ã¹ã¬ãã1055ã«ãã£ãäºé¢ãµã€ã³ãã§ãããäºé¢ãµã€ã³ãã§ã¯ãäžèšã®ãµã€ãã«ã¯ãæ£äžè§æ±åã®ãã®ãšãåæ£äºè§éåæ±ãæ²é¢åãããã®ããããŸããã
https://oreore.red/polyhedron-dice-1-100
ãŸããäžèšã®ãµã€ãã«ã¯ãæ£äžè§æ±ã®å¯Ÿç§°æ§ããã£ããã®ãšã䞡端ãåã£ãæ£äºè§æ±ã®éçã®ãããªåœ¢ã®ãã®ããããŸããã
https://www.mathartfun.com/d357.html
ãããããäºé¢ãµã€ã³ãã§ã¯ãããŸããããæ£äºåé¢äœã®åé¢ã«1ïœ5ã4é¢ãã€ãããµã€ã³ããšããåé¢ãã€ã¹ã®åé¢ã«1ïœ5ã2é¢ãã€ãããµã€ã³ããšããã®ããããŸããã
https://item.rakuten.co.jp/headwear/50921/
https://item.rakuten.co.jp/headwear/51094/
1幎以äžåã®è©±ã§ããããããã1,3,7,9å
šéšïŒãããã以äžã¯ç¡çãšãããšãããŸã§ïŒèª¿ã¹çµãããOEISã«ç»é²ãããŸããã
m
1 A112386, A069568, A083747
3 A372056, A372262, A090584
7 A113076, A363922, A090464
9 A373859, A373201, A090465
äžã€ç®ã¯èªç¶æ°Nã®åŸã«mãnåïŒnïŒ0ïŒç¶ããæå°çŽ æ°
äºã€ç®ã¯ãã®nã®å€
äžã€ç®ã¯nâ§0ã®å Žåã®nã®å€
ãããã決ããŠçŽ æ°ã«ãªããªããã®ã¯-1ãšãªã£ãŠããŸãã
以äžãå ±åãŸã§ã
çµåãé¢æ°ã§æç«ãã代衚çãªãã®ãšããŠ
nC0+nC1+nC2++nCn=2^n
ãããã
ãã®ãµã€ãã§ãä»ã®ãããããªçåŒãæç«ããã³ãŒããŒã確ããã£ããããª
å°è±¡ãããæ¢ããèšå€§ãªå
容ãå«ãã§ããã®ã§äœåŠã ã£ããèŠã€ãããããªã®ã§
ããã«çŽ¹ä»ãããŠããããç¥ããŸããããè²ã
ãšäŸãäžããŠã¿ãŸãã®ã§ææŠããŠ
èŠãŠäžããã
nCkãå«ãŸãããšãç§ã¯çŽæã§ã¯ãªããªãæ°ãä»ããŸããã
(1)nãå¶æ°ã®ãšã
nC0+nC2+nC4++nCn
(2)nãå¥æ°ã®ãšã
nC0+nC2+nC4++nC[n-1]
(3)kã®æ¹ãåºå®ãã
nCk+[n+1]Ck+[n+2]Ck++[n+m]Ck
(4)n,kãåæã«å€åããã
nCk+[n-1]C[k-1]+[n-2]C[k-2]++[n-k]C0
(5)n,k,笊å·ãåæã«å€åããã
2nC0-[2n-1]C1+[2n-2]C2-[2n-3]C3++(-1)^n*nCn
(6)2ã€ã®Cé¢æ°ã®ç©ãçµåãã
nC0*mCk+nC1*mC[k-1]+nC2*mC[k-2]++nCk*mC0
(7)2ã€ã®Cé¢æ°ã®ç©ã笊å·ã亀äºã«çµåãã
nC0*nCk-nC1*[n-1]S[k-1]+nC2*[n-2]C[k-2]-+(-1)^k*nCk*[n-k]C0
(8)Cã«ä¿æ°ãä»éããã
2nCn+2*[2n-1]Cn+2^2*[2n-2]Cn++2^n*nCn
http://shochandas.xsrv.jp/number/binomialcoefficient.htm
âãã®ããŒãžã§ããã
ãããŠ
(1)ãš(2)ã¯äžèšããŒãžã®(6)
(3)ã¯äžèšããŒãžã®(11)
(6)ã¯äžèšããŒãžã®(16)
ã«çžåœããŸããã
(4)(5)(7)(8)ã¯ãªãããã§ããããæ¢ãæ¹ãæªãã ãããç¥ããŸããã
http://shochandas.xsrv.jp/number/binomialcoefficient.htm
ã®ããŒãžãèŠãŠããŸããã
(5)ã¯äžèšããŒãžã®(12)
(8)ã¯äžèšããŒãžã®(13)
ã«çžåœããŸããã
(4)ã¯ãäžèšããŒãžã®(11)ã®èª¬ææã®ãªãã®
ã(11)ã§ãk=nã®ãšãã¯ãâŠâŠãç·åã®å
¬åŒããšãèšããããã
ã®éšåã«æžãããŠããåŒã«ãããŠnã«n-kã代å
¥ããŠmã«kã代å
¥ãããã®ãªã®ã§ãçãã¯[n+1]Ck
(7)ã¯ãäžèšããŒãžã®(27)ã«ãããŠäž¡èŸºã«(-1)^kããããŠnã«n-kã代å
¥ããŠmã«nã代å
¥ãããã®ãªã®ã§ãçãã¯(-1)^k*[k-1]Ck=0
ããïœå
šéšæ¢ã«ã¢ãããããŠãããã ã
ããã«ãªããã®ãäœã£ãŠã¿ãŸããã
(1)aCb*cC0+[a+1]Cb*cC1+[a+2]Cb*cC2+[a+3]Cb*cC3++[a+k]Cb*cCk++[a+c]Cb*cCc
(ãã ãaâ§bâ§câ§0)
(2) aC0*sCa - aC1*[s-t]Ca + aC2*[s-2*t]Ca - aC3*[s-3*t]Ca + +(-1)^k*aCk*[s-k*t]Ca++(-1)^a*aCa*[s-a*t]Ca
