ïŒïŒïŒïŒïœïŒïŒïŒïŒãŸã§ã®æ°ã䜿ã£ãŠã
ååæŒç®ãš()ã«ããã10ãåµãããªãã¿ã®åé¡ã§ãã
ã§ããªãå ŽåããããŸããããäžã€ã ãã奜ããªæåæ°ã«
å€ããã°ãå¯èœã«ãªããã
äŸãã°ã000ïŒâ0091ã9998â99ïŒ8
äœããæåæ°ãã1ïŒ2ïŒ3æåã®å Žåãäžã€æåãçãã§ããã
äŸãã°ãïŒã ãã®æã9ãçãã§ãïŒïŒ9ïŒ10ã§ãã
ããã¯ãçãåœãïŒ
No.2580ks3æ25æ¥ 12:14
æ°ã®é£çµãNGãªãã°ã0000ã¯äžã€å€ããŠãäžå¯èœã§ãã
èšãæããã°ã3æåã§ã000ãã®ãšãäœã远å ããŠãäžå¯èœã§ãã
é£çµãOKãªãã°å¿
ãäœãããšæããŸãã
No.2581ãããã3æ25æ¥ 12:57
äžææABCäºæ³ãæææ°äžæ°ã«ãã£ãŠèšŒæããããšéšããããããããã粟æ»ãã
確ãã·ã§ã«ãã§ãªã©ãšææ
çãªå¯Ÿç«ãèµ·ããäžççã«ã¯æ¿è«Ÿãšã¯ãªããªããšããéšåã
ä»ã©ã®æ§ã«ãªã£ãŠãããã¯ç¥ãç±ããªããïŒæ°åŠã«åœãæžããŠãã人ã«ã¯ãå¿ã®
çŽç·ã«è§Šãããšççºçæããèµ·ãããã®ãšæ³åããããïŒ
ãããåãšç©ã®æ ¹æ¬çãªéããæãç¥ãããABCäºæ³ã«ã¯è峿·±ããã®ãããã
å®çŸ©ã«ãããš
aãšbãäºãã«çŽ ã§ããããã€a+b=cãæºããèªç¶æ°ã®çµ(a,b,c)ãabc-tripleããšåŒã³ã
äžçåŒãc>(rad(a*b*c))^(1+ε) ãæºããabc-triple ãç¡éåã«ååšãããããªæ£ã®å®æ° ε>0
ã¯ååšããªãã
ãªãrad(n)ã¯nã®çŽ å æ°ã®ãã¡çžç°ãªããã®ã®ç©ãè¡šãæ ¹åºé¢æ°ãšãåŒã¶ã
ãšããã
ããã§ãšããããc>rad(a*b*c)ãèµ·ããabc-tripleãæ¢ããŠã¿ããš
(a,b,c)=(1,8,9)ãªã
gcd(1,8)=1ã§rad(a*b*c)=rad(72)=rad(2^3*3^2)=2*3=6 ããã«9>rad(a*b*c)=6 ãæºããã®ã§
ãabc-tripleã®æ¡ä»¶ãæºãããŠããã
åãã
(a,b,c)=(5,27,32)ã
gcd(5,27)=1ã§rad(a*b*c)=rad(5*3^3*2^5)=5*3*2=30 ãã32>rad(a*b*c)=30 ãæºãã
ãããabc-tripleã®æ¡ä»¶ãæºããã
ãŸãäžã«ã¯
(a,b,c)=(1,80,81);rad(a*b*c)=rad(1*2^4*5*3^4)=2*3*5=30
(a,b,c)=(32,49,81);rad(a*b*c)=rad(2^5*7^2*3^4)=2*3*7=42
ã®æ§ã«åãcã§ã2éãã®æ§æãå¯èœãªãã®ãçºçããã
ããããŠc<1000ãŸã§ã§ã®abc-tripleãæ¢ããŠãããšå
šéšã§31åã®çµåãããèŠã€ãã
ïŒã¡ãã£ãšããããã°ã©ã ãçµãã°çæéã§æ¢ããŸãã)
