奿°ãé åºè¯ã䞊ã¹ããš
ãïœã ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒâŠ
ïŒn+1 ïŒïŒïŒãïŒãïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒãïŒïŒïŒïŒïŒãïŒïŒãâŠ
ãªã€ã©ãŒã®é¢æ°ããïŒã§å²ã£ããã®ã䞊ã¹ããš
e(2n+1)/2 ã¯ã
ãããïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒãâŠ
çŽ æ°ã®ãšãã¯ãå¢å ããŠãåææ°ã®ãšãã¯ãäžèŠåã§ãã
äŸãã°63Ã63ã§åè¡ååhammingweght=31
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0
0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0
0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1
1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0
0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1
1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1
1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0
0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0
0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1
1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1
1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0
0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1
1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0
0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0
0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1
1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1
1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0
0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0
0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0
0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1
1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0
0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0
0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1
1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0
0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1
1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1
1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1
1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1
1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0
0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1
1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0
0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0
0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0
0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0
0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1
1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0
0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1
1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1
1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0
0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0
0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1
1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0
0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1
1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1
1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0
0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1
1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1
1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0
0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1
1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0
0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0
0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
ããšã§ç§èš£ããæç€ºäžããã
第1è¡ã
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0
ã§ããããã¯
1(1)=10
10(10)=1001
1001(1001)=10010110
10010110(10010110)=1001011001101001
1001011001101001(1001011001101001)=10010110011010010110100110010110
10010110011010010110100110010110(10010110011010010110100110010110)=
1001011001101001011010011001011001101001100101101001011001101001
ãšãªãã®ã§æåŸã®1ãã«ããããŠ
63åã®äžã«1ã31åïŒ0ã¯32å)ã§ãããã®ãé
眮ããŠãããŸãã
ããšã¯ãããäžåãã€å³ããŒããŒã·ã§ã³ããŠæ§æããŠãããŸãã
ããããŠ63Ã63ã®è¡åã«ããŠã¿ããããã¹ãŠã®è¡ãåã®digitsweight=31
ã®ãã®ãçµæçã«æ§æãããŸããã
GAI ãã
ç§èš£ãããããšãããããŸãïŒïŒïŒ
ãŸããã® Thue-Morseå ãªã®ã§ããïŒïŒïŒïŒïŒ
ãããå·¡åããããšïŒïŒïŒïŒïŒïŒïŒ
䌌ããããªããšãïŒããã¿ã§è©Šããã
åçã ALL 1/2 ãšãªããŸããã
ããã£ãŠéæšç§»çããããªãã§ããããã(èŠç¬)ãããã¯ããã§é¢çœãã§ãããã©ãã
A=[1,8,9,16,17,24]
B=[2,7,10,15,18,23]
C=[3,6,11,14,19,22]
D=[4,5,12,13,20,21]
ã®ïŒçµã®ãµã€ã³ãã§åè² ããã°é¢çœãã§ããã
3ããã¿ãµã€ã³ããšããŠ
A=[1,4,4,4,4,4]ã;(å21ïŒ
B=[3,3,3,3,3,6]ã;(å21ïŒ
C=[2,2,2,5,5,5]ã;(å21ïŒ
A>B(p=25/36)
B>C(p=21/36)
C>A(p=21/36)
1ïœ18ãŸã§ã®æ°ã次ã®3ã€ã«æ¯ãåããã
A=[2,3,4,15,16,17] ;(å57)
B=[1,6,11,12,13,14];(å57)
C=[5,7,8,9,10,18] ;(å57ïŒ
A>B,B>C,C>A (p=21/36)
--------------------------------
4ããã¿ãµã€ã³ãã§
A=[2,3,3,9,10,11]
B=[0,1,7,8,8,8]
C=[5,5,6,6,6,6]
D=[4,4,4,4,12,12]
A>B,B>C,C>D,D>A (p=24/36)
A=[1,2,3,9,10,11]
B=[0,1,7,8,8,9]
C=[5,5,6,6,7,7]
D=[3,4,4,5,11,12]
A>B,B>C,C>D,D>A (p=22/36)
A=[0,0,4,4,4,4]
B=[1,1,1,5,5,5]
C=[2,2,2,2,6,6]
D=[3,3,3,3,3,3]
A>B,B>C,C>D,D>A (p=12/36)
ãªã©ãèãããããïŒ
ååã® 5 ããã¿ãããã
åçãå¹³æºåãããŸããã
A = (1, 13, 20, 24, 7)
B = (25, 9, 2, 11, 18)
C = (12, 16, 23, 10, 4)
D = (8, 5, 14, 17, 21)
E = (19, 22, 6, 3, 15)
B â A ⣠(13 : 12)
C â B ⣠(13 : 12)
D â C ⣠(13 : 12)
E â D ⣠(13 : 12)
A â E ⣠(13 : 12)
A â C ⣠(13 : 12)
B â D ⣠(13 : 12)
C â E ⣠(13 : 12)
D â A ⣠(13 : 12)
E â B ⣠(13 : 12)
䌌ããããªããšãïŒããã¿ã§è©Šããã
åçã ALL 1/2 ãšãªããŸããã
ããã£ãŠéæšç§»çããããªãã§ããããã(èŠç¬)ãããã¯ããã§é¢çœãã§ãããã©ãã
ãªããšãïŒããã¿ãµã€ã³ããåååãããŠããŸããã以äžã®ããããã¯ãïŒé¢ã§ãããæ®ãã®ïŒé¢ã«ãåãæ°ãããŠãŸãã
(7,10,16)
(5,13,15)
(3,9,21)
(1,12,20)
(6,8,19)
(4,11,18)
(2,14,17)
綺éºãªïŒããã¿ã«ãªã£ãŠãŸããŠã(察è§ç·å«ã)
匷ãã»ããšåŒ±ãã»ãã®åçã®æ¯ã¯å
šãŠ
5:4
ãšãªã£ãŠããŸãã
äžã²ãšãã ããä»çµã¿ãç¥ã£ãŠããŠ
ç²ãšä¹ã«ãäžã€ã®ãã¡ã²ãšã€ãããããéžã°ããŸãã
äžã¯ãã®ãµã€ã³ããã¿ãŠããããããã匷ããµã€ã³ããéžæããŸãã
ãšããïŒäººã²ãŒã ã®ãã€ã«ãµãïŒ
ãã§ããããã«äœã£ãã¿ããã§ãã
7竊ã¿ãã€ã¹ãŸã§åååãããŠãããšã¯ãããã§ããã
3,4,5,7竊ã¿ãšãããš6竊ã¿ãã€ã¹ãã§ãããã§ããã
å¶æ°ããã¿ãé£ããå°è±¡ããããŸãããªãªãžãã«(è»èŒªã®åçºæïŒ) ãã§ããããšããããŸããããªã«ããã€ã§ãããã®ã§ããããïŒ
ãã«ããŒãããã 5 ããã¿ã®
Grime ã®ãã€ã¹ãæããŠããããŸããã
â :4,4,4,4,4,9
â¡:3,3,3,3,8,8
â¢:2,2,2,7,7,7
â£:1,1,6,6,6,6
â€:0,5,5,5,5,5
èªäœã®ãã®ã«æ¯ã¹ãŠåçãé«ãã§ãã
1 â 2 ⣠(26 : 10)
2 â 3 ⣠(24 : 12)
3 â 4 ⣠(24 : 12)
4 â 5 ⣠(26 : 10)
5 â 1 ⣠(25 : 11)
1 â 3 ⣠(21 : 15)
3 â 5 ⣠(21 : 15)
5 â 2 ⣠(20 : 16)
2 â 4 ⣠(20 : 16)
4 â 1 ⣠(20 : 16)
ããããç§ãå¶æ°åã²ãšãã¿ã®éæšç§»çãã€ã¹ãäœããŸããã
A = (01, 10, 11, 12, 20, 22)
B = (02, 07, 09, 16, 19, 23)
C = (04, 06, 08, 14, 18, 24)
D = (03, 05, 13, 15, 17, 21)
â»ããã«ãæäœãã£ãœãã§ãããéè®ãªããšã«ã€ãã«ã³ã®ç©ã¿éãã§ãã
æ§è³ªâ :éæšç§»çãªåçããããŠãã²ããã確çãã§ãã
P(A>B) = P(B>C) = P(C>D) = P(D>A) = P(A>C) = P(B>D) = 19/36
æ§è³ªâ¡: 1 ãã 24 ãŸã§ã®æ°ã墿ããè¶£å³çã§ãã
6竊ã¿ãã€ã¹ã§ãšããããæãã€ãããã®ã§ããã
ãã€ã¹AïœFã®åºç®ã
A:(a1,a2,a3,a4,a5,a6)
B:(b1,b2,b3,b4,b5,b6)
C:(c1,c2,c3,c4,c5,c6)
D:(d1,d2,d3,d4,d5,d6)
E:(e1,e2,e3,e4,e5,e6)
F:(f1,f2,f3,f4,f5,f6)
ãšããŠã
a1<b1<c1<d1<e1<f1<f2<a2<b2<c2<d2<e2<e3<f3<a3<b3<c3<d3<
d4<e4<f4<a4<b4<c4<c5<d5<e5<f5<a5<b5<b6<c6<d6<e6<f6<a6
ãšããŠããšãããããa1ïœf6ã«1ïœ36ãå²ãåœãŠããšã
A:(1,8,15,22,29,36)
B:(2,9,16,23,30,31)
C:(3,10,17,24,25,32)
D:(4,11,18,19,26,33)
E:(5,12,13,20,27,34)
F:(6,7,14,21,28,35)
ã§ãA<B<C<D<E<F<A,A<C<E<A,B<D<F<Bã§åŒ·ãæ¹ã®åçã19/36ã§ãAãšDãBãšEãCãšFã«ã€ããŠã¯ãã«ãããã®4竊ã¿ãã€ã¹ãšåãããã«åçã1/2ãšãªããŸãã
ã«ã€ããŒãã«ãããïŒïŒïŒ
ãŸãããã³ã¬ïŒïŒïŒ
ãããããã«ããŒããã«æ¥ãã§ã¿ã¬ãã¿ãŸãã
kuiperbelt ããã
ãA<B<C<D<E<F<A, A<C<E<A, B<D<F<B ã§åŒ·ãæ¹ã®åçã19/36ã§ãã§ã¯ãªãã£ãã¿ããã§ãã
B â A ⣠(20 : 16)
C â B ⣠(20 : 16)
D â C ⣠(20 : 16)
E â D ⣠(20 : 16)
F â E ⣠(20 : 16)
A â F ⣠(20 : 16)
C â A ⣠(19 : 17)
D â B ⣠(19 : 17)
E â C ⣠(19 : 17)
F â D ⣠(19 : 17)
A â E ⣠(19 : 17)
B â F ⣠(19 : 17)
A â D ⣠(18 : 18)
B â E ⣠(18 : 18)
C â F ⣠(18 : 18)
远䌞:
kuiperbelt ããã®ããæ¹ã§
å
«é¢äœïŒåã®å¯Ÿç§°æ§ã®é«ãéæšç§»çãã€ã¹ãç°¡åã«äœãããšãã§ããŸããã
åãåãçµãã£ããæšªæ»ãããã®ã§ããã
éäžå³1
01,
02,
03,
04,
05,
06,
07,
08,09,
éäžå³2
01,10,
02,11,
03,12,
04,13,
05,14,
06,
07,
08,09,
