èªç¶æ°ã3ã§å²ã£ãå°äœã§åãããš
3ïœãããâã3ã§å²ã
3ïœïŒïŒãâã2åããŠã1ãè¶³ã
3ïœïŒïŒãâãïŒåããŠã1ãåŒã
æçµçã«ãå
šãŠïŒã«ãªãã
2ïŒ3ã®æäœãéã«ããã ãã§é£åºŠãå¢ãã®ãäžæè°ã§ãã
No.2401ks2024幎12æ18æ¥ 10:29
mod3ã®ã³ã©ããæ¬ãã§ããã
https://www.lab2.toho-u.ac.jp/sci/is/shirayanagi/lab/dl/2014/yamanaka.pdf
ã«
3n â 3ã§å²ã
3n+1 â 4åããŠ2ãè¶³ã
3n+2 â 4åããŠ1ãè¶³ã
ãšããã³ã©ããæ¬ããèå¯ãããã®ããããŸãããäžèšã®ã³ã©ããæ¬ãã¯ã
1â6â2â9â3â1
7â30â10â42â14â57â19â78â26â105â35â141â47â189â63â21â7
ãšãã2çš®é¡ã®ã«ãŒãã®ããããã«å°éããŸããã
1ïœ1000ã§
1ãå«ãã«ãŒãã«å°éããã®ã79åã§7.9%
7ãå«ãã«ãŒãã«å°éããã®ã921åã§92.1%
1ïœ10000ã§
1ãå«ãã«ãŒãã«å°éããã®ã4.2%
7ãå«ãã«ãŒãã«å°éããã®ã95.8%
ã§ããã
4åã ãš1ãããã¯7ã«å°éããã®ãæ©ãã®ã§ã
3n â 3ã§å²ã
3n+1 â 5åããŠ1ãè¶³ã
3n+2 â 5åããŠ2ãè¶³ã
ãšããŠã¿ããšãäžèšã®ã³ã©ããæ¬ãã¯ã1000000ãŸã§ã§
4â21â7â36â12â4
8â42â14â72â24â8
ãšãã2çš®é¡ã®ã«ãŒãã®ããããã«å°éããŸãããã4ãããã¯8ã«å°éãããŸã§ã«ãäŸãã°åæå€10ã®å Žåã¯4ã«å°éãããŸã§ã«43åã®æäœãå¿
èŠã§éäžã§æå€§å€3186ã«éããåæå€38ã®å Žåã¯8ã«å°éãããŸã§ã«386åã®æäœãå¿
èŠã§éäžã§æå€§å€12317562ã«éããŸããã100000ãŸã§ã§æå€§å€ãæŽæ°ããåæå€ãšããã®å°éå
ãããã«èŠããåæ°ãéäžã§éããæå€§å€ã¯ä»¥äžã®ããã«ãªããŸããã
10 4 43 3186
38 8 386 12317562
253 8 755 60008787
325 4 204 61921287
443 8 509 2792211912
550 4 2832 366801780869709687
1973 4 5101 68833498238053197854493312
13301 4 2815 99325854394514885320584021
16955 8 7959 724763997101386821051531936
20776 4 4265 2933570318473933999921361031139062
59113 4 7510 1470455996222092703757506943141135411
85925 4 13246 340816539304436064398165865804406618021466224558460882751162
4ãå«ãã«ãŒããš8ãå«ãã«ãŒãã«å°éããåæå€ã®åæ°ã¯ã
1ïœ1000ã§
4ãå«ãã«ãŒãã«å°éããã®ã688å
8ãå«ãã«ãŒãã«å°éããã®ã312å
1ïœ10000ã§
4ãå«ãã«ãŒãã«å°éããã®ã6417å
8ãå«ãã«ãŒãã«å°éããã®ã3583å
1ïœ100000ã§
4ãå«ãã«ãŒãã«å°éããã®ã62273å
8ãå«ãã«ãŒãã«å°éããã®ã37727å
1ïœ1000000ã§
4ãå«ãã«ãŒãã«å°éããã®ã615220å
8ãå«ãã«ãŒãã«å°éããã®ã384780å
ã§ããã
äžèšã®ã³ã©ããæ¬ããåæå€ãè² æ°ã®å Žåã«æ¡åŒµãããš-1ââ-3ãšããã«ãŒããçŸããã®ã§ã
3n â 3ã§å²ã
3n+1 â 5åããŠ2ãåŒã
3n+2 â 5åããŠ1ãåŒã
ãšããŠã¿ããšãäžèšã®ã³ã©ããæ¬ãã¯ã1000000ãŸã§ã§å
šãŠ1ââ3ãšããã«ãŒãã«å°éããŸãããäžèšã®ã³ã©ããæ¬ãã§ã¯ãäŸãã°åæå€10ã®å Žåã¯1ã«å°éãããŸã§ã«88åã®æäœãå¿
èŠã§éäžã§æå€§å€3564ã«éããŸããã100000ãŸã§ã§æå€§å€ãæŽæ°ããåæå€ãšãããã«èŠããåæ°ãéäžã§éããæå€§å€ã¯ä»¥äžã®ããã«ãªããŸããã
10 88 3564
25 116 10314
70 191 431604
82 201 124755588
140 707 18169045713
502 3077 3550975356647313
619 12254 570087155057912340205131104638425588
54847 12687 10089667480019633619334988145153010515029612088
ããã«ãksããã®ã³ã©ããæ¬ãã§ã¯ã
3n â 3ã§å²ã
3n+1 â 2åããŠ1ãè¶³ã
3n+2 â 2åããŠ1ãåŒã
ã ã£ãã®ã§ã
3n â 3ã§å²ã
3n+1 â 5åããŠ1ãè¶³ã
3n+2 â 5åããŠ1ãåŒã
ãšããŠã¿ããšãäžèšã®ã³ã©ããæ¬ãã¯ã1000000ãŸã§ã§
1â6â2â9â3â1
