ããã®ã¹ã¬ããã«ã¯ãã以äžè¿ä¿¡ã§ããŸãããããšãªããŸããŠããããããªãæ°èŠã¹ã¬ããã§ãã
No.2173 DD++ãã 9æ16æ¥ 16:55 ã®ãæçš¿ã«ã€ããŠè¿ä¿¡ã§ãã
éœæ§å ±åã®æ°ã 6 ãš 2 ãšã§ã¯ãªããšããªããŸããã4 ã§ã¯æŽçãã€ããã«é·ãåæã«ãªã£ãŠããŸããŸããé°æ§ 3 ãšèªã¿æ¿ããŠãããŸããããã
ã¹ã«ããšãã蚌æããæ瀺é¡ããã°å¹žãã§ãã
===
çæ§ãžã
æ©æ¢°ã«å
šæ°æ€æ»ãããŠããããŸãããšããããã ãã®äºæ³ã¯çã®ããã§ãã
äžèšã§ true ãåºåããŠããŸããã(JavaScriptã«ããããã°ã©ã ã§ãã)
jslintçã«ã¯è¶
ã€ããã§ããç³ãèš³ãããŸããã
function hammingDistance(str1, str2) {
// ããã³ã°è·é¢ãèšç®ããé¢æ°
let distance = 0;
for (let i = 0; i < str1.length; i++) {
if (str1[i] !== str2[i]) {
distance++;
}
}
return distance;
}
function checkCondition(sequences) {
// æ¡ä»¶ãæºããããã§ãã¯ããé¢æ°
for (let i = 0; i < sequences.length; i++) {
const originalSeq = sequences[i];
// 2ããããå転ããããã¹ãŠã®çµã¿åãã
for (let j = 0; j < originalSeq.length; j++) {
for (let k = j + 1; k < originalSeq.length; k++) {
const newSeq = originalSeq.split('');
newSeq[j] = newSeq[j] === '0' ? '1' : '0';
newSeq[k] = newSeq[k] === '0' ? '1' : '0';
const z = newSeq.join('');
let count = 0;
for (const seq of sequences) {
if (hammingDistance(z, seq) === 2) {
count++;
}
}
// ããã³ã°è·é¢ã2ã§ããã·ãŒã±ã³ã¹ãåžžã«3ã€ã§ãªããã°falseãè¿ã
if (count !== 3) {
return false;
}
}
}
}
return true;
}
// äžããããã·ãŒã±ã³ã¹
const sequences = ['0000000', '0010111', '1001011', '1100101', '1110010', '0111001', '1011100', '0101110'];
const result = checkCondition(sequences);
console.log(result); // true or falseãåºåããã
=====
ãšããã§ããã®äœæŠãããŸãããã®ã§ãããªãã°ã
ïŒåã®åã€ãæè¡è
ãåžžã«åã®å ±åãããŠããã®ã§ãããªãã°ã
ïŒæäžã®ïŒæã§ã¯ãªã
ïŒæäžã®ïŒæã®åœé貚ãç¹å®ã§ããã®ã§ããïŒ
0çªãã7çªã®é貚ã«ã€ããŠã®åŠçã®ã€ããã§ä»ãŸã§ã¯ã話ãããŠããŸãããã
ã0çªã«ã¯2æãå²ãåœãŠããããšãšããŸãã
åŸåã®â ããâ¢ã®ã±ãŒã¹ã§â ã«ã¯å€æŽãªãã
â¡ã§ã¯ãå€æŽãããããã¯åã€ããªãã®ã±ãŒã¹ã§ãããïŒçªã³ã€ã³ããïŒçªãŸã§ã®ã©ããã«ãããããªããã°ã第äºæ®µéã§ã2æã®0çªã®ãã¡ã©ã¡ããåœã³ã€ã³ãªã®ãããïŒåã®åã€ãã«å€å®ããŠãããããšãšãªããŸãã
â¢ã§ã¯ãåœæž¬å®å€ãïŒåå«ãïŒåã®ããŒã¿ãåŸããããšãã«ãåœé貚ã®åè£ã¯ããã€ããïŒæã§ãããã§ã¯ãªãã0çªãåè£ã«ãªããšãã«ã¯4æãåœé貚ã®åè£ãšãªããŸãã
第äºæ®µéã§ã¯ãæ£çŽè
ã®æè¡è
ã2åæ®ã£ãŠããŸãã®ã§åœé貚ã®ç¹å®ã¯å¯èœã§ãã
ãããŒãïŒã
No.2177Dengan kesaktian Indukmu9æ17æ¥ 22:44
泚ç®ãã¹ãã¯ãé°æ§å ±åãããŠãã 3 人ããã枬å®ã«ãããªãã£ããæ¹ã®ã³ã€ã³ã§ããã
ããšã¯ãã«ãŒã¯ãã³ã®çµåãåé¡ã¯ïŒå€åãã¡ãå¹³é¢ã§èããå Žåã§ãïŒïŒãä»»æã® 2 ã€ã®çµã®éã«å¿
ãå
±é人ç©ã 1 人ã ãååšããããšã泚ç®ã«å€ããŸãã
No.2178DD++9æ18æ¥ 07:50
DD++ ããã
ãã³ãã³ã®ãã³ããæé£ãããããŸãã
ãããããŸã§
åœã³ã€ã³åè£ããïŒå以äžãã§ãããšã¯ç€ºããŸããã
ããããªããäžåºŠïŒåãããšãããšãããŸã§ã¯ãŸã ããã€ããŠãããŸããã
ãªã«ãåçŽãªããšãèŠèœãšããŠããã«ã¡ãããããŸããã
ããå°ãã ãèããŠã¿ãŸãã
No.2191Dengan kesaktian Indukmu9æ23æ¥ 09:34
éœæ§å ±åæ° 4 ã ãã©ççŸãå«ãŸããŠããå Žåã®è©±ã§ãããïŒ
é°æ§å ±åããã 3 人ã A, B, C ãšããŸãã
A ãåã€ãã ãšä»®å®ãããšãA ã枬å®ã«ãããŠããŠãB ãš C ã枬å®ã«ãããŠããªãã³ã€ã³ã¯æ¬ç©åè£ã«ãªããŸãã
ããŠããã®ãããªã³ã€ã³ã¯äœæååšããã§ããããïŒ
No.2193DD++9æ24æ¥ 19:22
DD++ ããã
ãã£ãããéãã§ããïŒïŒïŒ
æ倧ã®ãã³ãããŸããšã«ããããšãããããŸãïŒïŒïŒ
çæ§ãžã
ããšã§ãããããšèšŒæã®ã¢ãŠãã©ã€ã³ãæžããŠããæåã§ãã
No.2195Dengan kesaktian Indukmu9æ25æ¥ 15:44
ãã£ãã DD++ ããã«ãã³ããããã ããŠãããŸãã®ã«ããäžåºŠïŒåã§ãããã»ãã®èšŒæããŸã æžãäžããŠãããŸããããã³ãçµµã«ã€ããŠã¯æŒžãåºæ¥äžãããŸããããã©ããç³ãèš³ãªãããšã§ãã
[2191]ã®æçš¿ã§ç§ã¯ãïŒå以äžãã®èšŒæãªãåºæ¥ããšç³ããŠãããŸããã
ä»æ¥ã¯ãã¡ãã®ã»ãã®ã¡ã¢æžããäžèšã«æçš¿ããããŸãã
é貚ã®ååã
z, a, b, c, d, e, f, g
ãšããŸãã
æè¡è
ïŒåã«ã¯æ·»ãåãšã㊠1 ãã 7 ãäžããŸãã
ã¬ã€ã¬ãŒã«ãŠã³ã¿ãŒã«ãã
æ€æ»çµæã
q ãšããŸãã
q ã¯ã7åã®æè¡è
ã«ããé°æ§(0)ãéœæ§(1) ã®çµæã瀺ã
ðâ, ðâ, ðâ, ... , ðâ
ãšããŠè¡šããŸãã
ããŸãåœé貚ã a ã§ããç¶æ³äžã§ã
æè¡è
ã q ã®æ€æ»çµæãè¿ãããšããŸãã
ãŸããããªãã£æ€æ»ã«ããã
q 㯠a ã«å¯ŸããŠããã³ã°è·é¢ã 2 ã§ãããšå€æãããã®ãšããŸãã
äžè¬æ§ã倱ããªãããã«ããããã«ã
q ããz, a ãã g ãŸã§ã«äœ¿ãããæ·»ãåã§ããã 1 ãã 7 ãŸã§ã«ã€ããŠ
{h, k, m, n, p, s, t} = {1, 2, 3, 4, 5, 6, 7}
ãšããŸããè足ã§ãã䞡蟺ã®éåã®åèŠçŽ ã¯äžå¯Ÿäžå¯Ÿå¿ããŸãããã©ãé äžåã§ãã
以äžã®èšè¿°ã§äžè¬æ§ã倱ããªãããã®çŽæãŠãã
ãŸããðâ ã®ãããå転ãããã®ã ðÌ
â ãªã©ãšããªãŒããŒã©ã€ã³ã§è¡šãããšãšããŸãã
åœé貚 ð ã«ãããã æ€æ»çµæã ð ãšããŠäžãããããã®ãšããŸãã2 ãããã®å転ã¯ããããäœçœ® h, k ã§çºçããŠããããšãšããŸãã
å³ç€ºããã°ã次ã®ïŒè¡ã®åãããã®äžãšäžãšã¯ççå€ã¯çããã§ãã
ðÌ
â, ðÌ
â, ðâ, ðâ, ðâ, ðâ, ðâ
ðâ, ðâ, ðâ, ðâ, ðâ, ðâ, ðâ
ãã® ð ã ð ããåœé貚ã®åè£ãšããŠèããããããšããŸããããå³ç€ºããŸããšä»¥äžã®ïŒãã¿ãŒã³ã®ã¿ã«åãããŸãã
âãã¿ãŒã³ïŒ
ðÌ
â, ðÌ
â, ðâ, ðâ, ðâ, ðâ, ðâ
ðâ, ðâ, ðâ, ðâ, ðâ, ðâ, ðâ
ðÌ
â, ðÌ
â, ðâ, ðâ, ðâ, ðâ, ðâ
âãã¿ãŒã³ïŒ
ðÌ
â, ðÌ
â, ðâ, ðâ, ðâ, ðâ, ðâ
ðâ, ðâ, ðâ, ðâ, ðâ, ðâ, ðâ
ðâ, ðÌ
â, ðÌ
â, ðâ, ðâ, ðâ, ðâ
âãã¿ãŒã³ïŒ
ðÌ
â, ðÌ
â, ðâ, ðâ, ðâ, ðâ, ðâ
ðâ, ðâ, ðâ, ðâ, ðâ, ðâ, ðâ
ðâ, ðâ, ðÌ
â, ðÌ
â, ðâ, ðâ, ðâ
åæããŸãã
ãã¿ãŒã³ïŒã§ã¯ã
a ãš b ãšã¯ãããã³ã°è·é¢ã 0 ãšãªã£ãŠããŸããæ¬æ¥ããã¹ãããã³ã°è·é¢ãïŒã§ããããšãšççŸããŸãããã¿ãŒã³ïŒã¯ããããŸããã
ãã¿ãŒã³ïŒã§ã¯
a ãš b ãšã¯ãããã³ã°è·é¢ã 2 ãšãªã£ãŠããŸããæ¬æ¥ããã¹ãããã³ã°è·é¢ãïŒã§ããããšãšççŸããŸãããã¿ãŒã³ïŒã¯ããããŸããã
ãã¿ãŒã³ïŒã§ã¯
a ãš b ãšã¯ãããã³ã°è·é¢ã 4 ãšãªããæ¬æ¥ããã¹ãããã³ã°è·é¢ãïŒã§ããããšãšççŸããŸããããã¿ãŒã³ïŒã¯ããããŸãã
ãããããããã¿ãŒã³ïŒã®ã¿ããa ãš b ãšã®éã®é¢ä¿ã瀺ããŠããŸãããã¿ãŒã³ïŒãåæ²ããŸãã
ðÌ
â, ðÌ
â, ðâ, ðâ, ðâ, ðâ, ðâ
ðâ, ðâ, ðâ, ðâ, ðâ, ðâ, ðâ
ðâ, ðâ, ðÌ
â, ðÌ
â, ðâ, ðâ, ðâ
ããŠã第äžã®é貚 c ãåœé é貚ã®åè£ã ãšããŸãããã
ãããããã¿ãŒã³ã¯ä»¥äžã®ã¿ã§ãã
ðÌ
â, ðÌ
â, ðâ, ðâ, ðâ, ðâ, ðâ
ðâ, ðâ, ðâ, ðâ, ðâ, ðâ, ðâ
ðâ, ðâ, ðÌ
â, ðÌ
â, ðâ, ðâ, ðâ
ðâ, ðâ, ðâ, ðâ, ðÌ
â, ðÌ
â, ðâ
a ãš b ãšã®é¢ä¿ã¯ãa ãš c, b ãš c ãšã®é¢ä¿ã«ããã®ãŸãŸéçšããããã§ãã
枬å®çµæã§ãã q ã«ã€ããŠãa, b, c ãåœé貚ã®åè£ã§ããå Žåã«ã¯ããããå転ã®é¢ä¿ã¯äžã«å°œããããšãšãªããŸãã
ããã§ãæŽã«ãé貚 d ãåœé貚ã®åè£è¶³ãåŸãããšåããç«ãŠãŸãã
h,k,m,n,p,s 以å€ã®ãµãã€ã®äœçœ®ã§ãd 㯠q ã«ããããŠãããå転ããŠããªããŠã¯ãªããŸãããããã¯äžå¯èœã§ãã
ãããŸã§ããŸãšããã°ã
枬å®çµæ q ãäžãããããªãã°ãåœé貚ã§ããããšãããããã®ã¯ãa,b,c, ã®ïŒæãŸã§ã§ã4æ以äžã§ã¯ããåŸãªãããšãããããŸããã
ãªããïŒæ以äžã§ããããšã瀺ããã ãã§ãã£ãŠãïŒæäžåºŠã瀺ããããã§ã¯ãªãããšãä»èšããŠãããŸãã
No.2212Dengan kesaktian Indukmu10æ1æ¥ 16:53
ããïŒ
ç§ã¯ãããšçããã®ãã®ã®ã€ããã§æžããŠããã§ããâŠâŠ
éœæ§å ±åã 4 人ã ã£ãå Žåã
ã»å
šå¡æ£çŽ
ã»éœæ§å ±åãšé°æ§å ±åãããã㧠1 人åã€ã
ã®ããããã§ãããïŒ
åè
ã¯ããã³ã°è·é¢ 0 ã§è©±ã¯çµãã£ãŠããŸãã
åŸè
ã®å Žåãé°æ§å ±åè
ã®ãã¡ 2 人ã枬å®ããå€ããã³ã€ã³ãæ¬ç©åè£ã§ãã
ãããŠããã¯ä»»æã®é°æ§å ±åè
2 人çµã®éã«å
±éã§æž¬å®ããªãã£ãã³ã€ã³ãïŒèª°ã枬ããªãã£ããã€ä»¥å€ã§ïŒå¿
ãã¡ããã© 1 æãããåèšã§ 3C2 = 3 æååšããŸãã
No.2213DD++10æ1æ¥ 22:40
DD++ ããããã³ãã³ãæãç
