ããã®ãÏãšã®é¢é£æ§ãã§ã
ã
1-1/3^3+1/5^3-1/7^3+1/9^3-1/11^3+=Ï^3/32
1-1/2^3+1/4^3-1/5^3+1/7^3-1/8^3+1/10^3-1/11^3+1/13^3-1/14^3+=4*Ï^3/(81*â3)
ãªã©ã®é¢ä¿åŒããããŸããããããã¯ã¯ã©ãŠãŒã³é¢æ°ãšãã«ããŒã€å€é
åŒãçšããŠå°ãããšãã§ããŸãã
https://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%A9%E3%82%A6%E3%82%BC%E3%83%B3%E9%96%A2%E6%95%B0
https://ja.wikipedia.org/wiki/%E3%83%99%E3%83%AB%E3%83%8C%E3%83%BC%E3%82%A4%E5%A4%9A%E9%A0%85%E5%BC%8F
ãã«ããŒã€å€é
åŒã¯ãã«ããŒã€æ°b_kãšäºé
ä¿æ°C(n,k)ãçšããŠã
B_n(x)=Σ_{k=1}^{â}C(n,k)b_{n-k}x^k
ãšè¡šãããŸãã
ã¯ã©ãŠãŒã³é¢æ°ã®ãã¡ãSl_zãšãã颿°ã¯
Sl_z(Ξ)=Σ_{k=1}^{â}(sin(kΞ)/k^z)
ãšè¡šãããŸããSl_zãšB_nã®éã«ã¯ã
Sl_{2m-1}(Ξ)=(-1)^m(2Ï)^(2m-1)/2/(2m-1)!*B_{2m-1}(Ξ/(2Ï))
ãšããé¢ä¿åŒããããŸãã3ä¹ã®å Žåã¯ã
Sl_3(Ξ)=Σ_{k=1}^{â}(sin(kΞ)/k^3)
B_3(x)=x^3-(3/2)*x^2+1/2*x
Sl_3(Ξ)=(-1)^2*(2Ï)^3/2/3!*B_3(Ξ/(2Ï))=(2/3)*Ï^3*B_3(Ξ/(2Ï))
ãçšããŸãã
åšæ4ã®å Žåã¯ã
Sl_3(Ï/2)=1-1/3^3+1/5^3-1/7^3+...=(2/3)*Ï^3*B_3(1/4)
B_3(1/4)=(1/4)^3-(3/2)*(1/4)^2+(1/2)*(1/4)=3/64
ããã
1-1/3^3+1/5^3-1/7^3+...=1/32*Ï^3
ãšãªããŸãã
åšæ3ã®å Žåã¯ã
Sl_3(2Ï/3)=(â3/2)*(1-1/2^3+1/4^3-1/5^3+...)=(2/3)*Ï^3*B_3(1/3)
B_3(1/3)=(1/3)^3-(3/2)*(1/3)^2+(1/2)*(1/3)=1/27
ããã
1-1/2^3+1/4^3-1/5^3+...=4/(81â3)*Ï^3
ãšãªããŸãã
åšæ6ã®å Žåã¯ã
Sl_3(Ï/3)=(â3/2)*(1+1/2^3-1/4^3-1/5^3+...)=(2/3)*Ï^3*B_3(1/6)
B_3(1/3)=(1/6)^3-(3/2)*(1/6)^2+(1/2)*(1/6)=5/108
ããã
1+1/2^3-1/4^3-1/5^3+...=5/(81â3)*Ï^3
ãªã®ã§ã
1-1/5^3+1/7^3-1/11^3+...=1/(18â3)*Ï^3
ãšãªããŸãã
åšæ8ã®å Žåã¯ã
Sl_3(Ï/4)=1/â2+1/2^3+1/â2/3^3-1/â2/5^3-1/6^3-1/â2/7^3+...=(2/3)*Ï^3*B_3(1/8)
Sl_3(3Ï/4)=1/â2-1/2^3+1/â2/3^3-1/â2/5^3+1/6^3-1/â2/7^3+...=(2/3)*Ï^3*B_3(3/8)
B_3(1/8)=21/512,B_3(3/8)=15/512
ããã
Sl_3(Ï/4)+Sl_3(3Ï/4)=â2+â2/3^3-â2/5^3-â2/7^3+...=3/64*Ï^3
ãªã®ã§ã
1+1/3^3-1/5^3-1/7^3+...=3/(64â2)*Ï^3
ãšãªããŸãã
åšæ5ãš10ã®å Žåã«ã€ããŠã¯ã
Sl_3(Ï/5)=â(3-Ï)/2+â(Ï+2)/2/2^3+â(Ï+2)/2/3^3+â(3-Ï)/2/4^3
-â(3-Ï)/2/6^3-â(Ï+2)/2/7^3-â(Ï+2)/2/8^3-â(3-Ï)/2/9^2+...
