215232
F(10^700) = 6221698048
F(10^800) = 3924201472
F(10^900) = 1886432256
F(10^1000) = 1896479744
F(10^2000) = 4883249152
F(10^3000) = 6688616448
F(10^4000) = 8291796992
ã§ãåã£ãŠãããã©ããã¯ããããŸããã
(10^4000)!ãšãã巚倧ãããŠæ³åãã«ããã§ããã
(10^100)!ã§ãåå倧ããã§ããã
No.2713ãããã6æ7æ¥ 05:37
ã©ãããäžèŽããŠããã§ãã
f(10^10) = 6441946112
f(10^20) = 8474436608
f(10^30) = 6117305344
f(10^40) = 6605049856
f(10^50) = 5791409152
f(10^60) = 1279752192
f(10^70) = 8388129792
f(10^80) = 2060969984
f(10^90) = 6590068736
f(10^100) = 3738735616
f(10^200) = 6923037696
f(10^300) = 9519908864
f(10^400) = 2065393664
f(10^500) = 6678018048
f(10^600) = 9989215232
f(10^700) = 6221698048
f(10^800) = 3924201472
f(10^900) = 1886432256
f(10^1000) = 1896479744
f(10^2000) = 4883249152
f(10^3000) = 6688616448
f(10^4000) = 8291796992
f(10^5000) = 5123908608
f(10^6000) = 2555037696
f(10^7000) = 5540568064
f(10^8000) = 9098052608
f(10^9000) = 4882372608
f(10^10000) = 4592166912
f(10^20000) = 310350848
f(10^30000) = 8320806912
f(10^40000) = 1363283968
f(10^50000) = 7217645568
f(10^60000) = 5054093312
f(10^70000) = 7207071744
f(10^80000) = 6996748288
f(10^90000) = 3016684544
f(10^100000) = 9734950912 (0.46sec)
f(10^150000) = 4346172416 (0.83sec)
f(10^200000) = 9418829824 (1.32sec)
f(10^250000) = 7569364992 (1.94sec)
ãã®èŸºãpaiza.ioç°å¢ïŒå®è¡æé2ç§å¶éïŒã§ã®éçã§ããã
以äžãèªåç°å¢
f(10^300000) = 5518877696
f(10^400000) = 6031537152
f(10^500000) = 7823699968
f(10^600000) = 4702614528
f(10^700000) = 5214944256
f(10^800000) = 6104402944
f(10^900000) = 7742903296
f(10^1000000) = 8226093056
10^nã«å¯ŸããŠãäž»èŠéšåã®èšç®ã¯O(n)ã§æžãã§ãã®ã«ã
åèšç®ã®ã2^nãäºé²æ°ã§æ±ããããšããéšåã§O(n^2)ããã£ãŠãæ®å¿µãã
巚倧ãªçޝ乿°ã®åºæ°å€æãO(n*logn)ãããã§ããå®è£
ãç°¡åãªã¢ã«ãŽãªãºã ãªãã§ãããïŒ
ã«ã©ããæ³ã䜿ãã°O(n^1.59)ããããŸã§ã¯æ¹åãããã©æžãã®ãé¢åâŠâŠã
No.2714DD++6æ7æ¥ 05:42
f(10^100) = 3738735616
ãšåãå€3738735616
ãåãä»ã®
f(s) ïœ<10^100ã®å€ã¯ååšããã®ã§ãã?