©ãããŠããŸããŸããŠç³ãèš³ããããŸããã§ãããæé£ãããããŸãã
â åé¡ã®æ¯ãè¿ããããŸãã
No.2129Dengan kesaktian Indukmu9æ8æ¥ 00:09
ã®åé¡ã§ã¯ 10 人ã®ã±ãŒã¹ã§ã¯è§£ãããã§ã¯9人ã§ã¯ïŒ ãšãªã£ãã®ãããšã®çºç«¯ã§ãã
ïŒäººã®ãã¡ã第äžæ®µéã§ïŒäººãæå
¥ãããã§åœé貚ãç¹å®ã§ããã°ããããã®ãªãã«èåœã®ã¬ããŒããããŠããæè¡è
ãïŒäººããã±ãŒã¹ãããããããã®å Žåã«ã¯åœé貚ãç¹å®ã§ããªããã®ã®ãåœé貚ã®åè£ããäžåºŠãïŒæã«ãªãã®ã§ã第äºæ®µéãšããŠæ®ãã®æ£çŽãªæè¡è
ïŒåãåœé貚ãç¹å®ã§ããã ãããããã«æè¡è
ã¯9人ã§ååã ããšããçæžããªã®ã§ããã
ä»åã¯ç¬¬äžæ®µéã®ã¢ã«ãŽãªãºã ã決å®ãããªããã€ãäžåºŠïŒäººãåé¡ã«ã€ããŠãå人çãªçµè«ãçããã«ãå ±åããããŸãã
///////////
ã泚æ:ãããŸã§ã®æµããšé°æ§éœæ§ã®æ±ããé転ããŠããŸã£ãŠããŸããç³ãèš³ãããŸããã
(ã²ãšãã«ç§ã®çŽèŠ³ã«ããããŠããŸã£ãã ããªã®ã§ããâŠâŠ)
///////////
â 第äžæ®µéã§ã®æž¬å®ã«ã€ããŠ
i ã 1 ãã 7 ãŸã§ã®æ·»åãšããŠäœ¿ããŸãã
j ã 1 ãã 8 ãŸã§ã®æ·»åãšããŠäœ¿ããŸãã
7人ããæè¡è
ã«ã1 ãã 7 ãšååãã€ããŸããæ·»åãšããŠã¯ãã£ã±ã i ã䜿ããŸãã
éœæ§éå Pj ã以äžã®ããã«å®çŸ©ããŸãã
P1 = {2, 3, 5}
P2 = {3, 4, 6}
P3 = {4, 5, 7}
P4 = {5, 6, 1}
P5 = {6, 7, 2}
P6 = {7, 1, 3}
P7 = {1, 2, 4}
P8 = {1, 2, 3, 4, 5, 6, 7}
â»äœè«ã§ãã P1 ãã P7 ã¯ãFANOå¹³é¢ãšãªã£ãŠããŸããP8 ã¯äœèšãã®ã§ãã
é°æ§éå Nj ã以äžã®ããã«å®çŸ©ããŸãã
N1 = {7, 6, 4, 1}
N2 = {1, 7, 5, 2}
N3 = {2, 1, 6, 3}
N4 = {3, 2, 7, 4}
N5 = {4, 3, 1, 5}
N6 = {5, 4, 2, 6}
N7 = {6, 5, 3, 7}
N8 = {}
8 æã®é貚ã«ä»¥äžã®ããã«ååãã€ããŸãã
C{Pj, Nj}
ããªãã¡ãé貚ã®ååã«ã€ããŠã¯éœæ§éåãšé°æ§éåã®çµã¿ã®éåã§å®çŸ©ããŸãã
é·ããªããŸããã®ã§ãæçš¿ããã£ããåºåããŸãã
No.2214Dengan kesaktian Indukmu10æ4æ¥ 15:30
â 第äžæ®µéã§ã®æž¬å®ã«ã€ããŠ(ã€ã¥ã)
7人ã®æè¡è
ã«æ¬¡ã®ããã«æž¬å®ã®æ瀺ãã ããŸããããªãã¡ã
i çªç®ã®æè¡è
ã¯ãPj ã®èŠçŽ ã« i ãå«ããããªé貚 C{Pj, Nj} ãã¬ã€ã¬ãŒã«ãŠã³ã¿ãŒã§èšæž¬ããŸãã
âæ©èŠè¡š | 1 2 3 4 5 6 7 âæè¡è
C{P1, N1} | 0 1 1 0 1 0 0
C{P2, N2} | 0 0 1 1 0 1 0
C{P3, N3} | 0 0 0 1 1 0 1
C{P4, N4} | 1 0 0 0 1 1 0
C{P5, N5} | 0 1 0 0 0 1 1
C{P6, N6} | 1 0 1 0 0 0 1
C{P7, N7} | 1 1 0 1 0 0 0
C{P8, N8} | 1 1 1 1 1 1 1
â»ãã®æ©èŠè¡šã§ã¯ã1 ãç«ã£ãŠããé貚ãèšæž¬ããŸãã
éœæ§ã®ã¬ããŒããããæè¡è
ã®éåã T ãšåã¥ããŸãã
Tããåœé貚ã®ããããæ¢ããšããããšãšãªããŸãã
ããšãã° T={2,3,5} ãªãã°åœé貚㯠C{P1, N1} ãšããããšãšãªããŸãã
â èšæž¬çµæTã®è©äŸ¡ã«ã€ããŠ
ç°¡åãªãã®ããé ã«ã
â T = Pj ãšãªã j ããããšã
â»ïŒäººãšãã«æ£ããã¬ããŒããæåºããããšãšãªããŸãã
åœé貚ã¯ãC{Pj, Nj}ã
â¡Tã®èŠçŽ æ°ã 2 ã®ãšã
â»ããªãã¡éœæ§ãé°æ§ãšåœã£ãã¬ããŒããã²ãšã€ãã£ãããšã«ãªããŸãã
j = 8 ãé€å€ã§ããŸãã
Pj â T ãªã j ãå¯äžã«å®ãŸããŸãã
åœé貚ã¯ãC{Pj, Nj}ã
â¢Tã®èŠçŽ æ°ã 4 ã®ãšã
â»é°æ§ãéœæ§ãšåœã£ãã¬ããŒããã²ãšã€ãã£ãããšã«ãªããŸãã
j = 8 ãé€å€ã§ããŸãã
Pj â T ãªã j ãå¯äžã«å®ãŸããŸãã
åœé貚ã¯ãC{Pj, Nj}ã
â£Tã®èŠçŽ æ°ã 6 ã®ãšã
â»é°æ§ãéœæ§ãšåœã£ãã¬ããŒããã²ãšã€ãã£ãããšã«ãªããŸãã
åœé貚ã¯ãC{P8, N8}ã
ãããŸã§â â¡â¢â£ã¯ T ãšåœé貚㮠Pj ãšã®ããã³ã°è·é¢ã 0 ãŸã㯠1 ãªã®ã§ããã
(ç¶ããŸã)
No.2215Dengan kesaktian Indukmu10æ4æ¥ 15:58
â èšæž¬çµæTã®è©äŸ¡ã«ã€ããŠ(ã€ã¥ã)
â€Tã®èŠçŽ æ°ã 1 ã®ãšã
â»éœæ§ãé°æ§ãšåœã£ãã¬ããŒãããµãã€ãã£ãããšã«ãªããŸãã
j = 8 ãé€å€ã§ããŸãã
ãã®ãšã T ã®èŠçŽ ãä¿¡ããããšãã§ããŸãã誀ã£ããµãã€ã®ã¬ããŒãã®åœ±é¿ãåããŠããªãããã§ãã
T â Pj
ãšãªã j ã¯ïŒã€ãããŸãã(FANOå¹³é¢ã®æ§è³ªã§ã)
ïŒã€ããåœé貚ã®åè£ C{Pj, Nj} ã«ã€ããŠã¯ç¬¬äºæ®µéã§ã(ãã以äžã¯èª€ã£ãã¬ããŒããçºçããªããã) åŠçå¯èœãšãªããŸãã
â¥Tã®èŠçŽ æ°ã 5 ã®ãšã
åœé貚ã®åè£ãšããŠãµãã€ã®ã°ã«ãŒããèããããŸãã
â¥âïŒ
â»C{P8, N8} ã«ã€ããŠãéœæ§ãé°æ§ãšèª€ã£ãã¬ããŒããïŒéçºçããã±ãŒã¹ã§ãã
åœé貚ã®åè£ãšããŠ
ãããã²ãšã€ãã®ã°ã«ãŒãã§ãã
â¥âïŒ
â»j=8 ãé€å€ããŠã® C{Pj, Nj} ã«ã€ããŠãé°æ§ãéœæ§ãšèª€ã£ãã¬ããŒããïŒéçºçããã±ãŒã¹ã§ãã
誀ã£ãã¬ããŒããåºããæè¡è
ã®æ·»åã®å€ã m,n ãšããŸãã
{m} â Pj ãªã C{Pj, Nj} 㯠ïŒåãããŸãã
ãã㯠FANOå¹³é¢ã®æ§è³ªã§ãã
{n} â Pj ãªã C{Pj, Nj} 㯠ïŒåãããŸãã
ããã FANOå¹³é¢ã®æ§è³ªã§ãã
{m,n} â Pj ãªã C{Pj, Nj} 㯠ïŒåãããŸãã
ãã㯠FANOå¹³é¢ã®æ§è³ªã§ãã
誀ã£ãã¬ããŒã m,n ãå«ãã C{Pj, Nj}ã¯
3+3-1=5 ãããïŒåãããŸãã
j=8 ãé€å€ããŠã® C{Pj, Nj} ã®ïŒåã®ãã¡ã
æ¬ç©ã®é貚ãšããŠé€å€ã§ããã®ã¯ïŒåãšãªããåœé貚ã®åè£ã¯ïŒåãšãªããŸãã
ããè¿é ãªè«æ³ã§ãããã
T â Pj ãæºãã j ã¯ïŒã€ãããšããããšãšãªããŸãã
â¥âïŒ
以äžããããã®â¥ã®ã±ãŒã¹ã§ã¯ãåœé貚ã®åè£ã®ææ°ã¯ïŒæãšãªããŸããã
(ã€ã¥ããŸãã次ã¯ç§ã«ãšã£ãŠã®å€©çå±±ã§ãDD++ ãããããç¥æµãæåããéšåã§ãã)
(æ¬æ¥ã¯å€é£¯ã®æ¯åºŠãããªããã°ãªããªã身åã§ãã®ã§ãã²ãã£ãšãããšææ¥ã«ãªããããããŸããã)
No.2216Dengan kesaktian Indukmu10æ4æ¥ 18:10
ç§ã«ãšã£ãŠãçŽèŠ³ãšéã§ããã®ã§ããã®å€æŽã¯ãããããã§ãã
6-2 ã¯ãéœæ§ãé°æ§ãšåœã£ãå ±åããªã以äžãé°æ§å ±åã¯å
šãŠä¿¡ããŠããããã㧠5 æãæ¬ç©ãšç¢ºå®ã§ããŸããã
No.2217DD++10æ4æ¥ 19:35
DD++ ããã[2217]â ãã£ãšå«ã³ãŸããã
ããã¯ããã§ããâŠâŠèªæãªãã®ãç§ã®ããã«ãããããŸãããŠã¯ãã¡ã§ããâŠâŠ
æ°ãåãçŽããŠã以äžã§ã¯ãAâB ãå·®éåã®è¡šèšãšããŸãã
ã
âŠTã®èŠçŽ æ°ã 3 ã®ãšã
(ãã ããâ ã®ã±ãŒã¹ã¯é€ããŸãã)
â»éœæ§ãé°æ§ã«ãã誀ã£ãã¬ããŒãïŒéãšãé°æ§ãéœæ§ã«ãã誀ã£ãã¬ããŒããïŒéãšãèšïŒæ¬ã®èª€ã£ãã¬ããŒããçºçããŠããã±ãŒã¹ã§ãã
話ã®éœåäžãT ã«åºã¥ããŠUãäœããŸããUãå
šäœéåã§ãªããŠãã¿ãŸããã
U = {1, 2, 3, 4, 5, 6, 7}âT
ãããŠãåœé貚ã®C{Pj, Nj}ã«ã€ããŠ
Pj = {x, y, z}
Nj = {p, q, r, s}
ãšããŸãã
T = {p, y, z,}
U = {x, q, r, s}
ã枬å®ã®çµæãšããŠåŸãããŠããããšãšãªããŸãã
Tã®ïŒã€ã®èŠçŽ ã®ãã¡ãåœã¬ããŒããã²ãšã€ããã®ã§ããã®å¯èœæ§ã¯äžåºŠïŒéããããŸãã
åœç©ã倧æåã§æžããš
Pj = {X, y, z}
Pj = {x, Y, z}
Pj = {x, y, Z}
ã®ã©ãããå®çŸããŠããããšãšãªããŸãã
Tã«å«ãŸããïŒã€ã®èŠçŽ ã®ãã¡ïŒã€ãéžã¶ãšãããããã«å¯Ÿå¿ããŠé貚ãã²ãšã€å®ãŸããšããããšãšãªããŸãã
以äžããããã®âŠã®ã±ãŒã¹ã§ã¯ãåœé貚ã®åè£ã®ææ°ã¯ïŒæãšãªããŸããã
ããŠãçµè«ã§ãã
以äžããŸãšããŸããšã第äžæ®µéã§ïŒäººäžã«ïŒäººåã®åœã¬ããŒããçºçãããšãã«ã¯ãåœé貚åè£ã¯åžžã«ïŒåã§ããããšãããããŸãã
誀ãã¬ããŒãã®æ°ã 0 ãªãã 1 ã§ãããšãã«ã¯ãåœé貚ã¯ç¢ºå®ããŸãã
ãææ³ã
ããã¡ãã£ãšç°¡åã«æžããã°è¯ãã®ã§ããã
No.2218Dengan kesaktian Indukmu10æ4æ¥ 20:44
å
ã«æ瀺ãããŠããã ããæ©èŠè¡šã§
åã³ã0 ãš 1 ãšããããããªããããäžã§ãäžèšã«åæ²ãããŠããã ããŸãã
C{P1, N1} | 1 0 0 1 0 1 1 //C4
C{P2, N2} | 1 1 0 0 1 0 1 //C6
C{P3, N3} | 1 1 1 0 0 1 0 //C7
C{P4, N4} | 0 1 1 1 0 0 1 //C3
C{P5, N5} | 1 0 1 1 1 0 0 //C5
C{P6, N6} | 0 1 0 1 1 1 0 //C2
C{P7, N7} | 0 0 1 0 1 1 1 //C1
C{P8, N8} | 0 0 0 0 0 0 0 //C0
ãªããåè¡ã®å³ç«¯ã¯ãããããå§ãã説æã®éœåäžãåé貚ã«æ°ããååã¥ããããã®ã§ãã
ãããåã®æä»çè«çåã®èšå·ãšããŠãâãã䜿ãããšãšããŸãã
ããšãã°ã 0110 â 1010 = 1100 ã§ãã
1 †n â€7 ã«ã€ããŠ
C0 â Cn = Cn
ã¯ãèªæã§ããã
ããã¯ãªããã®ãã以äžã®ããã«ãªã£ãŠããããšã§ãã
C3 = C2 â C1
C5 = C4 â C1
C6 = C4 â C2
C7 = C4 â C2 â C1
ã€ãŸããC1,C2,C4 ããç¥ã£ãŠããã°ã
ä»ã«ã€ããŠã¯ãïŒé²æ°ã®ä»æãã«ãã£ãŠå²ãåºãããšããããšã«ãªããŸãã
ããã¯ç§ã«ãšã£ãŠã¯éèªæãªããšã§ãã®ã§
çæ§ã«ããå ±åãã次第ã§ãã
No.2220Dengan kesaktian Indukmu10æ7æ¥ 16:46
OEIS ã®
A075931
List of codewords in binary lexicode with Hamming distance 5 written as decimal numbers.