ããã«çŸããcã®åèšããšããš(äžèšã®æ§ã«81ã¯2ååèšããããšã«ãªããïŒããã¯12523
ãšãªããŸãã
ãããŸã§ã¯ã¡ãã£ãšããèšç®æ©ãšããã°ã©ã ã§å¯èœã§ãã
ã§ã¯
c<120000 ãŸã§ã«ãšããabc-tripleã§cãçŸããïŒäžã«ã¯äœåºŠãé¡ãåºããã®ãåºãã)ãã¹ãŠã®ïœã®å€ã®åèšã¯åŠäœã«ïŒ
ãšãªããšåã®ããã°ã©ã ã§ã¯ãããæéãæã£ãŠãç¡çãããªãïŒ
ãšã€ãæã£ãŠããŸãã
ãããäœãšããããè¶
ããŠäžããã
No.2575GAI3æ23æ¥ 09:00
çãã¯
456éããcã®åèš18407904
ã§åã£ãŠãŸããïŒ
ããåã£ãŠãããªããcïŒ1000000ã§ã¯
1268éããcã®åèš390980551
ã«ãªãããšæããŸãã
# cïŒ120000ã§5ç§ãcïŒ1000000ã§6ååãªã®ã§ãcïŒ10000000ãŸã§ã¯ïŒããæ°ãããã°ïŒããããã§ãã
(远èš)
æ€çŽ¢ããŠçããèŠã€ããŸãããåã£ãŠããããã§ããã
No.2576ãããã3æ23æ¥ 11:42
5ç§ã§ããïŒ
ããã¯OEISã«ã¯èŒã£ãŠãªãã§ãããã
10^7ã®çµæã¯10830240243ãšåºãã®ã§ãããåã£ãŠããã®ã確ããããããªãã§ãã
No.2577GAI3æ24æ¥ 06:26
èŒã£ãŠããªãã¿ããã§ããã
ããããå€åºã§ä»ããã¯ç¡çã§ããã仿¥ã®å€ã«ã§ãèšç®ããŠã¿ãŸãã
No.2578ãããã3æ24æ¥ 07:04
é
ããªããŸãããã確ãã«cïŒ10^7ãšãªãcã®åèšã¯10830240243ãšãªããŸããã
3499éãã¯OEISã«èŒã£ãŠããå€ãšäžèŽããŠããŸãã®ã§ãããã§æ£ãããšæããŸãã
No.2579ãããã3æ25æ¥ 08:24
ããã³ã®å
¬åŒSïŒïŒïœ(s-a)(s-b)(s-c)
ã®æ¡åŒµãšããŠãã¿ãŒãã°ãã¿ã®å
¬åŒããããŸãã
S^2=(s-a)(s-b)(s-c)(s-d)ã d=0 ãšããã°ãåŸãããŸãã
ããã¯ãå
æ¥åè§åœ¢ã®å Žåã§ããã
å
æ¥ããªãåè§åœ¢ã«ã€ããŠããã¬ãŒãã·ã¥ãã€ããŒã®å
¬åŒ
S^2=(s-a)(s-b)(s-c)(s-d)ãŒabcdcos^2(A+C)/2
No.2564ks3æ17æ¥ 14:23
åžåè§åœ¢ã®å Žåãåè§åœ¢ABCDãšããŠã
蟺ABã®äžç¹ãE,BCã®äžç¹ãF,CDã®äžç¹ãG,DAã®äžç¹ãHãšçœ®ããŸãã
ç¹Eãšç¹Gããçµãã ç·åäžã«ãFããåç·ã®è¶³ãPãç¹Hããã®åç·ã®è¶³ãQãšããŸãã
ãããšãè£æããŠãåè§åœ¢AEQHãEãäžå¿ã«ãåè§åœ¢HQGDãäžå¿ã«å転ã
é·æ¹åœ¢ãã§ãã
åè§åœ¢ABCDã®é¢ç©SïŒïŒEGã»HQïŒïŒEGã»FPïŒEGïŒHQïŒFPïŒ
ãç¥ããæåããŸããã
è£æã«ãããæ£äžè§åœ¢ãæ£æ¹åœ¢ã«ããããšãããããã§ãã!