No.2715GAI6æ7æ¥ 09:21
ã³ãŒãæžããŠãéäžã§æ°ã¥ãããã§ããã
f(4*5^20*n) = f(4*5^19*n)
ãæãç«ã€ã®ã§ã
2*10^99ã4*10^98ã以äž2^81*10^19ãŸã§ã®81åã¯åãå€ã«ãªããŸããã
2^82*10^18ãäžèŽãããã©ããã¯âŠâŠ9*10^18以äžã¯10ã®çޝä¹ç¹åã®ãã€ããæå
ã«ãªãã®ã§ããããŸããã
No.2716DD++6æ7æ¥ 09:44
f(s)=3738735616 ãšãªãsã¯
16257603, 19004367, 20867632, 21217365, 33069263,
42564599, 42631627, 45460609, 52492698, 53300341, âŠ
ã®ããã«ããããããããã§ãã
æå°ã®s㯠16257603 ã§ãã
No.2717ãããã6æ7æ¥ 10:09
f(n)ã10âŠnâŠ10000
ã®äžã§åãå€ãžè³ãçµåããæ¢ããŠã¿ãã
[484,8121]==>395157504
[600,3734]==>3891178496
[724,3900]==>8483543424
[1091,7460]==>608149504
[1260,5976]==>3417107456
[1899,2110]==>4827099136
[1928,2625]==>9962140672
[4152,7094]==>9036347392
[4177,9681]==>7609266176
[5051,5145]==>8307800064
[5763,8822]==>5245555712
[6674,9771]==>6639161344
ã®12çµãããŸããã
[99,100],[999,1000],[9999,10000]ã¯é€ããŠããŸãã
äœãæ³åãèŠããŠããªãããªïœ
åãã£ãŠ
f(10^100)=f(16257603)
ã倿ã§ããã°ãã£ãšçæéã§æã«å
¥ãã®ã«ïœ¥ïœ¥ïœ¥
ãªããã®çåã¯Euler Projectã§ã®problem 160ããçºçããŠããŠ
ããã§ã¯10æ¡ã§ã¯ãªã5æ¡ã§ã®åé¡ã§ãã(5æ¡ã®æ°åãæ¢ã颿°ãf5ãšããŠããŸããïŒ
解決ã®äžã€ã®æ¹æ³ãšããŠ
if n%2500==0ãªãä»»æã®æ£æŽæ°xã«å¯Ÿã
f5(n)=f5(n*5^x)ãæç«ããããšãå©çšã
f5(10^12)=f5(256000*5^8)
ã§256000%2500==0ãæºããã®ã§
ãããã=f5(256000)
ã調æ»ããããšã§
ãããã=16576
ã§è§£æ±ºã§ããããæ¹ããããšãããïŒéåæ¡æ°ãç¯çŽã§ãã)
ãã®æ¹æ³ã¯5æ¡ã«éã£ãŠæç«ããããã§10æ¡ã§ã¯ãºã¬ãŠããŸããŸãã
ããã«ä»£ããæ¹æ³ïŒæ³åïŒã¯ç¡ããã®ãïŒ
No.2718GAI6æ7æ¥ 12:38
ãŸãã«ç§ãèšã£ã
f(4*5^20*n) = f(4*5^19*n)ãããªãã§ãããã
5æ¡ã ãš
f(4*5^5*n) = f(4*5^4*n)
ã§æç«ãããã§ããã
ãšããããšã¯ã10æ¡ã ãš
f(4*5^10*n) = f(4*5^9*n)
ã§æãç«ã€ã®ããªïŒ
No.2719DD++6æ7æ¥ 13:30
ããšãProject Eulerã¯åé¡101以éã¯è§£æ³èšåçŠæ¢ãªã®ã§ã
å°ãªããšã衚åãã¯ãProject Eulerãšã¯ç¡é¢ä¿ã«æãã€ããåé¡ã§ããã«ããšããªããšãŸããæ°ãã
No.2720DD++6æ7æ¥ 13:36
f(4*5^20*n) = f(4*5^19*n)ã®çåŒã¯
f(4*5^19*n) = f(4*5^18*n) = f(4*5^17*n)== f(4*5^9*n)
ãŸã§äŒžã°ããŸããããïŒ(äžæ¹ãžã¯5^xã®éšåã¯ã©ããŸã§ãOK)
åŸã£ãŠ
f(10^100)=f(4*5^100*2^98)=f(4*2^98*5^9)=f(2^100*5^9)=f(2475880078570760549798248448000000000)
ãŸã§æ¡ãäžããŠèª¿æ»ã§ã(101æ¡ã37æ¡ã«çž®å°å)
ãããèšç®ãããŠ
%=3738735616
ãæã«å
¥ãã
No.2721GAI6æ7æ¥ 17:09
ãããã©ããªãã§ããããã
æãã€ãããšã¯ãããŸãããProject Eulerã®101以éã®åé¡ã§ãããšåèšãããŠããŸã£ã以äžãè§£æ³ã«ã€ãªããããšãè¿éã«èšããªããªã£ãŠããŸããŸããã®ã§ã
No.2722DD++6æ7æ¥ 18:17
Project Eulerã®101以éã®åé¡ã§ãããšåèšãããŠããŸã£ã以äžãè§£æ³ã«ã€ãªããããšãè¿éã«èšããªãã»ã»ã»
ãããªèŠåããã£ããšã¯æã£ãŠãããŸããã§ããã
ã§ãOEISã§ã¯
A347105ãªã©ã§ã¯
Project Euler, Digital root sums of factorisations, Problem 159.