(ãã ãa,s,t>0ã®æŽæ°)
2/65=1/33+1/2145
=1/35+1/455
=1/39+1/195
=1/45+1/117
=1/65+1/65
ãš2/65ã®åæ°ã5éããå解å¯èœã§ããããšãã
äžè¬ã«a,nãèªç¶æ°ãšããŠ
a/n=1/x+1/y (ãªãgcd(a,n)==1;xâŠy;3âŠn<100;2âŠaâŠn-1)ãšãªãèªç¶æ°x,yãååšããã
ã§ããåæ°a/nãæãå€ãã®ãã¿ãŒã³ãæã€åæ°a/nã¯äœãïŒ
ãŸã
100âŠn<1000ã®ç¯å²ãªãäœã®åæ°ãïŒ
ãåãã
å€åœ¢ãããš
(ax-n)(ay-n)=n^2
ãšãªãaã¯å°ããã»ããè¯ãïŒè§£ãå€ããªãïŒãšæãããŸãã®ã§a=2ãšããŸãã
ãããšnã¯å¥æ°éå®ã§ãããããçŽæ°ã®å€ãå¥æ°ããè¯ãããã§ãã
100æªæºã§çŽæ°ãå€ãå¥æ°ã¯45,63,75,99ïŒããããn^2ã®çŽæ°ã¯15åïŒãªã®ã§
ãããã2/45,2/63,2/75,2/99ã解ãå€ã(解ã¯(15+1)/2=8å)ãšäºæ³ãããŸãã
åæ§ã«èãããš100以äž1000æªæºã§ã¯
3^3*5*7=945ã®çŽæ°ã®åæ°ã63ã§æå€
ãªã®ã§2/945ãæå€ïŒè§£ã¯(63+1)/2=32åïŒãšãªãããšãäºæ³ãããŸãã
ãã®åŸããã°ã©ã ãäœã£ãŠç¢ºèªãããšããã確ãã«ããããæå€ã§ããã
ããã«10000æªæºã«ãããš
3^2*5*7*11=3465, 3^2*5*7*13=4095, 3^2*5*7*17=5355, 3^2*5*7*19=5985,
3^2*5*7*23=7245, 3^2*5*7*29=9135, 3^2*5*7*31=9765, 3^2*5*11*13=6435,
3^2*5*11*17=8415, 3^2*5*11*19=9405, 3^2*5*13*17=9945, 3^2*7*11*13=9009,
3*5^2*7*11=5775, 3*5^2*7*13=6825, 3*5^2*7*17=8925, 3*5^2*7*19=9975,
3*5*7^2*11=8085, 3*5*7^2*13=9555
(4+1)(2+1)^3=135
(135+1)/2=68
ãã
2/3465,2/4095,2/5355,2/5775,2/5985,2/6435,2/6825,2/7245,2/8085,
2/8415,2/8925,2/9009,2/9135,2/9405,2/9555,2/9765,2/9945,2/9975
ã®18éãã§è§£ã68åãšãªãã®ãæå€ã100000æªæºã§ã¯
3^2*5*7*11*13=45045, 3^2*5*7*11*17=58905, 3^2*5*7*11*19=65835,
3^2*5*7*11*23=79695, 3^2*5*7*13*17=69615, 3^2*5*7*13*19=77805,
3^2*5*7*13*23=94185, 3*5^2*7*11*13=75075, 3*5^2*7*11*17=98175,
(4+1)(2+1)^4=405
(405+1)/2=203
ãã
2/45045,2/58905,2/65835,2/69615,2/75075,2/77805,2/79695,2/94185,2/98175
ã®9éãã§è§£ã203åãšãªãã®ãæå€ïŒãããã確èªæžã¿ïŒã§ããã
(è¿œèš)
1000000æªæºã§ã¯
3^2*5*7*11*13*17=765765, 3^2*5*7*11*13*19=855855
(4+1)(2+1)^5=1215
(1215+1)/2=608
ãã
2/765765,2/855855ã®2éãã§è§£ã608åãšãªãã®ãæå€
ãšãªãããã§ãããããã¯æªç¢ºèªã§ãã
2/765765=1/x+1/y (xâŠy)
ãæºãã[x,y]ã調ã¹ãŠã¿ãŸããã
M=[[765765], [382883, 293198400495], [382884, 97733055420], [382885, 58639986405], [382886, 41885813970], [382887, 32577940395], [382888, 26654748120], [382889, 22554076545], [382890, 19546917390], [382891, 17247325095], [382893, 13962193245], [382895, 11728303587], [382896, 10859568720], [382899, 8885171295], [382900, 8377469100], [382902, 7518280770], [382905, 6515894385], [382907, 5984015895], [382908, 5749363620], [382910, 5331255930], [382914, 4654319670], [382915, 4511121615], [382920, 3909689784], [382921, 3808149345], [382923, 3620111495], [382925, 3449771325], [382928, 3222339120], [382932, 2961979020], [382935, 2792744955], [382941, 2506348845], [382942, 2464231770], [382943, 2423506995], [382950, 2172220050], [382954, 2050718670], [382956, 1994927220], [382959, 1916709795],