No.2568ks3æ20æ¥ 12:22
é·æ¹åœ¢ã¯åºæ¥ãªãïŒ
No.2570HP管çè
3æ21æ¥ 08:34 å°åŠïŒå¹Žçã®ãããããŸè«
ãä¹ä¹ã®ç ç©¶ã
ä¹ä¹ã®è¡šã«ã¯ïŒïŒåã®çãããããã
éè€ããŠãããã®ãæ¶ããšïŒïŒåã«ãªãã
ïŒïœïŒïŒã®äžã§ã
ä¹ä¹ã®çã«ç¡ããã®ã¯ïŒïŒå
ããã¯å¶ç¶ã®äžèŽïŒïŒïŒ
ã¹ããªãã¥ã¢ã«ã®æ±ååä¹ããæ°ãã
ãã®äžã«ã¯å¶ç¶ã¯ãªãå
šãŠå¿
ç¶ã«èµ·ããã
ç§ã®é ããã±ãŠãã ãïŒïŒïŒ
No.2553ã«ã«ãã¹3æ15æ¥ 15:53
管ç人æ§
ãæ¥ãããããïœããã
ç§ã¯ä¹ä¹ã®è¡šãæãã«ãçŽãçã£äºã€ã«ããã ãã§ããã
æ£ç¢ºã«ã¯ïŒïŒåã§ãããïŒïŒŸïŒŸïŒ
No.2556ã«ã«ãã¹3æ16æ¥ 13:06
仿Žãªããã»ã»ã»ã»ã»
ç§ã®è¡šçŸã®ä»æ¹ãæªãã£ãã§ãã
ãä¹ä¹ã®éè€ãã®æå³ã¯
äžèšã®ãããªãçãã®éè€ã§ã¯ãªã
ïŒïœïŒïŒïŒ
ïŒïœïŒïŒïŒ
ãåŒã®éè€ããæå³ãšããŠããŸããã
ïŒïœïŒïŒïŒïŒ
ïŒïœïŒïŒïŒïŒ
ãããã1éããšèãããšïŒïŒåã«ãªãã
ä¹ä¹ã®çãã«ç¡ãæ°åã®åæ°ïŒïŒåãšåãã«ãªãã
No.2566ã«ã«ãã¹3æ17æ¥ 22:06
æŽæ° a, b, c (ãã ã 0 < a < b < c) ã«å¯Ÿããa ã®å¹³æ¹ãš c ã®å¹³æ¹ã®çžä¹å¹³åã b ã®å¹³æ¹ãšãªããããªãã¡
â(a² · c²) = b²ââ
ãŸãã¯åãããšã§ãã
a² · c² = bâŽ
ãæºããæŽæ°è§£ã¯ãããšãã° a, b, c ãçæ¯æ°åã®å Žåãªã©ãã容æã«èŠåºãããšãã§ããç¡æ°ã«ååšããŸãã
ãããèžãŸããæ¬¡ã®åé¡ã«ã€ããŠæ€èšããŠãã ããã
æŽæ° a, b, c (0 < a < b < c) ã«ãããŠãa ã®å¹³æ¹ãã 1 ãåŒããæ°ãš c ã®å¹³æ¹ãã 1 ãåŒããæ°ã®çžä¹å¹³åããb ã®å¹³æ¹ãã 1 ãåŒããæ°ãšãªããããªãã¡
â((a² â 1)(c² â 1)) = b² â 1ââ
ãŸãã¯åãããšã§ãã
(a² â 1)(c² â 1) = (b² â 1)²
ãæºããæŽæ°è§£ã¯ãç¡æ°ã«ååšããã®ã§ããããïŒ
â»ã²ãšã€ã®äŸãšããŠã
(577² â 1)(3363² â 1) = (1393² â 1)²
ãæããŠãããŸãã
No.2560Dengan kesaktian Indukmu3æ16æ¥ 22:52
GAI ãã颚ã®åºé¡ãå¿åããŠãããŸãã
No.2561Dengan kesaktian Indukmu3æ16æ¥ 22:53
a[1]=3, a[2]=7, a[n+2]=2a[n+1]+a[n] ãšããæŒžååŒã«ãã
3, 7, 17, 41, 99, 239, 577, 1393, 3363, ⊠(A001333)
ãšããæ°åãçæãããŸããããã®ãšã
(a[2n-1]^2-1)(a[2n+1]^2-1)=(a[2n]^2-1)^2