ããã
0,31,227,252,805,826,966,985,1354,1365,1449,1462,1647,1648,1676,1683
ãŸã§ãå©çšããŠ
笊å·é· 11 ãæå°ããã³ã°è·é¢ 5 ã®ç¬Šå·ã®ãããåã以äžã®ããã«äœæããŸããã
"12 0 3 00 4 0000"ââèŠåºã
"00 0 0 00 0 0000",//0
"00 0 0 00 1 1111",//1
"00 0 1 11 0 0011",//2
"00 0 1 11 1 1100",//
"01 1 0 01 0 0101",//4
"01 1 0 01 1 1010",
"01 1 1 10 0 0110",
"01 1 1 10 1 1001",
"10 1 0 10 0 1010",//8
"10 1 0 10 1 0101",
"10 1 1 01 0 1001",
"10 1 1 01 1 0110",
"11 0 0 11 0 1111",
"11 0 0 11 1 0000",
"11 0 1 00 0 1100",
"11 0 1 00 1 0011",
èŠåºãã«ã€ããŠèª¬æããŸãã
"12 0 3 00 4 0000"
ã§ã1,2,3,4 ã¯ãããŒã¿ããã(4ããã)ãšããŠäœ¿ãããããäœçœ®ã§ããäžäœããæé ã«ããŠããŸãã
"12 0 3 00 4 0000"
"01 1 0 01 1 1010",
äžã®äŸã§ã¯ã0101 ãæå³ããŠããã10é²ã§ã¯ 5 ã§ãããããã確ãã« 0 ãªãªãžã³ã§ 5 çªç®ã®ãããåã§ããããšã«çæããŠé ããã°å¹žãã§ãã
äžã®äžèŠ§è¡šã¯ã4ãããã®ããŒã¿ãããã®ç¬Šå·èªãã11ãããã«ãšã³ã³ãŒããããã®ãšãªã£ãŠããŸãã
ååã®æçš¿ãNo.2220 ã§çºçããŠããæ©èš¶äžæè°ãªçŸè±¡ããäžã§ããããŠããã®ãã«ã€ããŠããã°ã©ã ã§æ€èšŒããŸãããšããããªãŒã±ãŒãšãªããŸããã
"00 0 0 00 1 1111",//1
"00 0 1 11 0 0011",//2
"01 1 0 01 0 0101",//4
"10 1 0 10 0 1010",//8
ãç¥ã£ãŠããã°ã
ä»ã®11åã®ç¬Šå·èªã¯ãæä»çè«çåã§ãã£ãŠèšç®ã§ããã®ã§ãã
ãããããèªæã ãããšãæãã«ãªããããããããã£ããããããããŸããã
ããããªããã§ããã
ãã® A075931 ã®æ°åã¯ã0 ããé ã« 1 ã¥ã€ãã«ãŠã³ãã¢ããããŠãããããŒãã«äžã«ãããŠãã(å
è¡ãã)å
šãŠã®æ°ãšããã³ã°è·é¢ã5以äžãšãªãæ°ãã¿ã€ããŠã¯ããŒãã«ã«è¿œå ããŠæºã蟌ãã§ããã ãã§ãäœã£ãŠãããã§ãã貪欲ã¢ã«ãŽãªãºã ã§ãã£ãŠã°ãªãŒãã£ã«ãæãæå³ã§ã¯æ±ãäœãæ¹ã
ãªã®ã«ã[2220]ã®æçš¿ã§è§Šããæ³åãããããããããA075931 ã§ãç§ãåæã«èšå®ãããèŠåºãããã笊å·èªã®å€ãçŽã«ç€ºããŠãããªããŠãäžæè°ã§äžæè°ã§ãªããªãã®ã§ãã
ããšãã°ãæå°ããã³ã°è·é¢ã 6 ã§ã笊å·é·ã 13 ã笊å·èªæ°ã 13 ã®ã次ã®ç¬Šå·ã«ã¯ãä»è©±é¡ã«ããŠãã[æ³å]ãç§ã¯ã¿ã€ããããŸããã
"0011101111101",
"1001110111110",
"0100111011111",
"1010011101111",
"1101001110111",
"1110100111011",
"1111010011101",
"1111101001110",
"0111110100111",
"1011111010011",
"1101111101001",
"1110111110100",
"0111011111010",
ããŒã¿ããããã©ããªã®ããææ§ã§ãããã
ãµã€ã¯ãªãã¯ã§ãããã
綺éºãªä»æãã§äœã£ãå²ã«ã¯ã
ã°ãªãŒãã£ã«äœã£ããã®ã«ãæãæå³ãè² ããŠããã®ã§ãã
ãã®è¬ãé¢çœããŠãããããªãã§ãã
No.2221Dengan kesaktian Indukmu10æ7æ¥ 17:34
2221 ã§ç§ã¯ç¡æåæµã«ããŒã¿ãããã®äœçœ®ã決ããŠããã®ã§ããã(ã€ãŸããã§ãã¯ãããã®äœçœ®ã決ããŠããã®ã§ãã)
ãšã£ãã®æã«ã³ã³ãŠã§ã€ããã決ããŠïŒãŸãããã©ããã£ããããïŒã
ãã®ããŒãã«ã倧ãããªããšãããã®äœçœ®ã¯ãããããšã®ããšããŸãã
No.2222Dengan kesaktian Indukmu10æ7æ¥ 22:36
èŠçŽ nåãã°ã«ãŒãkåã«åå²ããæ¹æ³ã«ã¯ã
èŠçŽ (n-1)åãã°ã«ãŒã(k-1)åã«åå²ããnçªç®ã®èŠçŽ ãkçªç®ã®ã°ã«ãŒããšããŠè¿œå ããå Žåãšã
èŠçŽ (n-1)åãã°ã«ãŒãkåã«åå²ããnçªç®ã®èŠçŽ ãkåã®ã°ã«ãŒãã®ã©ããã«è¿œå ããå Žåãšãããã
èŠçŽ nåãã°ã«ãŒãkåã«åå²ããæ¹æ³ã®æ°ãS(n,k)ãšãããšã
S(n+1,k)=k*S(n,k)+S(n,k-1)
ãšãã挞ååŒã§è¡šãããšãã§ããŠãS(n,k)ã¯ã第2çš®ã¹ã¿ãŒãªã³ã°æ°ãšããŠç¥ãããŠããŸãã
第2çš®ã¹ã¿ãŒãªã³ã°æ°ã¯ãS(n,1)=1(nâ§1),S(n,n)=1(nâ§0),S(n,0)=0(nâ§1)ã§ã以äž
S(3,2)=3,S(4,2)=7,S(5,2)=15,S(6,2)=31,...
S(4,3)=6,S(5,3)=25,S(6,3)=90,...
S(5,4)=10,S(6,4)=65,...
S(6,5)=15,...
...
ãšç¶ããŸãã
æºæ°éŠã®éŠå³ã®ç·æ°ã¯5åã®èŠçŽ ã5å以äžã®ã°ã«ãŒãã«åå²ããæ¹æ³ã®æ°ãªã®ã§ã
S(5,1)+S(5,2)+S(5,3)+S(5,4)+S(5,5)=52ãšãªããŸãã
éŠæšã®çš®é¡ã3çš®é¡ã ãšãéŠå³ã®ç·æ°ã¯
S(3,1)+S(3,2)+S(3,3)=5ã§
ââ¬âãâââãâââãâââãâââ
âââãâââãâââãâââãâââ
âââïŒâââïŒâââïŒâââïŒâââ
ãšãªããŸãã
éŠæšã®çš®é¡ã4çš®é¡ã ãšãéŠå³ã®ç·æ°ã¯
S(4,1)+S(4,2)+S(4,3)+S(4,4)=15ã§
ââ¬â¬âãââ¬ââãââ¬ââãââââãâââ¬â
ââââãââââãââââãââââãââââ
ââââïŒââââïŒââââïŒââââïŒââââ
âââããâââ¬âãââââãââââãââââ
âââŒâãââââãââââãââââãââââ
ââââïŒââââïŒââââïŒââââïŒââââ
ââââãââââãââââãââââãââââ
ââââãââââãââââãââââãââââ
ââââïŒââââïŒââââïŒââââïŒââââ
ãšãªããŸãã
éŠæšã®çš®é¡ã4çš®é¡ã®ãã®ã¯ç³»å³éŠãšãã£ãŠãéŠæšã®çš®é¡ã3çš®é¡ã®ãã®ã¯äžç·éŠãšããããã§ãã
ç³»å³éŠã®éŠå³ã«ããæºæ°éŠãšåæ§ã«éãä»ãããŠããŠãäžã®å³ã§ã¯ãå¿éæµã®å Žåã¯ã
å°ç¬¹ãéäžã®èãèœèãæ¥æ¥éãç¯ç«
鳎åãäœåãè
ç°ãéŸç°ãå
«æ©
é¢å±ãæŠèµéãè±çãèã®å®¿ãåå
ãšããéãä»ãããŠããŠããã®å€ããäŒå¢ç©èªããåŒãããŠããããã§ãã
æã¯éŠæšã®çš®é¡ã6çš®é¡ä»¥äžã®ãã®ããã£ãããã§ããéŠæšã®çš®é¡ã6çš®é¡ã ãšãéŠå³ã®ç·æ°ã¯
S(6,1)+S(6,2)+S(6,3)+S(6,4)+S(6,5)+S(6,6)=203ãšãªããŸãã
ãªãããã®éŠå³ã®ç·æ°ã¯ãã«æ°ãšãã£ãŠã
https://oeis.org/A000110
ã«ãèŒã£ãŠããŸãã
No.2219kuiperbelt10æ6æ¥ 21:21
2ãåºãšããäºé²å¯Ÿæ°log_{2}(x)ãlb(x)ã§è¡šããšãlb(3),lb(5),lb(7),lb(11),lb(13)ã®é£åæ°å±éã¯ã
lb(3)=[1;1,1,2,2,3,1,5,2,23,...]
lb(5)=[2;3,9,2,2,4,6,2,1,1,3,1,18..]
lb(7)=[2;1,4,5,4,5,4,1,29,...]
lb(11)=[3;2,5,1,1,1,25,1,1,...]
lb(13)=[3;1,2,2,1,22,23,1,9,149,...]
ã§ãlb(13)ã[3;1,2,2,1,22,23,1,9]ã§è¿äŒŒãããšã
[3;1,2,2,1,22,23,1,9]-lb(13)=201130/54353-lb(13)
=-2.25897731584196266637728075571*10^-12
ãšãªã£ãŠã201130/54353ãlb(13)ã®è¿äŒŒå€ãšãããšèª€å·®ãå°ããã®ã§ãlb(3),lb(5),lb(7),lb(11)ã
54353åãããšã
54353*lb(3)=86147.4668016970019305550728204
54353*lb(5)=126203.757741412805693795471951
54353*lb(7)=152588.162078596956051793358299
54353*lb(11)=188030.486767793017766203979679
ãšãªã£ãŠãå°æ°éšåã«çç®ãããšã
0.4668016970019305550728204=[0;2,7,33,...]
0.757741412805693795471951=[0;1,3,7,...]
0.162078596956051793358299=[0;6,5,1,...]