[424710, 3887730], [425425, 3828825], [425799, 3798795], [425880, 3792360], [427245, 3687453], [427350, 3679650], [427635, 3658655],

[626535, 984555], [630630, 974610], [634270, 966042], [634865, 964665], [636480, 960960], [638495, 956403], [645150, 941850], [645645, 940797], [647955, 935935], [651508, 928620], [654381, 922845], [656370, 918918], [658944, 913920], [659022, 913770], [661045, 909909], [663663, 904995], [664020, 904332], [666666, 899470], [668745, 895713], [675495, 883883], [675675, 883575], [680680, 875160], [683298, 870870], [692835, 855855], [693420, 854964], [696150, 850850], [701415, 843115], [701505, 842985], [706095, 836451], [706860, 835380], [711620, 828828], [714714, 824670], [717145, 821457], [718263, 819995], [720720, 816816], [726495, 809523], [729729, 805545], [734825, 799425], [737919, 795795], [740520, 792792], [740740, 792540], [743886, 788970], [749190, 783090], [750057, 782145], [753984, 777920], [759330, 772310]]
#M=608
å
šéšãã¢ããããããšãããã10000åãè¶ããŸããã®ã§ã¢ãããäžæ¢ããŸãã®èŠåãåºãã®ã§éäžããã¶ãã®éšåãçç¥ããŸããã
2/855855ã確èªããŸããã
ç·åœããã§æ€çŽ¢ããŠããã®ã§ãããªç¯å²ãŸã§èããåã³ãŸããã§ããã
ãã®åŸ1000000æªæºã§ã¯2/765765,2/855855ã®608åãæå€ã§ããããšã¯ç¢ºèªã§ããŸããã
ãããŠã€ãã§ã«10000000æªæºã調ã¹ãŸããã10000000æªæºã§ã¯
3*5*7*11*13*17*19=4849845, 3*5*7*11*13*17*23=5870865, 3*5*7*11*13*17*29=7402395,
3*5*7*11*13*17*31=7912905, 3*5*7*11*13*17*37=9444435, 3*5*7*11*13*19*23=6561555,
3*5*7*11*13*19*29=8273265, 3*5*7*11*13*19*31=8843835, 3*5*7*11*17*19*23=8580495
(2+1)^7=2187
(2187+1)/2=1094
3^4*5*7*11*13*17=6891885, 3^4*5*7*11*13*19=7702695, 3^4*5*7*11*13*23=9324315
(8+1)(2+1)^5=2187
(2187+1)/2=1094
ãã
2/4849845,2/5870865,2/6561555,2/6891885,2/7402395,2/7702695,
2/7912905,2/8273265,2/8580495,2/8843835,2/9324315,2/9444435
ã®12éãã§è§£ã1094åãšãªãã®ãæå€ïŒç¢ºèªæžã¿ïŒã§ãã
6æ26æ¥ä»ãã§æçš¿ãããŠããéæäžåŠã®å
¥è©Šåé¡ïŒïŒïŒïŒïŒïŒã®äžã«
ãïŒã€ã®ãããããæãããç®ã®ç©ãïŒã®åæ°ãšãªãç®ã®åºæ¹ã¯äœéããã
ãå°åŠçãææŠããåé¡ã«æå¿ããªãã解çãèªãã§
åãèšå®ã§ãã§ã¯ç®ã®ç©ã6ã®åæ°ãšãªãç®ã®åºæ¹ã¯äœéãããã®ããš
解çã®ããæ¹ãåèã«ããªããããããèªåãªãã®åŒãæãäžããŠ
èšç®ãããŠã¿ããæ£è§£ãšãããŠããã§ã¯ãªããã