ãæãç«ã¡ãŸãã
# ãã㯠(a[2n])^2=a[2n-1]a[2n+1]-2 ãš a[n+2]=2a[n+1]+a[n] ãã瀺ããŸãã
åŸã£ãŠè§£ã¯ç¡æ°ã«ãããŸãã
ãªããäžèšã«å«ãŸããªã
(4^2-1)(31^2-1)=(11^2-1)^2
(2^2-1)(97^2-1)=(13^2-1)^2
ãªã©ååšããŸãã®ã§ãäžèšã¯å
šè§£ã§ã¯ãããŸããã
No.2562ãããã3æ17æ¥ 03:59
ãããããããç¬æ®ºããèŠäºã§ãã
ããã€ããè峿·±ãã§ããé£ç©ããã§ããã
(4^2-1)(31^2-1)=(11^2-1)^2
(2^2-1)(97^2-1)=(13^2-1)^2
No.2563Dengan kesaktian Indukmu3æ17æ¥ 07:13
é£ç¶ããå¹³æ¹æ°ã®åã§åæçæ°(åãããåŸããããåãæ°åãšãªããã®)ãäœãããšãèããŠã¿ãã
äŸ
9^2+10^2=181
11^2+12^2+13^2=434
6^2+7^2+8^2+9^2+10^2+11^2+12^2=595

ãªã©ãªã©æ°å€ãã®åæçæ°ãæ§æã§ããã
ããã§
ãã®åæçæ°ã®å€§ããã10000000以äžã§ãããã®ãšããæ¡ä»¶ã®ãšã
ãã®æ§ææ¹æ³ã2éãååšãããã®åæçæ°ã¯äœããããïŒ
ãŸããã®æ§ææ¹æ³ãå
·äœçã«ç€ºããŠäžããã
äœæ°ã«èª¿æ»ãããŠè¡ã£ãããçµæ§ããã°ã©ã çã«æ··ä¹±ããŠãããæã£ãããæéåã£ãŠããŸããŸããã
åãæ°ã誰ããèŠã€ããŠãããããèå³ãæ¹§ããã®ã§åºé¡ããŠã¿ãŸããã
No.2557GAI3æ16æ¥ 13:34
10000000以äžã§ã¯554455ãš9343439ã®2åã§ãããã
ã10000000以äžãã
ã100000000000000以äžãã«ããŠã1åããå¢ããŸããã§ããã
9^2+10^2+âŠ+118^2 = 554455
331^2+332^2+âŠ+335^2 = 554455
102^2+103^2+âŠ+307^2 = 9343439
657^2+658^2+âŠ+677^2 = 9343439
2967^2+2968^2+âŠ+14087^2 = 923222222329
42462^2+42463^2+âŠ+42967^2 = 923222222329
(远èš)
çããâããã«ãããŸããã
https://oeis.org/A267600
No.2558ãããã3æ16æ¥ 16:13
æšå¹ŽããProject Eulerã®åé¡ãproblem1 ããé çªã«ããã°ã©ã ã®ç·Žç¿ã«ãšè§£ããŠããŠ
https://projecteuler.net/about
problem=125ã«Palindromic Sumsã®ããŒãã®åé¡ã«ïŒhttps://projecteuler.net/problem=125ïŒ
åœãã£ãŠããã
ããããèŠåŽããªãã3æ¥äœãããã£ãš
the sum of all the numbers less than 10^8
that are both palindromic and can be written as the sum of consecutive squares.