éäžå³3
01,10,
02,11,
03,12,
04,13,
05,14,
06,15,
07,16,17,
08,09,
æçµå³
â 01,10,19,28,37,46,55,64
â¡02,11,20,29,38,47,56,57
â¢03,12,21,30,39,48,49,58
â£04,13,22,31,40,41,50,59
â€05,14,23,32,33,42,51,60
â¥06,15,24,25,34,43,52,61
âŠ07,16,17,26,35,44,53,62
â§08,09,18,27,36,45,54,63
2 â 1 ⣠(35 : 29)
3 â 2 ⣠(35 : 29)
4 â 3 ⣠(35 : 29)
5 â 4 ⣠(35 : 29)
6 â 5 ⣠(35 : 29)
7 â 6 ⣠(35 : 29)
8 â 7 ⣠(35 : 29)
1 â 8 ⣠(35 : 29)
3 â 1 ⣠(34 : 30)
4 â 2 ⣠(34 : 30)
5 â 3 ⣠(34 : 30)
6 â 4 ⣠(34 : 30)
7 â 5 ⣠(34 : 30)
8 â 6 ⣠(34 : 30)
1 â 7 ⣠(34 : 30)
2 â 8 ⣠(34 : 30)
4 â 1 ⣠(33 : 31)
5 â 2 ⣠(33 : 31)
6 â 3 ⣠(33 : 31)
7 â 4 ⣠(33 : 31)
8 â 5 ⣠(33 : 31)
1 â 6 ⣠(33 : 31)
2 â 7 ⣠(33 : 31)
3 â 8 ⣠(33 : 31)
1 â 5 ⣠(32 : 32)
2 â 6 ⣠(32 : 32)
3 â 7 ⣠(32 : 32)
4 â 8 ⣠(32 : 32)
次ã¯ïŒåã®ïŒé¢äœãã€ã¹ã®åºç®ã§ãã£ãŠåºç®ã®æåŸ
å€ã¯ãšãã« 60 ãåé¢ã®æ°ã¯å
šãŠçŽ æ°ãéæšç§»çãã€ã¹ãšãªã£ãŠããŸãã
P( A < B ) = P( B < C ) = P( C < D ) = P( D < A ) = 9/16
P( A < C ) = P( B < D ) = 1/2
A = ( 007, 037, 083, 113 )
B = ( 013, 041, 089, 097 )
C = ( 017, 047, 073, 103 )
D = ( 023, 031, 079, 107 )
â»çŽ æ°ã«ããã®ã¯å®å
šã«èä»®åšãã§ãããã©ããå®åã«ããã«ã¯ã©ããããããã®ãäžæã§ãããæåŸ
å€ãçãããããã£ãâŠâŠ
13åã®é貚13äººã®æè¡è
ã®å Žåã¯GF(3)äžã®å°åœ±å¹³é¢ãå¿çšããŠããŸãããã15åã®é貚15äººã®æè¡è
ã®å Žåã¯ãGF(2)äžã®3次å
å°åœ±ç©ºéãå¿çšããŠã15äººã®æè¡è
ã«1ïœ9,AïœFã®ååãã€ããŠã15åã®é貚ã«ããããïœãããã®ååãã€ããŠãããããã®é貚ã以äžã®ããã«7äººã®æè¡è
ãæž¬å®ããããšã«ããŸãã
ãïŒ1,2,3,4,9,A,B
ãïŒ1,2,5,6,9,C,D
ãïŒ1,3,5,7,A,C,E
ãïŒ5,6,7,8,9,A,B
ãïŒ3,4,7,8,9,C,D
ãïŒ2,4,6,8,A,C,E
ãïŒ1,3,6,8,A,D,F
ãïŒ1,2,7,8,9,E,F
ãïŒ1,4,5,8,B,C,F
ãïŒ9,A,B,C,D,E,F
ãïŒ1,4,6,7,B,D,E
ãïŒ3,4,5,6,9,E,F
ãïŒ2,4,5,7,A,D,F
ãïŒ2,3,6,7,B,C,F
ãïŒ2,3,5,8,B,D,E
1ïœ9,AïœFã®æè¡è
ã«GF(2)äžã®3次å
å°åœ±ç©ºéå
ã®ç¹ã以äžã®ããã«å¯Ÿå¿ããããšããããïœãããã®é貚ã¯GF(2)äžã®3次å
å°åœ±ç©ºéå
ã®å¹³é¢ã«å¯Ÿå¿ããŸãã
1:(0,0,0,1) 2:(1,0,0,1) 3:(0,1,0,1) 4:(1,1,0,1)
5:(0,0,1,1) 6:(1,0,1,1) 7:(0,1,1,1) 8:(1,1,1,1)
9:(1,0,0,0) A:(0,1,0,0) B:(1,1,0,0)
C:(0,0,1,0) D:(1,0,1,0) E:(0,1,1,0) F:(1,1,1,0)
å
šå¡ãçã®å ±åãããå Žåãåœé貚ã®åœç©ãã€ã³ãã¯7ã§æ¬ç©ã®é貚ã®åœç©ãã€ã³ãã¯3ãšãªããŸãã
éœæ§ãå ±åããã¯ãã®æè¡è
ãé°æ§ãšå ±åããå Žåã該åœãã7æã®åœç©ãã€ã³ãã1äžãããŸãã
é°æ§ãå ±åããã¯ãã®æè¡è
ãéœæ§ãšå ±åããå Žåã該åœãã7æã®åœç©ãã€ã³ãã1äžãããŸãã
ãããã£ãŠãæè¡è
ã1äººå ±åãåœãããšã«ãåœç©ãã€ã³ãã®å·®ã1ã ãæžå°ããŸãã
ããããæ¬ç©ãšåœç©ã®åœç©ãã€ã³ãã®å·®ã¯æ¬æ¥4ãã€ã³ãããã®ã§ãåœãã®å ±åã3人ãŸã§ãªããã®å€§å°é¢ä¿ãé転ããããšã¯ãããŸããã
察å¿ãã15ããã笊å·ã®æå°ããã³ã°è·é¢ã¯8ã«ãªãã®ã§ãåœãã®å ±åã3人ãŸã§ãªãåœé貚ãç¹å®ããããšãã§ããŸãããåœãã®å ±åã4人ã«ãªããšå ±åã«åœããããããšã¯ããã£ãŠããåœé貚ãç¹å®ããããšã¯ã§ããªããªããŸãã
ãªãã»ã©ãããã¯å匷ã«ãªããŸããã
ãµã€ã¯ãªãã¯ã«ç¿»èš³ã§ããŸããã®ã§ã瀌ã«ã
[
"0,1,1,1,0,0,0,0,1,0,1,0,0,1,1",
"1,0,1,1,1,0,0,0,0,1,0,1,0,0,1",
"1,1,0,1,1,1,0,0,0,0,1,0,1,0,0",
"0,1,1,0,1,1,1,0,0,0,0,1,0,1,0",
"0,0,1,1,0,1,1,1,0,0,0,0,1,0,1",
"1,0,0,1,1,0,1,1,1,0,0,0,0,1,0",
"0,1,0,0,1,1,0,1,1,1,0,0,0,0,1",
"1,0,1,0,0,1,1,0,1,1,1,0,0,0,0",
"0,1,0,1,0,0,1,1,0,1,1,1,0,0,0",
"0,0,1,0,1,0,0,1,1,0,1,1,1,0,0",
"0,0,0,1,0,1,0,0,1,1,0,1,1,1,0",
"0,0,0,0,1,0,1,0,0,1,1,0,1,1,1",
"1,0,0,0,0,1,0,1,0,0,1,1,0,1,1",
"1,1,0,0,0,0,1,0,1,0,0,1,1,0,1",
"1,1,1,0,0,0,0,1,0,1,0,0,1,1,0",
];
Dengan kesaktian Indukmu ããã®æçš¿è¡åãã¿ãŠãäŸãã°æ¬¡ã®ãããª31Ã31ã®ãã®ãæ§æã§ããã°
31åã®é貚ãš31äººã®æ€æ»å®ã§15åãã€ã®ç¡¬è²šã調æ»ããŠãããåé¡ã®ç¡¬è²šãçºèŠã§ãããšããããšãªãã§ããããïŒ
å
容ããŸã ããçè§£ã§ããŠãªããŠé çæŒ¢ãªè³ªåã«ãªããšæããŸãã
[0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0]
[0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0]
[0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1]
[1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0]
[0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1]
[1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1]
[1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0]
[0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0]
[0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1]
[1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1]
[1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0]
[0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1]
[1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0]
[0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0]
[0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1]
[1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0]
[0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1]
[1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1]
[1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0]
[0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1]
[1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0]
[0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0]
[0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1]
[1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1]
[1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0]
[0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0]
[0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1]
[1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0]
[0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1]
[1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1]
[1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0]
GAI ããã仿èŠããŸãããé©ããŸããããæéãã ããã
GAI ããã
ã¡ãã£ãšèŠã§ã¯ã
ãã®èšæž¬ã§ããš
åã€ãã®æ€æ»å®ãæå€§ïŒäººãŸã§ããŠãåœé貚ãç¹å®ã§ããããã§ããã1/3 ãåã€ããŠã倧äžå€«ã£ãŠãããããšã§ãã
ãšããããéå ±ãŸã§ã
P.S. 1/3 ãåãã€ããŠããããšããã®ã¯ç§ã®ééãã§ãããç³ãèš³ãããŸãã
31äººã®æè¡è
ã«1ïœ9,AïœH,JïœN,PïœXã®ååãã€ããŠã31åã®é貚ã«ããããïœããŸãã®ååãã€ããŠãããããã以äžã®ããã«GF(2)äžã®4次å
å°åœ±ç©ºéå
ã®31åã®ç¹ãš31æã®è¶
å¹³é¢ã«å¯Ÿå¿ãããŸããåè¶
å¹³é¢å
ã®15åã®ç¹ãã該åœããéè²šãæž¬å®ãã15äººã®æè¡è
ã«çžåœããŸãã
1:(0,0,0,0,1) 2:(1,0,0,0,1) 3:(0,1,0,0,1) 4:(1,1,0,0,1)
5:(0,0,1,0,1) 6:(1,0,1,0,1) 7:(0,1,1,0,1) 8:(1,1,1,0,1)
9:(0,0,0,1,1) A:(1,0,0,1,1) B:(0,1,0,1,1) C:(1,1,0,1,1)
D:(0,0,1,1,1) E:(1,0,1,1,1) F:(0,1,1,1,1) G:(1,1,1,1,1)
H:(1,0,0,0,0) J:(0,1,0,0,0) K:(1,1,0,0,0)
L:(0,0,1,0,0) M:(1,0,1,0,0) N:(0,1,1,0,0) P:(1,1,1,0,0)
Q:(0,0,0,1,0) R:(1,0,0,1,0) S:(0,1,0,1,0) T:(1,1,0,1,0)
U:(0,0,1,1,0) V:(1,0,1,1,0) W:(0,1,1,1,0) X:(1,1,1,1,0)
ãïŒ1,2,3,4,5,6,7,8,H,J,K,L,M,N,P
ãïŒ1,2,3,4,9,A,B,C,H,J,K,Q,R,S,T
ãïŒ1,2,5,6,9,A,D,E,H,L,M,Q,R,U,V
ãïŒ1,3,5,7,9,B,D,F,J,L,N,Q,S,U,W
ãïŒ9,A,B,C,D,E,F,G,H,J,K,L,M,N,P
ãïŒ5,6,7,8,D,E,F,G,H,J,K,Q,R,S,T
ãïŒ3,4,7,8,B,C,F,G,H,L,M,Q,R,S,T
ãïŒ2,4,6,8,A,C,E,G,J,L,N,Q,S,U,W
ãïŒ1,4,5,8,9,C,D,G,K,L,P,Q,T,U,X
ãïŒ1,3,6,8,9,B,E,G,J,M,P,Q,S,V,X
ãïŒ1,2,7,8,9,A,F,G,H,N,P,Q,R,W,X
ãïŒ1,3,5,7,A,C,E,G,J,L,N,R,T,V,X
ãïŒ1,2,5,6,B,C,F,G,H,L,M,S,T,W,X
ãïŒ1,2,3,4,D,E,F,G,H,J,K,U,V,W,X
ãïŒ2,3,6,7,A,B,E,F,K,L,P,Q,T,U,X
ãïŒ2,4,5,7,A,C,D,F,J,M,P,Q,S,V,X
ã¡ïŒ3,4,5,6,B,C,D,E,H,N,P,Q,R,W,X
ã€ïŒ2,4,6,8,9,B,D,F,J,L,N,R,T,V,X
ãŠïŒ3,4,7,8,9,A,D,E,H,L,M,S,T,W,X
ãšïŒ5,6,7,8,9,A,B,C,H,J,K,U,V,W,X
ãªïŒ1,4,6,7,9,C,E,F,K,M,N,Q,T,V,W
ã«ïŒ1,4,5,8,A,B,E,F,K,L,P,R,S,V,W
ã¬ïŒ1,3,6,8,A,C,D,F,J,M,P,R,T,U,W
ãïŒ1,2,7,8,B,C,D,E,H,N,P,S,T,U,V
ã®ïŒ2,3,5,8,A,B,D,G,K,M,N,Q,T,V,W
ã¯ïŒ2,3,6,7,9,C,D,G,K,L,P,R,S,V,W
ã²ïŒ2,4,5,7,9,B,E,G,J,M,P,R,T,U,W
ãµïŒ3,4,5,6,9,A,F,G,H,N,P,S,T,U,V
ãžïŒ1,4,6,7,A,B,D,G,K,M,N,R,S,U,X
ã»ïŒ2,3,5,8,9,C,E,F,K,M,N,R,S,U,X
ãŸïŒH,J,K,L,M,N,P,Q,R,S,T,U,V,W,X
察å¿ãã31ããã笊å·ã¯ä»¥äžã®ããã«ãªããŸãããæå°ããã³ã°è·é¢ã¯16ã§ãæå€§7人ãŸã§ãåœãã®å ±åãããŠãåœé貚ãç¹å®ã§ããŸãã
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0],
[1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0],
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0],
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0],
[0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0],
[0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0],
[0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0],
[0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0],
[1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1],