ã®æ§ã«ãªã³ã¯ãšå
±ã«è§£æ±ºã«çŽæ¥çµã³ã€ãçµæããããããªã³ãŒãã§ã®ããã°ã©ã ãšãšãã«
æ°å€ã䞊ã³å
¬éãããŠããŸãã
ãã®æ§ã«è§£æ±ºããã®ã«å€§ãã«åèã«ãªãæ
å ±ã¯ãããããªæã«ã¢ã¯ã»ã¹å¯èœã®ç¶æ
ã«ãããŸãã
ãŸããã®ããã¯AIïŒChatGTPãGemminiãCopilotãªã©ãªã©)ã«ããã°ã©ã ã奜ããªã³ãŒãã§äœã£ãŠãããããã«
é Œãã°é£ãªã瀺ããŠãããŸãã
ãã ãããäœãé Œãã«ã¯ãªããŸãããã»ã»ã»
ã§ãèããæ¹åæ§ãªã©ã¯çªºãç¥ãããšã¯ã§ããŸãã
DD++ãããããããããŠããã®ã¯ãã®è§£æ±ºã«åèã«ãªãããšã¯äžå衚ã«ã¯åºããŠã¯ãããªããã®ã ãšãã
ãèãããæã¡ã ãããªã®ã§ããïŒ
No.2723GAI6æ7æ¥ 19:41
ãã£ãªãã¡ã³ãã¹æ¹çšåŒ
(1) 1/a+1/b=p/10
(2) 1/a+1/b=p/100
(3) 1/a+1/b=p/1000
(a,b,pã¯æ£ã®æŽæ°ã§ãaâŠb)
ã«ã€ããŠ
åæ¹çšåŒã§(a,b,p)ã®è§£ãååšã§ããªãæå°ã®pãåå Žåã«ã€ããŠæ±ããŠäžããã
No.2697GAI5æ31æ¥ 10:48
(1)
åŒãå€åœ¢ã㊠(ap-10)(bp-10)=100
p=1ã®ãšãã®è§£ã®äŸã¯ (a,b)=(20,20)
p=2ã®ãšãã®è§£ã®äŸã¯ (a,b)=(10,10)
p=3ã®ãšãã®è§£ã®äŸã¯ (a,b)=(5,10)
p=4ã®ãšãã®è§£ã®äŸã¯ (a,b)=(5,5)
p=5ã®ãšãã®è§£ã®äŸã¯ (a,b)=(4,4)
p=6ã®ãšãã®è§£ã®äŸã¯ (a,b)=(2,10)
p=7ã®ãšãã®è§£ã®äŸã¯ (a,b)=(2,5)
p=8ã®ãšã(4a-5)(4b-5)=25ãšãªã
(4a-5)â¡(4b-5)â¡3 (mod 4)ã ã
25ã¯3 (mod 4)ã®ç©ã«åè§£ã§ããªãã®ã§ãçãã¯p=8
(2)
åŒãå€åœ¢ã㊠(ap-100)(bp-100)=10000
p=1ïœ7ã¯(1)ã®(a,b)ã10åããã°ããã
p=8ã®ãšãã®è§£ã®äŸã¯ (a,b)=(25,25)
p=9ã®ãšãã®è§£ã®äŸã¯ (a,b)=(20,25)
p=10ã®ãšãã®è§£ã®äŸã¯ (a,b)=(20,20)
p=11ã®ãšãã®è§£ã®äŸã¯ (a,b)=(10,100)
p=12ã®ãšãã®è§£ã®äŸã¯ (a,b)=(10,50)
p=13ã®ãšãã®è§£ã®äŸã¯ (a,b)=(8,200)
p=14ã®ãšãã®è§£ã®äŸã¯ (a,b)=(10,25)
p=15ã®ãšãã®è§£ã®äŸã¯ (a,b)=(12,15)
p=16ã®ãšã(4a-25)(4b-25)=625ãšãªã
(4a-25)â¡(4b-25)â¡3 (mod 4)ã ã