ã®å€ãç®åºãçãåããããããšééã£ãŠãããšã®çµæããããã
ãããèŠçŽããŠãã©ããééã£ãŠããããã©ãããŠãåããããäœæéãæ©ã¿ãšã¯ã»ã«ã«èŠã€ãã
ãã®åæçæ°ã貌ãä»ã(168åååš)ã©ãã«èŠèœãšããããã®ãæ©ãã§ããã
ãµãšéè€ããŠããããã®çåãæã¡éè€ããå€ãããã®ããã³ãã³ãã®æ©èœãå©çšãããš
ãªããš2ãæã§å°ãä»ãã§ã¯ãªããïŒ
ããã¯åãå€ã2ã€ã®äœãæ¹ãååšããŠããããšã瀺ããŠããããšã«çžåœãããã®éè€ããå€ã
ããããåé€ããããäžåºŠåèšæ°ãæ±ããã®å€ã§å°ããããã£ãšã®ããšã§æ£è§£ã®è¿äºãããã£ãã
(168åããã£ãã®ã§éè€ããŠããããšãå
šãèŠããŠããªãã£ãã)
ãã®çµéšãå
ã«åé¡ãäœãå°ããããšã§ããã
ãã以äžã®éè€ããããšã¯æããããä»ãŸã§ããã£ãæéãèãããšå
ã«é²ãåæ°ãåºãªãã£ãã
OEISã®A267600ã«ãããèŒã£ãŠãããšã¯äžã®äžèª°ãã調ã¹ãŠãããã®ã§ããã
a(4) > 10^18, if it exists
ã®ã¡ã¢ãèŠãã ãã§ããè
°ãåŒããŠããŸããŸãã
ãããçæéã§èŠåºãããããããã®æè
ã«æ¬æã§ãã
No.2559GAI3æ16æ¥ 18:57
以åãšãããããã¶ããšåã«äº¬å€§æ°åŠã«åºãŠã
tan((a+b)/2)âŠ(tana+tanb)/2
ãšããäžçåŒããæ¢ããŠåžäžçåŒã䜿çšããã«å³åœ¢çã«èŠãããæ¹ãèããŠã¿ãŸããïŒ
ä»ã«ãè²ã
ãšè§£éã§ãããšæãã®ã§ãé¢çœãããæ¹ãæãã°æããŠãã ããïŒ
No.2555Tabasco3æ16æ¥ 07:52
å°åŠæ ¡ã®é ãä¹ä¹ãå
šéšèšããªããŠãæŸèª²åŸãæ®ãããã
ç§ã«ãšã£ãŠãä¹ä¹ã¯èŠèŠã ã£ãã
ä¹ä¹ã®çãã®è¡šã«ã¯ãïŒïŒåã®æ°åãæžãããŠãããã
ãã®ïŒïŒåã®æ°åãå
šéšè¶³ããšïŒïŒïŒïŒã«ãªããš
ä»å¹ŽïŒïŒïŒïŒïŒå¹ŽïŒã«åããŠç¥ã£ãã
ã¡ãã£ãšæåã»ã»ã»ã»ã»
ããã§åé¡ãæãã€ããã
ïŒïŒãïŒïŒãïŒïŒãïŒïŒãïŒïŒãæ¬¡ã®æ°ã¯ïŒ
No.2544ã«ã«ãã¹3æ14æ¥ 16:55
ä¹ä¹ã®è¡šã«çŸããªãæ°åãå°ããé ã«äžŠã¹ããã®ãšèãããšãçãã¯ãïŒïŒãããªïŒ
No.2545HP管çè
3æ14æ¥ 18:10 管ç人æ§
倧åœãããïœã§ããããŸããããã
倧å€ãé
ããªããŸãããã
æ¬å¹Žããããããé¡ãããããŸãã
No.2546ã«ã«ãã¹3æ14æ¥ 18:16
ïŒïŒãïŒïŒãïŒïŒãïŒïŒãïŒïŒ
ãšãããªãçŽ æ°ä»¥å€ã®22ãå
¥ã蟌ãã§æ¥ãã®ã§ãæžæã£ãŠããŸããŸããã
ããã§
1,2,3,5,7,11,13,17,19,22,23,25,26,29,
ãšç¶ããŠããæ°åã®æ¬¡ã®10åã®æ°ã¯äœã§ãããïŒ
No.2547GAI3æ14æ¥ 20:31
31ã33ã34ã37ã38ã41ã43ã46ã47ã51 ã§ããïŒ
No.2548HP管çè
3æ14æ¥ 21:11 倧æ£è§£ã§ãã
å¿
ãçŽ æ°ã¯å