æ£è§£ãšæãããæ°ã¯ããã°ã©ã ã«é Œã£ãŠåºãããã®ã«ãªããŸãã
ãããªã®ãå°åŠçãææŠã§ãããšããéãããŸãé©ãã§ãã
äœæ¹ãæãå¹çããæèšç®ã«ããæ±ãæ¹ããææäžããã
äœäºè±¡ãäœéããªã®ãã«ã€ããŠå
é€åçã䜿ã£ãŠ 321 éãã
âµ
ãã¹ãŠå¥æ°ïŒ3^4 = 81
ãã¹ãŠ3ã®åæ°ã§ãªãïŒ4^4 = 256
äž¡æ¹ã®æ¡ä»¶ãæºããïŒ1ãš5ã®ã¿ïŒïŒ2^4 = 16
å
é€åçã«ãã
äœäºè±¡ïŒ6ã®åæ°ã«ãªããªãäºè±¡)ã®å Žåã®æ°ã¯ 321 éãã
å
šäºè±¡ã 1296 éããªã®ã§æ±ããäºè±¡(ïŒã®åæ°ã«ãªã)ã®å Žåã®æ°ã¯
975éã
âŠâŠãšèšç®ããŠã¿ãŸããã
4ã®åæ°ããŒãžã§ã³ã§ã®ã管ç人ããã«ããæš¡ç¯è§£çãšã¯å¥ã®æ¹æ³ã§ããããç§ãå°åŠçã«æãããªãããããŸãã
äœäºè±¡ãèãããš
å
šéšå¥æ°ã
ïŒåãå¥æ°ã§æ®ãã2ãŸãã¯6ã®ç®ã§ã
6*6*6*6-(3*3*3*3+2*3*3*3+3*2*3*3+3*3*2*3+3*3*3*2) = 999
çµå±ã®ãšããäœäºè±¡ãèšç®ããã»ããæ©ãã±ãŒã¹ãããâŠãšæãããšæãã®ã§ãããã
管ç人ããã®æ¹æ³ãåèã«ãããªã次ã®ãããªæãã§ããããã
âïŒã€ã®ãããããæãããç®ã®ç©ãïŒã®åæ°ãšãªãç®ã®åºæ¹ã¯äœéããã
å°ãªããšã1åã"6"ãªãã°ãç®ã®ç©ã¯6ã®åæ°ãªã®ã§ã6^4-5^4=671éã
"3"ã1å以äžãã€("2"ãŸãã¯"4")ã1å以äžãªãã°ãç®ã®ç©ã¯6ã®åæ°ãšãªãã
"6"ããªãã"3"ã1åã("2"ãŸãã¯"4")ã1å ⊠4!/(1!1!2!)*1*2*2^2=96éã
"6"ããªãã"3"ã1åã("2"ãŸãã¯"4")ã2å ⊠4!/(1!2!1!)*1*2^2*2=96éã
"6"ããªãã"3"ã1åã("2"ãŸãã¯"4")ã3å ⊠4!/(1!3!)*1*2^3=32éã
"6"ããªãã"3"ã2åã("2"ãŸãã¯"4")ã1å ⊠4!/(2!1!1!)*1^2*2*2=48éã
"6"ããªãã"3"ã2åã("2"ãŸãã¯"4")ã2å ⊠4!/(2!2!)*1^2*2^2=24éã
"6"ããªãã"3"ã3åã("2"ãŸãã¯"4")ã1å ⊠4!/(3!1!)*1^3*2=8éã
以äžããã671+96+96+32+48+24+8=975éã
******
çãäžã®èšç®éãããå°ãæžãããšæ¬¡ã®ããã«ãªããŸãã
âïŒã€ã®ãããããæãããç®ã®ç©ãïŒã®åæ°ãšãªãç®ã®åºæ¹ã¯äœéããã
å°ãªããšã1åã"6"ãªãã°ãç®ã®ç©ã¯6ã®åæ°ãªã®ã§ã6^4-5^4=671éã
"3"ã1å以äžãã€("2"ãŸãã¯"4")ã1å以äžãªãã°ãç®ã®ç©ã¯6ã®åæ°ãšãªãã
ããã¯ã"6"ã1åãå«ãŸããªãå Žåã®ãã¡ã
4åãšã"3"ã§ãªãå Žåãš4åãšã("2"ãŸãã¯"4")ã§ãªãå Žåãé€å€ãã
éè€ããŠé€å€ããŠãã4åãšã("1"ãŸãã¯"5")ã§ããå Žåã足ããªããã°ããã®ã§ã
5^4-4^4-3^4+2^4=304éã
以äžããã671+304=975éã
\\\\\\
ãããã次ã®æ¹æ³ã®ããããããããšæããŸãã
âïŒã€ã®ãããããæãããç®ã®ç©ãïŒã®åæ°ãšãªãç®ã®åºæ¹ã¯äœéããã
ç®ã®ç©ãïŒã®åæ°ãšãªããªãç®ã®åºæ¹ãèããã
ã4ã€ãšãå¥æ°ã®å Žåã®æ°â ããšã4ã€ãšã3ã®åæ°ã§ãªãå Žåã®æ°â¡ãã®åãã
ã4ã€ãšãå¥æ°ã§ã3ã®åæ°ã§ããªãå Žåã®æ°â¢ããåŒãã°ããã
â 4ã€ãšãå¥æ°ã§ãããšã ⊠3^4=81éã
â¡4ã€ãšã3ã®åæ°ã§ãªããšã ⊠4^4=256éã
â¢4ã€ãšã"1"ãŸãã¯"5"ã«ãªããšã ⊠2^4=16éã
ãã£ãŠãç®ã®ç©ãïŒã®åæ°ãšãªããªãç®ã®åºæ¹ã¯ã81+256-16=321éã
ãã¹ãŠã®ç®ã®åºæ¹ã¯ 6^4=1296éã ãªã®ã§ã
ç®ã®ç©ãïŒã®åæ°ãšãªãç®ã®åºæ¹ã¯
1296-321=975éã
------
ããšã®åé¡ããã¡ãã®æ¹ããããããããããããŸããã
âïŒã€ã®ãããããæãããç®ã®ç©ãïŒã®åæ°ãšãªãç®ã®åºæ¹ã¯äœéããã
ç®ã®ç©ãïŒã®åæ°ãšãªããªãç®ã®åºæ¹ãèããã
â 4ã€ãšãå¥æ°ã«ãªããšã ⊠3^4=81éã
â¡3ã€ãå¥æ°ã§æ®ã1ã€ã"2"ãŸãã¯"6"ã®ãšã ⊠(4C1)*3^3*2=216éã
ãã¹ãŠã®ç®ã®åºæ¹ã¯ 6^4=1296éã ãªã®ã§ã