4â21â7â36â12â4
ãšãã2çš®é¡ã®ã«ãŒãã®ããããã«å°éããŸãããã1ãããã¯4ã«å°éãããŸã§ã«ãäžèšã®ã³ã©ããæ¬ãã§ã¯ãäŸãã°åæå€5ã®å Žåã¯1ã«å°éãããŸã§ã«95åã®æäœãå¿
èŠã§éäžã§æå€§å€20934ã«éããŸããã100000ãŸã§ã§æå€§å€ãæŽæ°ããåæå€ãšããã®å°éå
ãããã«èŠããåæ°ãéäžã§éããæå€§å€ã¯ä»¥äžã®ããã«ãªããŸããã
5 1 95 20934
44 1 70 40986
86 1 810 3419283861
235 1 488 46196151066
820 1 1167 3841972080939
1310 4 1080 8170346115441
1315 1 7145 157854812287762612809
1790 1 3337 978623937310722214986
8645 1 4953 209921511803443804073439891
8770 1 6819 64901218184254749066376852519465177611
68455 1 5931 533522890015686639949625171648394237684
1ãå«ãã«ãŒããš4ãå«ãã«ãŒãã«å°éããåæå€ã®åæ°ã¯ã
1ïœ1000ã§
1ãå«ãã«ãŒãã«å°éããã®ã901å
4ãå«ãã«ãŒãã«å°éããã®ã99å
1ïœ10000ã§
1ãå«ãã«ãŒãã«å°éããã®ã8774å
4ãå«ãã«ãŒãã«å°éããã®ã1226å
1ïœ100000ã§
1ãå«ãã«ãŒãã«å°éããã®ã87410å
4ãå«ãã«ãŒãã«å°éããã®ã12590å
1ïœ1000000ã§
1ãå«ãã«ãŒãã«å°éããã®ã874580å
4ãå«ãã«ãŒãã«å°éããã®ã125420å
ã§ããã
No.2409kuiperbelt2024幎12æ19æ¥ 21:32
ã³ã©ããäºæ³ã®æäœã
2nããâã2ã§å²ã
2n+1ãâã3åããŠã1ãè¶³ãã2ã§å²ã
ãšããã·ã§ãŒãã«ããããæäœã«å€åœ¢ããããã«ã
f(z)=(z/2)cos^2(Ïz/2)+((3z+1)/2)sin^2(Ïz/2)
ãšè€çŽ æ°ã«æ¡åŒµããå Žåã®ã³ã©ããååã®ãžã¥ãªã¢éåããããããããã®ãWikipediaã«èŒã£ãŠããŸãã
https://commons.wikimedia.org/wiki/File:CollatzFractal.png
ã³ã©ããæ¬ã
3nããâã3ã§å²ã
3n+1ãâã5åããŠã2ãåŒã
3n+2ãâã5åããŠã1ãåŒã
ã«ã€ããŠããåæ§ã«
3nããâã3ã§å²ã
3n+1ãâã5åããŠã2ãåŒãã3ã§å²ã
3n+2ãâã5åããŠã1ãåŒãã3ã§å²ã
ãšããã·ã§ãŒãã«ããããæäœã«å€åœ¢ããããã«ã
f(z)=(z/3)g_0(z)+((5z-2)/3)g_1(z)+((5z-1)/3)g_2(z)
ãšè€çŽ æ°ã«æ¡åŒµããå Žåã®ã³ã©ããååã®ãžã¥ãªã¢éåã«ã€ããŠèããŠã¿ãŸããã
ãã ããg_0(z)ãg_1(z)ãg_2(z)ã«ã€ããŠã¯ã
g_0(z)=(1/2)cos(2Ïz/3)+(1/6)cos(4Ïz/3)+(1/3)
g_1(z)=g_0(z-1),g_2(z)=g_0(z-2)
ãã¡ããåç
§ã
http://kuiperbelt.la.coocan.jp/collatz/mod3-collatz.html#g
ãšããŸããããžã¥ãªã¢éåãããããããçµæã¯ãã¡ããåç
§ã
http://kuiperbelt.la.coocan.jp/collatz/mod3-collatz.html#julia
No.2429kuiperbelt2024幎12æ29æ¥ 13:40
ãã³ã©ããæ¬ã
3nããâã3ã§å²ã
3n+1ãâã5åããŠã1ãè¶³ã
3n+2ãâã5åããŠã1ãåŒã
ã«ã€ããŠããåæ§ã«
3nããâã3ã§å²ã
3n+1ãâã5åããŠã1ãè¶³ãã3ã§å²ã
3n+2ãâã5åããŠã1ãåŒãã3ã§å²ã
ãšããã·ã§ãŒãã«ããããæäœã«å€åœ¢ããããã«ã
f(z)=(z/3)g_0(z)+((5z+1)/3)g_1(z)+((5z-1)/3)g_2(z)
ãšè€çŽ æ°ã«æ¡åŒµããå Žåã®ã³ã©ããååã®ãžã¥ãªã¢éåã«ã€ããŠèããŠã¿ãŸããã
ãžã¥ãªã¢éåãããããããçµæã¯ãã¡ããåç
§ã
http://kuiperbelt.la.coocan.jp/collatz/mod3-collatz.html#pm
No.2485kuiperbelt1æ26æ¥ 10:52
1ãã9ã®9åãã4ã€ãéžã³åºããš9C4=126éãã®çµåããèµ·ããã
ããããåå¥ã®4æ°ãšããŠååæŒç®ãšæ¬åŒ§ãçµã¿åãããŠæ£ã®æŽæ°ãäœããã®ãšããã(12+34=46ãªã©ã¯çŠæ¢)
ãã®æã©ãããŠã1ãäœããªãçµåããçºçããã
ããã¯ã©ããªçµåãã§ãããïŒ
åãã5,6,7,8,9ãæ§æäžå¯èœãªããããã®çµåããšã¯äœã§ããããïŒ
(2,3,4,10ã¯ãã©ã®çµåãã§ãäœããããªãã§ããïŒ
ãŸã126éãã®äžã§äœããæ°ã1,2,3,ãšé£ç¶ããŠæé·ã«äŒžã°ããããçµåãã¯äœã§ããããïŒ