0.486767793017766203979679=[0;2,18,2,...]
ãªã®ã§ããããããã1/2=[0;2],3/4=[0;1,3],1/6={0;6],1/2=[0;2]ã§è¿äŒŒãããšã
(86147+1/2)/54353-lb(3)=6.10790627896702020627740913203*10^-7
(126203+3/4)/54353-lb(5)=-1.42428436437616975547826382828*10^-7
(152588+1/6)/54353-lb(7)=8.44124466103963591405650940218*10^-8
(188030+1/2)/54353-lb(11)=2.43449432087167148461376935139*10^-7
ãšãªããŸããã(86147+1/2)/54353,(126203+3/4)/54353,(152588+1/6)/54353,(188030+1/2)/54353ãé£åæ°å±éãããšã
(86147+1/2)/54353=[1;1,1,2,2,3,1,5,2,2,1,2,1,12]
(126203+3/4)/54353=[2;3,9,2,2,4,4,1,1,6,1,1,2]
(152588+1/6)/54353=[2;1,4,5,4,5,5,1,4,1,1,2,3]
(188030+1/2)/54353=[3;2,5,1,1,1,25,1,4,1,1,4,2]
ããã
lb(3)ã§[1;1,1,2,2,3,1,5,2,...]ã
lb(5)ã§[2;3,9,2,2,4,...]ã
lb(7)ã§[2;1,4,5,4,5,...]ã
lb(11)ã§[3;2,5,1,1,1,25,1,...]
ãŸã§äžèŽããŠããŠãlb(3),lb(5),lb(7),lb(11),lb(13)ãåæ¯ã54353*12=652236ã®åæ°ã§æ¯èŒçããè¿äŒŒã§ãããã§ãã
No.2210kuiperbelt9æ30æ¥ 20:09
lb(3),lb(5),lb(7),lb(11),lb(13)ãéåžžã«é£åæ°ããã®æã¡åãåæ°ã§
åæ¯ã6æ¡ã§ãããã®ããšããš
lb(3)=301994/190537
lb(5)=227268/97879ã(6æ¡ã§ãããã®ã¯åããªãã£ãã)
lb(7)=1273419/453601
lb(11)=1444074/417431
lb(13)=201130/54353
ãèŠã€ããã
kuiperbeltæ°ã«ããæ§æã§ã¯
lb(3)=172295/108706=1033770/652236
lb(5)=504815/217412=1514445/652236
lb(7)=915529/326118=1831058/652236
lb(11)=376061/108706=2256366/652236
lb(13)=201130/54353=2413560/652236
ããã§åãã®æ¹ã®ç°ãªãåæ°ã652236ãžãšçµ±äžãããšããã°ããããã®ååã¯
lb(3)-->round(652236/190537*301994)=1033770
lb(5)-->round(652236/97879*227268)=1514445
lb(7)-->round(652236/453601*1273419)=1831058
lb(11)-->round(652236/417431*1444074)=2256366
lb(13)-->round(652236/54353*201130)=2413560
ãšççŸãªãã€ãªãããŸããã
No.2211GAI10æ1æ¥ 08:46
å³ç«¯ã®æ°å€ã¯å2ã€ã®å·®ã®çµ¶å¯Ÿå€ã§ãã
äžè¬ã«8ã®åæ°ã®èªç¶æ°ã¯ããããè¡ãããã§ãã
16=42-15*sqrt(3)=>0.019237886466840597088304877411914495791
24=123-70*sqrt(2)=>0.0050506338833465838817893053211345001350
32=276-63*sqrt(15)=>0.0020491889327362337062798137088245173490
40=525-198*sqrt(6)=>0.0010309289307365569377532082335043901511
48=894-143*sqrt(35)=>0.00059101675490591287205430668876207606729
56=1407-780*sqrt(3)=>0.00037009627571104859185362541955378301120
64=2088-765*sqrt(7)=>0.00024703558819826626394846596577432967552
72=2961-1292*sqrt(5)=>0.00017307027171223934761999919110380885978
80=4050-1197*sqrt(11)=>0.00012594458638060942551420518803934464147
88=5379-906*sqrt(30)=>9.4500095344005671898144251386011596633 E-5
96=6972-575*sqrt(143)=>7.2716696137850341565187520446959431717 E-5
104=8853-1350*sqrt(42)=>5.7149388688195943961281204512114323297 E-5
112=11046-783*sqrt(195)=>4.5728919063980887084329367575848946092 E-5
120=13575-899*sqrt(224)=>3.7160906777440839558589688710914293688 E-5
128=16464-1023*sqrt(255)=>3.0607247824951139183948832040071781991 E-5
136=19737-13860*sqrt(2)=>2.5508902623608594282453584631070366255 E-5
144=23418-1295*sqrt(323)=>2.1483200147407576879212274060209928031 E-5
152=27531-8658*sqrt(10)=>1.8262171743553579692301522935038486629 E-5
160=32100-1599*sqrt(399)=>1.5654351913667168657434798770696208115 E-5
168=37149-3526*sqrt(110)=>1.3520456453081349107645400277878002460 E-5
176=42702-1935*sqrt(483)=>1.1757513052464834609167108976471561999 E-5
184=48783-8460*sqrt(33)=>1.0288277537663826978867857967869962110 E-5
192=55416-11515*sqrt(23)=>9.0540344785055006911665795110653250388 E-6
200=62625-9996*sqrt(39)=>8.0096115343544563630858145670082038073 E-6
208=70434-40545*sqrt(3)=>7.1198701339296880836444048825359176973 E-6
216=78867-5830*sqrt(182)=>6.3571982558417182849809728108097647648 E-6
224=87948-9405*sqrt(87)=>5.6996944965601575244751615724698325284 E-6
232=97701-6726*sqrt(210)=>5.1298361531682648788761153900878672073 E-6
240=108150-3599*sqrt(899)=>4.6334908721224596314615983300244219419 E-6
248=119319-30744*sqrt(15)=>4.1991752820486645490899063644723485097 E-6
256=131232-4095*sqrt(1023)=>3.8174932812674583700545221491687345189 E-6
264=143913-34840*sqrt(17)=>3.4807064442220806178631564440052527937 E-6
272=157386-4623*sqrt(1155)=>3.1824025866890528095006338533945508999 E-6
280=171675-29394*sqrt(34)=>2.9172379591251503174251310489710550738 E-6
288=186804-5183*sqrt(1295)=>2.6807351648308626097063006717446215453 E-6
296=202797-32850*sqrt(38)=>2.4691236092811802692280772010616819375 E-6
304=219678-5775*sqrt(1443)=>2.2792126687875382004922224433354285596 E-6
312=237471-24332*sqrt(95)=>2.1082902188077300200429255193613423229 E-6
320=256200-6399*sqrt(1599)=>1.9540409567059134673684620949682723996 E-6
328=275889-26892*sqrt(105)=>1.8144802784198278034278698655600337535 E-6
336=296562-7055*sqrt(1763)=>1.6879004543876111616534704993720122179 E-6
344=318243-14790*sqrt(462)=>1.5728265895810835886254647889304459244 E-6
352=340956-23229*sqrt(215)=>1.4679804112725554698240184211417630657 E-6
360=364725-16198*sqrt(506)=>1.3722503533570500336644416285396892947 E-6
368=389574-25389*sqrt(235)=>1.2846667317585679159772552841492182749 E-6
376=415527-35340*sqrt(138)=>1.2043810565329850268087220171954593041 E-6
384=442608-64505*sqrt(47)=>1.1306487210116121767818178054760610574 E-6
392=470841-192060*sqrt(6)=>1.0628144602296206119864992601618119558 E-6
400=500250-69993*sqrt(51)=>1.0003000900280090029710013420615528427 E-6
No.2194GAI9æ25æ¥ 08:03
äŸãã°123-70â2ã24ã«è¿ããªãã
115-70â2ã¯16ã«(42-15â3ããã)è¿ããªããšæããŸããã
16ã®ãšãã«42-15â3ãšããŠããã®ã¯ãªãã§ããããã
ãŸãéã®èŠæ¹ã§ããããèªç¶æ°ã«è¿ã¥ããŠãããã®ãç®çãªãã°
å³èŸºã®èªç¶æ°ãå€æŽããããšã§
16â42-15â3
16â115-70â2
16â260-63â15
ã®ããã«å·ŠèŸºã®å€ãäžå®ã«ããã
1â27-15â3
2â101-70â2
3â247-63â15
ã®ããã«8ã®åæ°ä»¥å€ã«ããããšãã§ããŸããã
巊蟺ã®å€ã8ã®åæ°ã®ã¿ãšãªã£ãŠããã®ã¯
8ã®åæ°ããå³èŸºãå°åºãã決ãŸã£ãææ³ããããšããããšã§ããããã
No.2196ãããã9æ25æ¥ 16:47
> 巊蟺ã®å€ã8ã®åæ°ã®ã¿ãšãªã£ãŠããã®ã¯
> 8ã®åæ°ããå³èŸºãå°åºãã決ãŸã£ãææ³ããããšããããšã§ããããã
ããæ¬ãèªãã§ããŠ
m:=1/2*(sqrt(n+1)+sqrt(n-1))â
ãšçœ®ããšã
1/m=sqrt(n+1)-sqrt(n-1)â¡
m^2=1/2*(n+sqrt(n^2-1))â¢
n-m^2=1/(4*m^2)â£
ãæãç«ã¡
ãããã®çåŒãçµã¿åãããããšã§
1/(8*m^5*(m+sqrt(n))^2)=(m-sqrt(n))^2/(8*m^5*(m^2-n)^2)
=(m^2-2*m*sqrt(n)+n)/(m/2)
=2*(m-2*sqrt(n)+n/m)
=(2*n+1)*sqrt(n+1)-(2*n-1)*sqrt(n-1)-4*sqrt(n)(*)
ãªãçåŒãæç«ããããšã«æãã
巊蟺ãèŠãããšã§å³èŸºã®å€ã¯O(1/(n^(5/2)*n)=O(1/n^(3+1/2)ã®ãªãŒããŒã§ã»ãç¡èŠåºæ¥ãããšãã§ããã
ãã®å·§ã¿ãªåŒãèŠãŠn+1,n-1,nãããããå¹³æ¹æ ¹âãå€ããånã«å¯Ÿå¿ããŠ
(2*n+1)*sqrt(n+1)â(2*n-1)*sqrt(n-1)+4*sqrt(n)
(2*n-1)*sqrt(n-1)â(2*n+1)*sqrt(n+1)-4*sqrt(n)
4*sqrt(n)â(2*n+1)*sqrt(n+1)-(2*n-1)*sqrt(n-1)
ãšãã颚ã«å·ŠèŸºã®èªç¶æ°ãå³èŸºã®2ã€ã®ç¡çæ°ã§æ§æåºæ¥ããªãšæã£ãŠå
çšã®çåŒãã©ããäœã£ãŠãããŸããã
ãªãããã§ç¬¬ïŒçªç®ã®çåŒã䞡蟺平æ¹ããŠ
16*nâ8*n^3+10*n-2*(4*n^2-1)*sqrt(n^2-1)
÷2ãã
8*nâ4*n^3+5*n-(4*n^2-1)*sqrt(n^2-1)â€
ãªãåŒãå©çšããã°
8ã®åæ°ã®èªç¶æ°ãå³èŸºã®äžã€ã®ç¡çæ°ã§è¿äŒŒåºæ¥ãããšãå¯èœãšãªãã
ãã®â€ããæ§æããŠãããŸããã
ããããããã®ææã®æ§ã«
gp > forprime(p=2,100,for(n=1,1000000,if(frac(n*sqrt(p)) < 0.000001,print(n";"p))))
978122;3
902702;7
283009;17
566018;17
345777;19
254813;29
509626;29
528641;41
424802;43
829254;47
528896;53
951113;61
977001;89
594030;97
ã
gp > forprime(p=2,100,for(n=1,10000000,if(frac(n*sqrt(p)) > 0.9999999,print(n";"p))))
9369319;2
7865521;3
7465176;5
3096720;7
9504180;11
2298912;17
4508361;19
9016722;19
5412001;23
8193638;29
9600319;31
1311360;41
3697884;43
7395768;43
6191808;47
8142716;61
2874480;71
5748960;71
8623440;71
4684249;73
4121279;79
8242558;79
9005009;89
6377352;97
ãªãçŽ æ°ãæŽæ°ãçµã¿åãããã°(bãšpãäžã®çµã¿åããã«åã£ãŠããæå³)
a+b*sqrt(p)
ã¯aã調ç¯ããããšã§äžåã®ç¡çæ°ã§ãªããŒã§ãèªç¶æ°ãã¹ãŠã奜ããªè¿äŒŒç²ŸåºŠã§äœãåºãããšã¯å¯èœãšãªããã§ããã
ããã(*)ã®çåŒãäœãåºããã»ã³ã¹ã«ã»ã©ã»ã©æå¿ããŸããã
No.2197GAI9æ25æ¥ 20:39
ãªãã»ã©ããã¯ã8ã®åæ°ã«ã ã䜿ããåŒããã£ãã®ã§ãããããããããŸããã
No.2198ãããã9æ25æ¥ 23:12
GAI ãããäœããããã®ãå
šãããããªããã§ããã
16=42-15*sqrt(3) ãç¹å¥ãªè¿äŒŒåŒã§ãããã®ããã«æ±ãããŠããçç±ã¯ã©ãã«ãããã§ãïŒ
No.2199DD++9æ26æ¥ 16:05