¥ã£ãŠãããããã以å€ã«ãåææ°ãæã
å
¥ã蟌ãããšãããé¢çœãã
ãã«ãã©ã³ã®ä»®èª¬ãããããçºçããŠããããããããããããªæ§è³ªã«çç®ã§ãããã®ã ãšæå¿ããŸãã
ãŸãããã蚌æãããã§ãã·ã§ãã®èœåã«ãè±åžœã§ãã
No.2549GAI3æ15æ¥ 07:38
åã®æ¥µã𿥵ç·ã¯ããç¥ãããŠããŸããã
äžè§åœ¢ã®æ¥µã¯ç¥ããŸããã§ããã
極ç·ã¯ãæ¥æŠã®äžè¬åãšèããŠããã®ã§ããããïŒ
No.2535ks3æ10æ¥ 11:48
äžç·æ¥µç¹(trilinear pole)ãšäžç·æ¥µç·(trilinear polar)ã®ããšã§ãããïŒ
https://ja.wikipedia.org/wiki/%E4%B8%89%E7%B7%9A%E6%A5%B5%E7%B7%9A
ãããäœãã®äžè¬åãªã®ãã©ããç§ã¯ç¥ããŸãããã
åãäºæ¬¡æ²ç·ã®æ¥µã»æ¥µç·ãšã¯ç¡é¢ä¿ã ãšæã£ãæ¹ããããšæããŸãã
ããããããšã§ãããå¥ã®ãã®ã«åããããªåç§°ã䜿ãããŠãããšçŽããããã§ãããã
ãã®å³ã§åºæºäžè§åœ¢ãâ³ABCãšãããšããç¹PãšçŽç·UVWãäžç·æ¥µç¹ã»äžç·æ¥µç·ã®é¢ä¿ã«ãããŸãã
No.2538ããã²ã3æ10æ¥ 23:20
No.2538 ã®å³ã«ã€ããŠèª¬æãæžããŠããããšæããŸãã
以äžã§ã¯å°åœ±å¹³é¢ã§èããããšãšãã
ãŠãŒã¯ãªããå¹³é¢ã§å¿
èŠãªå¹³è¡ç·ã®å Žååããäžåçç¥ããŸãã
ç¹ããå§ããå ŽåãšçŽç·ããå§ããå Žåã§ãããã説æãã§ããŸããã
ããããã®èª¬æã¯å°åœ±å¹Ÿäœã®å察ã®é¢ä¿ã«ãããŸãã
(1)[ç¹Pããå§ããå Žå]
åºæºäžè§åœ¢ãâ³ABCãšããŸãã
ç¹Pã¯çŽç·BC,CA,ABäžã«ãªãç¹ãšããŸãã
BCãšAPã®äº€ç¹ãA'ïŒCAãšBPã®äº€ç¹ãB'ïŒABãšCPã®äº€ç¹ãC'ãšãããšãã
â³A'B'C'ã(â³ABCã«é¢ãã)ç¹Pã®ãã§ãäžè§åœ¢ãšãããŸãã
åºæºäžè§åœ¢â³ABCãšãã§ãäžè§åœ¢â³A'B'C'ã¯ç¹Pãäžå¿ãšããé
æ¯ã®äœçœ®ã«ããã®ã§
ãã¶ã«ã°ã®å®çã«ããé
æ¯ã®è»žãååšããŸãã
ããªãã¡ãBCãšB'C'ã®äº€ç¹UïŒCAãšC'A'ã®äº€ç¹VïŒABãšA'B'ã®äº€ç¹Wã¯ããçŽç·läžã«ããã
ãã®çŽç·lã(â³ABCã«é¢ãã)ç¹Pã®äžç·æ¥µç·ãšãããŸãã
ãŸããA,A'ã«é¢ããç¹Pã®èª¿åå
±åœ¹ç¹ãA''ïŒB,B'ã«é¢ããç¹Pã®èª¿åå
±åœ¹ç¹ãB''ïŒ
C,C'ã«é¢ããç¹Pã®èª¿åå
±åœ¹ç¹ãC''ãšãããšãã
â³A''B''C''ã(â³ABCã«é¢ãã)ç¹Pã®åãã§ãäžè§åœ¢ãšãããŸãã
4ç¹A,U,B'',C''ïŒ4ç¹B,V,C'',A''ïŒ4ç¹C,W,A'',B''ã¯ããããäžçŽç·äžã«ãããŸãã
åºæºäžè§åœ¢â³ABCãšåãã§ãäžè§åœ¢â³A''B''C''ã¯ç¹Pãäžå¿ãšããé
æ¯ã®äœçœ®ã«ããã®ã§
ãã¶ã«ã°ã®å®çã«ããé
æ¯ã®è»žãååšããŸãããããã¯çŽç·lã«äžèŽããŸãã