No.2480GAI1æ25æ¥ 11:42
1ãäœããªãã®ã¯ (1,4,7,8),(1,4,8,9),(1,5,7,8),(1,6,7,9),(1,6,8,9)ã®5éã
5ãäœããªãã®ã¯ (1,5,6,9),(4,5,7,9),(4,5,8,9)ã®3éã
6ãäœããªãã®ã¯ (6,7,8,9)ã®ã¿
7ãäœããªãã®ã¯ (1,3,7,8),(3,4,5,7),(4,6,7,8),(4,7,8,9)ã®4éã
8ãäœããªãã®ã¯ (1,3,7,8),(1,3,8,9),(1,5,8,9),(3,5,6,8),(5,6,7,8),(5,7,8,9)ã®6éã
9ãäœããªãã®ã¯ (1,3,8,9),(1,5,8,9),(3,4,5,9),(4,5,6,9),(4,7,8,9),(6,7,8,9)ã®6éã
äœããªããã®ã10éã以äžã®ãã®ã¯
0éã: 2,3,4,10
1éã: 6,12 (12ã¯(1,5,7,8)ã®ã¿äžå¯)
2éã: 24 (24ã¯(1,6,7,8)ãš(3,4,6,7)ãäžå¯)
3éã: 5
4éã: 7,16
5éã: 1
6éã: 8,9,11,15,18,20
8éã: 14
10éã: 13,19,21,28
(1,2,5,8)ã¯1ïœ51ãäœããŠæé·
ã§ã¯ã126éããã¹ãŠã§äœããªãæå°ã®èªç¶æ°ã¯ïŒ
No.2481ãããã1æ25æ¥ 14:08
298ã§ããããïŒ(次ã¯299ïŒ
No.2482GAI1æ25æ¥ 16:44
æ£è§£ã§ãïŒæ¬¡ã®299ãïŒã
No.2483ãããã1æ25æ¥ 18:51
(1)2ã€ã®æ£ã®æŽæ°ããã
2ã€ã®ç©ã296352ã§æå€§å
¬çŽæ°ã84
ã®æ2ã€ã®æŽæ°ã¯ïŒ
(2)2ã€ã®æ£ã®æŽæ°ããã
2ã€ã®åã1092ã§æå°å
¬åæ°ã3528
ã®æ2ã€ã®æŽæ°ã¯ïŒ
No.2469GAI1æ22æ¥ 10:36
(1)
296352=2^5Ã3^3Ã7^3
84=2^2Ã3Ã7
ãªã®ã§2^5ã2^2ãš2^3ã3^3ã3ãš3^2ã7^3ã7ãš7^2ã«åããŠ
çµã¿åãããã°ããããã£ãŠè§£ã¯4éããšãªãã
2^2Ã3Ã7 ãš 2^3Ã3^2Ã7^2 â 84 ãš 3528
2^2Ã3Ã7^2 ãš 2^3Ã3^2Ã7 â 588 ãš 504
2^2Ã3^2Ã7 ãš 2^3Ã3Ã7^2 â 252 ãš 1176
2^2Ã3^2Ã7^2 ãš 2^3Ã3Ã7 â 1764 ãš 168
äžŠã¹æ¿ããŠã2æ°ã®çµåãã¯
(84,3528),(168,1764),(252,1176),(504,588)
(2)
3528=2^3Ã3^2Ã7^2
ãªã®ã§2æ°ã®ã©ã¡ããã«2^3ã3^2ã7^2ãå«ãŸããŠããå¿
èŠãããã
1092ã¯2,3,7ã§å²ãåãã2^2ã§ãå²ãåãã2^3,3^2,7^2ã§ã¯å²ãåããªãã®ã§
仿¹ã®ææ°ã¯èªåçã«2^2ã3ã7ãšæ±ºãŸãã
ããªãã¡çµåãã¯(1)ãšåã4éãã«ãªãã®ã§ã
(1)ã®äžã§2æ°ã®åã1092ãšãªã(504,588)ãçãã
No.2471ãããã1æ22æ¥ 11:27
(1)
296352=2^5*3^3*7^3
ã§ã2æ°ãN,N'ãšããŠãN=2^n1*3^n2*7^n3ãšãããšã
N'=2^(5-n1)*3^(3-n2)*7^(3-n3)ã§ã
NãšN'ã®æå€§å
¬çŽæ°ã84=2^2*3*7ãªã®ã§ã
min{n1,5-n1}=2,min{n2,3-n2}=1,min{n3,3-n3}=1
ããã
n1=2,3
n2=1,2
n3=1,2
ãªã®ã§ã2æ°N,N'ã®çµã¿åããã¯ã
84ãš3528ã588ãš504ã252ãš1176ã1764ãš168
(2)
3528=2^3*3^2*7^2
ã§ã2æ°ãM,NãšããŠãM=2^m1*3^m2*7^m3,N=2^n1*3^n2*7^n3ãšãããšã
max{m1,n1}=3,max{m2,n2}=2,max{m3,n3}=2ã§ã
1092 mod 4=0, 1092 mod 8â 0
1092 mod 3=0, 1092 mod 9â 0
1092 mod 7=0, 1092 mod 49â 0
ãªã®ã§ã
m1,n1â§2,min{m1,n1}=2
m2,n2â§1,min{m2,n2}=1
m3,n3â§1,min{m3,n3}=1
ããã
m1=2,n1=3ãšãããšã
(m2,m3,n2,n3)=(1,1,2,2),(1,2,2,1),(2,1,1,2),(2,1,2,1)
ãŸããM,N<1092ãããM/4=3^m2*7^m3,N/8=3^n2*7^n3<273/2
ãªã®ã§ã
M/4=63,147ãããªãã¡(m2,m3)=(2,1),(1,2)
N/8=63ãããªãã¡(n2,n3)=(2,1)
ããã
(m2,m3,n2,n3)=(1,2,2,1)ãªã®ã§ã(M,N)=(588,504),M+N=1092
No.2476kuiperbelt1æ22æ¥ 23:50
3蟺ã®é·ãã3,5,6(åºé¢3Ã6ïŒé«ã5)ã®çŽæ¹äœã§ã¯
åºé¢ã®äžè§Sã«ã¯ã¢ãããŠå€©äºã®åããã®äžè§Gã«ããš
ããããã®ãšããã
ã¯ã¢ã¯ããšãããããŠçŽæ¹äœã®è¡šé¢ãçŽé²ãããšããã
ãã®æã¡ããã©10ã®è·é¢ã§å°çã§ããã³ãŒã¹ãçºçããã