> 16=42-15*sqrt(3) ãç¹å¥ãªè¿äŒŒåŒã§ãããã®ããã«æ±ãããŠããçç±ã¯ã©ãã«ãããã§ãïŒ
ãããããããžã®è¿äºã®äžã®
8*nâ4*n^3+5*n-(4*n^2-1)*sqrt(n^2-1)â€
ãªãåŒãã
n=2,7,26ã§çãŸããåŒã以äžã®åŒãšãªãæå³ã§ãã
16=42-15*sqrt(3)
56=1407-780*sqrt(3)
208=70434-40545*sqrt(3)
ãã®
16=42-15*sqrt(3) ãç¹å¥ãªè¿äŒŒåŒãšããã€ããã¯ãããŸããã
äžã®3ã€ã®åŒãã
sqrt(3)=(42-16)/15=26/15
sqrt(3)=(1407-56)/780=1351/780
sqrt(3)=(70434-208)/40545=70226/40545
çãçºçããŸãã(åã«æ²ç€ºããŠããäžããéžãã§ããã ãã§ãã)
ããã«sqrt(3)ã®é£åæ°ãéäžã§æã¡åã£ãŠåæ°ãšããŠããæé ãèªåã§ããããŠãããš
gp > contfracpnqn(contfrac(sqrt(3)),20)
%208 =
[1 2 5 7 19 26 71 97 265 362 989 1351 3691 5042 13775 18817 51409 70226 191861 262087 716035]
[1 1 3 4 11 15 41 56 153 209 571 780 2131 2911 7953 10864 29681 40545 110771 151316 413403]
ã®æ§ã«å³ã«è¡ãã«ãããã£ãŠããsqrt(3)ãžè¿äŒŒããŠãããŸãã
ãã®æµãã®äžã«
26/15,1351/780,70226/40545ãããŸããã16=42-15*sqrt(3)ãç¹å¥ã®åŒãšã®è§£é㯠"ã¯ãŠïŒ"
ãšæã£ãŠããŸããŸãã
No.2200GAI9æ26æ¥ 17:08
ãããå
·äœçãªæ¹ãããããšæã£ãŠ1ã€æœåºããã質åã®æå³ãäŒãããŸããã§ããã
5çªã®åŒã§ã8n=ãã®åœ¢ã«ããåŒã ãç¹å¥èŠããŠããã®ã¯ãªãã§ããïŒ
ãã®åŒãäœããšãã«ããã®åã«èšèŒãããåŒãå¹³æ¹ããŠæŽçããŠåŸããã
4*n^3-3*n-(4*n^2-1)*sqrt(n^2-1)â0
ã®äž¡èŸºã«çªç¶ 8n ãå ããŠã§ããã®ã 5 çªã§ãããã
ããã§äž¡èŸºã« 7n ã足ãã° 7 ã®åæ°ã®åŒãã§ããã§ããããã9n ã足ãã° 9 ã®åæ°ã®åŒãã§ããããããªãã§ããããïŒ
8n ãéžæããå¿
ç¶æ§ã¯ãªãã§ãããïŒ
No.2201DD++9æ26æ¥ 19:22
> 5çªã®åŒã§ã8n=ãã®åœ¢ã«ããåŒã ãç¹å¥èŠããŠããã®ã¯ãªãã§ããïŒ
ãã®åŒãäœããšãã«ããã®åã«èšèŒãããåŒãå¹³æ¹ããŠæŽçããŠåŸããã
4*n^3-3*n-(4*n^2-1)*sqrt(n^2-1)â0
ãšèšèŒãããŠããéšåã¯
8*nâ4*n^3+5*n-(4*n^2-1)*sqrt(n^2-1)
ããªã
3*nâ4*n^3-(4*n^2-1)*sqrt(n^2-1)
ãšããªãã®ãïŒ
ãšè§£éããŠããã§ããïŒ
çç±ã¯ããããããšãæ°ä»ããªãã£ãã§ãã
2ã§å²ããããããã§çµãããšæã蟌ã¿ããã®ãŸãŸã§æ°å€ã§ç¢ºèªã«è¡ã£ãŠããŸããã
ããããã¯
6â32-15*sqrt(3)
9â108-35*sqrt(8)=108-70*sqrt(2)
12â256-63*sqrt(15)

ã§æ²èŒããŠããããšã§ãããã
ãç²æ«æ§ã§ããã
No.2202GAI9æ26æ¥ 20:04
> 3*nâ4*n^3-(4*n^2-1)*sqrt(n^2-1)
ããã«èšãã°ã3n ãš 4n^3 ãå·Šå³ã«åããæå³ããªããšæããŸãã
n ã¯å
·äœçãªæŽæ°ã代å
¥ããããšãæ³å®ããŠãããã§ããããããæŽæ°ã®è¿äŒŒåŒã«æŽæ°ã足ãé
ããã£ãŠã¯æ矩ãèãã§ãã
äžæ¹ã§ããããéã«å¹³æ¹æ ¹ã®æçè¿äŒŒåŒãšããŠ
â(n^2-1) = (4n^3-3n)/(4n^2-1)
ãšããåŒã¯äœãã«äœ¿ãããã§ããã
No.2203DD++9æ26æ¥ 21:46
DD++ããããã®ã¢ããã€ã¹ãåããŠsqrt(n^2-1)â(4*n^3-3*n)/(4*n^2-1)
ã®æŽ»çšãèŠãŠã¿ãŸããã
æéã®é¢ä¿ã§ããã°ã©ã ã®ãŸãŸã®å§¿ã§ç³ãèš³ãããŸããã
gp > for(n=1,100,if(core(n^2-1)==3,\
print(n,";sqrt(3)=",(4*n^3-3*n)/(4*n^2-1)/sqrtint((n^2-1)/3))))
2;sqrt(3)=26/15
7;sqrt(3)=1351/780
26;sqrt(3)=70226/40545
97;sqrt(3)=3650401/2107560
ããã«å¯ŸããŠé£åæ°ããã®è¿äŒŒ
gp > contfracpnqn(contfrac(sqrt(3)),24)
%227 =
[1 2 5 7 19 26 71 97 265 362 989 1351
3691 5042 13775 18817 51409 70226
191861 262087 716035 978122 2672279 3650401
9973081]
[1 1 3 4 11 15 41 56 153 209 571 780
2131 2911 7953 10864 29681 40545
110771 151316 413403 564719 1542841 2107560
5757961]
-----------------------------------------------------------
for(n=1,10000,if(core(n^2-1)==5,\
print(n,";sqrt(5)=",(4*n^3-3*n)/(4*n^2-1)/sqrtint((n^2-1)/5))))
9;sqrt(5)=2889/1292
161;sqrt(5)=16692641/7465176
2889;sqrt(5)=96450076809/43133785636
ããã«å¯ŸããŠé£åæ°ããã®è¿äŒŒ
gp > contfracpnqn(contfrac(sqrt(5)),20)
%222 =
[2 9 38 161 682 2889 12238 51841 219602 930249 3940598 16692641
70711162 299537289 1268860318 5374978561 22768774562 96450076809
408569081798 1730726404001 7331474697802]
[1 4 17 72 305 1292 5473 23184 98209 416020 1762289 7465176
31622993 133957148 567451585 2403763488 10182505537 43133785636
182717648081 774004377960 3278735159921]
-------------------------------------------------------------
gp > for(n=1,10000,if(core(n^2-1)==6,\
print(n,";sqrt(6)=",(4*n^3-3*n)/(4*n^2-1)/sqrtint((n^2-1)/6))))
5;sqrt(6)=485/198
49;sqrt(6)=470449/192060
485;sqrt(6)=456335045/186298002
4801;sqrt(6)=442644523201/180708869880
ããã«å¯ŸããŠé£åæ°ããã®è¿äŒŒ
gp > contfracpnqn(contfrac(sqrt(6)),24)
%226 =
[2 5 22 49 218 485 2158 4801 21362 47525 211462 470449
2093258 4656965 20721118 46099201 205117922 456335045
2030458102 4517251249 20099463098 44716177445 198964172878
442644523201 1969542265682]
[1 2 9 20 89 198 881 1960 8721 19402 86329 192060
854569 1901198 8459361 18819920 83739041 186298002
828931049 1844160100 8205571449 18255302998 81226783441
180708869880 804062262961]
-------------------------------------------------------------
gp > for(n=1,10000,if(core(n^2-1)==7,\
print(n,";sqrt(7)=",(4*n^3-3*n)/(4*n^2-1)/sqrtint((n^2-1)/7))))
8;sqrt(7)=2024/765
127;sqrt(7)=8193151/3096720
2024;sqrt(7)=33165873224/12535521795
ããã«å¯ŸããŠé£åæ°ããã®è¿äŒŒ
gp > contfracpnqn(contfrac(sqrt(7)),36)
%233 =
[2 3 5 8 37 45 82 127 590 717 1307 2024
9403 11427 20830 32257 149858 182115 331973
514088 2388325 2902413 5290738 8193151
38063342 46256493 84319835 130576328 606625147 737201475
1343826622 2081028097 9667939010 11748967107 21416906117 33165873224
154080399013]
[1 1 2 3 14 17 31 48 223 271 494 765
3554 4319 7873 12192 56641 68833 125474
194307 902702 1097009 1999711 3096720
14386591 17483311 31869902 49353213 229282754 278635967
507918721 786554688 3654137473 4440692161 8094829634 12535521795
58236916814]
è¿äŒŒã¹ããŒãã皌ããŸãã
No.2204GAI9æ27æ¥ 07:23
ããããã°ã©ã ãPARI/GPã§èµ°ãããŠãããšãããã©ãããŠãããã°ã©ã ãç¹å®ã®å€ã§ã¯
çµæããããåŸ
ã£ãŠãçµäºããããã®åå ãäžã€ãã€æœ°ããŠãããšãããªããšæã£ãŠãããªã
次ã®ãããªèšç®ãè¡ãããŠããããšãå€æããŸããã
ãã®æ§ãªããšã«ãªã£ãŠããŸãã®ã¯ãç§ã䜿ã£ãŠãããœããã«éãã®ã§ããããïŒ
çããã䜿ãããŠãããœããã§ã¯åŠäœãªãçµæãè¿ããŠããããæããŠæ¬²ããã
gp > for(n=1,20,print(n";"floor(log(10^n)/log(10))))
1;1
2;2
3;2
4;4
5;5
6;5
7;7
8;8
9;9
10;10
11;10
12;11
13;12
14;14
15;14
16;16
17;16
18;18
19;19
20;20
3,6,11,12,13,15,17ã§ãã¡ãã®ææãè£åãããŠããŸããŸããã
No.2183GAI9æ19æ¥ 20:58
æå
ã§ã¯åæ§ã§ããã
PARI ã¯ãã²ãšãã³å°æ°ãæ±ãããšã«ãªããšïŒé²æ°ã§å
éšè¡šçŸããã®ããªïŒããšæããŸãããããã£ãšã¿ãããã ãã§ã¯ããŸã説æã§ããªããããªïŒ
? for(n=1,20,print(n";"floor(log(10^n)/log(10))))
1;1
2;2
3;2
4;4
5;5
6;5
7;7
8;8
9;9
10;10
11;10
12;11
13;12
14;14
15;14
16;16
17;16
18;18
19;19
20;20
No.2184Dengan kesaktian Indukmu9æ20æ¥ 00:05
JavaScript ã§ã¯ä»¥äžã®éãã§ãã
for (let n = 1; n <= 20; n++) {
console.log(n + ";" + Math.floor(Math.log(Math.pow(10, n)) / Math.log(10)));
}
äžã RUN ãããš
"1;1"
"2;2"
"3;2"
"4;4"
"5;5"
"6;5"
"7;7"
"8;8"
"9;8"
"10;10"
"11;11"
"12;11"
"13;12"
"14;14"
"15;14"
"16;16"
"17;17"
"18;17"
"19;19"
"20;20"
ãšãªããŸãã
JavaScript ã§ã¯ãã¶ãå°æ°ç¹ä»¥äžã¯ãæå¯ãã®ïŒé²æ°ã§æããŠããã®ã§âŠâŠ
No.2185Dengan kesaktian Indukmu9æ20æ¥ 00:13
ä»ã®èšç®ãœããã§ã調æ»ããŠã¿ãã
ïŒsageMathã®ãœãã
sage: for i in range(21) :print(i,floor(ln(10^i)/ln(10)));
(0, 0)
(1, 1)
(2, 2)
(3, 3)
(4, 4)
(5, 5)
(6, 6)
(7, 7)
(8, 8)
(9, 9)
(10, 10)
(11, 11)
(12, 12)
(13, 13)
(14, 14)
(15, 15)
(16, 16)
(17, 17)
(18, 18)
(19, 19)
(20, 20)
å
šéšäžæãèµ°ã
ïŒRubyã®ãœãã
irb(main):001:0> include Math
=> Object
irb(main):012:0> 0.upto(20){|i| print i,";",log(10**i)/log(10),"\n"}
0;0.0
1;1.0
2;2.0
3;2.9999999999999996
4;4.0
5;5.0
6;5.999999999999999
7;7.0
8;8.0
9;8.999999999999998
10;10.0
11;11.0
12;11.999999999999998
13;12.999999999999998
14;14.0
15;14.999999999999998
16;16.0
17;17.0
18;17.999999999999996
19;19.0
20;20.0
3,6,9,12,13,15,18ã§äžæããããªããªãã
ïŒMaximaã®ãœãã
(%i13) for i :1 thru 20 do
print(float(log(10^i)/log(10)));
1.0" "
2.0" "
3.0" "
4.0" "
5.0" "
6.0" "
7.0" "
8.0" "
8.999999999999998" "
9.999999999999998" "
11.0" "
12.0" "
13.0" "
14.0" "
15.0" "
16.0" "
17.0" "
18.0" "
19.0" "
20.0" "
9,10ã§é£ç¹
No.2186GAI9æ20æ¥ 07:58
PARI ã§ãåºé¢æ°ã䜿ãåã«åŸ®éãªäžé§ãã¯ãããŸããã 258,259ã§ç Žç¶»ã
for(n=257,260,print(n";"floor(10^(-36)+log(10^n)/log(10))))
257;257
258;257
259;258
260;260
No.2187Dengan kesaktian Indukmu9æ20æ¥ 10:21
PARI ã«ãŠã
n = 308 ãŸã§ã®ç¯å²ã§åŸ®å°éã足ããã¹ããããŸããã
(javascriptã ãš10^308ãè¶
ãããšéäžèšç®çµæã«ç¡é倧ãçŸããæ±ãã«ãªã£ãã®ã§âŠâŠPARIã§ã¯ã©ããªã®ãããããããšããããã§ã)