Sl_3(2*Ï/5)=â(Ï+2)/2+â(3-Ï)/2/2^3-â(3-Ï)/2/3^3-â(Ï+2)/2/4^3+...
Sl_3(3*Ï/5)=â(Ï+2)/2-â(3-Ï)/2/2^3-â(3-Ï)/2/3^3+â(Ï+2)/2/4^3
-â(Ï+2)/2/6^3+â(3-Ï)/2/7^3+â(3-Ï)/2/8^3-â(Ï+2)/2/9^3+...
Sl_3(4*Ï/5)=â(3-Ï)/2-â(Ï+2)/2/2^3+â(Ï+2)/2/3^3-â(3-Ï)/2/4^3+...
Ï=(1+â5)/2
Sl_3(Ï/5)=(2/3)*Ï^3*B_3(1/10)=3/125*Ï^3
Sl_3(2Ï/5)=(2/3)*Ï^3*B_3(1/5)=4/125*Ï^3
Sl_3(3Ï/5)=(2/3)*Ï^3*B_3(3/10)=7/250*Ï^3
Sl_3(4Ï/5)=(2/3)*Ï^3*B_3(2/5)=2/125*Ï^3
ããã
â(Ï+2)Sl_3(2Ï/5)+â(3-Ï)Sl_3(4Ï/5)
=5/2-5/2/4^3+5/2/6^3-5/2/9^3+...
=(â(Ï+2)*4/125+â(3-Ï)*2/125)*Ï^3
ãªã®ã§ã
1-1/4^3+1/6^3-1/9^3+...=(â(Ï+2)*8/625+â(3-Ï)*4/625)Ï^3
ãšãªããŸãã
â(3-Ï)Sl_3(2Ï/5)-â(Ï+2)Sl_3(4Ï/5)
=5/2*(1/2^3-1/3^3+1/7^3-1/8^3+...)
=(â(3-Ï)*4/125-â(Ï+2)*2/125)*Ï^3
ãªã®ã§ã
1/2^3-1/3^3+1/7^3-1/8^3+...=(â(3-Ï)*8/625-â(Ï+2)*4/625)*Ï^3
ãšãªããŸãã
â(3-Ï)Sl_3(Ï/5)+â(Ï+2)Sl_3(3Ï/5)
=5/2+5/2/4^3-5/2/6^3-5/2/9^3+...
=(â(3-Ï)*3/125+â(Ï+2)*7/250)*Ï^3
ãªã®ã§ã
1+1/4^3-1/6^3-1/9^3+...=(â(3-Ï)*6/625+â(Ï+2)*7/625)*Ï^3
ãšãªããŸãã
â(Ï+2)Sl_3(Ï/5)-â(3-Ï)Sl_3(3Ï/5)
=5/2/2^3+5/2/3^3-5/2/7^3-5/2/8^3+...
=(â(Ï+2)*3/125-â(3-Ï)*7/250)*Ï^3
ãªã®ã§ã
1/2^3+1/3^3-1/7^3-1/8^3+...=(â(3-Ï)*6/625-â(Ï+2)*7/625)*Ï^3
ãšãªããŸãã
åšæ7ã®å Žåã«ã€ããŠã¯ã
Sl_3(2Ï/7)=sin(2*Ï/7)*(1-1/6^3+...)+sin(4Ï/7)*(1/2^3-1/5^3+...)+sin(6Ï/7)*(1/3^3-1/4^3+...)
Sl_3(4Ï/7)=sin(4*Ï/7)*(1-1/6^3+...)+sin(8Ï/7)*(1/2^3-1/5^3+...)+sin(12Ï/7)*(1/3^3-1/4^3+...)
Sl_3(6Ï/7)=sin(6*Ï/7)*(1-1/6^3+...)+sin(12Ï/7)*(1/2^3-1/5^3+...)+sin(18Ï/7)*(1/3^3-1/4^3+...)