ç®ã®ç©ãïŒã®åæ°ãšãªãç®ã®åºæ¹ã¯
1296-81-216=999éã
++++++
ãšãããŸã§æžããåŸã§ãGAIããã®åããããã
> äœæ¹ãæãå¹çããæèšç®ã«ããæ±ãæ¹ããææäžããã
ãšãããã®ã§ããããšã«æ°ã¥ããã
å¹çã®æªã解çãæžããŠããŸã£ããâŠâŠã
ã§ãããã£ããæžããã®ã§å
šéšæçš¿ããŠãããŸãã
ãã¹ãŠå¥æ°ïŒ3^4 = 81
ãã¹ãŠ3ã®åæ°ã§ãªãïŒ4^4 = 256
äž¡æ¹ã®æ¡ä»¶ãæºããïŒ1ãš5ã®ã¿ïŒïŒ2^4 = 16
å
é€åçã«ãã
äœäºè±¡ïŒ6ã®åæ°ã«ãªããªãäºè±¡)ã®å Žåã®æ°ã¯ 321 éã
ç®ã®ç©ãïŒã®åæ°ãšãªããªãç®ã®åºæ¹ãèããã
ã4ã€ãšãå¥æ°ã®å Žåã®æ°â ããšã4ã€ãšã3ã®åæ°ã§ãªãå Žåã®æ°â¡ãã®åãã
ã4ã€ãšãå¥æ°ã§ã3ã®åæ°ã§ããªãå Žåã®æ°â¢ããåŒãã°ããã
â 4ã€ãšãå¥æ°ã§ãããšã ⊠3^4=81éã
â¡4ã€ãšã3ã®åæ°ã§ãªããšã ⊠4^4=256éã
â¢4ã€ãšã"1"ãŸãã¯"5"ã«ãªããšã ⊠2^4=16éã
ãã£ãŠãç®ã®ç©ãïŒã®åæ°ãšãªããªãç®ã®åºæ¹ã¯ã81+256-16=321éã
ãäºäººãšããããã®å¹çè¯ãã¢ã€ãã¢ã«ãã©ãã€ããŸããïœ
æåããã²ãããã®æ§ã«çŽæ¥æ±ããããšããŠïŒå Žåããçµæ§æ²¢å±±ã«åãããŠè¡ã£ãŠããŸãã
é ã®äžããã¡ããã¡ããšæ··ä¹±ããŠè¡ããŸããã
ãããäœäºè±¡ã«ããã6ã®åæ°ã«ãªããªããã¿ãŒã³æ°ãäœãåºãèšç®åŒã
ãããªã«ãã¹ãããªãšæããªããŠæã£ãŠãããŸããã§ããã
ã¿ãªããã®ã»ã³ã¹ãèŠç¿ã£ãŠç²Ÿé²ç²Ÿé²ã
ãããAB ãçŽåŸãšããæ¡ä»¶ãå¿
èŠãªãã
ã»åã«å
æ¥ããå
è§åœ¢ã®å
è§ã 1 ã€ããã«è¶³ããš 360°
ã»åã«å
æ¥ããå
è§åœ¢ã®å€è§ã 1 ã€ããã«è¶³ããš 180°
ãæãç«ã€ã®ã§ã¯ãªãããšæããŸãã
æåãªåè§åœ¢ããŒãžã§ã³ãšããããŠèãããš
ã»åã«å
æ¥ãã 2n è§åœ¢ã®å
è§ã 1 ã€ããã«è¶³ããš (n-1)*180°
ã»åã«å
æ¥ãã 2n è§åœ¢ã®å€è§ã 1 ã€ããã«è¶³ããš 180°
ãšãªãããã§ããâŠâŠç°¡æãªèšŒæã¯ããã§ããããïŒ
çŽæ¥é¢ä¿ã¯ç¡ããããããŸããã以åããæ°ã«ãªã£ãŠããããšããã
æ²çãã©ããæ£ã§ããéããæ²ç·Cäžã§(æ²çã®å€ã¯äžå®ã§ãªããŠãæ§ããªãã)
ä»»æã®5ç¹ããšã
ããç¹ãã1ã€é£ã°ãã«çŽç·ãåŒããŠãããšãäžã«ãããã®æç¶ã®å³åœ¢ãæ§æãããã
ãã®æ圢ã®å
éšãå¡ã朰ããšã5åã®é ç¹ãæã€å³åœ¢ãã§ããã
ãã®æ5ã€ã®é ç¹ã®å
è§ããã¹ãŠè¶³ããš180°ãšãªãã
åãã
Cäžã«ä»»æã®6ç¹ããšã
ããç¹ãã1ã€é£ã°ãã«çŽç·ãåŒããŠãããšãéãã3è§åœ¢ãã§ããã
ç¶ããŠé£ã®ç¹ãã1ã€é£ã°ãã«çŽç·ãåŒããŠãããšãéãã3è§åœ¢ãåã³ã§ããã
ããã§äžã®æ§ã«äžãå¡ã朰ãã°ä»åºŠã¯6ã€ã®è§ããã€æç¶ã®å³åœ¢ãã§ããã
ãã®æ6ã€ã®é ç¹ã®å
è§ããã¹ãŠè¶³ããš360°ãšãªãã
以äžåæ§ã«
Cäžã«
ä»»æã®7ç¹ããšã
ããç¹ãã1ã€é£ã°ãã«çŽç·ãåŒããŠãããšã7åã®é ç¹ãæã€æåå³åœ¢ãã§ããã
ãã®æ7ã€ã®é ç¹ã®å
è§ããã¹ãŠè¶³ããš540°ãšãªãã
ãªãã2ã€é£ã°ãã§çµãã§ãããšããã®æ圢å³åœ¢ã§ã¯7ã€ã®é ç¹ã®å
è§ããã¹ãŠè¶³ããš180°ãšãªãã
Cäžã«
ä»»æã®8ç¹ããšã
ããç¹ãã1ã€é£ã°ãã«çŽç·ãåŒããŠãããšã2床繰ãè¿ããšã8åã®é ç¹ãæã€æåå³åœ¢ãã§ããã
ãã®æ8ã€ã®é ç¹ã®å
è§ããã¹ãŠè¶³ããš720°ãšãªãã
ãã®æ§ã«äžè¬ã«1ã€é£ã°ãã«çµãã§ããnè§ãæã€æç¶å³åœ¢ã§ããã®ãã¹ãŠã®å
è§ã®åããšãã°
180*(n-4)°ãšãªãã(n>=5)
ã¯æç«ãããšæããããã§ããã©ãã§ããããïŒ
ãããæ¬åœã§ããïŒ
å
è§åœ¢ã®å
è§ãAããFãšããŠ
A = 0.5 * (arc BF)
E = 0.5 * (arc FD)
C = 0.5 * (arc DB)
A + C + E = 0.5*(720°)
A+ C + E = 360°
> å
è§åœ¢ã®å
è§ãAããFãšããŠ