埮å°éãšããŠã¯ã2 ^{-119}ãš2 ^{- 120} ãšã®ããã ã«å氎嶺ããããŸãã以äžã
? i = -120; for(n = 1, 308, if(n == floor(2^i + log(10^n)/log(10)), next, print(n, ";", floor(2^i + log(10^n)/log(10))) ) ); print("END")
ã
äžãèµ°ããããš
258;257
259;258
265;264
266;265
271;270
272;271
277;276
278;277
283;282
284;283
290;289
291;290
296;295
297;296
302;301
303;302
308;307
END
ã
ãšãªã
? i = -119; for(n = 1, 308, if(n == floor(2^i + log(10^n)/log(10)), next, print(n, ";", floor(2^i + log(10^n)/log(10))) ) ); print("END")
äžãèµ°ããããš
ã
END
ãšãªããŸãã
No.2190Dengan kesaktian Indukmu9æ22æ¥ 22:04
ããããããã®ãä»äºã§
ããã ãã®çŽ æ°ã«å¯Ÿããåžžçšå¯Ÿæ°å€ãå
±éåæ¯ã§
log2 = 360565/1197771 = 0.3010299966 (çå€ 0.3010299957)
log3 = 571482/1197771 = 0.4771212527 (çå€ 0.4771212547)
log5 = 837206/1197771 = 0.6989700034 (çå€ 0.6989700043)
log7 = 1012234/1197771 = 0.8450981031 (çå€ 0.8450980400)
log11 = 1247350/1197771 = 1.0413927203 (çå€ 1.0413926852)
log13 = 1334249/1197771 = 1.1139433164 (çå€ 1.1139433523)
log17 = 1473796/1197771 = 1.2304488922 (çå€ 1.2304489214)
log19 = 1531654/1197771 = 1.2787536182 (çå€ 1.2787536010)
log23 = 1631038/1197771 = 1.3617277426 (çå€ 1.3617278360)
log29 = 1751618/1197771 = 1.4623980711 (çå€ 1.4623979979)
åæ¯ã®1197771ã¯10000000ãŸã§ã§æã誀差ãå°ãªããªãå€ã§ãã
ã®æ§ã«æ§æå¯èœã§ããããšã«é©ããŸãããããµãšåæ¯ãæããªããšã
åæ¯ã¯ãã®ã«ãã£ãŠå€åãããŠããããªãã©ããªãã®ãæ°ã«ãªã£ãŠèª¿ã¹ãŠã¿ãŸããã
3æ¡ã»ã©ã®åæ°ã§ã®è¿äŒŒã¯ãåæ¯ãæããããšã«æããªããªã
gp > abs(146/485-log(2)/log(10))
%469 = 9.3217107035117801368259509460209827810 E-7
gp > abs(73/153-log(3)/log(10))
%470 = 2.9282868735104173903973984794620415878 E-6
gp > abs(339/485-log(5)/log(10))
%471 = 9.3217107035117801368259509460209517576 E-7
gp > abs(431/510-log(7)/log(10))
%472 = 7.9857055620241233702400874249978544429 E-10
gp > abs(478/459-log(11)/log(10))
%473 = 1.6503537575300559002466218995055742675 E-6
gp > abs(743/667-log(13)/log(10))
%474 = 3.2382107964776722479812223847580763836 E-7
gp > abs(299/243-log(17)/log(10))
%475 = 3.7535188454130236161139021156448952272 E-6
gp > abs(656/513-log(19)/log(10))
%476 = 1.1643056554722575810391097558286690920 E-6
gp > abs(1103/810-log(23)/log(10))
%477 = 5.5904413551619395128281053884536869710 E-7
gp > abs(525/359-log(29)/log(10))
%478 = 2.4547234686221517882671475279717504814 E-6
ã®æ§ãªåæ°ã§ããªãã®ç²ŸåºŠãäžããããã§ãã
No.2179GAI9æ18æ¥ 08:34
è¿äŒŒåæ°ã«é¢ããŠã¯ä»¥åå°ãç 究ããããšããããŸãã
ïŒåæ°ã®æé ã§ç²ŸåºŠé ã«åæ°ãåæããæ¹æ³ãèããŸãã(äœåæ¡ã§ãOK)ãïŒ
æžãããŠããåæ°ã¯ããã¹ãŠé£åæ°ãæã¡åã£ãŠåŸãããåæ°ã§ããã
ãããããã¯ã3æ¡ä»¥äžã§æãè¯ããåæ°ãåŸããããšã¯éããŸããã
äŸãã°log17ã¯299/243ãã881/716ã®æ¹ãè¯ãè¿äŒŒã«ãªããŸãã
åæ§ã«log29ã525/359ãã914/625ã®æ¹ãå°ãã ãè¯ãè¿äŒŒã«ãªããŸãã
log23ã¯3æ¡ä»¥äžã§é£åæ°æã¡åãã§åŸãããåæ°ã§ã¯64/47ãæ倧ã§
粟床ãåºãªãããã«åå4æ¡ã蚱容ãããã®ãšæããŸããã
975/716ã§ãããããã®ç²ŸåºŠã¯åºãŸãã
倧åã®å€ã¯ãå°æ°ç¹ä»¥äžã®ç²ŸåºŠã(åæ¯ã®æ¡æ°Ã2)æ¡çšåºŠã«ãªããŸããã
ããŸããŸé£åæ°æã¡åãçŽåŸã®å€ã倧ããå Žåã¯ç²ŸåºŠãè¯ããªããŸããã
log7ã¯[0;1,5,2,5,6,1,4813,1,1,âŠ]ã§4813ã®åã§æã¡åã£ãŠãããã
ããã ãç¹å¥ã«ç²ŸåºŠãè¯ããªã£ãŠããŸãã
ååšçã®355/113ãåæ§ã§ããã
No.2180ãããã9æ18æ¥ 10:24
åã« 1 ã€ã®å¯Ÿæ°å€ãæ©æ¢°èšç®ãèš±ããŠèªç±ã«æçæ°è¿äŒŒããã ãã§ãããã
æ°åŠæåç§è©± > 环ä¹ã®äž 4 æ¡
ä»ããã®ãµã€ãã®äœã¶æãã§åãè°è«ãç¹°ãè¿ãè¡ãããŠããŸããã
No.2181DD++9æ18æ¥ 21:45
29ãŸã§ã®çŽ æ°ã§ãåžžçšå¯Ÿæ°ã®é£åæ°å±éãæ±ããŠã¿ãŸããããlog_{10}(7)ã®ãšãã®4813ã®ãããªå€§ããªæ°ã¯çŸããŸããã§ããããªããlog_{10}(5)=1-log_{10}(2)ãªã®ã§çç¥ããŠããŸãã
log_{10}(2)=[0;3,3,9,2,2,4,6,2,1,1,3,1,18,...]
[0;3,3,9,2,2,4,6,2,1,1,3,1]=97879/325147
=0.301029995663499893894146339963
log_{10}(3)=[0,2,10,2,2,1,13,1,7,18,...]
[0,2,10,2,2,1,13,1,7]=34367/33001
=0.477121254550546065527863343601
log_{10}(11)=[1;24,6,3,2,1,1,3,1,1,1,9,...]
[1;24,6,3,2,1,1,3,1,1,1]=22014/21139
=1.04139268507014938941244204721
log_{10}(13)=[1;1,8,1,3,2,7,1,6,16,...]
[1;1,8,1,3,2,7,1,6]=5113/4590
=1.11394335511982570806100217865
log_{10}(17)=[1,4,2,1,17,1,13,1,1,3,3,26,...]
[1;4,2,1,17,1,13,1,1,3,3]=99797/81106
=1.23045150790323773826843883313
log_{10}(19)=[1;3,1,1,2,2,1,3,2,2,1,4,1,1,1,6,1,3,1,3,1,47,...]
[1;3,1,1,2,2,1,3,2,2,1,4,1,1,1,6,1,3,1,3,1]=6497723/5081294
=1.27875360095282815755199364571
log_{10}(23)=[1;2,1,3,4,17,2,1,2,66,...]
[1;2,1,3,4,17,2,1,2]=9016/6621
=1.36172783567436943059960731007
log_{10}(29)=[[1;2,6,6,1,2,1,2,2,2,1,1,1,1,1,5,1,2,3,37,...]
[1;2,6,6,1,2,1,2,2,2,1,1,1,1,1,5,1,2,3]=5243915/3585833
=1.46239799789895402267757589380
No.2188kuiperbelt9æ22æ¥ 14:46
log[10]7ã§é£åæ°ã®8çªç®ã®å€ã4813ã§ããã
log[10]2ã¯137çªç®ã5393
log[10]3ã¯562çªç®ã2788
log[10]11ã¯2179çªç®ã3864
log[10]13ã¯133çªç®ã1378
log[10]17ã¯710çªç®ã3301
log[10]19ã¯1341çªç®ã2249
log[10]23ã¯921çªç®ã2695
log[10]29ã¯352çªç®ã1901
ã®ããã«ãã£ãšå
ãŸã§èŠãã°å€§ããªæ°ã¯ãããåºãŠããŸãã
log[10]7ã¯å¥è·¡çã«åã®æ¹ã«ãã£ããšããããšã§ããã
No.2189ãããã9æ22æ¥ 15:53
å
æ¥ãç§ã¯ãµãš 4374 ãš 4375 ãã©ã¡ãã 1 æ¡ã®çŽ å æ°ããæããªãããšã«æ°ã¥ããŸããã
ãããŠã224 ãš 225ã2400 ãš 2401 ãåæ§ã®æ§è³ªãæã€ãšç¥ã£ãŠããç§ã¯ã以äžã®ãããªèšç®ãåŸãŸããã
log ã¯å
šãŠåžžçšå¯Ÿæ°ã§ãã
224 â 225 ãã
5 log 2 + log 7 â 2 log 3 + 2 log 5
2400 â 2401 ãã
5 log 2 + log 3 + 2 log 5 â 4 log 7
4374 â 4375 ãã
log 2 + 7 log 3 â 4 log 5 + log 7
ãããŠã
log 2 + log 5 = 1
ããããé£ç«ã㊠4 å
1 次æ¹çšåŒãšæã£ãŠè§£ããšãå°æ°ç¬¬6äœåæšäºå
¥ã§
log 2 â 72/239 â 0.30126 ïŒçå€ 0.30103ïŒ
log 3 â 114/239 â 0.47699 ïŒçå€ 0.47712ïŒ
log 5 â 167/239 â 0.69874 ïŒçå€ 0.69897ïŒ
log 7 â 202/239 â 0.84519 ïŒçå€ 0.84510ïŒ
ããããŠæ¯èŒçç°¡åã«ããè¿äŒŒå€ãåŸãããããã§ãã
ãããèŠãŠçåãããã€ãã
(1)
åæ¯ 239 ãšããã®ã¯ã©ã®ãããã®åªç§ããªãã§ããããïŒ
ããªãã¡ã4 ã€ã®å¯Ÿæ°ãåæ¯ãå
±éãªæçæ°ã§è¿äŒŒããå Žåãåæ¯<1000 ãããã§äœçªç®ãããã«åªç§ãªè¿äŒŒå€ãåŸãããåæ¯ãªãã§ããããïŒ
ïŒçµ¶å¯Ÿèª€å·®ã®åã§è©äŸ¡ãããçžå¯Ÿèª€å·®ã®åã§è©äŸ¡ãããã§ãå€ãããšæããŸããïŒ
(2)
4 æ¡ã§å·®ã 1 ã§ãããã®ãããã7æ¡ä»¥äžã§å·®ã 11 ã 13 ãããã¯ããããå«ã 2 æ¡ãããã®åææ°ã§ãããã®ãçšããæ¹ã粟床ããããªããããªæ°ãããŸãâŠâŠæ¬åœã§ããããïŒ
æ¬åœã ãšããŠãå
·äœçã«ã©ã®ããã粟床ãäžããããã§ãããïŒ
ïŒå·®ã 1 æ¡ã®çŽ å æ°ããæããªããã®ã¯ãABCäºæ³ã®èšŒæãä¿¡ãããªã 44100 ããå
ã«ã¯ååšããªãã¯ãïŒ
(3)
â ã§ã¯ãªããäžçå·ã§ã®è©äŸ¡ã¯åæ§ã®æ¹æ³ã§å¯èœã§ããããïŒ
(4)
䜿ãçŽ æ°ã« 11 ãå«ã㊠5 å
1 次ã«ããã䜿ãçŽ æ°ã« 13 ãŸã§å«ã㊠6 å
1 次ã«ããããªã©ã§ç²ŸåºŠã®åäžã¯å¯èœã§ããããïŒ
ç¹ã« (1) (2) (4) ã¯æäœæ¥ã§ã¯ç¡è¬ã«ãã»ã©ãããã®ã§ãã³ã³ãã¥ãŒã¿ç³»ã®æŽè»ããé¡ãããŸãã
No.2156DD++9æ15æ¥ 10:30
ãšãããã(1)ã ã
> åæ¯ 239 ãšããã®ã¯ã©ã®ãããã®åªç§ããªãã§ããããïŒ
åæ¯ïŒ1000ã§ã¯(çžå¯Ÿèª€å·®ã®åèšã§)70çªç®ã«åªç§ã§ããã
239ã§çžå¯Ÿèª€å·®ã®åèšã¯0.001457âŠã§ãã
1äœã¯568ã§ãçžå¯Ÿèª€å·®ã®åèšã¯0.0001758âŠã§ãã
2äœä»¥äžã¯897,960,807,794,âŠãšç¶ããŸãããåæ¯ã倧ãããã°çžå¯Ÿèª€å·®ãå°ããã®ã¯åœç¶ã§ã
ããããæå³ã§ã¯69çªç®ãŸã§ã«åæ¯ã239æªæºã®ãã®ã¯ãããŸããã®ã§ã239ã¯çµæ§åªç§ãšèšãããšæããŸãã
åæ¯ã®å€§ãããèæ
®ããŠãçžå¯Ÿèª€å·®ã®åèšÃåæ¯ãã§ã©ã³ãã³ã°ãäœããšã
1äœã®568ã2äœã®897ã¯å€ãããŸãããã3äœã329ããããŠ4äœã239ãšãªããŸãã
çžå¯Ÿèª€å·®ã®åèšÃåæ¯ã®å
·äœå€(5äœãŸã§)ã¯
568 0.099882607730
897 0.222871229356
329 0.285662258393
239 0.348293385746
103 0.383956736568
ã®ããã«ãªã£ãŠããŠããããèŠãŠã568ã ãçªåºããŠããæãã§ãã
ã¡ãªã¿ã«åæ¯ã568ã®å Žåã®å¯Ÿæ°ã®è¿äŒŒå€ã¯
log2 â 171/568 â 0.30106
log3 â 271/568 â 0.47711
log5 â 397/568 â 0.69894
log7 â 480/568 â 0.84507
ãªã®ã§ããªãè¯ãè¿äŒŒã«ãªã£ãŠããŸããã
åæ¯ã568ã«ãªããããªçµåããé©åœã«æ¢ããŠã¿ããšã
(2400,2401),(4374,4375),(250000,250047)
ããåŒãç«ãŠãã°äžèšã®å€ã«ãªãããã§ãã
(æ€ç®ããŠããŸããã)
No.2157ãããã9æ15æ¥ 13:26
ãããŒã568 åªç§ã§ããã
ããã 250047 ã¯äººåããæµç³ã«ã¡ãã£ãšåºãŠããªãâŠâŠã
ãã£ã±ãæ¡æ°ãå€ããš 2 æ°ã®å·®ãå°ããã£ãŠãæ°ã«ãªããªããªã£ãŠããã®ã§ç²ŸåºŠäžããã£ãœãã§ããã
No.2159DD++9æ15æ¥ 14:35
(3)ã«ã€ããŠ
5log2 + log7 â 2log3 + 2log5
5log2 + log3 + 2log5 â 4log7
log2 + 7log3 â 4log5 + log7
ã
5log2 + log7 + a = 2log3 + 2log5
5log2 + log3 + 2log5 + b = 4log7
log2 + 7log3 + c = 4log5 + log7
ïŒa,b,cïŒ0ïŒ
ãšããŠèšç®ãããš
log2 = (72 - 27a - 5b - 7c) / 239
log3 = (114 + 17a + 12b - 31c) / 239
log5 = (167 + 27a + 5b + 7c) / 239
log7 = (202 - 16a + 59b - 13c) / 239
ãšãªããŸãããã®åŒãã
log2 ïŒ 72/239
log5 ïŒ 167/239