[1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1],
[1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1],
[1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1],
[1,1,0,0,1,1,0,0,0,0,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,1,1,0,0,1,1],
[1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1],
[0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1],
[0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1],
[0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1],
[0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1],
[0,0,1,1,0,0,1,1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0,0,0,1,1,0,0,1,1],
[0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1],
[1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0],
[1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0],
[1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0],
[1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0],
[0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0],
[0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0],
[0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0],
[0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0],
[1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1],
[0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
31äººã®æè¡è
ã«1ïœ9,AïœH,JïœN,PïœXã®ååãã€ããŠã31åã®é貚ã«ããããïœããŸãã®ååãã€ããŠãããããã以äžã®ããã«GF(5)äžã®å°åœ±å¹³é¢å
ã®31åã®ç¹ãš31æ¬ã®çŽç·ã«å¯Ÿå¿ãããå ŽåãèããŠã¿ãŸãããåçŽç·å
ã®6åã®ç¹ãã該åœããéè²šãæž¬å®ãã6äººã®æè¡è
ã«çžåœããŸãã
1:(0,0,1) 2:(1,0,1) 3:(2,0,1) 4:(3,0,1) 5:(4,0,1)
6:(0,1,1) 7:(1,1,1) 8:(2,1,1) 9:(3,1,1) A:(4,1,1)
B:(0,2,1) C:(1,2,1) D:(2,2,1) E:(3,2,1) F:(4,2,1)
G:(0,3,1) H:(1,3,1) J:(2,3,1) K:(3,3,1) L:(4,3,1)
M:(0,4,1) N:(1,4,1) P:(2,4,1) Q:(3,4,1) R:(4,4,1)
S:(1,0,0) T:(4,1,0) U:(3,1,0) V:(2,1,0) W:(1,1,0) X:(0,1,0)
ãïŒ1,2,3,4,5,S
ãïŒ6,7,8,9,A,S
ãïŒB,C,D,E,F,S
ãïŒG,H,J,K,L,S
ãïŒM,N,P,Q,R,S
ãïŒ1,A,E,J,N,T
ãïŒ2,6,F,K,P,T
ãïŒ3,7,B,L,Q,T
ãïŒ4,8,C,M,R,T
ãïŒ5,9,D,H,M,T
ãïŒ1,9,C,L,P,U
ãïŒ2,A,D,G,Q,U
ãïŒ3,6,E,H,R,U
ãïŒ4,7,F,J,M,U
ãïŒ5,8,B,K,N,U
ãïŒ1,8,F,H,Q,V
ã¡ïŒ2,9,B,J,R,V
ã€ïŒ3,A,C,K,M,V
ãŠïŒ4,6,D,L,N,V
ãšïŒ5,7,E,G,P,V
ãªïŒ1,7,D,K,R,W
ã«ïŒ2,8,E,L,M,W
ã¬ïŒ3,9,F,G,N,W
ãïŒ4,A,B,H,P,W
ã®ïŒ5,6,C,J,Q,W
ã¯ïŒ1,6,B,G,M,X
ã²ïŒ2,7,C,H,N,X
ãµïŒ3,8,D,J,P,X
ãžïŒ4,9,E,K,Q,X
ã»ïŒ5,A,F,L,R,X
ãŸïŒS,T,U,V,W,X
1çŽç·äžã«ã¯6ç¹ãååšããã©ã®2çŽç·ã1ç¹ãå
±æããã®ã§ã1ç¹ãå
±æãã2çŽç·ã«ã¯äºãã«ç°ãªã5ç¹ãããããšã«ãªããŸãã察å¿ãã31ããã笊å·ã¯ä»¥äžã®ããã«ãªããŸãããæå°ããã³ã°è·é¢ã¯10ã§ãæå€§4人ãŸã§ãåœãã®å ±åãããŠãåœé貚ãç¹å®ã§ããŸãã
[1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0],
[1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0],
[0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0],
[0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0],
[0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0],
[0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0],
[1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0],
[0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0],
[0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0],
[0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0],
[0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0],
[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0],
[0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0],
[0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0],
[0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0],
[0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0],
[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0],
[0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0],
[0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0],
[0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0],
[0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0],
[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1],
[0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1],
[0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1],
[0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1],
[0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1]
æµéãå¢å€§ããŠããŠ
ãªããªã远ãã€ããŸãããã
[2267]ã® GAI ããã®31ã®è§£ã
äžæè°ã§ãªããŸããã
ãããã¯ãã¶ã€ã³ãšããŠã©ã®ãããªäœçœ®ã¥ããªã®ãïŒ
å·¡åããŠããŸãããã
ãã®æã®è§£ã®ããŒã¿ããŒã¹ãããã£ãã®ã§ããç»é²ãããŠããŸããã§ããã
æ°çºèŠïŒ
ãç§ã®åå¿é² > ç®ã®åãã®ïœ1,2,2,3,3,4}ã®ç®ãšïœ1,3,4,5,6,8}ã®ç®ããã£ããµã€ã³ãïŒå¹³æïŒïŒå¹ŽïŒæïŒæ¥ä»ãïŒã¯ããžããã£ãŒãã³ã®ãµã€ã³ã(Sicherman dice)ãšãããããã®ã§ãããSichermanã¯ã·ãã£ãŒãã³ããžããã«ãã³ãšãããããŸãã
{1,2,2,3}ãš{1,3,3,5,5,5,7,7,9}ã{1,4,4,7}ãš{1,2,2,3,3,3,4,4,5}ã{1,2,4,5}ãš{1,2,3,3,4,5,5,6,7}ã®çµã¿åããã¯ã4é¢ãã€ã¹ãš9é¢ãã€ã¹ã®çµã¿åããã§å®çŸã§ããŸããã{1,2,4,5}ãš{1,2,3,3,4,5,5,6,7}ã®çµã¿åããã®4é¢ãã€ã¹ãš9é¢ãã€ã¹ã3Dããªã³ãã§ã€ãã£ããã®ããããŸããã
https://www.shapeways.com/product/G2KUH846M/d9-d4-recast-2d6?optionId=347165649&li=marketplace
1ïœ10ã®åºç®ããã10é¢ãã€ã¹ã®æ¯é¢æ°ã¯ã
x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10ã§è¡šããã
x(x+1)(x^4-x^3+x^2-x+1)(x^4+x^3+x^2+x+1)ãšå æ°åè§£ãããŸãã
a=x+1,b=x^4-x^3+x^2-x+1,c=x^4+x^3+x^2+x+1ãšãããšãããšã®10é¢ãã€ã¹ã®æ¯é¢æ°ã¯ãx*a*b*cã§ã10é¢ãã€ã¹2åã®å Žåã¯(x*a*b*c)^2ãªã®ã§ãããããã®åºç®ã1以äžãšãªãããã«2ã€ã®10é¢ãã€ã¹ã«åé
ãããšãä¿æ°ãè² ãšãªãçµã¿åãããé€å€ãããšã
x*a*c=x^6+2x^5+2x^4+2x^3+2x^2+x
x*a*b^2*c=x^14+x^12+x^10+x^9+x^8+x^7+x^6+x^5+x^3+x
ãªã®ã§ã{1,2,2,3,3,4,4,5,5,6}ãš{1,3,5,6,7,8,9,10,12,14}ã®çµã¿åããã1ïœ10ã®åºç®ããã10é¢ãã€ã¹ã2åãµã£ããšãã®åºç®ã®åãšåã確çååžãäžãã10é¢ãã€ã¹ã®ãã¢ãšãªããŸãã
1ïœ8ã®åºç®ãããæ£8é¢äœãã€ã¹ã®æ¯é¢æ°ã¯ã
x+x^2+x^3+x^4+x^5+x^6+x^7+x^8ã§è¡šããã
x(x+1)(x^2+1)(x^4+1)ãšå æ°åè§£ãããŸãã
a=x+1,b=x^2+1,c=x^4+1ãšãããšãããšã®æ£8é¢äœãã€ã¹ã®æ¯é¢æ°ã¯ãx*a*b*cã§ãæ£8é¢äœãã€ã¹2åã®å Žåã¯(x*a*b*c)^2ãªã®ã§ãããããã®åºç®ã1以äžãšãªãããã«2ã€ã®æ£8é¢äœãã€ã¹ã«åé
ãããšã
x*b*c^2=x^11+x^9+2x^7+2x^5+x^3+x
x*a^2*b=x^5+2x^4+2x^3+2x^2+x
x*a*c^2=x^10+x^9+2x^6+2x^5+x^2+x
x*a*b^2=x^6+x^5+2x^4+2x^3+x^2+x
x*b^2*c=x^9+2x^7+2x^5+2x^3+x
x*a^2*c=x^7+2x^6+x^5+x^3+2x^2+x
ã®3ã€ã®çµã¿åãããã2ã€ã®æ£8é¢äœãã€ã¹ãšãªãçµã¿åããã§ã1ïœ8ã®åºç®ãããæ£8é¢äœãã€ã¹ã2åãµã£ããšãã®åºç®ã®åãšåã確çååžãäžããæ£8é¢äœãã€ã¹ã®ãã¢ã¯åºç®ãããããã
{1,2,2,3,3,4,4,5}ãš{1,3,5,5,7,7,9,11}
{1,2,3,3,4,4,5,6}ãš{1,2,5,5,6,6,9,10}
{1,2,2,3,5,6,6,7}ãš{1,3,3,5,5,7,7,9}
ãšãªããŸãã
1ïœ12ã®åºç®ãããæ£12é¢äœãã€ã¹ã®æ¯é¢æ°ã¯ã
x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10+x^11+x^12ã§è¡šããã
x(x+1)(x^2+1)(x^2-x+1)(x^2+x+1)(x^4+x^2+1)ãšå æ°åè§£ãããŸãã
a=x+1,b=x^2+1,c=x^2-x+1,d=x^2+x+1,e=x^4-x^2+1ãšãããšãããšã®æ£12é¢äœãã€ã¹ã®æ¯é¢æ°ã¯ãx*a*b*c*d*eã§ãæ£12é¢äœãã€ã¹2åã®å Žåã¯(x*a*b*c*d*e)^2ãªã®ã§ãããããã®åºç®ã1以äžãšãªãããã«2ã€ã®æ£12é¢äœãã€ã¹ã«åé
ãããšã
x*b^2*c*d*e^2=x^17+x^15+x^13+2x^11+2x^9+2x^7+x^5+x^3+x
x*a^2*c*d=x^7+2x^6+2x^5+2x^4+2x^3+2x^2+x
x*b^2*c*d*e=x^13+2x^11+2x^9+2x^7+2x^5+2x^3+x
x*a^2*c*d*e=x^11+2x^10+x^9+x^7+2x^6+x^5+x^3+2x^2+x
x*b^2*d*e^2=x^15+x^14+x^13+2x^9+2x^8+2x^7+x^3+x^2+x
x*a^2*c^2*d=x^9+x^8+x^7+2x^6+2x^5+2x^4+x^3+x^2+x
x*a^2*c^2*d*e=x^13+x^12+x^10+2x^9+x^8+x^6+2x^5+x^4+x^2+x
x*b^2*d*e=x^11+x^10+2x^9+x^8+x^7+x^5+x^4+2x^3+x^2+x
x*a*b*c*d*e^2=x^16+x^15+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^2+x
x*a*b*c*d=x^8+x^7+2x^6+2x^5+2x^4+2x^3+x^2+x
x*a*b*c^2*d*e=x^14+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x
x*a*b*d*e=x^10+2x^9+2x^8+x^7+x^4+2x^3+2x^2+x
x*a*b*c^2*d*e^2=x^18+x^15+x^14+x^12+x^11+x^10+x^9+x^8+x^7+x^5+x^4+x
x*a*b*d=x^6+2x^5+3x^4+3x^3+2x^2+x
ã®7ã€ã®çµã¿åãããã2ã€ã®æ£12é¢äœãã€ã¹ãšãªãçµã¿åããã§ã1ïœ12ã®åºç®ãããæ£12é¢äœãã€ã¹ã2åãµã£ããšãã®åºç®ã®åãšåã確çååžãäžããæ£12é¢äœãã€ã¹ã®ãã¢ã¯åºç®ãããããã
{1,3,5,7,7,9,9,11,11,13,15,17}ãš{1,2,2,3,3,4,4,5,5,6,6,7}
{1,3,3,5,5,7,7,9,9,11,11,13}ãš{1,2,2,3,5,6,6,7,9,10,10,11}
{1,2,3,7,7,8,8,9,9,13,14,15}ãš{1,2,3,4,4,5,5,6,6,7,8,9}
{1,2,4,5,5,6,8,9,9,10,12,13}ãš{1,2,3,3,4,5,7,8,9,9,10,11}
{1,2,5,6,7,8,9,10,11,12,15,16}ãš{1,2,3,3,4,4,5,5,6,6,7,8}
{1,3,4,5,6,7,8,9,10,11,12,14}ãš{1,2,2,3,3,4,7,8,8,9,9,10}