625ã¯3 (mod 4)ã®ç©ã«åè§£ã§ããªãã®ã§ãçãã¯p=16
(3)
åŒãå€åœ¢ã㊠(ap-1000)(bp-1000)=1000000
p=1ïœ7ã¯(1)ã®(a,b)ã100åãp=8ïœ15ã¯(2)ã®(a,b)ã10åããã°ããã
p=16ã®ãšãã®è§£ã®äŸã¯ (a,b)=(125,125)
p=17ã®ãšãã®è§£ã®äŸã¯ (a,b)=(60,3000)
p=18ã®ãšãã®è§£ã®äŸã¯ (a,b)=(100,125)
p=19ã®ãšãã®è§£ã®äŸã¯ (a,b)=(56,875)
p=20ã®ãšãã®è§£ã®äŸã¯ (a,b)=(100,100)
p=21ã®ãšãã®è§£ã®äŸã¯ (a,b)=(50,1000)
p=22ã®ãšãã®è§£ã®äŸã¯ (a,b)=(50,500)
p=23ã®ãšã(23a-1000)(23b-1000)=1000000ãšãªã
(23a-1000)â¡(23b-1000)â¡12 (mod 23)ã ã
1000000ã¯12 (mod 23)ã®ç©ã«åè§£ã§ããªãã®ã§ãçãã¯p=23
# æèšç®ãªã®ã§ééããããããç¥ããŸãã
No.2698ãããã5æ31æ¥ 12:57
å
šãŠæ£è§£ã§ãã
æèšç®ã§ããããã§ããïŒ
ã§ã¯
1/a+1/b=p/10^9
ãæºããç°ãªãè§£ã¯äœéããããã¯brute force ã§ã¯ãšãŠãæéããããç¡çãšæãããŸããã»ã»ã»
No.2699GAI5æ31æ¥ 14:37
ããå³èŸºã®åæ¯ã10^9ã®ãšã23058éãã§æ£ãããã°ã
10^1: 20éã
10^2: 102éã
10^3: 356éã
10^4: 958éã
10^5: 2192éã
10^6: 4456éã
10^7: 8260éã
10^8: 14088éã
10^9: 23058éã
10^10: 35896éã
10^11: 53932éã
10^12: 79174éã
10^13: 112824éã
10^14: 156434éã
10^15: 215984éã
10^16: 290394éã
10^17: 384320éã
10^18: 502942éã
10^19: 646852éã
10^20: 820292éã
ã®ããã«ãªãããšæããŸãã
No.2700ãããã6æ1æ¥ 00:49
äžèšãæ±ããã®ã«èšç®æ¹æ³ã®å·¥å€«ãéããæçµçã«ã¯
(Pari/GP圢åŒã§)
f(n)=sum(k=0,n+n,sum(m=0,floor(log(10^n/2^k)/log(5)),numdiv(gcd(2^k*5^m+10^n,2^(n+n-k)*5^(n+n-m)+10^n))))
ãšããåŒã§æ±ããããããšãããããŸããã
No.2701ãããã6æ1æ¥ 21:22
ããããããã®çŽ å æ°åè§£åŒãåèã«ãèªåæµã§ããã°ã©ã ãçµãã§ã¿ãŸããã
f(n)={Div=divisors(10^(2*n));X=select(i->i<=10^n,Div);Y=apply(i->10^(2*n)/i,X);