(2)[çŽç·lããå§ããå Žå]
åºæºäžè§åœ¢ãâ³ABCãšããŸãã
çŽç·lã¯ç¹A,B,CãéããªãçŽç·ãšãã
çŽç·lãšçŽç·BC,CA,ABã®äº€ç¹ãããããU,V,WãšããŸãã
3çŽç·AU,BV,CWã蟺ãšããäžè§åœ¢ãâ³A''B''C''ãšããŸãã
(BVãšCWã®äº€ç¹ãA''ïŒCWãšAUã®äº€ç¹ãB''ïŒAUãšBVã®äº€ç¹ãC''ãšããŸãã)
åºæºäžè§åœ¢â³ABCãšâ³A''B''C''ã¯çŽç·lã軞ãšããé
æ¯ã®äœçœ®ã«ããã®ã§
ãã¶ã«ã°ã®å®çã«ããé
æ¯ã®äžå¿ãååšããŸãã
ããªãã¡ã3çŽç·AA'',BB'',CC''ã¯ããç¹Pã§äº€ããã
ãã®ç¹Pã(â³ABCã«é¢ãã)çŽç·lã®äžç·æ¥µç¹ãšãããŸãã
ãŸããBC,AUã«é¢ããçŽç·lã®èª¿åå
±åœ¹ç·ãiïŒCA,BVã«é¢ããçŽç·lã®èª¿åå
±åœ¹ç·ãjïŒ
AB,CWã«é¢ããçŽç·lã®èª¿åå
±åœ¹ç·ãkãšãããšãã
3çŽç·i,j,kã蟺ãšããäžè§åœ¢ãâ³A'B'C'ãšããŸãã
(jãškã®äº€ç¹ãA'ïŒkãšiã®äº€ç¹ãB'ïŒiãšjã®äº€ç¹ãC'ãšããŸãã)
4çŽç·BC,AA'',j,kïŒ4çŽç·CA,BB'',k,iïŒ4çŽç·AB,CC'',i,jã¯ããããäžç¹ã§äº€ãããŸãã
åºæºäžè§åœ¢â³ABCãšâ³A'B'C'ã¯çŽç·lã軞ãšããé
æ¯ã®äœçœ®ã«ããã®ã§
ãã¶ã«ã°ã®å®çã«ããé
æ¯ã®äžå¿ãååšããŸãããããã¯ç¹Pã«äžèŽããŸãã
No.2539ããã²ã3æ11æ¥ 03:36
次ã®ãããªåé¡ãèããŠã¿ãŸããïŒ
ãåé¡ã
å¹³é¢äžã«æ Œåç¹ãé ç¹ãšããåè§åœ¢ABCDãããã
蟺ABäžãBCäžã«ã¯å¥æ°åã®æ Œåç¹ãããã蟺CDäžã«ã¯å¶æ°åã®æ Œåç¹ããããšãããšã蟺DAäžã«ããæ Œåç¹ã®åæ°ã¯å¥æ°åã§ãªããã°ãªããªããããããšãå¶æ°åã§ãªããã°ãªããªããïŒãããã¯ã©ã¡ããšãèšãããïŒãã ãã0ãå¶æ°ã«å«ãããã®ãšããã
è²ã
ãªè§£æ³ããããããããŸããã
No.2533Tabasco3æ10æ¥ 10:28
ãã¿ãŸãããæåŸã®äžæã®0ãå¶æ°ã«å«ãããã®ãšãããã¯äœèšã§ãããïŒ
No.2534Tabasco3æ10æ¥ 10:38
蟺äžã®æ Œåç¹ã奿°åâ蟺ã®äžç¹ãæ Œåç¹â蟺ã®äž¡ç«¯ã®åº§æšã®å¶å¥ãx,yãšãåã
蟺äžã®æ Œåç¹ãå¶æ°åâ蟺ã®äžç¹ãéæ Œåç¹â蟺ã®äž¡ç«¯ã®åº§æšã®å¶å¥ãx,yããããã§ç°ãªã
ãšãªããããåé¡ã®æ¡ä»¶ã§ã¯A,B,Cã®åº§æšã®å¶å¥ã¯x,yãšãåã
ãããŠDãšCã¯åº§æšã®å¶å¥ãx,yããããã§ç°ãªããã
DãšAã座æšã®å¶å¥ãx,yããããã§ç°ãªãããšã«ãªãã
蟺DAäžã®æ Œåç¹ã®åæ°ã¯å¿
ãå¶æ°åã
No.2536ãããã3æ10æ¥ 12:57
æ£è§£ã§ãïŒ
ã¡ãã£ãšç°¡åéããŸããããã
No.2537Tabasco3æ10æ¥ 13:34
åèš2533ä»¶ (æçš¿438, è¿ä¿¡2095)