ã³ãŒã¹åãã誀ããšâ130ãšæçã§ãæŽæ°ã§ããªãå€ã«
ãªã£ãŠããŸãã
ãŸãåãçŽæ¹äœã§ãåºé¢5Ã6;é«ã3ã§ã
SããGãžã®ã³ãŒã¹ã¯æç10ïŒèª€ããã°â106)ã確ä¿ãããã
ããã§å蟺ã®é·ããæŽæ°ã§æå€§èŸºã10ãŸã§åãããšãããšã
åããåãè§ãžçŽæ¹äœã®è¡šé¢ãæçè·é¢ãæŽæ°å€ã§èŸ¿ãã
çŽæ¹äœãäœéãååšããŠããããåãã
No.2457GAI1æ16æ¥ 08:53
ç§ã®è§£éãæ£ãããã°
(1,3,3), (2,2,3), (1,2,4), (2,6,6), (3,5,6), (4,4,6), (1,5,8),
(2,4,8), (3,3,8), (7,8,8), (3,9,9), (4,8,9), (5,7,9), (6,6,9)
ã®14éãã ãšæããŸããã¡ãªã¿ã«ããã§æ£ãããªãã°ãæå€§èŸºã
100ãŸã§ãªã2060éãã1000ãŸã§ãªã281334éãã10000ãŸã§ãªã36553574éãã
100000ãŸã§ãªã4487105091éãã1000000ãŸã§ãªã532281148674éãã
10000000ãŸã§ãªã61589103127262éãã100000000ãŸã§ãªã6995157501115431éãã
1000000000ãŸã§ãªã783139679297467648éã
No.2458ãããã1æ16æ¥ 11:44
ç§ãåãã¯ãããããããåºãããæ°å€ã§OKã ãšæãŠãããã§ããã
å±éå³ãæžããŠç¢ºèªããŠããäžã§(2,9,10)ã®çµã¿åãããå¯èœãªã¯ãã ããªïŒ
(åºé¢ïŒÃ9;é«ã10ãšã)
ãããäœæ
åã£ãŠãããªãã®ããèãçŽããæ¹ããŠããã°ã©ã ããçŽããŠ
(1,6,7),(2,5,10),(2,9,10),(3,5,9),(4,5,8),(5,5,7),(5,6,6),(5,8,10),(6,8,9)
ã®9åãèããããªãããªããšæãçŽããŸããã
ããšã¯äººå·¥ç¥èœãæèŒããŠãªãç§ã¯ãå±éå³ãæžããªããæçè·é¢ãæŽæ°ãšãªããã
èŠãŠè¡ããš(5,6,6)ã®çµåãã ãæçè·é¢ãâ157ã§æŽæ°ãšãªãã³ãŒã¹ã©ãã§ã¯13ãšã¯
ãªãããæçã§ã¯ãªãããšã«ãªã£ãŠããŸã!
ä»ã®8åã¯æçã確èªã§ããŸããã
以äžããç°ãªãçŽæ¹äœã®çš®é¡ã¯14+8=22ã§ãªãããšæã£ãŠãããšããã§ãã
ç§ãåãã«äœã£ãŠããããã°ã©ã ã§ã¯100ãŸã§ã§ã¯2060éããšãªã£ãŠããŸããã
ã§ãä»ã¯ç¢ºããããããªãã©ãã ããïŒãšæã£ãŠãããšããã§ãã
No.2459GAI1æ16æ¥ 13:12
(2,9,10)ã®å Žå
â((2+9)^2+10^2)=â221
â((2+10)^2+9^2)=15
â((9+10)^2+2^2)=â365
â221ïŒ15ïŒâ365
ãšãªãæçã®â221ã¯æŽæ°ã§ã¯ãªãã®ã§äžé©ã§ã¯ïŒ
ããšãããã3æ¹åã®ãã¡æçã§ãããã®ãæŽæ°ãã§ãªã
ã3æ¹åã®ãã¡ã©ãããæŽæ°ãã§ãããªãã°ã
(5,6,6)ãâ((6+6)^2+5^2)=13ã§æŽæ°ãªã®ã§
(5,6,6)ãå«ããŠ23éãã«ããªããšãããããšæããŸãã
ïŒã€ãŸã22éããšãªãèãæ¹ã¯ããåŸãªãã®ã§ã¯ããšããæå³ã§ãïŒ
No.2460ãããã1æ16æ¥ 13:40
ãããïŒ
çŽæ¹äœã®åããåãè§ã«åããã«ãŒãã¯3éãåºæ¥ãã®ã§ããã®ãã¡ã®æçãæŽæ°ãšãªããªããã°ãããªãã®ã
æ¡ä»¶ã§ãããã远å ããããšãã9åã¯å
šããã®æ¡ä»¶ãæºãããŸãããã
ã€ãã€ãèªåãæžããå±éå³ã®ã¿ã«åŸã£ãŠå€æããŠããŸããã
No.2461GAI1æ16æ¥ 14:06
ååšç(Ï)ãšèªç¶å¯Ÿæ°ã®åº(e)ãæ§æããæ°åãã¯ãããã(3,1,4,1,5,ã 2,7,1,8,2)100åã®æ°ã
10è¡10åã«äžŠã¹(å·Šäžããå³ãž10å䞊ã¹ã第ïŒè¡ããã¯ãå·Šããå³ãž10å䞊ã¹ãŠããããšãç¹°ãè¿ãã)
å·Šäžããã¹ã¿ãŒããå³äžããŽãŒã«ãšããã³ãŒã¹ã«ã€ããŠé²ããã®ãšã
éäžã§ã¯äžãäžãå·Šãå³ãžã©ãã®æ¹åã«ãé²ããŠè¡ãããã®ãšããã
ãã®æé²ãã³ãŒã¹ã«ããæ°åãæŸã£ãŠé²ãããšã«ãããšãããŽãŒã«ã«
蟿ãçããæã«æŸã£ãæ°ã®åèšæ°ãæå°ã«ãªãã®ã¯ã©ã¡ãããã
å°ãããã®ã«ãªãã§ããããïŒ
ããããã®æå°åèšæ°ãèŠã€ããŠäžããã
No.2451GAI1æ13æ¥ 10:29
åé¡ã®è§£éãšããã°ã©ã ãæ£ãããã°
Ïã¯
é²ã¿æ¹: å³äžäžäžå³å³äžäžå³äžå³äžå³å³äžäžå³å³
åèš: 3+1+8+2+5+0+2+3+2+0+3+0+6+2+0+4+0+6+7=54
eã¯
é²ã¿æ¹: äžå³äžå³äžå³äžäžå³äžå³å³å³äžäžå³äžå³
åèš: 2+4+5+0+2+6+2+0+7+4+7+2+4+0+4+2+1+2+7=61
ã®ããã«ãªããšæããŸãã