{1,4,5,7,8,9,10,11,12,14,15,18}ãš{1,2,2,3,3,3,4,4,4,5,5,6}
ãšãªããŸãããã¡ãã«ã€ããŠã3Dããªã³ãã§ã€ãã£ããã®ããããŸããã
https://www.shapeways.com/product/XQKD5HJ27/sicherman-2d12-alpha?optionId=347410953&li=shops
1ïœ20ã®åºç®ãããæ£20é¢äœãã€ã¹ã®æ¯é¢æ°ã¯ã
x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10+x^11+x^12+x^13+x^14+x^15+x^16+x^17+x^18+x^19+x^20ã§è¡šããã
x(x+1)(x^2+1)(x^4-x^3+x^2-x+1)(x^4+x^3+x^2+x+1)(x^8-x^6+x^4-x^2+1)ãšå æ°åè§£ãããŸãã
a=x+1,b=x^2+1,c=x^4-x^3+x^2-x+1,d=x^4+x^3+x^2+x+1,e=x^8-x^6+x^4-x^2+1ãšãããšãããšã®æ£20é¢äœãã€ã¹ã®æ¯é¢æ°ã¯ãx*a*b*c*d*eã§ãæ£20é¢äœãã€ã¹2åã®å Žåã¯(x*a*b*c*d*e)^2ãªã®ã§ãããããã®åºç®ã1以äžãšãªãããã«2ã€ã®æ£20é¢äœãã€ã¹ã«åé
ãããšã
x*b^2*c*d*e^2=x^29+x^27+x^25+x^23+x^21+2x^19+2x^17+2x^15+2x^13+2x^11+x^9+x^7+x^5+x^3+x
x*a^2*c*d=x^11+2x^10+2x^9+2x^8+2x^7+2x^6+2x^5+2x^4+2x^3+2x^2+x
x*b^2*c*d*e=x^21+2x^19+2x^17+2x^15+2x^13+2x^11+2x^9+2x^7+2x^5+2x^3+x
x*a^2*c*d*e=x^19+2x^18+x^17+x^15+2x^14+x^13+x^11+2x^10+x^9+x^7+2x^6+x^5+x^3+2x^2+x
x*b^2*d*e=x^25+x^24+x^23+x^22+x^21+2x^15+2x^14+2x^13+2x^12+2x^11+x^5+x^4+x^3+x^2+x
x*a^2*c^2*d=x^15+x^14+x^13+x^12+x^11+2x^10+2x^9+2x^8+2x^7+2x^6+x^5+x^4+x^3+x^2+x
x*a^2*c^2*d*e=x^23+x^22+x^19+2x^18+x^17+x^15+2x^14+x^13+x^11+2x^10+x^9+x^7+2x^6+x^5+x^2+x
x*b^2*d*e=x^17+x^16+2x^15+2x^14+2x^13+x^12+x^11+x^7+x^6+2x^5+2x^4+2x^3+x^2+x
x*a*b*c*d*e^2=x^28+x^27+x^24+x^23+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^6+x^5+x^2+x
x*a*b*c*d=x^12+x^11+2x^10+2x^9+2x^8+2x^7+2x^6+2x^5+2x^4+2x^3+x^2+x
x*a*b*c^2*d*e=x^24+x^22+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^3+x
x*a*b*d*e=x^16+2x^15+2x^14+2x^13+2x^12+x^11+x^6+2x^5+2x^4+2x^3+2x^2+x
x*a*b*c^2*d*e^2=x^32+x^28+x^27+x^24+x^23+x^22+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^11+x^10+x^9+x^6+x^5+x
x*a*b*d=x^8+2x^7+3x^6+4x^5+4x^4+3x^3+2x^2+x
ã®7ã€ã®çµã¿åãããã2ã€ã®æ£20é¢äœãã€ã¹ãšãªãçµã¿åããã§ã1ïœ20ã®åºç®ãããæ£20é¢äœãã€ã¹ã2åãµã£ããšãã®åºç®ã®åãšåã確çååžãäžããæ£20é¢äœãã€ã¹ã®ãã¢ã¯åºç®ãããããã
{1,3,5,7,9,11,11,13,13,15,15,17,17,19,21,23,25,27,29}ãš{1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11}
{1,3,3,5,5,7,7,9,9,11,11,13,13,15,15,17,17,19,19,21}ãš{1,2,2,3,5,6,6,7,9,10,10,11,13,14,14,15,17,18,18,19}
{1,2,3,4,5,11,11,12,12,13,13,14,14,15,15,21,22,23,24,25}ãš{1,2,3,4,5,6,6,7,7,8,8,9,9,10,10,11,12,13,14,15}
{1,2,5,6,6,7,9,10,10,11,13,14,14,15,17,18,18,19,22,23}ãš{1,2,3,3,4,4,5,5,6,7,11,12,13,13,14,14,15,15,16,17}
{1,2,5,6,9,10,11,12,13,14,15,16,17,18,19,20,23,24,27,28}ãš{1,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,12}
{1,3,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24}ãš{1,2,2,3,3,4,4,5,5,6,11,12,12,13,13,14,14,15,15,16}
{1,5,6,9,10,11,13,14,15,16,17,18,19,20,22,23,24,27,28,32}ãš{1,2,2,3,3,3,4,4,4,4,5,5,5,5,6,6,6,7,7,8}
ãšãªããŸãã
9é¢ãã€ã¹ãåºãŠããã€ãã§ã«ã1ïœ9ã®åºç®ããã9é¢ãã€ã¹ã®æ¯é¢æ°ã¯ã
x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9ã§è¡šããã
x(x^2+x+1)(x^6+x^3+1)ãšå æ°åè§£ãããŸãã
a=x^2+x+1,b=x^6+x^3+1ãšãããšãããšã®9é¢ãã€ã¹ã®æ¯é¢æ°ã¯ãx*a*bã§ã9é¢ãã€ã¹2åã®å Žåã¯(x*a*b)^2ãªã®ã§ãããããã®åºç®ã1以äžãšãªãããã«2ã€ã®9é¢ãã€ã¹ã«åé
ãããšã
x*b^2=x^13+2x^10+3x^7+2x^4+x
x*a^2=x^5+2x^4+3x^3+2x^2+x
ãªã®ã§ã{1,2,2,3,3,3,4,4,5}ãš{1,4,4,7,7,7,10,10,13}ã®çµã¿åããã1ïœ9ã®åºç®ããã9é¢ãã€ã¹ã2åãµã£ããšãã®åºç®ã®åãšåã確çååžãäžãã9é¢ãã€ã¹ã®ãã¢ãšãªããŸãã
話é¡ãäžéšãã¶ããããªã®ã§ã玹ä»ããŸãã
æ£å
«é¢äœãã€ã¹ã 2 åãããŸãã
çæ¹ã A ãããçæ¹ã B ãšããŸãã
A ã®åºç®ã {a[0],a[1],a[2],a[3],a[4],a[5],a[6],a[7]}
B ã®åºç®ã {b[0],b[1],b[2],b[3],b[4],b[5],b[6],b[7]}
ãšããŸãã
äœã
a[0]âŠa[1]âŠa[2]âŠa[3]âŠa[4]âŠa[5]âŠa[6]âŠa[7]
b[0]âŠb[1]âŠb[2]âŠb[3]âŠb[4]âŠb[5]âŠb[6]âŠb[7]
ãšçŽæããŠãããŸãã
ãäŸé¡ã
ãã® A,B ãµãã€ã®ãã€ã¹ããšãã«æ¯ããšãã«
åºãç®ã®ååžã 0 ãã 63 ãŸã§å
šãŠã®éè² æŽæ°ãšãªã ãã®ãã®ç確çã§åºçŸãããšããã
0 ⊠n ⊠7
ãªãéè² æŽæ° n ã«ã€ããŠ
b[n] = 8*a[n]
ãæç«ãããšã
a[n] ãæ±ããã
ãäŸé¡è§£çã
a[n] = n
â»ïŒé²æ°ãèããã°ããã
ãåé¡ã
ãã® A,B ãµãã€ã®ãã€ã¹ããšãã«æ¯ããšãã«
åºãç®ã®ååžã 0 ãã 63 ãŸã§å
šãŠã®éè² æŽæ°ãšãªã ãã®ãã®ç確çã§åºçŸãããšããã
0 ⊠n ⊠7
ãªãéè² æŽæ° n ã«ã€ããŠ
b[n] = 2*a[n]
ãæç«ãããšã
a[n] ãæ±ããã
ãäŸé¡ã§ã¯ïŒåããã®åé¡ã§ã¯ïŒåã«ãªã£ãŠããŸããã
=======
ãã®åé¡ã®å
ãã¿ã® PDF ã«ã¯
ãžããã£ãŒãã³ã®ãã€ã¹ãæ¯é¢æ°ã«ããåæã®æ¹æ³ã玹ä»ãããŠããŠé¢çœãã£ãã§ãã
åŸæ¥ã«ãã® PDF ããæ¡å
ããããŸãã
2ã€ã®ãã€ã¹ã®æ¯é¢æ°ã
f(x)=x^a[0]+x^a[1]+âŠ+x^a[7]
g(x)=x^b[0]+x^b[1]+âŠ+x^b[7]
ãšãããšã
g(x)=x^(2*a[0])+x^(2*a[1])+âŠ+x^(2*a[7])
=(x^2)^a[0]+(x^2)^a[1]+âŠ+(x^2)^a[7]
=f(x^2)
f(x)g(x)=f(x)f(x^2)=1+x+x^2+âŠ+x^63
ã§ã1+x+x^2+âŠ+x^63ãå æ°åè§£ãããš
(x+1)(x^2+1)(x^4+1)(x^8+1)(x^16+1)(x^32+1)
ãªã®ã§ã
f(x)=(x+1)(x^4+1)(x^16+1)=x^21+x^20+x^17+x^16+x^5+x^4+x+1
g(x)=(x^2+1)(x^8+1)(x^32+1)=x^42+x^40+x^34+x^32+x^10+x^8+x^2+1
ããã
a[0]=0,a[1]=1,a[2]=4,a[3]=5,a[4]=16,a[5]=17,a[6]=20,a[7]=21
åããããªã¢ã€ãã¢ã§æ§æããã10é¢ãã€ã¹ã®ãã¢ã3Dããªã³ãã§äœãããŠããŸããã
10é¢äœãã€ã¹ã2åãããŸãã
çæ¹ãAãããçæ¹ãBãšããŸãã
Aã®åºç®ã{a[0],a[1],a[2],a[3],a[4],a[5],a[6],a[7],a[8],a[9]}
Bã®åºç®ã{b[0],b[1],b[2],b[3],b[4],b[5],b[6],b[7],b[8],b[9]}
ãšããŸãã
äœã
a[0]âŠa[1]âŠa[2]âŠa[3]âŠa[4]âŠa[5]âŠa[6]âŠa[7]âŠa[8]âŠa[9]
b[0]âŠb[1]âŠb[2]âŠb[3]âŠb[4]âŠb[5]âŠb[6]âŠb[7]âŠb[8]âŠb[9]
ãšçŽæããŠãããŸãã
ãã®A,Bãµãã€ã®ãã€ã¹ããšãã«æ¯ããšãã«
åºãç®ã®ååžã0ãã99ãŸã§å
šãŠã®éè² æŽæ°ãšãªã ãã®ãã®ç確çã§åºçŸãããšããã
0 âŠnâŠ9
ãªãéè² æŽæ°nã«ã€ããŠ
a[n],b[n]ãæ±ããã
åŸæ¥ã«ãã®10é¢ãã€ã¹ãã¢ãžã®ãªã³ã¯ããæ¡å
ããããŸãã
kuiperbelt ãããå
«é¢äœãã€ã¹ã®ãã¢ã®åé¡ã¯ãæ£è§£ã§ãã
ãåºé¡ããã ããåé¢äœãã€ã¹ïŒåã®åé¡ã«ã¯æç®ã§ããããèªæãªè§£ãäžçµãããŸããã
ã»ãã®çµãæ±ãããšããããšãšãªããŸãã§ããããã
èªæãªè§£ãé€ããšããã®ãå¿ããŠããŸããã
èªæã§ãªãè§£ã§ãé¡ãããŸãã
10é¢ãã€ã¹ã®ãã¢ã®åé¡ã§ããâŠâŠ
OEIS A273013 ã«ããã°èªæãªè§£ãå«ã㊠7 éããããã®ã§ãã âŠâŠâŠ
OEIS ãžã¯ãã®æçš¿ã® Dengan ã®ååãã¯ãªãã¯ã§è¡ããŸãã
ã远䌞ã
éèªãæ°åŠã»ãããŒã2018幎9æå·ã®ããšã¬ã¬ã³ããªè§£çæ±ããã§ã7éããèŒã£ãŠããããšã確èªããŸããã
A=[0,1,4,5,8,9,12,13,16,17]
B=[0,2,20,22,40,42,60,62,80,82]
A=[0,1,2,3,4,25,26,27,28,29]
B=[0,5,10,15,20,50,55,60,65,70]
A=[0,5,10,15,20,25,30,35,40,45]
B=[0,1,2,3,4,50,51,52,53,54]
A=[0,1,20,21,40,41,60,61,80,81]
B=[0,2,4,6,8,10,12,14,16,18]
ã®4çµã¯äœãšãçºèŠã§ããããæ®ã2çµã¯äœãèãããããã ãããïŒ
A=[0,5,20,25,40,45,60,65,80,85]
B=[0,1,2,3,4,10,11,12,13,14]
A=[0,1,10,11,20,21,30,31,40,41]
B=[0,2,4,6,8,50,52,54,56,58]
ã®ïŒã€ã®ããã§ãã
10é¢ãã€ã¹ã®ãã¢ã¯èªæãªãã®ãé€ããš
A=[0,1,4,5,8,9,12,13,16,17]
B=[0,2,20,22,40,42,60,62,80,82]
A=[0,1,2,3,4,25,26,27,28,29]
B=[0,5,10,15,20,50,55,60,65,70]
A=[0,5,10,15,20,25,30,35,40,45]
B=[0,1,2,3,4,50,51,52,53,54]
A=[0,1,20,21,40,41,60,61,80,81]
B=[0,2,4,6,8,10,12,14,16,18]
A=[0,5,20,25,40,45,60,65,80,85]
B=[0,1,2,3,4,10,11,12,13,14]
A=[0,1,10,11,20,21,30,31,40,41]
B=[0,2,4,6,8,50,52,54,56,58]
ã®6çµã§ãã
2ã€ã®10é¢ãã€ã¹ã®æ¯é¢æ°ã®ç©ã¯1+x+x^2+âŠ+x^99ã§ã
1+x+x^2+âŠ+x^99
=(x+1)(x^2+1)(x^4-x^3+x^2-x+1)(x^4+x^3+x^2+x+1)(x^8-x^6+x^4-x^2+1)
*(x^20-x^15+x^10-x^5+1)(x^20+x^15+x^10+x^5+1)(x^40-x^30+x^20-x^10+1)
ãšå æ°åè§£ãããã®ã§ã
a=x+1
b=x^2+1
c=x^4-x^3+x^2-x+1
d=x^4+x^3+x^2+x+1
e=x^8-x^6+x^4-x^2+1
f=x^20-x^15+x^10-x^5+1
g=x^20+x^15+x^10+x^5+1
h=x^40-x^30+x^20-x^10+1
ãšãããšãx=1ã代å
¥ãããšãa,b,c,d,e,f,g,hã2,2,1,5,1,1,5,1ãšãªãã®ã§ã
2ã€ã®10é¢ãã€ã¹ã®æ¯é¢æ°ã¯ããããããa*dãb*gãå æ°ã«ãã€å Žåãšãa*gãb*d
ãå æ°ã«ãã€å Žåããããããããã«ã€ããŠc,e,f,hãåé
ããŠä¿æ°ãè² ã«ãªã
å Žåãé€å€ãããšãèªæãªãã®ãå«ããŠ7éãã®çµã¿åãããåŸãããŸãã
äžèšã®ãµã€ãã«ã
A=[0,1,20,21,40,41,60,61,80,81]
B=[0,2,4,6,8,10,12,14,16,18]
ã®çµã¿åãããšãªã10é¢ãã€ã¹ãã¢ã3Dããªã³ãã§äœã£ããã®ãèŒã£ãŠããŸããã
https://www.shapeways.com/product/B7VEDU96X/alternative-percentile-dice-set?optionId=59862239&li=marketplace
OEIS A273013ãèŠããšãèªæãªãã®ãå«ãããšã8é¢ãã€ã¹ã®å Žåã¯10éãã
12é¢äœãš20é¢äœã§ã¯42éããããã®ã§ããâŠ
ãçŽæããŠããåèæç®ãã°ã
â Extending Sicherman Dice to 100-cell Calculation Tables
Yutaka Nishiyama, Nozomi Miyanaga
https://doi.org/10.48550/arXiv.1602.03736
â»äžèšPDFã®fig13ã
b[n]=2*a[n] ãªåé¡ã®å
ãã¿ã§ãã
â æ°åŠã»ãããŒ:ãšã¬ã¬ã³ããªè§£çæ±ã
https://yutaka-nishiyama.sakura.ne.jp/susemi/susemi1809.pdf
ä»ãŒããããš