> A = 0.5 * (arc BF)
> E = 0.5 * (arc FD)
> C = 0.5 * (arc DB)
> A + C + E = 0.5*(720°)
> A+ C + E = 360°
B,D,Fãçµãã§ãã ããã
Aã®å
è§ã¯â CAEã®éšåãšãªããŸãã
äžè§åœ¢ACEããA+C+E=180°
åãã
äžè§åœ¢BDFããB+D+F=180°
ãã£ãŠ
A+B+C+D+E+F=360°
ã®æå³ãšãªããŸãã
ãŸããã«æžããŠã¿ãŸãã
ããã匧ã«å¯Ÿããäžå¿è§ã¯ãåäžã®åŒ§ã®ååšè§ã®2åã§ããã
ãšããå®çã«ãããŠãäžå¿è§ã180°ãè¶
ããŠããŠãæãç«ã€ããšããŸããïŒããæ¬åœã§ããïŒïŒ
ãŸãå
è§åœ¢ ABCDEF ã«ã€ããŠãããåã«å
æ¥ããããšãèŠè«ããŠãããŸãããã®åã®äžå¿ãOãšããŸãã
â FAB ãã匧BFã®ååšè§ãšã¿ãªããŸãããã®ãšã匧ã¯é·ãæ¹ãããªãã¡ãC,D,E,ãééããã»ãã®åŒ§ãšããŸãã
â FOB ãã匧BFã®äžå¿è§ãšããŸãã匧ã®å®çŸ©ã¯å
çšãšåãã§ããäžå¿è§ã¯ 180 °ãè¶
ããããšããããŸãã
åæ§ã«ã㊠â BCD, â DEF ãååšè§ãšã¿ãªããŸãããŸããâ BOD, â DOF ãäžå¿è§ãšã¿ãªããŸãã
ïŒã€ã®äžå¿è§ã®ç·åãâ FOB+â BOD+â DOF ã¯ãïŒåãïŒåšããŠããã®ã§ïŒ720° ãšãªããŸããããã匧ã«å¯Ÿããäžå¿è§ã¯ãåäžã®åŒ§ã®ååšè§ã®2åã§ãããã®ã§å¯Ÿå¿ããååšè§ã®ç·åã§ããâ FAB+â BCD+â DEFã¯ã720°ã®ååãããªãã¡360°ãšãªããŸãã
ãåã«å
æ¥ããå
è§åœ¢ã®å
è§ã 1 ã€ããã«è¶³ããš 360°ããšèšããããšã«ãªãã®ã§ã¯ãšã
2nè§åœ¢ã«ã€ããŠãåæ§ã§ã¯ãªãããšïŒ
äžå¿è§ã䜿ãã°ãããªãã§ããã©ãã10 è§åœ¢ã®ãšãã«ã¯ 4 åšããŸãããããšããããŠããäžç¬ãããŒãã©ããªãã§ããããã£ãŠãªããŸããïŒ
ãã£ãšçŽæçã«ãããããã ãã£ãŠãªã蚌æããªããã®ããªãããšã
ãã£ã¡ã®ã»ããçŽæ¥çã§ãããã
2nè§åœ¢ããåã«å
æ¥ããŠããã®ã§ãåé ç¹ãšåã®äžå¿ãšã®éã«ç·åãè£å©ç·ãšããŠåŒããŠããããš2nåã®äºç蟺äžè§åœ¢ãããããšã«ãªããŸããäºç蟺äžè§åœ¢ã§ã¯ãµãã€ã®åºè§ãçããããšã«æ³šæãã2nåããé è§ã®è§åºŠã®åã¯360°ã§ããããšã«ãçæããŸãããã¡ããåäºç蟺äžè§åœ¢ã®å
è§ã®åã¯180°ã§ãã
äžãããã€ã¬ã¯ãã«æ±ããå
¬åŒãåŸããããšæããŸãã
ã€ã¡ãŒãžãã€ãããããšæãã®ã§å
è§åœ¢ã®ã±ãŒã¹ãã
å
ã®æçš¿ã«åŸã6ã€ã®äºç蟺äžè§åœ¢ãäœå³ããŸããããªãã¡ã
é è§ãA,åºè§ãaã®äºç蟺äžè§åœ¢ã
é è§ãB,åºè§ãbã®äºç蟺äžè§åœ¢ã
é è§ãC,åºè§ãcã®äºç蟺äžè§åœ¢ã
é è§ãE,åºè§ãdã®äºç蟺äžè§åœ¢ã
é è§ãE,åºè§ãeã®äºç蟺äžè§åœ¢ã
é è§ãF,åºè§ãfã®äºç蟺äžè§åœ¢ã
æ±ããããã²ãšã€ããã®å
è§ã®åãã¯
ïŒf+aïŒ+ïŒb+cïŒ+ïŒd+eïŒ
ã§ãã
ããã«ãããããšã䞊ã¹ããš
A+a+a=180°
B+b+b=180°
C+c+c=180°
D+d+d=180°
E+e+e=180°
F+f+f=180°
A+B+C+âŠâŠ+F=360°
äžãæŽçããã°
ïŒf+aïŒ+ïŒb+cïŒ+ïŒd+eïŒ=360°
ãåŸãããŸãã
ããããªãã»ã©ãäºç蟺äžè§åœ¢ãäœãæ¹æ³ããããŸãããã
ããã¯ç¢ºãã«ç°¡æã
äºç蟺äžè§åœ¢ãäœã£ãåŸããã ããå šå è§ã®ç·åã®ããã¿ãªååããšããæ¹åã«è¡ãã°ãã£ãšã¹ãã¬ãŒãã§ãããïŒ
1946ã«ãŠã
> "GAI"ãããæžãããŸãã:
> çŽæ¥é¢ä¿ã¯ç¡ããããããŸããã以åããæ°ã«ãªã£ãŠããããšããã
> æ²çãã©ããæ£ã§ããéããæ²ç·Cäžã§(æ²çã®å€ã¯äžå®ã§ãªããŠãæ§ããªãã)
> ä»»æã®5ç¹ããšã
> ããç¹ãã1ã€é£ã°ãã«çŽç·ãåŒããŠãããšãäžã«ãããã®æç¶ã®å³åœ¢ãæ§æãããã
> ãã®æ圢ã®å
éšãå¡ã朰ããšã5åã®é ç¹ãæã€å³åœ¢ãã§ããã
> ãã®æ5ã€ã®é ç¹ã®å
è§ããã¹ãŠè¶³ããš180°ãšãªãã
> åãã
> Cäžã«ä»»æã®6ç¹ããšã
> ããç¹ãã1ã€é£ã°ãã«çŽç·ãåŒããŠãããšãéãã3è§åœ¢ãã§ããã
