PïŒ
çŽ æ°ïŒé²æ°äœã®äºæ¬¡åŒã«ã€ããŠã
Päžæ¢çŽãªåŒãèããŠã¿ãŸããã
ãã®åæ°ããäžããåŒãã
ïœïŒïœïŒ1ïŒ^2/2
ã§äžããããããã§ãã
p=2,3,5,...ã«å¯ŸããŠãp(p-1)^2/2=1,6,40,...ãšãªããŸãããksãããèããQ_p(p=2,3,5,...)ã§ã®æ¢çŽãªäºæ¬¡åŒãšããã®ã¯ã©ã®ãããªãã®ã§ãããããp=2,3ã®å Žåã ãã§ãäŸç€ºããŠããã ããªãã§ããããã
p鲿°äœã®äºæ¬¡æ¡å€§äœã¯ã2鲿°äœQ_2ã«ã€ããŠã¯ãQ_2(â2)ãQ_2(â3)ãQ_2(â6)ãQ_2(â-1)ãQ_2(â-2)ãQ_2(â-3)ãQ_2(â-6)ã®7ã€ã®äºæ¬¡æ¡å€§äœããããp鲿°äœ(p>2)Q_pã«ã€ããŠã¯ãQ_p(âp)ãQ_p(ân)ãQ_p(â(np))ã®3ã€ã®äºæ¬¡æ¡å€§äœããããŸãããã ããnã¯Q_pã«å¹³æ¹æ ¹ããããªãæ°ã§ãã
Q_2ã®äºæ¬¡åŒã§ã¯ãx^2-2,x^2-3,x^2-6,x^2+1,x^2+2,x^2+3,x^2+6ãæ¢çŽãšãªããŸãããα=2,3,6,-1,-2,-3,-6ãšãããšãa,bâQ_2,(x+a)^2-b^2*α=x^2+2ax+(a^2-b^2*α)ãæ¢çŽãšãªããŸãã
Q_p(p>2)ã®äºæ¬¡åŒã§ã¯ãx^2-p,x^2-n,x^2-npãæ¢çŽãšãªããŸãããα=p,n,npãšãããšãa,bâQ_p,(x+a)^2-b^2*α=x^2+2ax+(a^2-b^2*α)ãæ¢çŽãšãªããŸãã
Q_3ã§ã¯ã2ã®å¹³æ¹æ ¹ã¯ååšããŸãããã-2ã®å¹³æ¹æ ¹ã¯ååšãã3鲿³è¡šèšã§
...01101021200010200211,
...21121201022212022012
ãå¹³æ¹æ ¹ãšãªããŸããâ-1=â2/(â-2)ãªã®ã§ãQ_3(â-1)=Q_3(â2)ãšãªããQ_3ã®3ã€ã®äºæ¬¡æ¡å€§äœã¯ã
Q_3(â3)ãQ_3(â2)=Q_3(â-1)ãQ_3(â6)=Q_3(â-3)ãšãªããŸãã
Q_5ã§ã¯ã2,3ã®å¹³æ¹æ ¹ã¯ååšããŸãããã3/2ã®å¹³æ¹æ ¹ã¯ååšãã5鲿³è¡šèšã§
...23333103203131132432,
...21111341241313312013
ãå¹³æ¹æ ¹ãšãªããŸããâ3=â2*â(3/2)ãªã®ã§ãQ_5(â3)=Q_5(â2)ãšãªããQ_5ã®3ã€ã®äºæ¬¡æ¡å€§äœã¯ã
Q_5(â5)ãQ_5(â2)=Q_5(â3)ãQ_5(â10)=Q_5(â15)ãšãªããŸãã
Q_5ã«ã¯-1ã®å¹³æ¹æ ¹ãååšããŠã5鲿³è¡šèšã§
...40423140223032431212,
...04021304221412013233
ãå¹³æ¹æ ¹ãšãªããŸãã
p>2ã®çŽ æ°ãšããŠãJacobièšå·(a/p)ãçšãããšã(a/p)=-1ã®ãšãã¯aã¯pãæ³ãšããŠå¹³æ¹éå°äœã§ã(a/p)=1ã®ãšãã¯aã¯pãæ³ãšããŠå¹³æ¹å°äœãšãªããŸãã
p=4n+3ã®çŽ æ°ã®ãšãã¯ãå¹³æ¹å°äœã®ç¬¬äžè£å©æ³å
(-1/p)=(-1)^((p-1)/2)ãã(-1/p)=(-1)^(2n+1)=-1
ãšãªãã®ã§-1ã¯pãæ³ãšããŠå¹³æ¹éå°äœãšãªããp=4n+3ãšãã¯ãQ_pã«-1ã®å¹³æ¹æ ¹ãååšããã3ã€ã®äºæ¬¡æ¡å€§äœã¯ãQ_p(âp)ãQ_p(â-1)ãQ_p(â-p)ãšãªããŸãããã®ãããªçŽ æ°ã¯ãp=3,7,11,19,...ãªã©ããããŸãã
ããã«å¯ŸããŠãp=4n+1(p=5,13,17,...)ã®ãšãã¯Q_pã«-1ã®å¹³æ¹æ ¹ãååšããŸãã