Sl_3(2Ï/7)=(2/3)Ï^3*B_3(1/7)=10/343*Ï^3
Sl_3(4Ï/7)=(2/3)Ï^3*B_3(2/7)=10/343*Ï^3
Sl_3(6Ï/7)=(2/3)Ï^3*B_3(3/7)=4/343*Ï^3
ããã
sin(2Ï/7)*(1-1/6^3+...)+sin(4Ï/7)*(1/2^3-1/5^3+...)+sin(8Ï/7)*(-1/3^3+1/4^3+...)=10/343*Ï^3
sin(4Ï/7)*(1-1/6^3+...)+sin(8Ï/7)*(1/2^3-1/5^3+...)+sin(2Ï/7)*(-1/3^3+1/4^3+...)=10/343*Ï^3
sin(8Ï/7)*(1-1/6^3+...)+sin(2Ï/7)*(1/2^3-1/5^3+...)+sin(4Ï/7)*(-1/3^3+1/4^3+...)=-4/343*Ï^3
ãšæžãæããŠãzã1ã®åå§7乿 ¹ãšãããšã
sin(2Ï/7)=(z-z^-1)/2i,sin(4Ï/7)=(z^2-z^-2)/2i,sin(8Ï/7)=(z^4-z^-4)/2i
ã§ããã
1-1/6^3+1/8^3-1/13^3+...=(2i/2401)*(10*z^6+10*z^5+4*z^4-4*z^3-10*z^2-10*z)
1/2^3-1/5^3+1/9^3-1/12^3+...=(2i/2401)*(-4*z^6+10*z^5-10*z^4+10*z^3-10*z^2+4*z)
-1/3^3+1/4^3-1/10^3+1/11^3-...=(2i/2401)*(10*z^6-4*z^5-10*z^4+10*z^3+4*z^2-10*z)
ããã
1+1/2^3-1/3^3+1/4^3-1/5^3-1/6^3+...=(32i/2401)*Ï^3*(z^6+z^5-z^4+z^3-z^2-z)
ã§ããã
z^6+z^5-z^4+z^3-z^2-z=-iâ7
ãªã®ã§ã
1+1/2^3-1/3^3+1/4^3-1/5^3-1/6^3+...=32/(343â7)*Ï^3
ãšãªããŸãã
åšæ11ã®å Žåã«ã€ããŠã¯ã
Sl_3(2Ï/11)=sin(2Ï/11)*(1-1/10^3+...)+sin(4Ï/11)*(1/2^3-1/9^3+...)+sin(6Ï/11)*(1/3^3-1/8^3+...)
+sin(8Ï/11)*(1/4^3-1/7^3+...)+sin(10Ï/11)*(1/5^3-1/6^3+...)
Sl_3(4Ï/11)=sin(4Ï/11)*(1-1/10^3+...)+sin(8Ï/11)*(1/2^3-1/9^3+...)+sin(12Ï/11)*(1/3^3-1/8^3+...)
+sin(16Ï/11)*(1/4^3-1/7^3+...)+sin(20Ï/11)*(1/5^3-1/6^3+...)
Sl_3(6Ï/11)=sin(6Ï/11)*(1-1/10^3+...)+sin(12Ï/11)*(1/2^3-1/9^3+...)+sin(18Ï/11)*(1/3^3-1/8^3+...)
+sin(24Ï/11)*(1/4^3-1/7^3+...)+sin(30Ï/11)*(1/5^3-1/6^3+...)
Sl_3(8Ï/11)=sin(8Ï/11)*(1-1/10^3+...)+sin(16Ï/11)*(1/2^3-1/9^3+...)+sin(24Ï/11)*(1/3^3-1/8^3+...)
+sin(32Ï/11)*(1/4^3-1/7^3+...)+sin(40Ï/11)*(1/5^3-1/6^3+...)
Sl_3(10Ï/11)=sin(10Ï/11)*(1-1/10^3+...)+sin(20Ï/11)*(1/2^3-1/9^3+...)+sin(30Ï/11)*(1/3^3-1/8^3+...)
+sin(40Ï/11)*(1/4^3-1/7^3+...)+sin(50Ï/11)*(1/5^3-1/6^3+...)
Sl_3(2Ï/11)=(2/3)*Ï^3*B_3(1/11)=30/1331*Ï^3
Sl_3(4Ï/11)=(2/3)*Ï^3*B_3(2/11)=42/1331*Ï^3
Sl_3(6Ï/11)=(2/3)*Ï^3*B_3(3/11)=40/1331*Ï^3
Sl_3(8Ï/11)=(2/3)*Ï^3*B_3(4/11)=28/1331*Ï^3
Sl_3(10Ï/11)=(2/3)*Ï^3*B_3(5/11)=10/1331*Ï^3
ããã
Sl_3(2Ï/11)=sin(2Ï/11)*(1-1/10^3+...)+sin(6Ï/11)*(1/3^3-1/8^3+...)+sin(18Ï/11)*(-1/2^3+1/9^3+...)