https://oeis.org/A273013/b273013.txt
ãçºããŠããŸãããæ¬¡ã®ãããªäºæ³ãã
p, q ãçŽ æ°ãšããã(p < q)
A273013[p^2] = 3
A273013[p*q] = 7
ã³ã¬ãæ£ãããã°10é¢ãã€ã¹ã®ãã¢ã®ããæ¹ã 7 éããšããã®ã¯ææãã¹ããšããããšã«ïŒ
ããã㯠7 éãã®èŠã€ãæ¹ã«ã¯é ããã«ãŒããããïŒ
n=p^rã®ãšããæ¯é¢æ°ã¯ã
1+x+x^2+âŠ+x^(p^(2r)-1)
=(1+x+âŠ+x^(p-1))*(1+x^p+âŠx^(p^2-p))âŠ(1+x^(p^(2r-1))+âŠ+x^(p^(2r)-p^(2r-1)))
ãš2råã®å æ°ã«åè§£ãããã®ã§ãråãã€åãåºããŠ2åã®ãã€ã¹ã®æ¯é¢æ°ãã€ããæ¹æ³ã¯ã
2é
ä¿æ°C(p,q)=p!/q!/(p-q)!ãçšãããšãC(2r,r)/2éãã§ã
n=p^2ã®ãšãC(4,2)/2=3
n=p^3ã®ãšãC(6,3)/2=10
n=p^4ã®ãšãC(8,4)/2=35
n=p^5ã®ãšãC(10,5)/2=126
n=p^6ã®ãšãC(12,6)/2=462
ãªã©ãšãªããŸãã
ä»ã«ããp,q,rãç°ãªãçŽ æ°ãšãããšã
a(p^2*q)=42
a(p^3*q)=230
a(p*q*r)=115
ãšããäºæ³ããããŸãã
> A273013[p^2] = 3
> A273013[p*q] = 7
> ã³ã¬ãæ£ãããã°10é¢ãã€ã¹ã®ãã¢ã®ããæ¹ã 7 éããšããã®ã¯ææãã¹ããšããããšã«ïŒ
> ããã㯠7 éãã®èŠã€ãæ¹ã«ã¯é ããã«ãŒããããïŒ
ïœã®å æ°åè§£åã«åœ±é¿ããããªã
A074206ã§ã®Kalmár's [Kalmar's] problem: number of ordered factorizations of n
ã§ã®ããã°ã©ã ãå©çšããã°ããç°¡åã«ãã®æ°åã¯æã«å
¥ãããã§ãã
n=10=2*5(=p*qå)
ãªã3ãè¿ããããããããã7ãžå€æŽããŠããã°ãããããªïœ¥ïœ¥ïœ¥ïœ¥
n=p*qã®ãšããæ¯é¢æ°ã¯ã
1+x+x^2+âŠ+x^((p*q)^2-1)
=(1+x+âŠ+x^((p*q)-1))*(1+x^(p*q)+âŠ+x^((p*q)^2-p*q))ã»ã»ã»(ã€)
=(1+x+âŠ+x^(p^2-1))*(1+x^(p^2)+âŠ+x^((p*q)^2-p^2))ã»ã»ã»(ã)
=(1+x+âŠ+x^(q^2-1))*(1+x^(q^2)+âŠ+x^((p*q)^2-q^2))ã»ã»ã»(ã)
ãšè¡šããã(ã€)ã®å Žåããã¯ã
1+x+âŠ+x^((p*q)-1)
=(1+x+âŠ+x^(p-1))*(1+x^p+âŠ+x^(p*q-p))
=(1+x+âŠ+x^(q-1))*(1+x^q+âŠ+x^(p*q-q))
1+x^(p*q)+âŠ+x^((p*q)^2-p*q)
=(1+x^(p*q)+âŠ+x^(p*q*(p-1)))*(1+x^(p^2*q)âŠ+x^(p^2*q^2-p^2*q))
=(1+x^(p*q)+âŠ+x^(p*q*(q-1)))*(1+x^(p*q^2)âŠ+x^(p^2*q^2-p*q^2))
ãªã®ã§ã
1+x+x^2+âŠ+x^((p*q)^2-1)
=(1+x+âŠ+x^(p-1))*(1+x^p+âŠ+x^(p*q-p))
*(1+x^(p*q)+âŠ+x^(p*q*(p-1)))*(1+x^(p^2*q)âŠ+x^(p^2*q^2-p^2*q))
=(1+x+âŠ+x^(p-1))*(1+x^p+âŠ+x^(p*q-p))
*(1+x^(p*q)+âŠ+x^(p*q*(q-1)))*(1+x^(p*q^2)âŠ+x^(p^2*q^2-p*q^2))
=(1+x+âŠ+x^(q-1))*(1+x^q+âŠ+x^(p*q-q))
*(1+x^(p*q)+âŠ+x^(p*q*(p-1)))*(1+x^(p^2*q)âŠ+x^(p^2*q^2-p^2*q))
=(1+x+âŠ+x^(q-1))*(1+x^q+âŠ+x^(p*q-q))
*(1+x^(p*q)+âŠ+x^(p*q*(q-1)))*(1+x^(p*q^2)âŠ+x^(p^2*q^2-p*q^2))
ããã第1é
ãšç¬¬2é
ã第3é
ãšç¬¬4é
ã®ç©ãèªæãªå Žåã®ãã€ã¹ãã¢ã®æ¯é¢æ°ã§ã第1é
ãšç¬¬3é
ã第2é
ãšç¬¬4é
ã®ç©ããå¥ã®çµã¿åããã®ãã€ã¹ãã¢ã®æ¯é¢æ°ã4çµåŸãããŸãã
(ã)ã®å Žåã¯ã
1+x+âŠ+x^(p^2-1)=(1+x+âŠ+x^(p-1))*(1+x^p+âŠ+x^(p^2-p))
1+x^(p^2)+âŠ+x^((p*q)^2-p^2)
=(1+x^(p^2)+âŠ+x^(p^2*(q-1)))*(1+x^(p^2*q)+âŠ+x^(p^2*q*(q-1)))
ããã
1+x+x^2+âŠ+x^((p*q)^2-1)
=(1+x+âŠ+x^(p-1))*(1+x^p+âŠ+x^(p^2-p))
*(1+x^(p^2)+âŠ+x^(p^2*(q-1)))*(1+x^(p^2*q)+âŠ+x^(p^2*q*(q-1)))
ãªã®ã§ã第1é
ãšç¬¬3é
ã第2é
ãšç¬¬4é
ã®ç©ãã6çµç®ã®ãã€ã¹ãã¢ã®æ¯é¢æ°ãåŸãããŸããã第1é
ãšç¬¬4é
ã第2é
ãšç¬¬3é
ã®ç©ã¯ã
1+x^p+âŠ+x^(p^2*q-p)
=(1+x^p+âŠ+x^(p^2-p))*(1+x^(p^2)+âŠ+x^(p^2*q-p^2))
=(1+x^p+âŠ+x^(p*q-p))*(1+x^(p*q)+âŠ+x^(p^2*q-p*q))
ãªã®ã§ã(ã€)ã®å Žåãšéè€ããŸãã
(ã)ã®å Žåã¯ã
1+x+âŠ+x^(q^2-1)=(1+x+âŠ+x^(q-1))*(1+x^q+âŠ+x^(q^2-q))
1+x^(q^2)+âŠ+x^((p*q)^2-q^2)
=(1+x^(q^2)+âŠ+x^(q^2*(p-1)))*(1+x^(q^2*p)+âŠ+x^(q^2*p*(p-1)))
ããã
1+x+x^2+âŠ+x^((p*q)^2-1)
=(1+x+âŠ+x^(q-1))*(1+x^q+âŠ+x^(q^2-q))
*(1+x^(q^2)+âŠ+x^(q^2*(p-1)))*(1+x^(q^2*p)+âŠ+x^(q^2*p*(p-1)))
ãªã®ã§ã第1é
ãšç¬¬3é
ã第2é
ãšç¬¬4é
ã®ç©ãã7çµç®ã®ãã€ã¹ãã¢ã®æ¯é¢æ°ãåŸãããŸããã第1é
ãšç¬¬4é
ã第2é
ãšç¬¬3é
ã®ç©ã¯ã
1+x^q+âŠ+x^(p*q^2-q)
=(1+x^q+âŠ+x^(q^2-q))*(1+x^(q^2)+âŠ+x^(p*q^2-q^2))
=(1+x^q+âŠ+x^(p*q-q))*(1+x^(p*q)+âŠ+x^(p*q^2-p*q))
ãªã®ã§ã(ã€)ã®å Žåãšéè€ããŸãã
以äžã«ãããn=p*qã®ãšãã®ãã€ã¹ãã¢ã¯7çµãšãªããŸãã
GAI ããã
kuiperbelt ããã
ããããšãããããŸããã
N=2^2*3=12ã®ãšãã®ç©ã®åå²ã¯
12,2*6,6*2,3*4,4*3,2*2*3,2*3*2,3*2*2
ã®8éããããŸããããA273013ãåç
§ãããšãæ£12é¢äœã®2ã€ã®ãã€ã¹ãžã®å²ãåœãŠæ¹ã«ã
(12)*(12),
(2*6)*(12),(6*2)*(12),(3*4)*(12),(4*3)*(12),
(2*6)*(2*6),(2*6)*(6*2),(2*6)*(3*4),(2*6)*(4*3),
(6*2)*(2*6),(6*2)*(6*2),(6*2)*(3*4),(6*2)*(4*3),
(3*4)*(2*6),(3*4)*(6*2),(3*4)*(3*4),(3*4)*(4*3),
(4*3)*(2*6),(4*3)*(6*2),(4*3)*(3*4),(4*3)*(4*3),
(2*2*3)*(2*6),(2*2*3)*(6*2),(2*2*3)*(3*4),(2*2*3)*(4*3),
(2*3*2)*(2*6),(2*3*2)*(6*2),(2*3*2)*(3*4),(2*3*2)*(4*3),
(3*2*2)*(2*6),(3*2*2)*(6*2),(3*2*2)*(3*4),(3*2*2)*(4*3),
(2*2*3)*(2*2*3),(2*2*3)*(2*3*2),(2*2*3)*(3*2*2),
(2*3*2)*(2*2*3),(2*3*2)*(2*3*2),(2*3*2)*(3*2*2),
(3*2*2)*(2*2*3),(3*2*2)*(2*3*2),(3*2*2)*(3*2*2)
ã®1^2+1*4+4^2+4*3+3^2=42éããã£ãŠãæ£12é¢äœã®ãã€ã¹ãã¢ã®æ¯é¢æ°ã¯ã
(1+x+âŠ+x^11)ãš(1+x^12+âŠ+x^132)
(1+x)(1+x^24âŠ+x^120)ãš(1+x^2+âŠ+x^22)
(1+x+âŠ+x^5)(1+x^72)ãš(1+x^6+âŠ+x^66)
(1+x+x^2)(1+x^36+^72+x^108)ãš(1+x^3+âŠ+x^33)
(1+x+x^2+x^3)(1+x^48+x^72)ãš(1+x^4+âŠ+x^44)
(1+x)(1+x^4+âŠ+x^20)ãš(1+x^2)(1+x^24+âŠ+x^120)
(1+x)(1+x^12+âŠ+x^60)ãš(1+x^2+âŠ+x^10)(1+x^72)
(1+x)(1+x^6+âŠ+x^30)ãš(1+x^2+x^4)(1+x^36+x^72+x^108)
(1+x)(1+x^8+âŠ+x^40)ãš(1+x^2+x^4+x^6)(1+x^48+x^96)
(1+x+âŠ+x^5)(1+x^12)ãš(1+x^6)(1+x^24+âŠ+x^120)
(1+x+âŠ+x^5)(1+x^36)ãš(1+x^6+âŠ+x^30)(1+x^72)
(1+x+âŠ+x^5)(1+x^18)ãš(1+x^6+x^12)(1+x^36+x^72+x^108)
(1+x+âŠ+x^5)(1+x^24)ãš(1+x^6+x^12+x^18)(1+x^48+x^96)
(1+x+x^2)(1+x^6+^12+x^18)ãš(1+x^3)(1+x^24+âŠ+x^120)
(1+x+x^2)(1+x^18+^36+x^54)ãš(1+x^3+âŠ+x^15)(1+x^72)
(1+x+x^2)(1+x^9+^18+x^27)ãš(1+x^3+x^6)(1+x^36+x^72+x^108)
(1+x+x^2)(1+x^12+^24+x^36)ãš(1+x^3+x^6+x^9)(1+x^48+x^96)
(1+x+x^2+x^3)(1+x^8+x^16)ãš(1+x^4)(1+x^24+âŠ+x^120)
(1+x+x^2+x^3)(1+x^24+x^48)ãš(1+x^4+âŠ+x^20)(1+x^72)
(1+x+x^2+x^3)(1+x^12+x^24)ãš(1+x^4+x^8)(1+x^36+x^72+x^108)
(1+x+x^2+x^3)(1+x^16+x^32)ãš(1+x^4+x^8+x^12)(1+x^48+x^96)
(1+x)(1+x^4)(1+x^48+x^96)ãš(1+x^2)(1+x^8+âŠ+x^40)
(1+x)(1+x^12)(1+x^48+x^96)ãš(1+x^2+âŠ+x^10)(1+x^24)
(1+x)(1+x^6)(1+x^48+x^96)ãš(1+x^2+x^4)(1+x^12+x^24+x^36)
(1+x)(1+x^8)(1+x^48+x^96)ãš(1+x^2+x^4+x^6)(1+x^16+x^32)
(1+x)(1+x^4+x^8)(1+x^72)ãš(1+x^2)(1+x^12+âŠ+x^60)
(1+x)(1+x^12+x^24)(1+x^72)ãš(1+x^2+âŠ+x^10)(1+x^36)
(1+x)(1+x^6+x^12)(1+x^72)ãš(1+x^2+x^4)(1+x^18+x^36+x^54)
(1+x)(1+x^8+x^16)(1+x^72)ãš(1+x^2+x^4+x^6)(1+x^24+x^48)
(1+x+x^2)(1+x^6)(1+x^72)ãš(1+x^3)(1+x^12+âŠ+x^60)
(1+x+x^2)(1+x^18)(1+x^72)ãš(1+x^3+âŠ+x^15)(1+x^36)
(1+x+x^2)(1+x^9)(1+x^72)ãš(1+x^3+x^6)(1+x^18+x^36+x^54)
(1+x+x^2)(1+x^12)(1+x^72)ãš(1+x^3+x^6+x^9)(1+x^24+x^48)
(1+x)(1+x^4)(1+x^16+x^32)ãš(1+x^2)(1+x^8)(1+x^48+x^96)
(1+x)(1+x^4)(1+x^24+x^48)ãš(1+x^2)(1+x^8+x^16)(1+x^72)
(1+x)(1+x^6)(1+x^24+x^48)ãš(1+x^2+x^4)(1+x^12)(1+x^72)
(1+x)(1+x^4+x^8)(1+x^24)ãš(1+x^2)(1+x^12)(1+x^48+x^96)
(1+x)(1+x^4+x^8)(1+x^36)ãš(1+x^2)(1+x^12+x^24)(1+x^72)
(1+x)(1+x^6+x^12)(1+x^36)ãš(1+x^2+x^4)(1+x^18)(1+x^72)
(1+x+x^2)(1+x^6)(1+x^24)ãš(1+x^3)(1+x^12)(1+x^48+x^96)
(1+x+x^2)(1+x^6)(1+x^36)ãš(1+x^3)(1+x^12+x^24)(1+x^72)
(1+x+x^2)(1+x^9)(1+x^36)ãš(1+x^3+x^6)(1+x^18)(1+x^72)
ãšãªã£ãŠããã€ã¹ãã¢ã®åºç®ã¯ã
{0,1,2,3,4,5,6,7,8,9,10,11};{0,12,24,36,48,60,72,84,96,108,120,132},
{0,1,24,25,48,49,72,73,96,97,120,121};{0,2,4,6,8,10,12,14,16,18,20,22},
{0,1,2,3,4,5,72,73,74,75,76,77};{0,6,12,18,24,30,36,42,48,54,60,66},
{0,1,2,36,37,38,72,73,74,108,109,110};{0,3,6,9,12,15,18,21,24,27,30,33},
{0,1,2,3,48,49,50,51,72,73,74,75};{0,4,8,12,16,20,24,28,32,36,40,44},
{0,1,4,5,8,9,12,13,16,17,20,21};{0,2,24,26,48,50,72,74,96,98,120,122},
{0,1,12,13,24,25,36,37,48,49,60,61};{0,2,4,6,8,10,72,74,76,78,80,82},
{0,1,6,7,12,13,18,19,24,25,30,31};{0,2,4,36,38,40,72,74,76,108,110,112},
{0,1,8,9,16,17,24,25,32,33,40,41};{0,2,4,6,48,50,52,54,96,98,100,102},
{0,1,2,3,4,5,12,13,14,15,16,17};{0,6,24,30,48,54,72,78,96,102,120,126},
{0,1,2,3,4,5,36,37,38,39,40,41};{0,6,12,18,24,30,72,78,84,90,96,102},
{0,1,2,3,4,5,18,19,20,21,22,23};{0,6,12,36,42,48,72,78,84,108,114,120},
{0,1,2,3,4,5,24,25,26,27,28,29};{0,6,12,18,48,54,60,66,96,102,108,114},
{0,1,2,6,7,8,12,13,14,18,19,20};{0,3,24,27,48,51,72,75,96,99,120,123},
{0,1,2,18,19,20,36,37,38,54,55,56};{0,3,6,9,12,15,72,75,78,81,84,87},
{0,1,2,9,10,11,18,19,20,27,28,29};{0,3,6,36,39,42,72,75,78,108,111,114},
{0,1,2,12,13,14,24,25,26,36,37,38};{0,3,6,9,48,51,54,57,96,99,102,105},
{0,1,2,3,8,9,10,11,16,17,18,19};{0,4,24,28,48,52,72,76,96,100,120,124},
{0,1,2,3,24,25,26,27,48,49,50,51};{0,4,8,12,16,20,72,76,80,84,88,92},