> ç¶ããŠé£ã®ç¹ãã1ã€é£ã°ãã«çŽç·ãåŒããŠãããšãéãã3è§åœ¢ãåã³ã§ããã
> ããã§äžã®æ§ã«äžãå¡ã朰ãã°ä»åºŠã¯6ã€ã®è§ããã€æç¶ã®å³åœ¢ãã§ããã
> ãã®æ6ã€ã®é ç¹ã®å
è§ããã¹ãŠè¶³ããš360°ãšãªãã
> 以äžåæ§ã«
> Cäžã«
> ä»»æã®7ç¹ããšã
> ããç¹ãã1ã€é£ã°ãã«çŽç·ãåŒããŠãããšã7åã®é ç¹ãæã€æåå³åœ¢ãã§ããã
> ãã®æ7ã€ã®é ç¹ã®å
è§ããã¹ãŠè¶³ããš540°ãšãªãã
> ãªãã2ã€é£ã°ãã§çµãã§ãããšããã®æ圢å³åœ¢ã§ã¯7ã€ã®é ç¹ã®å
è§ããã¹ãŠè¶³ããš180°ãšãªãã
> Cäžã«
> ä»»æã®8ç¹ããšã
> ããç¹ãã1ã€é£ã°ãã«çŽç·ãåŒããŠãããšã2床繰ãè¿ããšã8åã®é ç¹ãæã€æåå³åœ¢ãã§ããã
> ãã®æ8ã€ã®é ç¹ã®å
è§ããã¹ãŠè¶³ããš720°ãšãªãã
> ãã®æ§ã«äžè¬ã«1ã€é£ã°ãã«çµãã§ããnè§ãæã€æç¶å³åœ¢ã§ããã®ãã¹ãŠã®å
è§ã®åããšãã°
> 180*(n-4)°ãšãªãã(n>=5)
> ã¯æç«ãããšæããããã§ããã©ãã§ããããïŒ
ââââ
以äžã§ã¯ n ãå¥æ°ã®ãšãã®ã¿ãèããŸãã(n>=5)
äžã€ããã«ç¹ãçµã¶äœå³ã«ããæå n è§åœ¢ãçãŸãããã®ãšããŸããããªãã¡ããã®æå n è§åœ¢ã®å
éšã«åž n è§åœ¢ãäœå³ããããã®ãšããŸãã(å¿
ãåžã«ãªããã©ããâŠãããã«ã¯ããããŸããã§ãããå€å倧äžå€«ïŒ)
ãã®ãšãã®ã¿ã«ã€ããŠä»¥äžã®ããã«èããŸãã
ã»äžã«ããåž n è§åœ¢ã®å€è§ã®å㯠n ã«ããã 360° ã§ãã
ã»åž n è§åœ¢ã®å蟺ã«äžè§åœ¢ã n åã¶ãäœå³ãããŠããŸãããããã®äžè§åœ¢ã®å
è§ã®ç·å㯠n*180° ã§ãã
ã»æ±ãããè§ã®ç·åã¯åŸè
ããåè
ã®ïŒåãåŒãããã®ã§ãã
ããªãã¡ã n*180 -720
ãã£ãŠ GAI ããã«ããäºæ³
180*(n-4)° (n>=5)
ã¯äžèšã®ããã«ç§ãèšå®ãã匷ãæ¡ä»¶ã®ããšã§ã¯æ£ãããã§ãã
å
éšã«åž n è§åœ¢ãã§ããªãå Žåã¯ç§ã«ã¯ãšãŠããšãŠãæãã€ããããŸããã§ããã
n ãå¶æ°ã§ãåãçå±ã§ããã£ããšç¥äººã«å³åº§ã«èšãããŠæç¶ãšããŸããã
å€è§ã䜿ããªãå¥è§£ãæããŠããããŸããã
nè§åœ¢ã®å
è§ã®åãS(n) ãšããŸãã
S(n) = 180°*(n-2)
(n>=5) ã®ãšãã«æ±ããæåã®é è§ã®è§åºŠã®å T(n) ã¯
T(n) = 2*S(n) -n*S(3) = 180°*(2*n -4) -n*180° = 180°*(n -4)
ãªãã»ã©âŠâŠ
GAI ããããã£ãããã«ã
> Cäžã« ä»»æã®7ç¹ããšãããç¹ãã1ã€é£ã°ãã«çŽç·ãåŒããŠãããšã7åã®é ç¹ãæã€æåå³åœ¢ãã§ããã
> ãã®æ圢å³åœ¢ã§ã¯7ã€ã®é ç¹ã®å
è§ããã¹ãŠè¶³ããš180°ãšãªãã
äžè¬çã«èšŒæããã«ã¯ã©ããããããã®ãæ€èšãã€ããŸãããå
éšã«7è§åœ¢ãã§ããŠããã°ã©ãããŒãªã®ã§ãããã©ããããšãéããŸããã
ãªããæ·»ä»ããåèå³ã¯ããå æžãªã®ã§âŠâŠãäºæ¿ãã ãããäžç¹ã§3çŽç·ã亀ãããšå«ã ãªããšããæå³ã§ãããããŸããã
蚌æããããã®ãææ¥ä»ã§ã¢ããäºå®ã§ãã
ããã ã
ïŒå°ã®æ©æ¢°ã§è£œåãäœããš
ïŒåéã§
ïŒåã®è£œåãåºæ¥ãã
ã§ã¯
ïŒïŒïŒå°ã®æ©æ¢°ã䜿ã£ãŠ
ïŒïŒïŒåã®è£œåãäœãã«ã¯äœåããããïŒ
ããããïŒåé
äžç¬ãä»äºç®ããªããšæãããåé¡ã
äžåŠåéšã«åºãããé¢çœãããããã
æ£å€é¢äœã¯ãäºã€ããããšããç¥ãããŠããŸãã
æ¡ä»¶â ããã¹ãŠã®é¢ãååãâ¡ãå
šãŠã®é ç¹ã®æ¬¡æ°ãåã
æ¡ä»¶ããç·©ãããšãä»ã«ããããŸããã
äžè§åœ¢å
æã§ãå
é¢äœãâ ãâ¡Ã
ãµãã«ãŒããŒã«ã®åœ¢ïŒãã©ãŒã¬ã³ïŒâ Ãâ¡Ã
æºæ£å€é¢äœãæ£å€é¢äœããåæã§çãŸãããã®
äžè§åœ¢ã ãšãããã€ã§ãã倧ããã€ãããã®ã§ããããïŒ
ç¡éã«ããã®ã§ããããïŒãææãã ããã
ãããŸããã
éãšæ±ã¯ãããã€ã§ãå¢ãããŸããïŒ