+sin(10Ï/11)*(1/5^3-1/6^3+...)+sin(8Ï/11)*(1/4^3-1/7^3+...)
Sl_3(6Ï/11)=sin(6Ï/11)*(1-1/10^3+...)+sin(18Ï/11)*(1/3^3-1/8^3+...)+sin(10Ï/11)*(-1/2^3+1/9^3+...)
+sin(8Ï/11)*(1/5^3-1/6^3+...)+sin(2Ï/11)*(1/4^3-1/7^3+...)
-Sl_3(4Ï/11)=sin(18Ï/11)*(1-1/10^3+...)+sin(10Ï/11)*(1/3^3-1/8^3+...)+sin(8Ï/11)*(-1/2^3+1/9^3+...)
+sin(2Ï/11)*(1/5^3-1/6^3+...)+sin(6Ï/11)*(1/4^3-1/7^3+...)
Sl_3(10Ï/11)=sin(10Ï/11)*(1-1/10^3+...)+sin(8Ï/11)*(1/3^3-1/8^3+...)+sin(2Ï/11)*(-1/2^3+1/9^3+...)
+sin(6Ï/11)*(1/5^3-1/6^3+...)+sin(18Ï/11)*(1/4^3-1/7^3+...)
Sl_3(8Ï/11)=sin(8Ï/11)*(1-1/10^3+...)+sin(2Ï/11)*(1/3^3-1/8^3+...)+sin(6Ï/11)*(-1/2^3+1/9^3+...)
+sin(18Ï/11)*(1/5^3-1/6^3+...)+sin(10Ï/11)*(1/4^3-1/7^3+...)
ãšæžãæããŠã
sin(2Ï/11)*(1-1/10^3+...)+sin(6Ï/11)*(1/3^3-1/8^3+...)+sin(18Ï/11)*(-1/2^3+1/9^3+...)
+sin(10Ï/11)*(1/5^3-1/6^3+...)+sin(8Ï/11)*(1/4^3-1/7^3+...)=30/1331*Ï^3
sin(6Ï/11)*(1-1/10^3+...)+sin(18Ï/11)*(1/3^3-1/8^3+...)+sin(10Ï/1*1)*(-1/2^3+1/9^3+...)
+sin(8Ï/11)*(1/5^3-1/6^3+...)+sin(2Ï/11)*(1/4^3-1/7^3+...)=40/1331Ï^3
sin(18Ï/11)*(1-1/10^3+...)+sin(10Ï/11)*(1/3^3-1/8^3+...)+sin(8Ï/11)*(-1/2^3+1/9^3+...)
+sin(2Ï/11)*(1/5^3-1/6^3+...)+sin(6Ï/11)*(1/4^3-1/7^3+...)=-42/1331*Ï^3
sin(10Ï/11)*(1-1/10^3+...)+sin(8Ï/11)*(1/3^3-1/8^3+...)+sin(2Ï/11)*(-1/2^3+1/9^3+...)
+sin(6Ï/11)*(1/5^3-1/6^3+...)+sin(18Ï/11)*(1/4^3-1/7^3+...)=10/1331*Ï^3
sin(8Ï/11)*(1-1/10^3+...)+sin(2Ï/11)*(1/3^3-1/8^3+...)+sin(6Ï/11)*(-1/2^3+1/9^3+...)
+sin(18Ï/11)*(1/5^3-1/6^3+...)+sin(10Ï/11)*(1/4^3-1/7^3+...)=28/1331*Ï^3
ã§ãããzã1ã®åå§11乿 ¹ãšãããšã
sin(2Ï/11)=(z-z^-1)/2i,sin(6Ï/11)=(z^3-z^-3)/2i,sin(8Ï/11)=(z^4-z^-4)/2i,
sin(10Ï/11)=(z^5-z^-5)/2i,sin(18Ï/11)=(z^9-z^-9)/2i
ãªã®ã§ã
1-1/10^3+...=(2i/11^4)*Ï^3*(30*z^10+42*z^9+40*z^8+28*z^7+10*z^6-10*z^5-28*z^4-40*z^3-42*z^2-30*z)
1/3^3-1/8^3+...=(2i/11^4)*Ï^3*(28*z^10-40*z^9+30*z^8+10*z^7-42*z^6+42*z^5-10*z^4-30*z^3+40*z^2-28*z)
-1/2^3+1/9^3+...=(2i/11^4)*Ï^3*(10*z^10-30*z^9+28*z^8-42*z^7+40*z^6-40*z^5+42*z^4-28*z^3+30*z^2-10*z)
1/5^3-1/6^3+...=(2i/11^4)*Ï^3*(-42*z^10-28*z^9+10*z^8+40*z^7+30*z^6-30*z^5-40*z^4-10*z^3+28*z^2+42*z)
1/4^3-1/7^3+...=(2i/11^4)*Ï^3*(40*z^10-10*z^9-42*z^8+30*z^7+28*z^6-28*z^5-30*z^4+42*z^3+10*z^2-40*z)
ããã
1-1/2^3+1/3^3+1/4^3+1/5^3-1/6^3-1/7^3-1/8^3+1/9^3-1/10^3+...