{0,1,2,3,12,13,14,15,24,25,26,27};{0,4,8,36,40,44,72,76,80,108,112,116},
{0,1,2,3,16,17,18,19,32,33,34,35};{0,4,8,12,48,52,56,60,96,100,104,108},
{0,1,4,5,48,49,52,53,96,97,100,101}ãš{0,2,8,10,16,18,24,26,32,34,40,42},
{0,1,12,13,48,49,60,61,96,97,108,109}ãš{0,2,2,6,8,10,24,26,28,30,32,34},
{0,1,6,7,48,49,54,55,96,97,102,103}ãš{0,2,4,12,14,16,24,26,28,36,38,40},
{0,1,8,9,48,49,56,57,96,98,104,105}ãš{0,2,4,6,16,18,20,22,32,34,36,38},
{0,1,4,5,8,9,72,73,76,77,80,81}ãš{0,2,12,14,24,26,36,38,48,50,60,62},
{0,1,12,13,24,25,72,73,84,85,96,97}ãš{0,2,4,6,8,10,36,38,40,42,44,46},
{0,1,6,7,12,13,72,73,78,79,84,85}ãš{0,2,4,18,20,22,36,38,50,54,56,58},
{0,1,8,9,16,17,72,73,80,81,88,89}ãš{0,2,4,6,24,26,28,30,48,50,52,54},
{0,1,2,6,7,8,72,73,74,78,79,80}ãš{0,3,12,15,24,27,36,39,48,51,60,63},
{0,1,2,18,19,20,72,73,74,90,91,92}ãš{0,3,6,9,12,15,36,39,42,45,48,51},
{0,1,2,9,10,11,72,73,74,81,82,83}ãš{0,3,6,18,21,24,36,39,42,54,57,60},
{0,1,2,12,13,14,72,73,74,84,85,86}ãš{0,3,6,9,24,27,30,33,48,51,54,57},
{0,1,4,5,16,17,20,21,32,33,36,37}ãš{0,2,8,10,48,50,56,58,96,98,104,106},
{0,1,4,5,24,25,28,29,48,49,52,53}ãš{0,2,8,10,16,18,72,74,80,82,88,90},
{0,1,6,7,24,25,30,31,48,49,54,55}ãš{0,2,4,12,14,16,72,74,76,84,86,88},
{0,1,4,5,8,9,24,25,28,29,32,33}ãš{0,2,12,14,48,50,60,62,96,98,108,110},
{0,1,4,5,8,9,36,37,40,41,44,45}ãš{0,2,12,14,24,26,72,74,84,86,96,98},
{0,1,6,7,12,13,36,37,42,43,48,49}ãš{0,2,4,18,20,22,72,74,76,90,92,94},
{0,1,2,6,7,8,24,25,26,30,31,32}ãš{0,3,12,15,48,51,60,63,96,99,108,111},
{0,1,2,6,7,8,36,37,38,42,43,44}ãš{0,3,12,15,24,27,72,75,84,87,96,99},
{0,1,2,9,10,11,36,37,38,45,46,47}ãš{0,3,6,18,21,24,72,75,78,90,93,96}
ã®42éããšãªããŸãã
twitter ã«ãŠããã«ããŒãã( @HKTmine ) ãæ¬¡ã®ãããªåã€çµã®å
é¢äœãã€ã¹ãçºè¡šãããŸãããïŒç«Šã¿ãšãªã£ãŠããŸãã
A=(0,4,4,4,7,7)
B=(3,3,3,3,8,8)
C=(1,1,6,6,6,6)
D=(2,2,5,5,5,9)
AãBã«åã€ç¢ºçã¯5/9ã§ã
BãCã«åã€ç¢ºçã¯5/9ã§ã
CãDã«åã€ç¢ºçã¯5/9ã§ã
DãAã«åã€ç¢ºçã¯5/9ã§ããã€ã
AãCã«åã€ç¢ºçã1/2ã§ã
BãDã«åã€ç¢ºçã1/2ã«ãªã£ãŠããŸãã
ãµãšæãã€ããã¢ã€ãã¢ãããšã«æã§äœæããŠã¿ãã察称æ§ã®é«ããéæšç§»çãã€ã¹ãã«ãªã£ãŠããŸããã
äºã€çµã®ãäºé¢äœãã€ã¹ (20é¢äœã§åäžæ°ãåã€âäºã€ã®æ°ã§å®çŸ) ã§ãã
A: (0,8,11,19,22)
B: (3,6,14,17,20)
C: (1,9,12,15,23)
D: (4,7,10,18,21)
E: (2,5,13,16,24)
Aã¯Bã«13/25 ã®ç¢ºçã§åã¡
Bã¯Cã«13/25 ã®ç¢ºçã§åã¡
Cã¯Dã«13/25 ã®ç¢ºçã§åã¡
Dã¯Eã«13/25 ã®ç¢ºçã§åã¡
Eã¯Aã«13/25 ã®ç¢ºçã§åã¡
ãã€
Aã¯Dã«14/25 ã®ç¢ºçã§åã¡
Bã¯Eã«14/25 ã®ç¢ºçã§åã¡
Cã¯Aã«14/25 ã®ç¢ºçã§åã¡
Dã¯Bã«14/25 ã®ç¢ºçã§åã¡
Eã¯Cã«14/25 ã®ç¢ºçã§åã€ã
5竊ã¿ãã€ã¹ãããã®ã§ããã
4竊ã¿ãã€ã¹ã§ã¯ããšããã³ã®ãã€ã¹(Efronâs Dice)ãç¥ãããŠããŸããã
aïŒ(0,0,4,4,4,4)
b =(3,3,3,3,3,3)
c =(2,2,2,2,6,6)
d =(1,1,1,5,5,5)
ãšãããã€ã¹ã§ã
aãbã«åã€ç¢ºçã¯2/3ã§ã
bãcã«åã€ç¢ºçã¯2/3ã§ã
cãdã«åã€ç¢ºçã¯2/3ã§ã
dãaã«åã€ç¢ºçã¯2/3ã§ããã
aãcã«åã€ç¢ºçã4/9ã§ã
bãdã«åã€ç¢ºçã1/2ã«ãªã£ãŠããŠããã«ããŒããã®ãã€ã¹ãšéã£ãŠa,b,c,dã¯å®å
šã«å¯Ÿçãšã¯ãªã£ãŠããªãããã§ãã
3竊ã¿ãã€ã¹ã¯2é¢ãã€ã¹ã§ã¯äœããŸãããã3é¢ãã€ã¹ã§ã¯
A=(1,6,8)
B=(2,4,9)
C=(3,5,7)
ãšãããã€ã¹ã§ã
AãBã«åã€ç¢ºçã¯5/9ã§ã
BãCã«åã€ç¢ºçã¯5/9ã§ã
CãAã«åã€ç¢ºçã¯5/9ãšãªã£ãŠããŠãããããã®æ°åã2é¢ãã€ããã°6é¢ãã€ã¹ã§ãäœãããšãã§ããŸãã
äžç«Šã¿ãã€ã¹ã«é¢çœãã®ããããŸããŠã
äžçµãã
A:ïŒïŒïŒ
B:ïŒïŒïŒ
C:ïŒïŒïŒ
äžã¯ [2254]ã§kuiperbeltãããæç€ºãªãã£ããã®ã§ããã
äºçµãã
D:ïŒïŒïŒ
E:ïŒïŒïŒ
F:ïŒïŒïŒ
ããã¯äžçµãã«çŽäº€ããŠããŸããããªã¬ãªã¬çšèªã§ãããã©ããåçã®äžç«Šã¿ã¯ãã²ãšãã¿ããšåãã§ãã
ïŒçµãã
äžã®äºçµã®å¹³åïŒãåããŸãã
G:ïŒïŒïŒ //ADã®å¹³å
H:ïŒïŒïŒ//BEã®å¹³å
:ïŒïŒïŒ//CFã®å¹³å
ãã®ïŒçµç®ãé¢çœããã§ãã
äžç«Šã¿ã¯
匷â匱ããšâã䜿ãããšã«ããŠã
A â Bâ Câ A
D â E â F â D
ã§ããã«ãããããã
å¹³åããšããšç¢å°ã®åããéã«ãªããŸããããªãã¡
G â H â I â G
å
ã»ã©ã®ïŒç«Šã¿ãã€ã¹ã«ããçŽäº€ããããã€ã¹ã®çµããããŸããããŸã ãåãããšãèµ·ãããã©ãã確èªããŠããŸããã
http://shochandas.xsrv.jp/relax/balance4.html
ãžã®å¿çã§ãã
倩秀ããºã«ã«ã€ããŠçæAIã¯èŠæãšããŠããããšãç¥ãããŠããŸããç¹æ®ãªãã¯ããã¯ã§åããã ãæ¹æ³ããšããšå°ãã¯ãã·ã«ãªãããã§ãã
çæãJSONæ§åŒã§è€æ°ã®åçãããããŸããããã¯ãŸããååŒãã
以äžã«ã(ãŸããªãæ¶ããã§ããã)ãªã³ã¯ãæžããŸãããã®ãã³ã¯perplexityã§ãããCatgpt ã§ãåæ§ã§ãã
https://www.perplexity.ai/search/you-are-an-ai-assistant-that-e-jX1xZdgxT.6N2.KHLtfB1g
æ®éã«è³ªåããã4åãšãçããŠããã®ã§ããããããšã
æ²ç€ºæ¿ã§æ·»åãäžä»ãããŒã衚瀺ããã«ã¯ã©ãããã®ã§ããããã
ã¢ã³ããŒããŒã¯ããSHIFTãïŒãããã§å¯èœã§ããããªãŒãããŒïŒãªãŒããŒã©ã€ã³ïŒã¯ããŸãéèŠããªãããããé£ããããã§ããã
è£éåã®èšå·ãªã©ã§äœ¿ããããšããããã®ã§ãããç§ã¯å€åãäœã£ãŠå©çšããŠããŸããæ·»ãåã«ã€ããŠããijãªã©ãšæžãã°åãããªãã
ãªãã®ã§ãæãå ããã«ãã®ãŸãŸå©çšããŠããŸããHTMLææžã§ãA<sub>ij</sub>ãªã©ãšããå Žåãæã
ãããŸãã
âæ±çšæ§ãããè³æã¯ãã¡ããããããããã§ãã
â åæå¯èœãªãã€ã¢ã¯ãªãã£ã«ã«ããŒã¯
https://ja.m.wikipedia.org/wiki/%E5%90%88%E6%88%90%E5%8F%AF%E8%83%BD%E3%81%AA%E3%83%80%E3%82%A4%E3%82%A2%E3%82%AF%E3%83%AA%E3%83%86%E3%82%A3%E3%82%AB%E3%83%AB%E3%83%9E%E3%83%BC%E3%82%AF
âãæè»œãªã®ã¯ãã¡ãã§ãããªãŒããŒã©ã€ã³ã¯ã¿ããããªãã§ããã
https://textmath.hyuki.com/
âå
æ¥ç§ã®æçš¿ã§ãªãŒããŒã©ã€ã³ã䜿ããŸããããäžã®ãµãã€ã䜿ããŸããã
textmath ã§é圢ãäœã£ãŠã
ãããããã€ã¢ã¯ãªãã£ã«ã«ããŒã¯ ãä»äžããã®ã§ããâŠ
ã§ãããã¡ããããã®ã¯é¢åãªã®ã§ãŸãã¯
åãæ¶ãç·ãäžããŸãããã¡ãã§
https://sekika.github.io/2021/09/08/StrikeThrough/
ã§ãåæå¯èœãªãã€ã¢ã¯ãªãã£ã«ã«ããŒã¯ ã
åãæ¶ãç·ãããªãŒããŒã©ã€ã³ã«å€ããŸãããããã¹ããšãã£ã¿ã§ããã£ãã®wikipediaã®ããŒãžãããªãŒããŒã©ã€ã³ãã³ãããããŸããã
âã»ããšã¯ãŸã£ãšããªããæ¹ãããã¯ãã§ãã
å
æ¥ã¯ãã£ã±ã€ãŸã£ãŠããŠïŒåãã£ããã§ããã€ããã§ããããªã®ã§ãéçºããéè®ãªããæ¹ãäžã®éãã§ãã
ãªãŒããŒã©ã€ã³ã¯
ãã¡ãã§ã³ããããã®ãæ©ããã§ããããã¿ã³ã§æŒäžã§ã³ããŒã§ããŸãã
https://0g0.org/unicode/0305/
â ãŸã a ãã¿ã€ããã
â¡ãã®ãããããã«ãäžã®ãµã€ãã§ã³ããŒãããªãŒããŒã©ã€ã³ãããŒã¹ãããããã®ã»ãã»ãã§è¡ã£ãããããª
äŸâ aÌ
ã§ããã
ããããwindows ããœã³ã³ãã䜿ããªãã°ã
ããã¹ããšãã£ã¿ã§ãªãŒããŒã©ã€ã³ãä»ãããæåã®åŸã«ãUnicodeã®çµåãªãŒããŒã©ã€ã³ïŒU+0305ïŒã远å ããŸããäŸãã°ããAÌ
ã(Aã®äžã«ãªãŒããŒã©ã€ã³)ãšãããå ŽåããAããšå
¥åãããã®åŸã«ãU+0305ããå
¥åããAltããŒãæŒããªããXããŒãæŒããŸãã
æ·»ãåãšãªãŒããŒã©ã€ã³ããã¹ãããŠã¿ãŸããã
ðââã®å
±åœ¹ðÌ
ââ
1,1/2,2/3,3/4,4/5,5/6
ã®6ã€ã®æ°ã䜿ã£ãŠçãã100ãšãªãçåŒãäœã£ãŠæ¬²ããã
ãã ãååæŒç®èšå·ã®+,-,*,/ãšæ¬åŒ§ã䜿çšãããã®ãšããã
æ°ã¯ããããåäœã§äœ¿çšãã环ä¹ã®ææ°ãšããŠã®äœ¿çšã¯äžå¯ãšããã
ãããã以å€ã«ãèšç®åŒã
0,1,2,3,4,5,6,7,8,9,10
ãšãªããã®ãçºèŠããããå ±åããŠã»ããã
äŸãã°ãïŒïŒïŒïŒïŒ/ïŒïŒïŒ/ïŒïŒïŒ/ïŒããšããããšã§ããïŒïŒïŒã
1=1
2=1/(1/2)
3=1/((1/2)*(2/3))
4=1/((1/2)*(2/3)*(3/4))
5=1/((1/2)*(2/3)*(3/4)*(4/5))
6=1/((1/2)*(2/3)*(3/4)*(4/5)*(5/6))
åºæ¥ããå šéšã䜿ã£ãŠã»ããã
(1+2/3)/(4/5-3/4)/(5/6-1/2) = 100
(1+1/2*2/3*3/4*4/5)*5/6 = 1
1+(1/2+2/3-3/4+5/6)*4/5 = 2
(1+1/2+2/3+3/4+5/6)*4/5 = 3
(1+1/2)/(3/4*4/5)+2/3+5/6 = 4
1+(1/2-2/3)/((3/4-4/5)*5/6) = 5
1+(1/2+2/3)/(5/6-3/4*4/5) = 6
1-2/3+(5/6-1/2)/(4/5-3/4) = 7
(1-1/2*2/3)/(3/4-4/5*5/6) = 8
(1+1/2)/(2/3-3/4*4/5*5/6) = 9
(1-1/2)/(3/4+4/5-2/3-5/6) = 10
ãã以é70ãŸã§ã¯å
šéšäœããããã§ãã
71ã¯å€åç¡çã§ããã72ïœ87ãäœããããã§ãã
88以äžã§ã¯äœãããã®ãå°ãªãã§ãã
ïŒãäœãã®ãã©ããã£ãŠãäœããŸããã§ãããèŠäºã§ãã
ããã°ã©ã çã«ããããšè©Šã¿ããã§ãããããŸãã«ãã¿ãŒã³ãå€å²ã«æž¡ãã®ã§ã»ãã®äžéšã®éšåã§ããå©çšã§ããŸããã§ããã
ãã1ãé€ããããããã¯æ§æã§ããŸããïŒ
1ããªããŠã100ãå«ããŠãã¹ãŠäœããŸããã
(1/2+2/3-3/4+5/6)*4/5 = 1
(2/3+5/6)/(1/2+3/4)+4/5 = 2
(3/4-2/3)/(5/6-4/5)+1/2 = 3
(2/3-1/2)/((4/5-3/4)*5/6) = 4
(1/2+2/3)/(5/6-3/4*4/5) = 5
(5/6-1/2)/(4/5-3/4)-2/3 = 6
(5/6)/((2/3-1/2)*4/5)+3/4 = 7
(1/2*2/3)/((4/5-3/4)*5/6) = 8
(1/2*5/6)/(4/5-3/4)+2/3 = 9
(5/6-2/3*1/2)/(4/5-3/4) = 10
(5/6)/((2/3-1/2)*(4/5-3/4)) = 100
(远èš)
質åã«ã0ããå«ãŸããŠããããšã«æ°ã¥ããŸããã§ããã
ãŸãã§ã0ã¯ç°¡åãªã®ã§ãããããŠæžããªããŠããã§ãããã
å¥è§£ã§ããã
5/6*(1/(2/3-1/2))/(4/5-3/4)=100
((1/(3/4))-((2/3)/(1/2)))*(5/6)*(4/5)=0
(3/4-2/3)/(5/6-4/5)-1/2-1=1
((3/4-2/3)/(5/6-4/5)-1/2)*1=2
((2/3-1/2)/(5/6-4/5)-1)*(3/4)=3
((1-1/2)/(3/4-2/3))*(5/6)*(4/5)=4
((2/3-1/2)/(4/5-3/4))/(5/6)+1=5
(((((1/(1/2))/(2/3))/(3/4))/(4/5))/(5/6))=6
((3/4-2/3)/(5/6-4/5)+1)/(1/2)=7
((2/3-1/2)/(5/6-4/5)+1)/(3/4)=8
(3/4-1/2)/(5/6-4/5)+1/(2/3)=9
(1/(5/6+2/3+1/2))/(4/5-3/4)=10
â#((â#â)#(â#â))
(âãåæ°,#ãååæŒç®)ã®ãã¿ãŒã³ã ãã«éå®ããŠèª¿ã¹ãŠã¿ãŸããã
1/2+((5/6/4/5)/(2/3-3/4)) = 0
1/2*((3/4-2/3)/(5/6/4/5)) = 1
2/3/((1/2*3/4)-(5/6/4/5)) = 2
1/2+((2/3-3/4)/(4/5-5/6)) = 3
1/2/((3/4-2/3)/(4/5*5/6)) = 4
1/2/((2/3+5/6)*(4/5/3/4)) = 5