2nCnãš2nCn/4^nã®ååéšåããšãŠãé¢çœãé¢ä¿æ§ãæç«ããŠããããšãããããŸããã
ããã
2nCnã®æŽæ°ãçŽ å æ°å解ã§2^r0*p1^r1*p2^r2*p3^r3(p1,p2,p3,ã¯2以å€ã®å¥çŽ æ°)
ãšãªã£ãŠãããšã
2nCn/4^nã®ååéšåã¯p1^r1*p2^r2*p3^r3ãšãã£ããäžã®çŽ å æ°2^r0ã®éšåãæãèœã¡ã
ãã®ãçŸããããšã«ãªãã
ããã2ã§ã®ææ°r0ã¯ïœã2é²æ³ã§è¡šããæã®1ã®äœ¿çšåæ°(=hammingweight(n))ã察å¿ããŠããã
(確èª)
{2nCn/4^n}ã®æ°åã®æ§å
gp > for(n=1,20,print1(binomial(2*n,n)/4^n","))
1/2,3/8,5/16,35/128,63/256,231/1024,429/2048,6435/32768,12155/65536,46189/262144,
88179/524288,676039/4194304,1300075/8388608,5014575/33554432,9694845/67108864,
300540195/2147483648,583401555/4294967296,2268783825/17179869184,
4418157975/34359738368,34461632205/274877906944,
ãããã£ãŠãã®ååéšåã¯
1,3,5,35,63,231,429,6435,12155,46189,
88179,676039,1300075,5014575,9694845,
300540195,583401555,2268783825,
4418157975,34461632205,
ããã§2nCnã®å€ãã2^r0=2^hammingweight(n)ãåãé€ãæäœã§
2nCnã®å€(ãã€ããªãŒè¡šç€ºãå³ã«hammingweight(n)ã ãã·ããããã)
gp > for(n=1,20,print1(binomial(2*n,n)>>hammingweight(n)","))
1,3,5,35,63,231,429,6435,12155,46189,
88179,676039,1300075,5014575,9694845,
300540195,583401555,2268783825,
4418157975,34461632205,
ããšã§äžèŽãããããããšã«ãªãã
æŽã«é©ããããšã¯ããã®æ°åã1/â(1-x)ã§ã®ãã€ã©ãŒå±éåŒ
gp > taylor(1/sqrt(1-x),x)
%84 = 1 + 1/2*x + 3/8*x^2 + 5/16*x^3 + 35/128*x^4 + 63/256*x^5
+ 231/1024*x^6 + 429/2048*x^7 + 6435/32768*x^8 + 12155/65536*x^9 + 46189/262144*x^10 + 88179/524288*x^11 + 676039/4194304*x^12 + 1300075/8388608*x^13 + 5014575/33554432*x^14 + 9694845/67108864*x^15 + 300540195/2147483648*x^16 + 583401555/4294967296*x^17 + 2268783825/17179869184*x^18 + 4418157975/34359738368*x^19 + 34461632205/274877906944*x^20 +
O(x^21)
ã§ã®åä¿æ°ã®ååã«åºçŸããŠããŸããšããæã£ãŠãããªãç¹ãããæã€ããšã§ããã
äºé
ä¿æ°ã®äžå€®å€ã§ãã
Central binomial coefficients: binomial(2*n,n) = (2*n)!/(n!)^2 (;A000984)
ããšãŠãååšçÏãšå¯æ¥ãªé¢ä¿ãä¿æããŠããããšãèµ·ãã£ãŠããããšã«
ãªã£ãŠããæš¡æ§ã§ãã
次ã®ç¡éçŽæ°åãèµ·ããããã§ãã
2^2/(1*2C1)+2^3/(2*4C2)+2^4/(3*6C3)++2^(n+1)/(n*2nCn)+=Ï
ãããå
·äœçãªæ°å€ã§ç€ºããš
2+2/3+4/15+4/35+16/315+16/693+32/3003+32/6435+256/109395+256/230945+=Ï
ãèšç®äžæç«ããããã§ãã
ãŸãå°ã圢ãå€ããŠ
2^4/(1*2C1^2), 2^8/(2*4C2^2), 2^12/(3*6C3^2),, 2^(4n)/(n*2nCn^2),
ã®äžè¬é
ã¯n->ooã§ã¯
lim[n->oo]2^(4n)/(n*2nCn^2)=Ï
ã§æç«ã®æš¡æ§ã
æ®éÏãšã¯
1-1/3+1/5-1/7+1/9-=Ï/4
1+1/2^2+1/3^2+1/4^2+1/5^2+=Ï^2/6
çã§é¡ãè¡šãããšã§ãã芪ããã§ããªãã£ãã®ã§ãæ°é®®ãªæèŠã«å
ãŸããŸããã
æŽã«å®ç©åãšãç¹ãããŠ
Ï*2nCn=â«[x=-1->1](2*x)^(2n)/â(1-x^2)dx
ãèµ·ããããã§ãã