=(2i/11^3)*Ï^3*(-12*z^9- 12*z^5-12*z^4-12*z^3-12*z-6)
=(12i/11^3)*Ï^3*(z^10-z^9+z^8+z^7+z^6-z^5-z^4-z^3+z^2-z)
ãªã®ã§ã
z^10-z^9+z^8+z^7+z^6-z^5-z^4-z^3+z^2-z=-iâ11
ããã
1-1/2^3+1/3^3+1/4^3+1/5^3-1/6^3-1/7^3-1/8^3+1/9^3-1/10^3+...=12/(121â11)*Ï^3
ãšãªããŸãã
玹ä»ããŠããã£ãŠåããŠç¥ãããšã«æããŸãããã®ã¯ã©ãŠãŒã³é¢æ°
äœãšãã«ããŒã€å€é
åŒãšçµã¿åãããããšã§ãã£ãªã¯ã¬ã®ããŒã¿é¢æ°ã
ãã£ãªã¯ã¬L颿°ãåŒãèµ·ããåããã§ãããã§ããã
ããäœå¹Žãåã«èšç®äžå¶ç¶èŠã€ããŠããçåŒããããªã«ãçè·¯éšç¶ãš
ä»ã®æŠå¿µããå°ãåºãããã®ãªã®ã ãšæåããŠããŸãã
ãã£ãªã¯ã¬ã¯ãã€ã(1805ïœ1859)
ã¯ã©ãŠãŒã³ã¯ãã³ããŒã¯(1801ïœ1885ïŒ
ã§ã»ãŒåãäžä»£ããäºãåºæ¿ãåããªããçããŠãããã§ããããã
äžã®äžè²ã
ãªäººã§æºã¡æº¢ããŠããŸããã
æ¹ããŠãã®äººãèªãã§ãããªã«ãç«æŽŸãªçºèŠããã£ãŠãããªãããäœã
åãç¥ãããŠããªãã®ã¯äžå
¬å¹³ã«æããã
ç§ã ããç¥ããªãã ããªã®ãïŒ
kuiperbeltããã¯äœæãã®ç¹ããã埡ç¥ãã«ãªã£ãã®ã§ããïŒ
ç§ãã¯ã©ãŠãŒã³é¢æ°ãç¥ã£ãã®ã¯ã€ãæè¿ã®ããšã§ããã
1-1/3^3+1/5^3-1/7^3+1/9^3-1/11^3+
1-1/2^3+1/4^3-1/5^3+1/7^3-1/8^3+1/10^3-1/11^3+1/13^3-1/14^3+
ãèŠãŠãå€é察æ°é¢æ°ãçšããŠ
Li_3(i)=i-1/2^3-i/3^3+1/4^3+i/5^3-1/6^3-i/7^3+1/8^3+
Li_3(Ï)=Ï+Ï^2/2^3+1/3^3+Ï/4^3+Ï^2/5^3+1/6^3+
ã®èéšã§è¡šããã®ã§ã¯ãªãããšèããè±èªçã®å€é察æ°é¢æ°ã®Wikipedeia(https://en.wikipedia.org/wiki/Polylogarithm)ã«
The polylogarithm with pure imaginary Ό may be expressed in terms of the Clausen functions Ci_s(Ξ) and Si_s(Ξ), and vice versa (Lewin 1958, Ch. VII § 1.4; Abramowitz & Stegun 1972, § 27.8):
Li_s(e^±iΞ)=Ci_s(Ξ)±iSi_s(Ξ)
ãšããèšèŒãèŠã€ããŠã¯ã©ãŠãŒã³é¢æ°ã«ãã©ãã€ããã®ã§ããã