A=apply(i->i+10^n,X);B=apply(i->i+10^n,Y);}
M=[];for(n=1,#A,M=concat(M,[gcd(A[n],B[n])]));vecsum(apply(i->#divisors(i),M))
n;
20;820292(éã)
21;1038320
22;1292462
23;1590916
24;1946888
25;2359396
26;2830798
27;3393902
28;4039842
29;4775820
30;5636084

ãšäžç¬ã§æ±ãŸã£ãŠããã®ã§ãããïŒå¿«é©ïŒïŒ
No.2702GAI6æ2æ¥ 15:02
äžè§åœ¢ã®äžå¿ã«ã€ããŠã調ã¹ããšæè¿äžäžè¿ãããèšäºãã¿ãŠããã¯ãããŸãã
ãã®åç¥ã£ããšãã¯ãïŒïŒïŒãããã§ãããã確ãã«ãæåãªãã§ã«ããŒç¹ããããã¬ãªã³ç¹ãªã©ãããŸãããã§ãã®å®çã§ãæ¯ãé©åœã«å€ããã°ãããã§ãäœãããã§ããäžã§ãæåãªãå€å¿Oãå
å¿Iãéå¿Gãåå¿Hã«ã€ããŠãèå¯ããŸããã
䟿å®äžãéè§äžè§åœ¢ã«éå®ããŸããïŒå
éšã«ããããïŒ
å
ããç°¡æãªãâ³ABCã«ã€ããŠããã®èŸºã®äžç¹ãDEFãšããå Žåãâ³ABCãšâ³DEFã®éå¿ã¯äžèŽããŸããããã§ãâ³ABCïŒGïŒïŒâ³DEFïŒGïŒãšè¡šèšããŸãã
次ã«ãâ³ABCã®å€å¿ããšããŸããå蟺ã®äžç¹ã§äœãäžè§åœ¢ã®åå¿ãèãããšOã«äžèŽããŸãããããã£ãŠãâ³ABCïŒOïŒïŒâ³DEFïŒHïŒ
ãããã«ãã䌌ãå
容ãæçš¿ããŸãããã
ãâ³ABCïŒâ¡ïŒïŒâ³ïŒ€ïŒ¥ïŒŠïŒâïŒãäœããã¯ãã«ç±æ¥ããèå¯ããŸãã
No.2679ks5æ20æ¥ 10:16
â³ABCã®åå¿ãHãšãããå蟺ã®åå¿ã®è¶³ãDEFãšãããšã
Hã¯ãâ³DEFã®å
å¿ã«ãªãããããã£ãŠã
â³ABCïŒHïŒïŒâ³DEFïŒIïŒ
â³ABCã®å
å¿ãIãšãããå
æ¥åã®å蟺ãšã®æ¥ç¹ãDEFãšãããšã
Iã¯ãâ³DEFã®å€å¿ã«ãªãããããã£ãŠã
â³ABCïŒIïŒïŒâ³DEFïŒOïŒ
ããã§ãHâIâOâHãšãªããŸãããã
éã®ãIâHâOâIã®å ŽåãèŠã€ããŠããã ããªãã§ããããïŒ
No.2684ks5æ21æ¥ 13:21
管ç人æ§ãžãåã®èšäºã远å ç·šéããŠãŸãã
â³ABCã®ãå€å¿ãOã
ãã¯ãã«ãOAïŒa,ãOB=b,ãOC=cããšãããšãã
éå¿ãOGïŒïŒa+b+cïŒ/3
åå¿ãOHïŒa+b+c ãªã®ã§
ãããOHïŒïŒOGãïŒãªã€ã©ãŒç·ïŒ
No.2688ks5æ23æ¥ 09:32
â³ABCã®ãå€å¿ïŒOïŒåå¿ïŒHïŒå
å¿ïŒIïŒéå¿ïŒGïŒ
ã®4åã®ãã¡ãããããã®äºã€ããäžèŽãããšãã