ãããããã£ãããäžäžå·Šå³ã©ã®æ¹åãžãé²ããããšããæ¡ä»¶ãªã®ã«
å³ãšäžããåºãŠããŸãããã
100Ã100=10000æ¡ã«ãããšããäžãããå·ŠããåºãŠããŸãã
ïŒç¹ã«ãÏã®å Žåã¯æå°å€ãšãªãããã«äžãå·Šãå¿
èŠã§ããeã¯å³ãšäžã ãã§ãæå°å€ãåŸãããŸããïŒ
ãŸãã10Ã10ã®å Žåã¯æå°ãšãªãé²ã¿æ¹ã¯1éããã€ãããããŸãããã
100Ã100ã®å Žåã¯è€æ°éãã«ãªããŸãã
ã§ã¯ã100Ã100ã®å ŽåãÏã»eããããã«ã€ããŠãæå°å€ã¯ããã€ã§
æå°ãšãªãçµè·¯ã®æ°ã¯ããããããã€ããã§ããããïŒ
No.2452ãããã1æ14æ¥ 11:19
Ïã§ã®æå°å€430
e ã§ã®æå°å€455
ã§ããããïŒ(å
人ã®ããæ¹ã倧ãã«åèã«ããŠãã£ãŠã¿ãŸãããèªä¿¡ã¯ãããŸããã)
ãªãäœéãã®è¡ãæ¹ãããã®ããã³ãŒã¹ãã©ã®æ§ã«èŸ¿ã£ãŠãããç¥ãããã®ããã°ã©ã ã¯
ä»ã¯æãè¶³ãã§ãŸããã
ããã£ããÏã®ã³ãŒã¹ã§ãªãã ãäžãå·Šãžã®ã³ãŒã¹ã蟿ããã®ãããã°æããŠäžããã
No.2453GAI1æ14æ¥ 15:17
430ãš455ã¯æ£è§£ã§ããÏã®çµè·¯ã¯4608éããeã®çµè·¯ã¯48éãã§ãã
100Ã100ã®Ïã¯ãã¹ãŠãäžãã2åå«ã¿ããå·Šãã¯2å(768éã)ã»
3å(2304éã)ã»4å(1536éã)ã®ããããã§ãã
ãå·Šãã4åå«ããã®ã¯ãäŸãã°
å³å³å³äžå³å³å³äžå³äžå³äžäžäžäžå³äžäžäžå³å³å³äžå³å³äžå³äžå³å³
å³äžå³å³å³å³å³å³äžäžå³å³å³äžäžå³å³å³å³å³å³å³å³å³äžäžå³äžäžå·Š
äžäžå³å³å³äžäžäžäžå³äžå³å³äžå³å³äžäžäžå³å³å³å³å³äžå³å³å³å³å³
äžå³å³å³å³äžäžäžäžäžå³å³å³äžå³äžäžå³å³å³å³å³å³äžå³å³äžå³äžäž
å³å³å³å³äžå³å³å³äžäžå³äžå³å³å³äžäžäžäžå³äžäžäžäžå³å³äžäžäžäž
å³äžäžå³å³å³äžå³äžäžäžäžå³äžäžå·Šå·Šäžäžå³äžäžå³å³äžå³å³äžäžäž
å·Šäžäžäžäžäžå³å³å³äžäžå³äžäžå³äžå³äžäžäžäžäžäžäžäžäžäžäžäžäž
(远èš)
å³ãäœã£ãŠã¿ãŸããããããã§ã¯ç²ããŠããèŠããŸããã®ã§
粟现ãªç»åã¯ãã¡ãã§ã©ãã â http://www10.plala.or.jp/rascalhp/image/pi10000.gif
![]()
No.2454ãããã1æ14æ¥ 16:12
ç§ããšã¯ã»ã«ã«æ°å€ã貌ãä»ããæããŠããã£ãã³ãŒã¹ãå¡ã朰ããŠã³ãŒã¹ãçºããŠããŸããã
ãµãšæã£ãã®ã§ããããã®ã³ãŒã¹ãèŠã€ããæ¹æ³ã¯æå°å€ãæ±ããããã«å©çšããŠããÏã®æ°å€ãš
察å¿ãããŠãã100Ã100è¡åã®ããŒã¿ãéãã蟿ã£ãŠããã°èŠã€ããããããïŒ
(10Ã10ã®æã¯ãããã£ãŠã³ãŒã¹ãæäœæ¥ã§èŠã€ããŠããã)
ã§ãããã°ã©ã ã®æ§ææ¹æ³ã¯ãŸã åãããŸããã
å
šéšã§4608éãã®ã³ãŒã¹ãååšã§ãããšã¯ãã£ããŸãïœã§ãã
ã¡ãªã¿ã«ããé²è·¯ãå³ãšäžã ãã«éå®ãããŠé²ãããšãããæå°å€ã¯442ã§ããã
ã¯åã£ãŠããŸããïŒ
No.2455GAI1æ15æ¥ 05:30
> ãµãšæã£ãã®ã§ããããã®ã³ãŒã¹ãèŠã€ããæ¹æ³ã¯æå°å€ãæ±ããããã«å©çšããŠããÏã®æ°å€ãš
> 察å¿ãããŠãã100Ã100è¡åã®ããŒã¿ãéãã蟿ã£ãŠããã°èŠã€ããããããïŒ
ã¯ããããã§ãããç§ã®ããã°ã©ã ã§ã¯ãã®ããã«ããŠã³ãŒã¹ã調ã¹ãŠããŸãã
ããæ¹ã¯äººéãæäœæ¥ã§ããã®ãšåãã§ãããã®ãã¹ã«ã¯ã©ãããæ¥ãããã
4æ¹å調ã¹ãå€ãäžèŽããæ¹åã«é²ãã§ãããç¹°ãè¿ãããšããã®ãååž°çã«
åŠçããã°ãèªåçã«äœéãããããããŸãã
æ¢ã«ééããå Žæã«å床è¡ããªãããã«ããããã®å€§ããåã®ãééæžã¿ãã©ã°ãã
å¿
èŠã§ãïŒããããªããš0ãäºã€é£ãåã£ãŠãããšããã§ç¡éã«ãŒãããŸãïŒã
> ããé²è·¯ãå³ãšäžã ãã«éå®ãããŠé²ãããšãããæå°å€ã¯442ã§ããã
> ã¯åã£ãŠããŸããïŒ
ã¯ãã確ãã«442ã§ããããã®å Žåã®çµè·¯æ°ã¯3456éãã§ãã
No.2456ãããã1æ15æ¥ 06:12
ãããŸããŠããã§ãšãããããŸãã
æ¬å¹Žããããããé¡ãèŽããŸãã
åé¡ã
25ã¯å¹³æ¹æ°ã§ãããããŠã
ã25ã®æ£ã®å¹³æ¹æ ¹ã¯5ã§ããã
ãšããæã«äœ¿ãããŠããæ°åãå
šãŠæ¬¡ã®æ°åã«å€ãããš
ã36ã®æ£ã®å¹³æ¹æ ¹ã¯6ã§ããã
ãšãªãããããæ£ããæã«ãªããŸãã