ã¯ãã ã¡ã«ããããŸãããlog3 ãš 114/239 ã®å€§å°é¢ä¿ã¯
17a + 12b - 31c ã®ç¬Šå·ã調ã¹ãªããšããããŸããã
ããã 17a + 12b - 31c ã®ç¬Šå·ã調ã¹ãããã«èšç®ãããš
17a + 12b - 31c = 239log3 - 114log10
ãšãªã£ãŠ 3^239 ãš 10^114 ã®å€§å°é¢ä¿ã調ã¹ãããšã«ãªããæ¬æ«è»¢åã§ãã
ãã£ãŠåæ§ã®æ¹æ³ã§äžçåŒã§äžäžããããããããã«ã¯
è¿äŒŒåŒãå€æ°çšæããŠããŸããŸå€§å°é¢ä¿ããããããšã«æåŸ
ããããããã
æãã€ããŸããããè¿œå ã®è¿äŒŒåŒãçšæããããšãããšæ¡æ°ãå¢ããŠ
æèšç®ã«äžåãã«ãªã£ãŠããŸãã®ã§ããšãããã
ããã®æ¹æ³ã§ã®äžçå·ã§ã®è©äŸ¡ã¯é£ããã
ãšèšã£ãŠããããšæããŸãã
No.2160ãããã9æ16æ¥ 02:52
> 17a + 12b - 31c ã®ç¬Šå·ã調ã¹ãªããšããããŸããã
ãªãã»ã©ãå·®åãå®æ°åããŠããŸãã°ããã£ãã®ã§ããã
é£ç«æ¹çšåŒã解ãæéã¯ãã£ããå¢ããŠããŸããŸãããã©ãã
æã§ãããªãéè¡åçšæããŠè§£ãã®ãäžçªæ©ãããªïŒ
{1/n - 1/(2*n^2)} log e < log{1+(1/n)} < {1/n} log e
ã䜿ãã°ãlog e ã¯æ¬ãåºããŠæŸçœ®ã§ããã®ã§ãa, b, c ã®ç·åçµåã®æ£è² è©äŸ¡ã¯ãªããšããªãã±ãŒã¹ãå€ããã«æããŸãã
(224, 225), (2400, 2401), (4374, 4375) ã®ã±ãŒã¹ã¯å®éããã§ãªããšããªãã¿ããã§ãã
No.2162DD++9æ16æ¥ 05:03
é·æã§ãã
(2)ã«ã€ããŠ
çŽ æ°2,3,5,7ã10æ¡ä»¥äžã§(2400,2401)ãã誀差çãå°ãããã®ã¯
以äžã®6åãããããŸããã§ããã巊端ã¯èª€å·®ç(倧ããæ¹ã®å€Ã·å°ããæ¹ã®å€ïŒ1)ã§ãã
0.000040616 78121827 78125000
0.000066758 645657712 645700815
0.000107377 3954653486 3955078125
0.000188000 250000 250047
0.000228624 4374 4375
0.000295397 184473632 184528125
0.000416667 2400 2401
78121827 = 3^13 * 7^2, 78125000 = 2^3 * 5^10, å·® = 3173 = 19 * 167
645657712 = 2^4 * 7^9, 645700815 = 3^17 * 5, å·® = 43103 (çŽ æ°)
3954653486 = 2 * 7^11, 3955078125 = 3^4 * 5^11, å·® = 424639 (çŽ æ°)
ããã䜿ã£ãŠ
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
4log2 + 9log7 = 17log3 + log5 (645657712, 645700815)
log2 + 11log7 = 4log3 + 11log5 (3954653486, 3955078125)
log2 + log5 = 1
ã解ããšäžæ¬¡åŸå±ã§è§£ããŸããã§ããã
ãããããŠ
78121827 = 3^13 * 7^2, 78125000 = 2^3 * 5^10, å·® = 3173 = 19 * 167
645657712 = 2^4 * 7^9, 645700815 = 3^17 * 5, å·® = 43103 (çŽ æ°)
250000 = 2^4 * 5^6, 250047 = 3^6 * 7^3, å·® = 47 (çŽ æ°)
ããã䜿ã£ãŠ
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
4log2 + 9log7 = 17log3 + log5 (645657712, 645700815)
4log2 + 6log5 = 6log3 + 3log7 (250000, 250047)
log2 + log5 = 1
ã解ããš
log2 = 171/568, log3 = 271/568, log5 = 397/568, log7 = 480/568
ããã¯èŠèŠãããããŸããã
ããããã®å€ã¯(2400,2401),(4374,4375),(250000,250047)
ãããåŸãããã®ã§ã¯ãªãããšæã£ãŠäžã§ãæ€ç®ããŠããŸããããšæžããã®ã
ãããããŠæ€ç®ããŠã¿ããšããªããš
5log2 + log3 + 2log5 = 4log7 (2400, 2401)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
4log2 + 6log5 = 6log3 + 3log7 (250000, 250047)
log2 + log5 = 1
ã¯äžæ¬¡åŸå±ã§è§£ããŸããã§ãããçµæ§è§£ããªãå ŽåãåºãŠããã®ã§ããã
ããã§ã¯ããããçµåããå€ããŠè©Šãããšã«ããŸãã
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
log2 + 11log7 = 4log3 + 11log5 (3954653486, 3955078125)
4log2 + 6log5 = 6log3 + 3log7 (250000, 250047)
log2 + log5 = 1
â log2 = 171/568, log3 = 271/568, log5 = 397/568, log7 = 480/568
4log2 + 9log7 = 17log3 + log5 (645657712, 645700815)
log2 + 11log7 = 4log3 + 11log5 (3954653486, 3955078125)
4log2 + 6log5 = 6log3 + 3log7 (250000, 250047)
log2 + log5 = 1
â log2 = 171/568, log3 = 271/568, log5 = 397/568, log7 = 480/568
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
4log2 + 9log7 = 17log3 + log5 (645657712, 645700815)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
log2 + log5 = 1
â log2 = 171/568, log3 = 271/568, log5 = 397/568, log7 = 480/568
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
log2 + 11log7 = 4log3 + 11log5 (3954653486, 3955078125)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
log2 + log5 = 1
â log2 = 171/568, log3 = 271/568, log5 = 397/568, log7 = 480/568
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
4log2 + 6log5 = 6log3 + 3log7 (250000, 250047)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
log2 + log5 = 1
â äžæ¬¡åŸå±
4log2 + 9log7 = 17log3 + log5 (645657712, 645700815)
4log2 + 6log5 = 6log3 + 3log7 (250000, 250047)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
log2 + log5 = 1
â log2 = 171/568, log3 = 271/568, log5 = 397/568, log7 = 480/568
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
5log2 + log3 + 2log5 = 4log7 (2400, 2401)
log2 + log5 = 1
â äžæ¬¡åŸå±
解ãåŸãããŠãåããã®ã°ããã§ãããã¡ãã£ãšç²ŸåºŠãè¯ããããã ãš
ããŸãå€ãããªãããã§ãã
ã§ã¯ããã«ç²ŸåºŠãè¯ããã®ãèŠã€ããŠè©ŠããŸãã
ãããã10æ¡ä»¥äžãã11æ¡ä»¥äžã12æ¡ä»¥äžãã»ã»ã»ãšå¢ãããŠããªããªãèŠã€ãããŸããã
ã15æ¡ä»¥äžããŸã§å¢ãããŠããã£ãš
0.000026141 205885750000000 205891132094649
0.000033563 281474976710656 281484423828125
ã®äºã€ãèŠã€ãããŸããã®ã§ããããš(78121827, 78125000)ã§è©ŠããŸãã
205885750000000 = 2^7 * 5^9 * 7^7, 205891132094649 = 3^30,
å·® = 5382094649 = 3673 * 1465313
281474976710656 = 2^48, 281484423828125 = 5^11 * 7^8,
å·® = 9447117469 (çŽ æ°)
7log2 + 9log5 + 7log7 = 30log3 (205885750000000, 205891132094649)
48log2 = 11log5 + 8log7 (281474976710656, 281484423828125)
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
log2 + log5 = 1
â
log2 = 3125/10381 = 0.30103073 (çå€ 0.30103000)
log3 = 4953/10381 = 0.47712166 (çå€ 0.47712125)
log5 = 7256/10381 = 0.69896927 (çå€ 0.69897000)
log7 = 8773/10381 = 0.84510163 (çå€ 0.84509804)
ããããå°ã粟床ãäžãããŸããã
ã¡ãªã¿ã«ããäžæ¡äžã®
0.000007053 2251783932057135 2251799813685248
2251783932057135 = 3^13 * 5 * 7^10, 2251799813685248 = 2^51,
å·® = 15881628113 = 13 * 71 * 17206531
ã䜿ã£ãŠ
13log3 + log5 + 10log7 = 51log2 (2251783932057135, 2251799813685248)
7log2 + 9log5 + 7log7 = 30log3 (205885750000000, 205891132094649)
48log2 = 11log5 + 8log7 (281474976710656, 281484423828125)
log2 + log5 = 1
ãšããŠãäžãšåãåæ¯10381ã®å€ã«ãªããŸããã
ãšããããã§ã
䜿ãæ°åã®æ¡æ°ãããªãå¢ãããŠãçµæã®ç²ŸåºŠãããŸãäžãããªãããã
ãšããããšãããããŸããã
No.2167ãããã9æ16æ¥ 08:53
䜿ãæ¡æ°ãäžãã£ãŠãã2, 3, 5, 7 ã§äœããåææ°ã®å²åãæžãããšã§æã¡æ¶ãããŠããŸãã誀差çããªããªãå°ãããªããªããã§ããã
ãããªããšã11ã13ã®äœ¿çšãæ€èšããæ¹ã粟床äžãã«ã¯éèŠãªã®ããªïŒ
No.2168DD++9æ16æ¥ 13:02
ãŸãé·æã§ããããã§åœåã®èª²é¡ã¯ãšããããå®çµã
(4)
ã11ãè¿œå ããå Žåã
(1äžãŸã§)
0.000102041 9800 9801
0.000228624 4374 4375
0.000330688 3024 3025
0.000416667 2400 2401
0.001244444 5625 5632
9800 = 2^3 * 5^2 * 7^2, 9801 = 3^4 * 11^2
4374 = 2 * 3^7, 4375 = 5^4 * 7
3024 = 2^4 * 3^3 * 7, 3025 = 5^2 * 11^2
2400 = 2^5 * 3 * 5^2, 2401 = 7^4
3log2 + 2log5 + 2log7 = 4log3 + 2log11 (9800, 9801)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
4log2 + 3log3 + log7 = 2log5 + 2log11 (3024, 3025)
5log2 + log3 + 2log5 = 4log7 (2400, 2401)
log2 + log5 = 1
â äžæ¬¡åŸå±
5625 = 3^2 * 5^4, 5632 = 2^9 * 11, å·® = 7
3log2 + 2log5 + 2log7 = 4log3 + 2log11 (9800, 9801)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
5log2 + log3 + 2log5 = 4log7 (2400, 2401)
2log3 + 4log5 = 9log2 + log11 (5625, 5632)
log2 + log5 = 1
â
log2 = 270/897 = 0.301003 (çå€ 0.301030)
log3 = 428/897 = 0.477146 (çå€ 0.477121)
log5 = 627/897 = 0.698997 (çå€ 0.698970)
log7 = 758/897 = 0.845039 (çå€ 0.845098)
log11 = 934/897 = 1.041249 (çå€ 1.041393)
897ã¯äžã®æ¹ã§568ã«æ¬¡ãã§ç²ŸåºŠã®è¯ãåæ¯ã§ãã
(1åãŸã§)
0.000016089 3294172 3294225
0.000022158 67108864 67110351
0.000040616 78121827 78125000
0.000050668 14348180 14348907
3294172 = 2^2 * 7^7, 3294225 = 3^2 * 5^2 * 11^4, å·® = 53 (çŽ æ°)
67108864 = 2^26, 67110351 = 3 * 7^5 * 11^3, å·® = 1487 (çŽ æ°)
78121827 = 3^13 * 7^2, 78125000 = 2^3 * 5^10, å·® = 3173 = 19 * 167
14348180 = 2^2 * 5 * 7^2 * 11^4, 14348907 = 3^15, å·® = 727 (çŽ æ°)
2log2 + 7log7 = 2log3 + 2log5 + 4log11 (3294172, 3294225)
26log2 = log3 + 5log7 + 3log11 (67108864, 67110351)
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
2log2 + log5 + 2log7 + 4log11 = 15log3 (14348180, 14348907)
log2 + log5 = 1
â
log2 = 6421/21330 = 0.3010314 (çå€ 0.3010300)
log3 = 10177/21330 = 0.4771214 (çå€ 0.4771213)
log5 = 14909/21330 = 0.6989686 (çå€ 0.6989700)
log7 = 18026/21330 = 0.8451008 (çå€ 0.8450980)
log11 = 22213/21330 = 1,0413971 (çå€ 1.0413927)