1/2/((2/3/3/4)/(4/5*5/6)) = 6
3/4-((1/2-2/3)/(4/5/5/6)) = 7
2/3/((1/2/3/4)+(5/6/4/5)) = 8
1/2/((3/4-2/3)*(4/5*5/6)) = 9
1/2/((3/4-2/3)+(4/5-5/6)) =10
ããããããã®çµæã䜿ãããŠè²°ã£ãŠ
5/6/((2/3-1/2)*(4/5-3/4)) =100
ãšå
šéšãå¶èŠã§ããŸããã
ãã®åŒã§ã¯ã1/2,2/3,3/4,4/5,5/6ã䜿ã£ãŠãããããšã«ã¯ãªããªãã®ã§ã¯ïŒ
äŸãã°0ã®åŒã®äžã®5/6/4/5ã¯åŒãéåžžéãã«è§£éããŠ
5÷6÷4÷5=5/(6Ã4Ã5)
ãšèšç®ããã°ç¢ºãã«0ã«ãªããŸããã
(5/6)/(4/5)ãªãã°åŒã®å€ã¯-12ã«ãªããŸãã
ãã¹ãŠã®åæ°ã«ã«ãã³ãè£ã£ãŠèšç®ãçŽããš
(1/2)+(((5/6)/(4/5))/((2/3)-(3/4))) = -12
(1/2)*(((3/4)-(2/3))/((5/6)/(4/5))) = 1/25
(2/3)/(((1/2)*(3/4))-((5/6)/(4/5))) = -1
(1/2)+(((2/3)-(3/4))/((4/5)-(5/6))) = 3
(1/2)/(((3/4)-(2/3))/((4/5)*(5/6))) = 4
(1/2)/(((2/3)+(5/6))*((4/5)/(3/4))) = 5/16
(1/2)/(((2/3)/(3/4))/((4/5)*(5/6))) = 3/8
(3/4)-(((1/2)-(2/3))/((4/5)/(5/6))) = 133/144
(2/3)/(((1/2)/(3/4))+((5/6)/(4/5))) = 16/41
(1/2)/(((3/4)-(2/3))*((4/5)*(5/6))) = 9
(1/2)/(((3/4)-(2/3))+((4/5)-(5/6))) = 10
(5/6)/(((2/3)-(1/2))*((4/5)-(3/4))) = 100
ãšãªããŸãã
# ç§ãäžã§æžããåçã§ã¯ãåæ°ã«ã«ãã³ãã€ããªããšå€ãç°ãªã£ãŠããŸãåŒã¯é€å€ããŠããŸãã
ãïœãããïŒ
èªåã§åæ°ã¯ãã®åäœã§ãšèšè¿°ããŠãããªããããã®ã«ãŒã«ãç¡èŠããŠããŸã£ãŠããããšã«ãªã£ãŠããã
ææããããŸã§å
šãæ°ä»ããªãã§ããŸããã
ãããããšæ¢ããã¿ãŒã³ãé¥ãã«åºããªããšèŠã€ããããªãã®ã§ããã
ã³ã³ãã¥ãŒã¿ã䜿ã£ãŠãç§ã«ã¯è¶
é£åã§ãã
远䌞;
æ°ãåãçŽããŠæ¬åŒ§ä»ãã§åŠçããŠãããš
(2/3)/(((5/6)/(4/5))-((3/4)*(1/2)))ã=1
(2/3)+(((1/2)/(3/4))+((4/5)*(5/6))) =2
(1/2)+(((2/3)-(3/4))/((4/5)-(5/6))) =3
(1/2)/(((3/4)-(2/3))/((4/5)*(5/6))) =4
(1/2)*(((2/3)/(4/5))/((5/6)-(3/4))) =5
(1/2)/(((3/4)/(2/3))-((5/6)/(4/5))) =6
(3/4)-(((5/6)/(4/5))/((1/2)-(2/3))) =7
(1/2)*(((2/3)/(5/6))/((4/5)-(3/4))) =8
(1/2)/(((3/4)-(2/3))*((4/5)*(5/6))) =9
(1/2)/(((3/4)-(2/3))+((4/5)-(5/6))) =10
ããšããŸããã
ããã®ã¹ã¬ããã«ã¯ãã以äžè¿ä¿¡ã§ããŸãããããšãªããŸããŠããããããªãæ°èŠã¹ã¬ããã§ãã
No.2173 DD++ãã 9æ16æ¥ 16:55 ã®ãæçš¿ã«ã€ããŠè¿ä¿¡ã§ãã
éœæ§å ±åã®æ°ã 6 ãš 2 ãšã§ã¯ãªããšããªããŸããã4 ã§ã¯æŽçãã€ããã«é·ãåæã«ãªã£ãŠããŸããŸããé°æ§ 3 ãšèªã¿æ¿ããŠãããŸããããã
ã¹ã«ããšãã蚌æããæç€ºé¡ããã°å¹žãã§ãã
===
çæ§ãžã
æ©æ¢°ã«å
šæ°æ€æ»ãããŠããããŸãããšããããã ãã®äºæ³ã¯çã®ããã§ãã
äžèšã§ true ãåºåããŠããŸããã(JavaScriptã«ããããã°ã©ã ã§ãã)
jslintçã«ã¯è¶
ã€ããã§ããç³ãèš³ãããŸããã
function hammingDistance(str1, str2) {
// ããã³ã°è·é¢ãèšç®ãã颿°
let distance = 0;
for (let i = 0; i < str1.length; i++) {
if (str1[i] !== str2[i]) {
distance++;
}
}
return distance;
}
function checkCondition(sequences) {
// æ¡ä»¶ãæºããããã§ãã¯ãã颿°
for (let i = 0; i < sequences.length; i++) {
const originalSeq = sequences[i];
// 2ããããå転ããããã¹ãŠã®çµã¿åãã
for (let j = 0; j < originalSeq.length; j++) {
for (let k = j + 1; k < originalSeq.length; k++) {
const newSeq = originalSeq.split('');
newSeq[j] = newSeq[j] === '0' ? '1' : '0';
newSeq[k] = newSeq[k] === '0' ? '1' : '0';
const z = newSeq.join('');
let count = 0;
for (const seq of sequences) {
if (hammingDistance(z, seq) === 2) {
count++;
}
}
// ããã³ã°è·é¢ã2ã§ããã·ãŒã±ã³ã¹ãåžžã«3ã€ã§ãªããã°falseãè¿ã
if (count !== 3) {
return false;
}
}
}
}
return true;
}
// äžããããã·ãŒã±ã³ã¹
const sequences = ['0000000', '0010111', '1001011', '1100101', '1110010', '0111001', '1011100', '0101110'];
const result = checkCondition(sequences);
console.log(result); // true or falseãåºåããã
=====
ãšããã§ããã®äœæŠãããŸãããã®ã§ãããªãã°ã
ïŒåã®åã€ãæè¡è
ãåžžã«åã®å ±åãããŠããã®ã§ãããªãã°ã
ïŒæäžã®ïŒæã§ã¯ãªã
ïŒæäžã®ïŒæã®åœé貚ãç¹å®ã§ããã®ã§ããïŒ
0çªãã7çªã®é貚ã«ã€ããŠã®åŠçã®ã€ããã§ä»ãŸã§ã¯ã話ãããŠããŸãããã
ã0çªã«ã¯2æãå²ãåœãŠããããšãšããŸãã
åŸåã®â ããâ¢ã®ã±ãŒã¹ã§â ã«ã¯å€æŽãªãã
â¡ã§ã¯ã倿Žãããããã¯åã€ããªãã®ã±ãŒã¹ã§ãããïŒçªã³ã€ã³ããïŒçªãŸã§ã®ã©ããã«ãããããªããã°ãç¬¬äºæ®µéã§ã2æã®0çªã®ãã¡ã©ã¡ããåœã³ã€ã³ãªã®ãããïŒåã®åã€ãã«å€å®ããŠãããããšãšãªããŸãã
â¢ã§ã¯ãåœæž¬å®å€ãïŒåå«ãïŒåã®ããŒã¿ãåŸããããšãã«ãåœé貚ã®åè£ã¯ããã€ããïŒæã§ãããã§ã¯ãªãã0çªãåè£ã«ãªããšãã«ã¯4æãåœé貚ã®åè£ãšãªããŸãã
ç¬¬äºæ®µéã§ã¯ãæ£çŽè
ã®æè¡è
ã2åæ®ã£ãŠããŸãã®ã§åœé貚ã®ç¹å®ã¯å¯èœã§ãã
ãããŒãïŒã
泚ç®ãã¹ãã¯ãé°æ§å ±åãããŠãã 3 人ãããæž¬å®ã«ãããªãã£ããæ¹ã®ã³ã€ã³ã§ããã
ããšã¯ãã«ãŒã¯ãã³ã®çµåãåé¡ã¯ïŒå€åãã¡ãå¹³é¢ã§èããå Žåã§ãïŒïŒãä»»æã® 2 ã€ã®çµã®éã«å¿
ãå
±é人ç©ã 1 人ã ãååšããããšã泚ç®ã«å€ããŸãã
DD++ ããã
ãã³ãã³ã®ãã³ããæé£ãããããŸãã
ãããããŸã§
åœã³ã€ã³åè£ããïŒå以äžãã§ãããšã¯ç€ºããŸããã
ããããªããäžåºŠïŒåãããšãããšãããŸã§ã¯ãŸã ããã€ããŠãããŸããã
ãªã«ãåçŽãªããšãèŠèœãšããŠããã«ã¡ãããããŸããã
ããå°ãã ãèããŠã¿ãŸãã
éœæ§å ±åæ° 4 ã ãã©ççŸãå«ãŸããŠããå Žåã®è©±ã§ãããïŒ
é°æ§å ±åããã 3 人ã A, B, C ãšããŸãã
A ãåã€ãã ãšä»®å®ãããšãA ãæž¬å®ã«ãããŠããŠãB ãš C ãæž¬å®ã«ãããŠããªãã³ã€ã³ã¯æ¬ç©åè£ã«ãªããŸãã
ããŠããã®ãããªã³ã€ã³ã¯äœæååšããã§ããããïŒ
DD++ ããã
ãã£ãããéãã§ããïŒïŒïŒ
æå€§ã®ãã³ãããŸããšã«ããããšãããããŸãïŒïŒïŒ
çæ§ãžã
ããšã§ãããããšèšŒæã®ã¢ãŠãã©ã€ã³ãæžããŠããæåã§ãã
ãã£ãã DD++ ããã«ãã³ããããã ããŠãããŸãã®ã«ããäžåºŠïŒåã§ãããã»ãã®èšŒæããŸã æžãäžããŠãããŸããããã³ãçµµã«ã€ããŠã¯æŒžãåºæ¥äžãããŸããããã©ããç³ãèš³ãªãããšã§ãã
[2191]ã®æçš¿ã§ç§ã¯ãïŒå以äžãã®èšŒæãªãåºæ¥ããšç³ããŠãããŸããã
仿¥ã¯ãã¡ãã®ã»ãã®ã¡ã¢æžããäžèšã«æçš¿ããããŸãã
é貚ã®ååã
z, a, b, c, d, e, f, g
ãšããŸãã
æè¡è
ïŒåã«ã¯æ·»ãåãšã㊠1 ãã 7 ãäžããŸãã
ã¬ã€ã¬ãŒã«ãŠã³ã¿ãŒã«ãã
æ€æ»çµæã
q ãšããŸãã
q ã¯ã7åã®æè¡è
ã«ããé°æ§(0)ãéœæ§(1) ã®çµæã瀺ã
ðâ, ðâ, ðâ, ... , ðâ
ãšããŠè¡šããŸãã
ããŸãåœé貚ã a ã§ããç¶æ³äžã§ã
æè¡è
ã q ã®æ€æ»çµæãè¿ãããšããŸãã
ãŸããããªãã£æ€æ»ã«ããã
q 㯠a ã«å¯ŸããŠããã³ã°è·é¢ã 2 ã§ãããšå€æãããã®ãšããŸãã
äžè¬æ§ã倱ããªãããã«ããããã«ã
q ããz, a ãã g ãŸã§ã«äœ¿ãããæ·»ãåã§ããã 1 ãã 7 ãŸã§ã«ã€ããŠ
{h, k, m, n, p, s, t} = {1, 2, 3, 4, 5, 6, 7}
ãšããŸããèè¶³ã§ãã䞡蟺ã®éåã®åèŠçŽ ã¯äžå¯Ÿäžå¯Ÿå¿ããŸãããã©ãé äžåã§ãã
以äžã®èšè¿°ã§äžè¬æ§ã倱ããªãããã®çŽæãŠãã
ãŸããðâ ã®ãããå転ãããã®ã ðÌ
â ãªã©ãšããªãŒããŒã©ã€ã³ã§è¡šãããšãšããŸãã
åœé貚 ð ã«ãããã æ€æ»çµæã ð ãšããŠäžãããããã®ãšããŸãã2 ãããã®å転ã¯ããããäœçœ® h, k ã§çºçããŠããããšãšããŸãã
å³ç€ºããã°ã次ã®ïŒè¡ã®åãããã®äžãšäžãšã¯ççå€ã¯çããã§ãã
ðÌ
â, ðÌ
â, ðâ, ðâ, ðâ, ðâ, ðâ
ðâ, ðâ, ðâ, ðâ, ðâ, ðâ, ðâ
ãã® ð ã ð ããåœé貚ã®åè£ãšããŠèããããããšããŸããããå³ç€ºããŸããšä»¥äžã®ïŒãã¿ãŒã³ã®ã¿ã«åãããŸãã
âãã¿ãŒã³ïŒ
ðÌ
â, ðÌ
â, ðâ, ðâ, ðâ, ðâ, ðâ
ðâ, ðâ, ðâ, ðâ, ðâ, ðâ, ðâ
ðÌ
â, ðÌ
â, ðâ, ðâ, ðâ, ðâ, ðâ
âãã¿ãŒã³ïŒ
ðÌ
â, ðÌ
â, ðâ, ðâ, ðâ, ðâ, ðâ
ðâ, ðâ, ðâ, ðâ, ðâ, ðâ, ðâ
ðâ, ðÌ
â, ðÌ
â, ðâ, ðâ, ðâ, ðâ
âãã¿ãŒã³ïŒ
ðÌ
â, ðÌ
â, ðâ, ðâ, ðâ, ðâ, ðâ
ðâ, ðâ, ðâ, ðâ, ðâ, ðâ, ðâ
ðâ, ðâ, ðÌ
â, ðÌ
â, ðâ, ðâ, ðâ
åæããŸãã
ãã¿ãŒã³ïŒã§ã¯ã
a ãš b ãšã¯ãããã³ã°è·é¢ã 0 ãšãªã£ãŠããŸããæ¬æ¥ããã¹ãããã³ã°è·é¢ãïŒã§ããããšãšççŸããŸãããã¿ãŒã³ïŒã¯ããããŸããã
ãã¿ãŒã³ïŒã§ã¯
a ãš b ãšã¯ãããã³ã°è·é¢ã 2 ãšãªã£ãŠããŸããæ¬æ¥ããã¹ãããã³ã°è·é¢ãïŒã§ããããšãšççŸããŸãããã¿ãŒã³ïŒã¯ããããŸããã
ãã¿ãŒã³ïŒã§ã¯
a ãš b ãšã¯ãããã³ã°è·é¢ã 4 ãšãªããæ¬æ¥ããã¹ãããã³ã°è·é¢ãïŒã§ããããšãšççŸããŸããããã¿ãŒã³ïŒã¯ããããŸãã
ãããããããã¿ãŒã³ïŒã®ã¿ããa ãš b ãšã®éã®é¢ä¿ã瀺ããŠããŸãããã¿ãŒã³ïŒãåæ²ããŸãã
ðÌ
â, ðÌ
â, ðâ, ðâ, ðâ, ðâ, ðâ
ðâ, ðâ, ðâ, ðâ, ðâ, ðâ, ðâ
ðâ, ðâ, ðÌ
â, ðÌ
â, ðâ, ðâ, ðâ
ããŠã第äžã®é貚 c ãåœé é貚ã®åè£ã ãšããŸãããã
ãããããã¿ãŒã³ã¯ä»¥äžã®ã¿ã§ãã
ðÌ
â, ðÌ
â, ðâ, ðâ, ðâ, ðâ, ðâ
ðâ, ðâ, ðâ, ðâ, ðâ, ðâ, ðâ
ðâ, ðâ, ðÌ
â, ðÌ
â, ðâ, ðâ, ðâ
ðâ, ðâ, ðâ, ðâ, ðÌ
â, ðÌ
â, ðâ
a ãš b ãšã®é¢ä¿ã¯ãa ãš c, b ãš c ãšã®é¢ä¿ã«ããã®ãŸãŸéçšããããã§ãã
枬å®çµæã§ãã q ã«ã€ããŠãa, b, c ãåœé貚ã®åè£ã§ããå Žåã«ã¯ããããå転ã®é¢ä¿ã¯äžã«å°œããããšãšãªããŸãã
ããã§ãæŽã«ãé貚 d ãåœé貚ã®åè£è¶³ãåŸãããšåããç«ãŠãŸãã
h,k,m,n,p,s 以å€ã®ãµãã€ã®äœçœ®ã§ãd 㯠q ã«ããããŠãããå転ããŠããªããŠã¯ãªããŸãããããã¯äžå¯èœã§ãã
ãããŸã§ããŸãšããã°ã
枬å®çµæ q ãäžãããããªãã°ãåœé貚ã§ããããšãããããã®ã¯ãa,b,c, ã®ïŒæãŸã§ã§ã4æä»¥äžã§ã¯ããåŸãªãããšãããããŸããã
ãªããïŒæä»¥äžã§ããããšã瀺ããã ãã§ãã£ãŠãïŒæäžåºŠã瀺ããããã§ã¯ãªãããšãä»èšããŠãããŸãã
ããïŒ
ç§ã¯ãããšçããã®ãã®ã®ã€ããã§æžããŠããã§ããâŠâŠ
éœæ§å ±åã 4 人ã ã£ãå Žåã
ã»å
šå¡æ£çŽ
ã»éœæ§å ±åãšé°æ§å ±åããããã§ 1 人åã€ã
ã®ããããã§ãããïŒ
åè
ã¯ããã³ã°è·é¢ 0 ã§è©±ã¯çµãã£ãŠããŸãã
åŸè
ã®å Žåãé°æ§å ±åè
ã®ãã¡ 2 äººãæž¬å®ããå€ããã³ã€ã³ãæ¬ç©åè£ã§ãã
ãããŠããã¯ä»»æã®é°æ§å ±åè
2 人çµã®éã«å
±éã§æž¬å®ããªãã£ãã³ã€ã³ãïŒèª°ã枬ããªãã£ããã€ä»¥å€ã§ïŒå¿
ãã¡ããã© 1 æãããåèšã§ 3C2 = 3 æååšããŸãã
DD++ ããããã³ãã³ãæãç
©ãããŠããŸããŸããŠç³ãèš³ããããŸããã§ãããæé£ãããããŸãã
â åé¡ã®æ¯ãè¿ããããŸãã
No.2129Dengan kesaktian Indukmu9æ8æ¥ 00:09
ã®åé¡ã§ã¯ 10 人ã®ã±ãŒã¹ã§ã¯è§£ãããã§ã¯9人ã§ã¯ïŒ ãšãªã£ãã®ãããšã®çºç«¯ã§ãã
ïŒäººã®ãã¡ãç¬¬äžæ®µéã§ïŒäººãæå
¥ãããã§åœé貚ãç¹å®ã§ããã°ããããã®ãªãã«èåœã®ã¬ããŒããããŠããæè¡è