ããŠããã®ãããªæ§è³ªããã€å¥ã®å¹³æ¹æ°ãæ±ããŠãã ããã
No.2444DD++1æ3æ¥ 13:17
ãããŸããŠããã§ãšãããããŸãã
ä»å¹Žããããããé¡ãããŸãã
R[n]=(10^n-1)/9 (repunit=1ãnå䞊ã¹ãèªç¶æ°) ãšããã
næ¡ã®æ°ã®å¹³æ¹ã¯2næ¡ãŸãã¯2n-1æ¡ã«ãªããã
(a+R[n])^2-a^2=2aR[n]+(R[n])^2ïŒR[2n-1] ãšãªããã
æ¡ä»¶ãæºããããã«ã¯å
ã®æ°ã¯2næ¡ã§ãªããã°ãªããªãã
(a+R[n])^2-a^2=R[2n] ãè§£ããš a=4R[n]+1 ãšãªãã
nâ§3ã®ãšã4R[n]+1ã®å¹³æ¹ã®äžãã2æ¡ç®ã9ã«ãªã
ãæ¬¡ã®æ°åããååšããäžé©ã
ãã£ãŠæ¡ä»¶ãæºãããã®ã¯4R[1]+1=5, 4R[2]+1=45ã®äºã€ã
åè
ã®å¹³æ¹ã®25ã¯äŸç€ºãããŠãããã®ã ããã
çãã¯åŸè
ã®å¹³æ¹ã®2025ã
No.2447ãããã1æ7æ¥ 10:59
ãèŠäºã§ãã
å®ã¯åœåãâ2025=25ã§ãããã§åºé¡ããããšããŠããã®ã§ããããã®åœ¢ã ãšãã1ã€è§£ãããããšã«æ°ã¥ããŠæ
ãŠãŠèšè¿°ã倿ŽããŸããã
å±ãªãã£ãâŠâŠã
No.2449DD++1æ9æ¥ 21:45
æžãééãã
â2025=45ã§ããâŠâŠã
No.2450DD++1æ10æ¥ 08:50
ä»å¹ŽãæŒãè©°ãŸããæ¥å¹ŽãžåããŠè©±é¡ãå§ãŸã£ãŠããããã§ãã®ã§ç§ã䟿ä¹ããŠ
[1]{(2023+2026)^3+2026^3}/{(2023+2026)^3+2023^3}
ãç°¡åã«ããŠã¿ããã
[2]dã®éšåã«1ïœ9ã®ä»»æã®æ°åã«çœ®ãæããŠèšç®ããŠã¿ãŠãã ããã
[{(dddd-dd)Ãdd}/(d+d)+dd-d]/(d+d+d)+(dd-d)/(d+d)
ãã®éã³ãçŽ æ°äžçãžå¿çšãããš
*3
ã®*éšåã«äžã€ã®æ°åãå
¥ãããšãããšã
13,23,43,53,73,83ã®{1,2,4,5,7,8}6ã¿ã€ãã®æ°åãçŽ æ°ãäœã£ãŠãããã
(0ã3ã®çŽ æ°ãšäœããã1æ¡ãªã®ã§ãããã§ã¯å€ããŠãããŸããïŒ
ãŸã
56**3ã®ååãã*ã«åãæ°ã2ã€å
¥ãããšããã°
56003,56113,56333,56443,56663,56773,56993ãš{0,1,3,4,6,7,9}ãš7ã¿ã€ãã®æ°åã§
å
šéšçŽ æ°ãååšããŠããã
ããã§
ããåå(é©åœã«*ã®äœçœ®ã倧ãããäœã£ãŠããã®ã§ããããããã¿ãŒã³ã§èããŠçµæ§ã§ãã)
AB*DEF*H*JKLM
ã®3ã€ã®*ã®äœçœ®ã«0ïœ9ã®ã©ããå
¥ããŠã(ãªãåæã«åãæ°ãå
¥ãã)å
šéšçŽ æ°ã«ãªã£ãŠãããã®ã¯äœããæŽã¿ã ããŠã»ããã
No.2434GAI2024幎12æ30æ¥ 11:38
æå°ã¯
39402x9x7x3
ã§ããã11æ¡ã§ã¯ããäžã€ãããããŸããã§ããã
12æ¡ã¯çŸåšæ¢çŽ¢äžã§ãããæéãããªãããããããªã®ã§
ããçšåºŠèŠã€ãããªããã°æ¢çŽ¢ã¯äžæ¢ããŸãã
(远èšã»å远èš)
12æ¡ã®è§£ãäœåãèŠã€ãããŸãããæ¢ããšçµæ§ããããã§ãã
631359x8x5x3
75428x5x5x91
106x6x0x1413
108x3x4x7411
181x3x2x8131
(è¿ç€Œ)
1ïœ9ã®9åã®æ°åã1åãã€äžŠã¹ãŠã§ãã9æ¡ã®ããèªç¶æ°Nã«å¯Ÿã
[tanN]=2025 ïŒ[ã]ã¯ã¬ãŠã¹èšå·ïŒ
ãæãç«ã€ãšããããã®Nãšã¯ïŒ
No.2435ãããã2024幎12æ30æ¥ 16:28
N=463921857
é åã®çªå·ãäžã€ããããš
tan(463921785) = -3.8184026056948050477279917320576295638
tan(463921875) = 0.87838965697493010866553946740976926836
ãããå§¿ãå€ãã£ãŠããŸãããŸããã§ããã
No.2436GAI2024幎12æ30æ¥ 19:42
> N=463921857
ããããšãããããŸãã
Nã¯9!éãããããã§ãã
[tanN]ã2025è¿èŸºã®å€ã«ãªããã®ã¯ä»ã«ãªãã
ããã«æ°ã¥ããã®ã¯3ïœ4幎åã ã£ãã®ã§
ãã®ææãŸã§ãã£ãšä¿åããŠããåé¡ã§ããã
# 0ïœ9ã3åå
¥ããŠçŽ æ°ã«ãªããã®ã¯åŒãç¶ãæ¢çŽ¢ããŠããŸããã
# çµæ§è§£ãã§ãŠããŸããã®ã§å
ã®èšäºã«è¿œèšããŠããŸãã
No.2437ãããã2024幎12æ31æ¥ 04:02
ïŒïœïŒå¹Žãæž©ããŠãããšã¯æµç³ã§ãã(ããããããªãã®ã®èª¿æ»ã詊ã¿ãŠãããã§ããã)
2000幎代ã ãã調ã¹ããšã次ã®17éãã®ãã®ãããªããã§ããã(次ã¯11幎åŸ)
2009,2025,2036,2079,2136,2142,2216,2244,2275,2324,2506,2556,2685,2695,2723,2929,2935
å ã¿ã«