p=8n+3,8n+5(=8n-3)ã®çŽ æ°ã®ãšãã¯ãå¹³æ¹å°äœã®ç¬¬äºè£å©æ³å
(2/p)=(-1)^((p^2-1)/8)ãã(2/p)=(-1)^(8n^2±6n+1)=-1
ãšãªãã®ã§2ã¯pãæ³ãšããŠå¹³æ¹éå°äœãšãªãã
p=8n+3ã®çŽ æ°ã¯p=4n+3ã®çŽ æ°ã§ãããã®ã§ãQ_pã«-1ã®å¹³æ¹æ ¹ãååšããŸããããp=8n+5ã®çŽ æ°ã¯p=4n+1ã®çŽ æ°ã§ãããã®ã§ãQ_pã«-1ã®å¹³æ¹æ ¹ãååšãããããã«2ã®å¹³æ¹æ ¹ãååšããã3ã€ã®äºæ¬¡æ¡å€§äœã¯ãQ_p(âp)ãQ_p(â2)ãQ_p(â(2p))ãšãªããŸãããã®ãããªçŽ æ°ã¯ãp=5,13,29,...ãªã©ããããŸãã
ããã«å¯ŸããŠãp=8n+1(p=17,41,...)ã®ãšãã¯Q_pã«-1ãš2ã®å¹³æ¹æ ¹ãååšããŸãã
å¹³æ¹å°äœã®çžäºæ³å
(p/q)(q/p)=(-1)^((p-1)/2*(q-1)/2)
ãããq=3ãšãããšã
(p/3)(3/p)=(-1)^((p-1)/2)
ã§ãp=8n+1ã®ãšãã¯(p/3)(3/p)=1ã§ãããp=3m+2ã®ãšãã¯(p/3)=-1ãªã®ã§ã(3/p)=-1ã§3ã¯pãæ³ãšããŠå¹³æ¹éå°äœãšãªããŸããp=8n+1ãã€p=3m+2ãšãªãã®ã¯p mod 24=17ã®ãšã(p=17,41,89,...)ã§ããã®å Žåã¯ã3ã€ã®äºæ¬¡æ¡å€§äœã¯ãQ_p(âp)ãQ_p(â3)ãQ_p(â(3p))ãšãªããŸãã
ããã«å¯ŸããŠã(p/3)=1ãšãªãp=3m+1ã®ãšãã¯ãp=8n+1ãã€p=3m+1ã§ãã£ãŠp mod 24=1(p=73,97,...)ã§ããããã®ãšãã¯Q_pã«-1ãš2ãš3ã®å¹³æ¹æ ¹ãååšããŸãã
Q_17ã§ã¯ã-1ãš2ã®å¹³æ¹æ ¹ãååšããŠãA=10,B=11,C=12,D=13,E=14,F=15,G=16ãšãã17鲿³è¡šèšãçšãããšã
-1ã®å¹³æ¹æ ¹ã¯ã
...5E81F0160E3D8CGC5A24,
...B28F1GFAG2D38404B6ED
2ã®å¹³æ¹æ ¹ã¯
...2A2E9AB511E922CB822B,
...E6E2765BFF27EE458EE6
ãšãããã衚ãããŸãã
æé£ãããããŸãã
P=2ã®ãšãã®ãæ¢çŽãªäºæ¬¡åŒ
x^2+x+1
P=3ã®ãšãã®ãæ¢çŽãªäºæ¬¡åŒ
x^2+1,2x^2+2,âŠãªã©
ksããã®èãã§ã¯ãp=2ã§x^2+1ãšãx^2-2ã¯æ¢çŽã«ãªããªãã®ã§ããããã
p=3ã§2x^2+2=2(x^2+1)ã§ããã»ã»ã»p=3ã®ä»ã®4çš®é¡(5çš®é¡?)ã®æ¢çŽäºæ¬¡å€é
åŒã¯ã©ã®ãããªãã®ã§ããããïŒ
P=3ã®ãšãã®ãæ®ãã®ïŒåã¯
x^2+x+2,2x^2+2x+1,x^2+2x+2,2x^2+x+1
çŽ æ°P鲿³ã®äºæ¬¡åŒã®åæ°ã¯ïŒïœïŒ1ïŒïœïŒŸïŒã§
ãã®ãã¡ãå¯çŽãªåæ°ã¯ãïœïŒïœïŒ1ïŒïŒïœïŒ1ïŒïŒ2
æ¢çŽãªåæ°ãïœïŒïœïŒ1ïŒïŒŸ2ïŒ2
æéäœGF(p)äžã§x^2ã®ä¿æ°ã1ã®æ¢çŽå€é
åŒã¯ã
p=2ã§
x^2+x+1ã®1å
p=3ã§
x^2+1,x^2+x+2,x^2+2x+2ã®3å
p=5ã§
x^2+2,x^2+3,x^2+x+1,x^2+x+2,x^2+2x+3,^2+2x+4,x^2+3x+3,x^2+3x+4,x^2+4x+1,x^2+4x+2
ã®10åãªã®ã§ãæéäœGF(p)äžã§ã®æ¢çŽå€é
åŒã®ç·æ°ã¯ãp=2,3,5ã§ãããã«1,6,40ãšãªããŸããã
ksãããèšã£ãŠããP鲿°äœãšããã®ã¯æéäœã®ããšã ã£ãã®ã§ããã