ãïŒäººããã±ãŒã¹ãããããããã®å Žåã«ã¯åœé貚ãç¹å®ã§ããªããã®ã®ãåœé貚ã®åè£ããäžåºŠãïŒæã«ãªãã®ã§ãç¬¬äºæ®µéãšããŠæ®ãã®æ£çŽãªæè¡è
ïŒåãåœé貚ãç¹å®ã§ããã ãããããã«æè¡è
ã¯9人ã§ååã ããšããçæžããªã®ã§ããã
ä»åã¯ç¬¬äžæ®µéã®ã¢ã«ãŽãªãºã ãæ±ºå®ãããªããã€ãäžåºŠïŒäººãåé¡ã«ã€ããŠãå人çãªçµè«ãçããã«ãå ±åããããŸãã
///////////
ãæ³šæ:ãããŸã§ã®æµããšé°æ§éœæ§ã®æ±ããé転ããŠããŸã£ãŠããŸããç³ãèš³ãããŸããã
(ã²ãšãã«ç§ã®çŽèгã«ããããŠããŸã£ãã ããªã®ã§ããâŠâŠ)
///////////
â ç¬¬äžæ®µéã§ã®æž¬å®ã«ã€ããŠ
i ã 1 ãã 7 ãŸã§ã®æ·»åãšããŠäœ¿ããŸãã
j ã 1 ãã 8 ãŸã§ã®æ·»åãšããŠäœ¿ããŸãã
7人ããæè¡è
ã«ã1 ãã 7 ãšååãã€ããŸããæ·»åãšããŠã¯ãã£ã±ã i ã䜿ããŸãã
éœæ§éå Pj ã以äžã®ããã«å®çŸ©ããŸãã
P1 = {2, 3, 5}
P2 = {3, 4, 6}
P3 = {4, 5, 7}
P4 = {5, 6, 1}
P5 = {6, 7, 2}
P6 = {7, 1, 3}
P7 = {1, 2, 4}
P8 = {1, 2, 3, 4, 5, 6, 7}
â»äœè«ã§ãã P1 ãã P7 ã¯ãFANOå¹³é¢ãšãªã£ãŠããŸããP8 ã¯äœèšãã®ã§ãã
é°æ§éå Nj ã以äžã®ããã«å®çŸ©ããŸãã
N1 = {7, 6, 4, 1}
N2 = {1, 7, 5, 2}
N3 = {2, 1, 6, 3}
N4 = {3, 2, 7, 4}
N5 = {4, 3, 1, 5}
N6 = {5, 4, 2, 6}
N7 = {6, 5, 3, 7}
N8 = {}
8 æã®é貚ã«ä»¥äžã®ããã«ååãã€ããŸãã
C{Pj, Nj}
ããªãã¡ãé貚ã®ååã«ã€ããŠã¯éœæ§éåãšé°æ§éåã®çµã¿ã®éåã§å®çŸ©ããŸãã
é·ããªããŸããã®ã§ãæçš¿ããã£ããåºåããŸãã
â ç¬¬äžæ®µéã§ã®æž¬å®ã«ã€ããŠ(ã€ã¥ã)
7äººã®æè¡è
ã«æ¬¡ã®ããã«æž¬å®ã®æç€ºãã ããŸããããªãã¡ã
i çªç®ã®æè¡è
ã¯ãPj ã®èŠçŽ ã« i ãå«ããããªé貚 C{Pj, Nj} ãã¬ã€ã¬ãŒã«ãŠã³ã¿ãŒã§èšæž¬ããŸãã
âæ©èŠè¡š | 1 2 3 4 5 6 7 âæè¡è
C{P1, N1} | 0 1 1 0 1 0 0
C{P2, N2} | 0 0 1 1 0 1 0
C{P3, N3} | 0 0 0 1 1 0 1
C{P4, N4} | 1 0 0 0 1 1 0
C{P5, N5} | 0 1 0 0 0 1 1
C{P6, N6} | 1 0 1 0 0 0 1
C{P7, N7} | 1 1 0 1 0 0 0
C{P8, N8} | 1 1 1 1 1 1 1
â»ãã®æ©èŠè¡šã§ã¯ã1 ãç«ã£ãŠããé貚ãèšæž¬ããŸãã
éœæ§ã®ã¬ããŒããããæè¡è
ã®éåã T ãšåã¥ããŸãã
Tããåœé貚ã®ããããæ¢ããšããããšãšãªããŸãã
ããšãã° T={2,3,5} ãªãã°åœé貚㯠C{P1, N1} ãšããããšãšãªããŸãã
â èšæž¬çµæTã®è©äŸ¡ã«ã€ããŠ
ç°¡åãªãã®ããé ã«ã
â T = Pj ãšãªã j ããããšã
â»ïŒäººãšãã«æ£ããã¬ããŒããæåºããããšãšãªããŸãã
åœé貚ã¯ãC{Pj, Nj}ã
â¡Tã®èŠçŽ æ°ã 2 ã®ãšã
â»ããªãã¡éœæ§ãé°æ§ãšåœã£ãã¬ããŒããã²ãšã€ãã£ãããšã«ãªããŸãã
j = 8 ãé€å€ã§ããŸãã
Pj â T ãªã j ãå¯äžã«å®ãŸããŸãã
åœé貚ã¯ãC{Pj, Nj}ã
â¢Tã®èŠçŽ æ°ã 4 ã®ãšã
â»é°æ§ãéœæ§ãšåœã£ãã¬ããŒããã²ãšã€ãã£ãããšã«ãªããŸãã
j = 8 ãé€å€ã§ããŸãã
Pj â T ãªã j ãå¯äžã«å®ãŸããŸãã
åœé貚ã¯ãC{Pj, Nj}ã
â£Tã®èŠçŽ æ°ã 6 ã®ãšã
â»é°æ§ãéœæ§ãšåœã£ãã¬ããŒããã²ãšã€ãã£ãããšã«ãªããŸãã
åœé貚ã¯ãC{P8, N8}ã
ãããŸã§â â¡â¢â£ã¯ T ãšåœé貚㮠Pj ãšã®ããã³ã°è·é¢ã 0 ãŸã㯠1 ãªã®ã§ããã
(ç¶ããŸã)
â èšæž¬çµæTã®è©äŸ¡ã«ã€ããŠ(ã€ã¥ã)
â€Tã®èŠçŽ æ°ã 1 ã®ãšã
â»éœæ§ãé°æ§ãšåœã£ãã¬ããŒãããµãã€ãã£ãããšã«ãªããŸãã
j = 8 ãé€å€ã§ããŸãã
ãã®ãšã T ã®èŠçŽ ãä¿¡ããããšãã§ããŸãã誀ã£ããµãã€ã®ã¬ããŒãã®åœ±é¿ãåããŠããªãããã§ãã
T â Pj
ãšãªã j ã¯ïŒã€ãããŸãã(FANOå¹³é¢ã®æ§è³ªã§ã)
ïŒã€ããåœé貚ã®åè£ C{Pj, Nj} ã«ã€ããŠã¯ç¬¬äºæ®µéã§ã(ãã以äžã¯èª€ã£ãã¬ããŒããçºçããªããã) åŠçå¯èœãšãªããŸãã
â¥Tã®èŠçŽ æ°ã 5 ã®ãšã
åœé貚ã®åè£ãšããŠãµãã€ã®ã°ã«ãŒããèããããŸãã
â¥âïŒ
â»C{P8, N8} ã«ã€ããŠãéœæ§ãé°æ§ãšèª€ã£ãã¬ããŒããïŒéçºçããã±ãŒã¹ã§ãã
åœé貚ã®åè£ãšããŠ
ãããã²ãšã€ãã®ã°ã«ãŒãã§ãã
â¥âïŒ
â»j=8 ãé€å€ããŠã® C{Pj, Nj} ã«ã€ããŠãé°æ§ãéœæ§ãšèª€ã£ãã¬ããŒããïŒéçºçããã±ãŒã¹ã§ãã
誀ã£ãã¬ããŒããåºããæè¡è
ã®æ·»åã®å€ã m,n ãšããŸãã
{m} â Pj ãªã C{Pj, Nj} 㯠ïŒåãããŸãã
ãã㯠FANOå¹³é¢ã®æ§è³ªã§ãã
{n} â Pj ãªã C{Pj, Nj} 㯠ïŒåãããŸãã
ããã FANOå¹³é¢ã®æ§è³ªã§ãã
{m,n} â Pj ãªã C{Pj, Nj} 㯠ïŒåãããŸãã
ãã㯠FANOå¹³é¢ã®æ§è³ªã§ãã
誀ã£ãã¬ããŒã m,n ãå«ãã C{Pj, Nj}ã¯
3+3-1=5 ãããïŒåãããŸãã
j=8 ãé€å€ããŠã® C{Pj, Nj} ã®ïŒåã®ãã¡ã
æ¬ç©ã®é貚ãšããŠé€å€ã§ããã®ã¯ïŒåãšãªããåœé貚ã®åè£ã¯ïŒåãšãªããŸãã
ããè¿é ãªè«æ³ã§ãããã
T â Pj ãæºãã j ã¯ïŒã€ãããšããããšãšãªããŸãã
â¥âïŒ
以äžããããã®â¥ã®ã±ãŒã¹ã§ã¯ãåœé貚ã®åè£ã®ææ°ã¯ïŒæãšãªããŸããã
(ã€ã¥ããŸããæ¬¡ã¯ç§ã«ãšã£ãŠã®å€©çå±±ã§ãDD++ ãããããç¥æµãæåããéšåã§ãã)
(æ¬æ¥ã¯å€é£¯ã®æ¯åºŠãããªããã°ãªããªã身åã§ãã®ã§ãã²ãã£ãšãããšææ¥ã«ãªããããããŸããã)
ç§ã«ãšã£ãŠãçŽèгãšéã§ããã®ã§ããã®å€æŽã¯ãããããã§ãã
6-2 ã¯ãéœæ§ãé°æ§ãšåœã£ãå ±åããªã以äžãé°æ§å ±åã¯å
šãŠä¿¡ããŠãããããã§ 5 æãæ¬ç©ãšç¢ºå®ã§ããŸããã
DD++ ããã[2217]â ãã£ãšå«ã³ãŸããã
ããã¯ããã§ããâŠâŠèªæãªãã®ãç§ã®ããã«ãããããŸãããŠã¯ãã¡ã§ããâŠâŠ
æ°ãåãçŽããŠã以äžã§ã¯ãAâB ãå·®éåã®è¡šèšãšããŸãã
ã
âŠTã®èŠçŽ æ°ã 3 ã®ãšã
(ãã ããâ ã®ã±ãŒã¹ã¯é€ããŸãã)
â»éœæ§ãé°æ§ã«ãã誀ã£ãã¬ããŒãïŒéãšãé°æ§ãéœæ§ã«ãã誀ã£ãã¬ããŒããïŒéãšãèšïŒæ¬ã®èª€ã£ãã¬ããŒããçºçããŠããã±ãŒã¹ã§ãã
話ã®éœåäžãT ã«åºã¥ããŠUãäœããŸããUãå
šäœéåã§ãªããŠãã¿ãŸããã
U = {1, 2, 3, 4, 5, 6, 7}âT
ãããŠãåœé貚ã®C{Pj, Nj}ã«ã€ããŠ
Pj = {x, y, z}
Nj = {p, q, r, s}
ãšããŸãã
T = {p, y, z,}
U = {x, q, r, s}
ãæž¬å®ã®çµæãšããŠåŸãããŠããããšãšãªããŸãã
Tã®ïŒã€ã®èŠçŽ ã®ãã¡ãåœã¬ããŒããã²ãšã€ããã®ã§ããã®å¯èœæ§ã¯äžåºŠïŒéããããŸãã
åœç©ã倧æåã§æžããš
Pj = {X, y, z}
Pj = {x, Y, z}
Pj = {x, y, Z}
ã®ã©ãããå®çŸããŠããããšãšãªããŸãã
Tã«å«ãŸããïŒã€ã®èŠçŽ ã®ãã¡ïŒã€ãéžã¶ãšãããããã«å¯Ÿå¿ããŠé貚ãã²ãšã€å®ãŸããšããããšãšãªããŸãã
以äžããããã®âŠã®ã±ãŒã¹ã§ã¯ãåœé貚ã®åè£ã®ææ°ã¯ïŒæãšãªããŸããã
ããŠãçµè«ã§ãã
以äžããŸãšããŸããšãç¬¬äžæ®µéã§ïŒäººäžã«ïŒäººåã®åœã¬ããŒããçºçãããšãã«ã¯ãåœé貚åè£ã¯åžžã«ïŒåã§ããããšãããããŸãã
誀ãã¬ããŒãã®æ°ã 0 ãªãã 1 ã§ãããšãã«ã¯ãåœé貚ã¯ç¢ºå®ããŸãã
ãææ³ã
ããã¡ãã£ãšç°¡åã«æžããã°è¯ãã®ã§ããã
å
ã«æç€ºãããŠããã ããæ©èŠè¡šã§
åã³ã0 ãš 1 ãšããããããªããããäžã§ãäžèšã«åæ²ãããŠããã ããŸãã
C{P1, N1} | 1 0 0 1 0 1 1 //C4
C{P2, N2} | 1 1 0 0 1 0 1 //C6
C{P3, N3} | 1 1 1 0 0 1 0 //C7
C{P4, N4} | 0 1 1 1 0 0 1 //C3
C{P5, N5} | 1 0 1 1 1 0 0 //C5
C{P6, N6} | 0 1 0 1 1 1 0 //C2
C{P7, N7} | 0 0 1 0 1 1 1 //C1
C{P8, N8} | 0 0 0 0 0 0 0 //C0
ãªããåè¡ã®å³ç«¯ã¯ãããããå§ãã説æã®éœåäžãåéè²šã«æ°ããååã¥ããããã®ã§ãã
ãããåã®æä»çè«çåã®èšå·ãšããŠãâãã䜿ãããšãšããŸãã
ããšãã°ã 0110 â 1010 = 1100 ã§ãã
1 †n â€7 ã«ã€ããŠ
C0 â Cn = Cn
ã¯ãèªæã§ããã
ããã¯ãªããã®ãã以äžã®ããã«ãªã£ãŠããããšã§ãã
C3 = C2 â C1
C5 = C4 â C1
C6 = C4 â C2
C7 = C4 â C2 â C1
ã€ãŸããC1,C2,C4 ããç¥ã£ãŠããã°ã
ä»ã«ã€ããŠã¯ãïŒé²æ°ã®ä»æãã«ãã£ãŠå²ãåºãããšããããšã«ãªããŸãã
ããã¯ç§ã«ãšã£ãŠã¯éèªæãªããšã§ãã®ã§
çæ§ã«ããå ±åããæ¬¡ç¬¬ã§ãã
OEIS ã®
A075931
List of codewords in binary lexicode with Hamming distance 5 written as decimal numbers.
ããã
0,31,227,252,805,826,966,985,1354,1365,1449,1462,1647,1648,1676,1683
ãŸã§ãå©çšããŠ
笊å·é· 11 ãæå°ããã³ã°è·é¢ 5 ã®ç¬Šå·ã®ãããåã以äžã®ããã«äœæããŸããã
"12 0 3 00 4 0000"ââèŠåºã
"00 0 0 00 0 0000",//0
"00 0 0 00 1 1111",//1
"00 0 1 11 0 0011",//2
"00 0 1 11 1 1100",//
"01 1 0 01 0 0101",//4
"01 1 0 01 1 1010",
"01 1 1 10 0 0110",
"01 1 1 10 1 1001",
"10 1 0 10 0 1010",//8
"10 1 0 10 1 0101",
"10 1 1 01 0 1001",
"10 1 1 01 1 0110",
"11 0 0 11 0 1111",
"11 0 0 11 1 0000",
"11 0 1 00 0 1100",
"11 0 1 00 1 0011",
èŠåºãã«ã€ããŠèª¬æããŸãã
"12 0 3 00 4 0000"
ã§ã1,2,3,4 ã¯ãããŒã¿ããã(4ããã)ãšããŠäœ¿ãããããäœçœ®ã§ããäžäœããæé ã«ããŠããŸãã
"12 0 3 00 4 0000"
"01 1 0 01 1 1010",
äžã®äŸã§ã¯ã0101 ãæå³ããŠããã10é²ã§ã¯ 5 ã§ãããããã確ãã« 0 ãªãªãžã³ã§ 5 çªç®ã®ãããåã§ããããšã«çæããŠé ããã°å¹žãã§ãã
äžã®äžèŠ§è¡šã¯ã4ãããã®ããŒã¿ãããã®ç¬Šå·èªãã11ãããã«ãšã³ã³ãŒããããã®ãšãªã£ãŠããŸãã
ååã®æçš¿ãNo.2220 ã§çºçããŠããæ©èš¶äžæè°ãªçŸè±¡ããäžã§ããããŠããã®ãã«ã€ããŠããã°ã©ã ã§æ€èšŒããŸãããšããããªãŒã±ãŒãšãªããŸããã
"00 0 0 00 1 1111",//1
"00 0 1 11 0 0011",//2
"01 1 0 01 0 0101",//4
"10 1 0 10 0 1010",//8
ãç¥ã£ãŠããã°ã
ä»ã®11åã®ç¬Šå·èªã¯ãæä»çè«çåã§ãã£ãŠèšç®ã§ããã®ã§ãã
ãããããèªæã ãããšãæãã«ãªããããããããã£ããããããããŸããã
ããããªããã§ããã
ãã® A075931 ã®æ°åã¯ã0 ããé ã« 1 ã¥ã€ãã«ãŠã³ãã¢ããããŠãããããŒãã«äžã«ãããŠãã(å
è¡ãã)å
šãŠã®æ°ãšããã³ã°è·é¢ã5以äžãšãªãæ°ãã¿ã€ããŠã¯ããŒãã«ã«è¿œå ããŠæºã蟌ãã§ããã ãã§ãäœã£ãŠãããã§ãã貪欲ã¢ã«ãŽãªãºã ã§ãã£ãŠã°ãªãŒãã£ã«ãæãæå³ã§ã¯æ±ãäœãæ¹ã
ãªã®ã«ã[2220]ã®æçš¿ã§è§Šããæ³åãããããããããA075931 ã§ãç§ãåæã«èšå®ãããèŠåºãããã笊å·èªã®å€ãçŽã«ç€ºããŠãããªããŠãäžæè°ã§äžæè°ã§ãªããªãã®ã§ãã
ããšãã°ãæå°ããã³ã°è·é¢ã 6 ã§ã笊å·é·ã 13 ã笊å·èªæ°ã 13 ã®ã次ã®ç¬Šå·ã«ã¯ãä»è©±é¡ã«ããŠãã[æ³å]ãç§ã¯ã¿ã€ããããŸããã
"0011101111101",
"1001110111110",
"0100111011111",
"1010011101111",
"1101001110111",
"1110100111011",
"1111010011101",
"1111101001110",
"0111110100111",
"1011111010011",
"1101111101001",
"1110111110100",
"0111011111010",
ããŒã¿ããããã©ããªã®ããææ§ã§ãããã
ãµã€ã¯ãªãã¯ã§ãããã
綺éºãªä»æãã§äœã£ãå²ã«ã¯ã
ã°ãªãŒãã£ã«äœã£ããã®ã«ãæãæå³ãè² ããŠããã®ã§ãã
ãã®è¬ãé¢çœããŠãããããªãã§ãã
2221 ã§ç§ã¯ç¡æåæµã«ããŒã¿ãããã®äœçœ®ã決ããŠããã®ã§ããã(ã€ãŸããã§ãã¯ãããã®äœçœ®ã決ããŠããã®ã§ãã)
ãšã£ãã®æã«ã³ã³ãŠã§ã€ãããæ±ºããŠïŒãŸãããã©ããã£ããããïŒã
ãã®ããŒãã«ã倧ãããªããšãããã®äœçœ®ã¯ãããããšã®ããšããŸãã