æå€§ã¯356187ã (é å;876423591ã§) (次ã70898ã§ãããé£ã³ã¬ããŠãããã§ãã)
æå°ã¯-11031260 (é å;465178293ã§)ãïŒæ¬¡ã-80234ã§ãããé£ã³ã¬ããŠé¢ããŠããŸãã)
ã§ãããŸããã
æé »å€ãšã調ã¹ãŠè¡ããšçµæ§é¢çœãã§ããã
çµ±èšçã«èå³ãæ¹§ãããïŒ
No.2438GAI2024幎12æ31æ¥ 06:37
12æ¡ã®è§£ã¯ä»¥äžã®11åã§ããã
106x6x0x1413
108x3x4x7411
181x3x2x8131
631359x8x5x3
65x285x614x1
73x177x527x1
75428x5x5x91
8x105x849x63
83x9x7x94663
9x739x264x03
99x1x4x69743
xã®éšåã®å€ïŒäŸãã°106x6x0x1413ã§ã¯101010000ã®åæ°ïŒã¯
7ã®åæ°ã§ãªããã°ãªããªããããç¹åŸŽçãªé
眮ã«ãªã£ãŠããŸãã
ïŒ7ã®åæ°ã§ãªããšãããš0ïœ9ã®ã©ããã§7ã®åæ°ã«ãªã£ãŠããŸãããïŒ
ãŸãxã®éšåã®å€ã¯11ã®åæ°ã«ãªãåŸãªãããã0ã®äžã€æåïŒäŸãã°
106060001413-101010000ïŒãå¿
ã11ã®åæ°ã«ãªããx=0ïœ9ã®å Žåã
11ã§å²ã£ãäœãã¯1ïœ10ããã¹ãŠåºçŸããããšã«ãªããŸãã
ãããã£ãçå±ã¯ããã°ã©ã ã®é«éåã«åœ¹ç«ãŠãŠããŸãã
No.2442ãããã2024幎12æ31æ¥ 19:26
çŽ æ°ã®3ãš7ã§ã¯
37ã§ã73ã§ãå
±ã«çŽ æ°ãæ§æããã
ãŸã
çŽ æ°3,7,109ã§ã¯
37,73,3109,1093,7109,1097
ã®æ§ã«ã©ã®2ã€ã®çŽ æ°ã§ã®çµåãã§ãååŸã§2ã€ã®æ°ãæ§æãããã®ã§ã
å
šãŠçŽ æ°ãšãªãã
ããããã®ãããª3ã€ã®çŽ æ°ã®çµåãã¯ä»ã«ã倿°ååšãããã®äžã§ã
3ã€ã®çŽ æ°ã®å(ãã®å Žå3+7+109=119ãçžåœ)ãæå°ã«ãªãçµåãã
çºèŠé¡ãã
åãããã«æå°åã«æ³šæã
4ã€ã®çŽ æ°ã®çµåãã5ã€ã®çŽ æ°ã®çµåãã«ãææŠé¡ããŸãã
No.2423GAI2024幎12æ28æ¥ 08:42
ããã°ã©ã ãæ£ãããã°
3çŽ æ° (3,37,67) å=107
4çŽ æ° (3,7,109,673) å=792
5çŽ æ° (13,5197,5701,6733,8389) å=26033
ããã«
6çŽ æ° (25819,29569,209623,234781,422089,452041) å=1373922
åãããŠãã5çŽ æ°ãŸã§ã¯ãã£ãšããéã«çµãã£ãŠããã®ã§ããã
6çŽ æ°ã«ææŠããŠããŠæéãããã£ãŠããŸããŸããã
6çŽ æ°ã®å Žåã¯çµæ§å·¥å€«ããªããšçŸå®çãªæéã§æ±ãŸããŸããã®ã§ã
ãªããªãé¢çœãããã°ã©ãã³ã°åé¡ã§ããã
(远èš)
äžèšãæçš¿ããåŸã«ãªã£ãŠ6çŽ æ°ã®çµæãæ€çŽ¢ããŠã¿ãã®ã§ããã
ãã®è§£ãèŠã€ããŠãã人ã¯ãã¯ãããã®ã§ããã
https://www.primepuzzles.net/puzzles/puzz_626.htm
No.2428ãããã2024幎12æ29æ¥ 11:52
OEIS ã§ããã¿ããã PROG ã®ã²ãšã€ã« magma ããããŸãã
ãã¡ãã§ãå©çšã§ããã®ã§ããïŒïŒ
http://magma.maths.usyd.edu.au/calc/
ãã¡ãã«
[n : n in [2..500] | IsPrime(n)];
ãæŸãããã§ã¿ããããŸããã
No.2419Dengan kesaktian Indukmu2024幎12æ22æ¥ 22:19
[(n+1)*(n+2)-(n+1)*(-1)^n: n in [43..44]]
ãã»ãããããš
[ 2024, 2025 ]
ãåŸãããŸããã
No.2420Dengan kesaktian Indukmu2024幎12æ23æ¥ 17:15
magmaã¯ç§ãæã
䜿ããŸãããããããªæ©èœããããŸããã
G2åãªãŒä»£æ°ã®è¡šçŸã®æ¬¡å
æ°ã«ã€ããŠ
R := RootDatum("G2");
for i:=0 to 4 do;
for j:=0 to i do;
i,j,RepresentationDimension(R, [j,i-j]);
end for;
end for;
PSL(2,9)ã®ææšè¡šã«ã€ããŠ
G := PSL(2,9);
CharacterTable(G);
æ¹çšåŒx^6+2*x^5+3*x^4+4*x^3+5*x^2+6*x+7=0ã®ã¬ãã¢çŸ€ã«ã€ããŠ
P<x> := PolynomialRing(Integers());
f:=x^6+2*x^5+3*x^4+4*x^3+5*x^2+6*x+7;
G, L, S := GaloisGroup(f);
G;
S;
3-鲿°äœã§ã®-7/2ã®å¹³æ¹æ ¹ã«ã€ããŠ
K := pAdicField(3,40);
_<x> := PolynomialRing(Integers(K)); // printing
HasRoot(2*x^2+7);