çµæ§ç²ŸåºŠãäžãããŸããã
ã13ãè¿œå ããå Žåã
(1äžãŸã§)
0.000102041 9800 9801
0.000150263 6655 6656
0.000228624 4374 4375
0.000236742 4224 4225
0.000244200 4095 4096
0.000330688 3024 3025
0.000416667 2400 2401
9800 = 2^3 * 5^2 * 7^2, 9801 = 3^4 * 11^2
6655 = 5 * 11^3, 6656 = 2^9 * 13
4374 = 2 * 3^7, 4375 = 5^4 * 7
4224 = 2^7 * 3 * 11, 4225 = 5^2 * 13^2
4095 = 3^2 * 5 * 7 * 13, 4096 = 2^12
3024 = 2^4 * 3^3 * 7, 3025 = 5^2 * 11^2
2400 = 2^5 * 3 * 5^2, 2401 = 7^4
3log2 + 2log5 + 2log7 = 4log3 + 2log11 (9800, 9801)
log5 + 3log11 = 9log2 + log13 (6655, 6656)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
7log2 + log3 + log11 = 2log5 + 2log13 (4224, 4225)
2log3 + log5 + log7 + log13 = 12log2 (4095, 4096)
log2 + log5 = 1
â äžæ¬¡åŸå±
3log2 + 2log5 + 2log7 = 4log3 + 2log11 (9800, 9801)
log5 + 3log11 = 9log2 + log13 (6655, 6656)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
7log2 + log3 + log11 = 2log5 + 2log13 (4224, 4225)
2log3 + log5 + log7 + log13 = 12log2 (4095, 4096)
4log2 + 3log3 + log7 = 2log5 + 2log11 (3024, 3025)
log2 + log5 = 1
â äžæ¬¡åŸå± (åŒãäžã€å€ããŠããªãäžæ¬¡åŸå±ãªã®ã§ä»ã®åŒãå¿
èŠ)
3log2 + 2log5 + 2log7 = 4log3 + 2log11 (9800, 9801)
log5 + 3log11 = 9log2 + log13 (6655, 6656)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
7log2 + log3 + log11 = 2log5 + 2log13 (4224, 4225)
5log2 + log3 + 2log5 = 4log7 (2400, 2401)
log2 + log5 = 1
â
log2 = 270/897 = 0.301003 (çå€ 0.301030)
log3 = 428/897 = 0.477146 (çå€ 0.477121)
log5 = 627/897 = 0.698997 (çå€ 0.698970)
log7 = 758/897 = 0.845039 (çå€ 0.845098)
log11 = 934/897 = 1.041249 (çå€ 1.041393)
log13 = 999/897 = 1.113712 (çå€ 1.113943)
11ã ãè¿œå ãããšããšåã粟床ã§ãã
(1åãŸã§)
0.000007456 5767125 5767168
0.000008117 123200 123201
0.000013783 72772425 72773428
0.000015573 1990625 1990656
0.000016089 3294172 3294225
0.000018861 19140264 19140625
0.000022158 67108864 67110351
5767125 = 3 * 5^3 * 7 * 13^3, 5767168 = 2^19 * 11, å·® = 43 (çŽ æ°)
123200 = 2^6 * 5^2 * 7 * 11, 123201 = 3^6 * 13^2
72772425 = 3^7 * 5^2 * 11^3, 72773428 = 2^2 * 7^2 * 13^5, å·® = 1003 = 17 * 59
1990625 = 5^5 * 7^2 * 13, 1990656 = 2^13 * 3^5, å·® = 31 (çŽ æ°)
3294172 = 2^2 * 7^7, 3294225 = 3^2 * 5^2 * 11^4, å·® = 53 (çŽ æ°)
19140264 = 2^3 * 3^2 * 11^2 * 13^3, 19140625 = 5^8 * 7^2, å·® = 361 = 19^2
67108864 = 2^26, 67110351 = 3 * 7^5 * 11^3, å·® = 1487 (çŽ æ°)
log3 + 3log5 + log7 + 3log13 = 19log2 + log11 (5767125, 5767168)
6log2 + 2log5 + log7 + log11 = 6log3 + 2log13 (123200, 123201)
7log3 + 2log5 + 3log11 = 2log2 + 2log7 + 5log13 (72772425, 72773428)
5log5 + 2log7 + log13 = 13log2 + 5log3 (1990625, 1990656)
2log2 + 7log7 = 2log3 + 2log5 + 4log11 (3294172, 3294225)
log2 + log5 = 1
â äžæ¬¡åŸå±
log3 + 3log5 + log7 + 3log13 = 19log2 + log11 (5767125, 5767168)
6log2 + 2log5 + log7 + log11 = 6log3 + 2log13 (123200, 123201)
7log3 + 2log5 + 3log11 = 2log2 + 2log7 + 5log13 (72772425, 72773428)
2log2 + 7log7 = 2log3 + 2log5 + 4log11 (3294172, 3294225)
3log2 + 2log3 + 2log11 + 3log13 = 8log5 + 2log7 (19140264, 19140625)
log2 + log5 = 1
â
log2 = 6079/20194 = 0.3010300089 (çå€ 0.3010299957)
log3 = 9635/20194 = 0.4771219174 (çå€ 0.4771212547)
log5 = 14115/20194 = 0.6989699911 (çå€ 0.6989700043)
log7 = 17066/20194 = 0.8451025057 (çå€ 0.8450980400)
log11 = 21030/20194 = 1.0413984352 (çå€ 1.0413926852)
log13 = 22495/20194 = 1.1139447361 (çå€ 1.1139433523)
粟床ã¯11ã ãè¿œå ã®ãšããšåçšåºŠã§ãã
ïŒlog2ãšlog5ã¯ç²ŸåºŠãããã§ãããä»ã¯ãããŸã§è¯ããããŸããïŒ
ã29ãŸã§è¿œå ããå ŽåïŒçŽ æ°10åïŒã
(1åãŸã§)
0.000000010 96059600 96059601
0.000000055 18085704 18085705
0.000000075 26578123 26578125
0.000000084 11859210 11859211
0.000000095 10556000 10556001
0.000000121 8268799 8268800
0.000000155 12901779 12901781
0.000000169 5909760 5909761
0.000000194 5142500 5142501
0.000000244 4096575 4096576
0.000000244 4090624 4090625
0.000000250 4004000 4004001
0.000000315 22194425 22194432
0.000000365 13697019 13697024
0.000000365 90312467 90312500
0.000000371 2697695 2697696
0.000000485 8254125 8254129
0.000000489 88012332 88012375
0.000000494 2023424 2023425
0.000000520 90312453 90312500
0.000000540 1852200 1852201
0.000000560 67874587 67874625
0.000000569 75557027 75557070
0.000000587 46000759 46000786
96059600 = 2^4 * 5^2 * 7^2 * 13^2 * 29, 96059601 = 3^8 * 11^4
18085704 = 2^3 * 3 * 7^3 * 13^3, 18085705 = 5 * 11 * 17 * 23 * 29^2
26578123 = 11 * 13^2 * 17 * 29^2, 26578125 = 3^5 * 5^6 * 7
11859210 = 2 * 3^4 * 5 * 11^4, 11859211 = 7 * 13 * 19^4
10556000 = 2^5 * 5^3 * 7 * 13 * 29, 10556001 = 3^4 * 19^4
8268799 = 7^2 * 11 * 23^2 * 29, 8268800 = 2^10 * 5^2 * 17 * 19
12901779 = 3^2 * 11 * 19^4, 12901781 = 23^2 * 29^3
5909760 = 2^8 * 3^5 * 5 * 19, 5909761 = 11^2 * 13^2 * 17^2
5142500 = 2^2 * 5^4 * 11^2 * 17, 5142501 = 3^3 * 7^2 * 13^2 * 23
4096575 = 3^4 * 5^2 * 7 * 17^2, 4096576 = 2^6 * 11^2 * 23^2
4090624 = 2^8 * 19 * 29^2, 4090625 = 5^5 * 7 * 11 * 17
4004000 = 2^5 * 5^3 * 7 * 11 * 13, 4004001 = 3^2 * 23^2 * 29^2
22194425 = 5^2 * 11^3 * 23 * 29, 22194432 = 2^8 * 3^3 * 13^2 * 19
13697019 = 3^4 * 7^3 * 17 * 29, 13697024 = 2^16 * 11 * 19
90312467 = 7 * 23^2 * 29^3, 90312500 = 2^2 * 5^7 * 17^2
2697695 = 5 * 7^3 * 11^2 * 13, 2697696 = 2^5 * 3^2 * 17 * 19 * 29
8254125 = 3^2 * 5^3 * 11 * 23 * 29, 8254129 = 13^4 * 17^2
88012332 = 2^2 * 3^4 * 17 * 19 * 29^2, 88012375 = 5^3 * 11^3 * 23^2
2023424 = 2^13 * 13 * 19, 2023425 = 3^2 * 5^2 * 17 * 23^2
90312453 = 3^2 * 7 * 11 * 19^4, 90312500 = 2^2 * 5^7 * 17^2
1852200 = 2^3 * 3^3 * 5^2 * 7^3, 1852201 = 13 * 17^3 * 29
67874587 = 11^2 * 23 * 29^3, 67874625 = 3^3 * 5^3 * 7 * 13^2 * 17
75557027 = 7 * 13^3 * 17^3, 75557070 = 2 * 3^3 * 5 * 23^4
46000759 = 7^6 * 17 * 23, 46000786 = 2 * 13^3 * 19^2 * 29
4log2 + 2log5 + 2log7 + 2log13 + log29 = 8log3 + 4log11 (96059600, 96059601)
3log2 + log3 + 3log7 + 3log13 = log5 + log11 + log17 + log23 + 2log29 (18085704, 18085705)
log11 + 2log13 + log17 + 2log29 = 5log3 + 6log5 + log7 (26578123, 26578125)
log2 + 4log3 + log5 + 4log11 = log7 + log13 + 4log19 (11859210, 11859211)
2log7 + log11 + 2log23 + log29 = 10log2 + 2log5 + log17 + log19 (8268799, 8268800)
2log3 + log11 + 4log19 = 2log23 + 3log29 (12901779, 12901781)
8log2 + 5log3 + log5 + log19 = 2log11 + 2log13 + 2log17 (5909760, 5909761)
4log3 + 2log5 + log7 + 2log17 = 6log2 + 2log11 + 2log23 (4096575, 4096576)
6log7 + log17 + log23 = log2 + 3log13 + 2log19 + log29 (46000759, 46000786)
log2 + log5 = 1
â
log2 = 360565/1197771 = 0.3010299966 (çå€ 0.3010299957)
log3 = 571482/1197771 = 0.4771212527 (çå€ 0.4771212547)
log5 = 837206/1197771 = 0.6989700034 (çå€ 0.6989700043)
log7 = 1012234/1197771 = 0.8450981031 (çå€ 0.8450980400)
log11 = 1247350/1197771 = 1.0413927203 (çå€ 1.0413926852)
log13 = 1334249/1197771 = 1.1139433164 (çå€ 1.1139433523)
log17 = 1473796/1197771 = 1.2304488922 (çå€ 1.2304489214)
log19 = 1531654/1197771 = 1.2787536182 (çå€ 1.2787536010)
log23 = 1631038/1197771 = 1.3617277426 (çå€ 1.3617278360)
log29 = 1751618/1197771 = 1.4623980711 (çå€ 1.4623979979)
åæ¯ã®1197771ã¯10000000ãŸã§ã§æã誀差ãå°ãªããªãå€ã§ãã
# 誀差ã®å°ãªãé ã«9å+(log2+log5=1)ã ãšäžæ¬¡åŸå±ã«ãªããŸãã
# ãããã1åãã€è¿œå ããŠãã£ãŠããã°ããäžæ¬¡åŸå±ã®ãŸãŸã§ã
# 24åç®ã®(46000759,46000786)ã®åŒãè¿œå ããŠããããäžæ¬¡ç¬ç«ã«ãªããŸãã
# ãããŠããããéé ã«æ¶ããè¡ãæ¶ããŠãã£ãŠ10è¡ã«æžãããã®ã
# äžã«æžããåŒã§ãã
çµè«ãšããŠãçŽ æ°ã2,3,5,7ã«éå®ããŠããŸããšå·šå€§ãªæ°ã«ããŠã
ããŸã粟床ãåäžããŸããããçŽ æ°ã®åæ°ãå¢ãããŠããã°
çŸå®çãªå€ïŒãšãã£ãŠãæèšç®ã¯ç¡çïŒã§ç²ŸåºŠãäžããããããšã
ããããŸããã
No.2170ãããã9æ16æ¥ 14:15
éåžžã«æ·±ã調æ»ããŠãã ãããããããšãããããŸããã
ã ãã ããšæ¹çšåŒãäžæåŸå±ã«ãªã£ãŠããŸãåé¡ã匷æµã«ãªã£ãŠããã®ã¯æãããããŸããã§ããã
æèšç®ã§ãã倧å€ããšåŸããããã®ã®ãã©ã³ã¹çã«ã¯ãæåã®ãã€ãæã£ã以äžã«åªç§ã ã£ããã§ãããâŠâŠã
No.2175DD++9æ17æ¥ 02:05