â³ABCãæ£äžè§åœ¢ã§ããããã®
å¿
èŠå忡件ã«ãªããŸãã
No.2689ks5æ24æ¥ 12:14
â³ABCã®åå¿ãHãšãããHã®å蟺ã«ããã察称ç¹ãDEFãšãããâ³DEFã®å
å¿ããHã«äžèŽããã®ã§ãâ³ABCïŒHïŒïŒâ³DEFïŒIïŒ
No.2690ks5æ26æ¥ 10:58
â³ABCã®å
å¿ããšãããã®ããããã®èŸºå¯Ÿç§°ãªç¹ããšããã
â³ïŒ€ïŒ¥ïŒŠã®å€å¿ã¯ãã«äžèŽããã®ã§ã
â³ïŒ¡ïŒ¢ïŒ£ïŒïŒ©ïŒïŒâ³ïŒ€ïŒ¥ïŒŠïŒïŒ¯ïŒ
No.2691ks5æ27æ¥ 13:48
â³ABCã®å€å¿ãOãšãããå蟺ã«ãããç¹Oã®å¯Ÿç§°ç¹ãDEFãšãããšã
â³DEFã®åå¿ã¯ãOã«äžèŽããã
â³ABCïŒOïŒïŒâ³DEFïŒHïŒ
HâIâOâHãéé ã®äŸã¯ãªãã§ããããïŒ
No.2692ks5æ28æ¥ 18:44
â³ABCã®åå¿ãHãšãããHããå蟺ãžã®åç·ã®è¶³ã®å»¶é·ããç·ãã倿¥åãšäº€ããç¹ãDEFãšãããšãâ³DEFã®å
å¿ã¯ãHã«äžèŽããã
ãããã£ãŠãâ³ABCïŒHïŒïŒâ³DEFïŒIïŒ
No.2695ks5æ29æ¥ 21:10
éã«ãâ³ABCã®å
å¿ãIãšãããšããé ç¹ãšå
å¿ãéãçŽç·ãã倿¥åãšã®äº€ç¹ã
ããããDEFãšãããšãâ³DEFã®åå¿ã¯ãIãšäžèŽããã®ã§ã
â³ABCïŒIïŒïŒâ³DEFïŒHïŒ
ãŸããâ³ABCã®å€æ¥åãOãšãããšããååšäžã®ã©ã®äžç¹DEFããšã£ãŠã
â³ABCïŒOïŒïŒâ³DEFïŒOïŒ
蚌æã¯ãç°¡åã§ãããâŠ
No.2696ïœïœ5æ30æ¥ 11:19
ãæ¢æ€ïŒ æ°ã®å¯æã»æ°è«ã®è¿·å®®ãïŒæ©æ¬åäžæ èïŒæ¥æ¬è©è«ç€ŸïŒã®ã第8ç« ãè¿·å®®(ïŒ)ãã¹ã«ã«ã®äžè§åœ¢ãã§ãp.159ã«ãã¹ã«ã«ã®äžè§åœ¢ã2é²ä»å€ã§è¡šããå³ãåºãŠããŸããå³ã§ã¯nCrã®n=11ãŸã§ã4ã€ããšã«åºåã£ããã®ã«ãªã£ãŠããŸããããã¹ã«ã«ã®äžè§åœ¢ã2é²ä»å€ã§è¡šãããã®ãnCrã®n=31ãŸã§ã4ã€ããš(å®ç·)ãš2ã€ããš(ç Žç·)ã«åºåã£ããã®ãæããŠã¿ãŸããã
http://kuiperbelt.la.coocan.jp/p-adic/2adic-pascal_page-0001.jpg
No.2693kuiperbelt5æ29æ¥ 07:12
ãã¹ã«ã«ã®äžè§åœ¢ã3é²ä»å€ã§è¡šãããã®ãnCrã®n=26ãŸã§ã9ã€ããš(å®ç·)ãš3ã€ããš(ç Žç·)ã«åºåã£ããã®ãæããŠã¿ãŸããã
http://kuiperbelt.la.coocan.jp/p-adic/3adic-pascal_page-0001.jpg
No.2694kuiperbelt5æ29æ¥ 07:14