K`SeriesPrinting := true;
Sqrt(K!(-7/2));
äºæ¬¡äœQ(â-31)ã§ã®ãã«ã ã100æªæºã®çŽ ã€ãã¢ã«ã«ã€ããŠ
R<x> := PolynomialRing(Integers());
K := NumberField(x^2+x+8);
FactorBasis(K, 100);
No.2421kuiperbelt2024幎12æ23æ¥ 23:17
äºééæ¹é£ãšãã£ãŠãåæ Œã®æ°ã®çžŠã»æšªã»å¯Ÿè§ç·ã®åãå®åã«ãªãã ãã§ãªããåæ Œã®æ°ã®çžŠã»æšªã»å¯Ÿè§ç·ã®äºä¹åãå®åã«ãªãéæ¹é£ããããŸãã
9次ã®äºééæ¹é£ã®äœãæ¹ã§ã0ïœ8ã®èªç¶é
åãããªã3Ã3è¡åAãšã0ïœ8ãããªãçžŠã»æšªã»å¯Ÿè§ç·ã®åãå®å12ã®3次ã®éæ¹é£ãšãªãè¡åBããããšããŸãã
A=
[0 1 2]
[3 4 5]
[6 7 8]
B=
[7 2 3]
[0 4 8]
[5 6 1]
ãã®ãããª3Ã3è¡åA,Bãšã
S=
[0 1 0]
[0 0 1]
[1 0 0]
ãšãã3Ã3è¡åSãçšããŠãè¡åA,Bã®è¡ãåãå
¥ãæ¿ããè¡åããæ¬¡ã®ããã«9Ã9è¡åα,βãã€ãããš9α+β+E(Eã¯å
šèŠçŽ ã1ã®è¡å)ã¯9次ã®äºééæ¹é£ãšãªããŸãã
α=
[S^2*A*S^2, A*S^2, S*A*S^2]
[ S^2*A, A, S*A]
[ S^2*A*S, A*S, S*A*S]
β=
[ S*B*S, B*S, S^2*B*S]
[ S*B, B, S^2*B]
[S*B*S^2, B*S^2, S^2*B*S^2]
9α+β+E=
[72 73 59 13 26 3 38 51 34]
[11 24 7 45 46 32 67 80 57]
[40 53 30 65 78 61 18 19 5]
[55 68 81 8 12 22 33 43 47]
[ 6 16 20 28 41 54 62 66 76]
[35 39 49 60 70 74 1 14 27]
[77 63 64 21 4 17 52 29 42]
[25 2 15 50 36 37 75 58 71]
[48 31 44 79 56 69 23 9 10]
åæ§ã«ã次ã®ãããª0ïœ24ã®èªç¶é
åãããªã5Ã5è¡åAãšã0ïœ24ãããªãçžŠã»æšªã»å¯Ÿè§ç·ã®åãå®å60ã®5次ã®éæ¹é£ãšãªãè¡åBãšã5Ã5è¡åSãçšããŠãè¡åA,Bã®è¡ãåãå
¥ãæ¿ããè¡åããæ¬¡ã®ããã«25Ã25è¡åα,βãã€ãããš25α+β+E(Eã¯å
šèŠçŽ ã1ã®è¡å)ã¯25次ã®äºééæ¹é£ãšãªããŸãã
A=
[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]
[20 21 22 23 24]
B=
[16 22 3 9 10]
[23 4 5 11 17]
[ 0 6 12 18 24]
[ 7 13 19 20 1]
[14 15 21 2 8]
S=
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]
[1 0 0 0 0]
α=
[S^3*A*S^3, S^4*A*S^3, A*S^3, S*A*S^3, S^2*A*S^3]
[S^3*A*S^4, S^4*A*S^4, A*S^4, S*A*S^4, S^2*A*S^4]
[ S^3*A, S^4*A, A, S*A, S^2*A]
[ S^3*A*S, S^4*A*S, A*S, S*A*S, S^2*A*S]
[S^3*A*S^2, S^4*A*S^2, A*S^2, S*A*S^2, S^2*A*S^2]
β=
[S^2*B*S^2, S*B*S^2, B*S^2, S^4*B*S^2, S^3*B*S^2]
[ S^2*B*S, S*B*S, B*S, S^4*B*S, S^3*B*S]
[ S^2*B, S*B, B, S^4*B, S^3*B]
[S^2*B*S^4, S*B*S^4, B*S^4, S^4*B*S^4, S^3*B*S^4]
[S^2*B*S^3, S*B*S^3, B*S^3, S^4*B*S^3, S^3*B*S^3]
25次ã®äºééæ¹é£ã«ã€ããŠã¯
http://kuiperbelt.la.coocan.jp/magicsquare/bimagic/bimagic-25.html
ãåç
§ã
åæ§ã«ã次ã®ãããª0ïœ48ã®èªç¶é
åãããªã7Ã7è¡åAãšã0ïœ48ãããªãçžŠã»æšªã»å¯Ÿè§ç·ã®åãå®å168ã®7次ã®éæ¹é£ãšãªãè¡åBãšã7Ã7è¡åSãçšããŠãè¡åA,Bã®è¡ãåãå
¥ãæ¿ããè¡åããæ¬¡ã®ããã«49Ã49è¡åα,βãã€ãããš49α+β+E(Eã¯å
šèŠçŽ ã1ã®è¡å)ã¯49次ã®äºééæ¹é£ãšãªããŸãã
A=
[ 0 1 2 3 4 5 6]
[ 7 8 9 0 11 12 13]
[14 15 16 17 18 19 20]
[21 22 23 24 25 26 27]
[28 29 30 31 32 33 34]
[35 36 37 38 39 40 41]
[42 43 44 45 46 47 48]
B=
[29 37 45 4 12 20 21]
[38 46 5 13 14 22 30]
[47 6 7 15 23 31 39]
[ 0 8 16 24 32 40 48]
[ 9 17 25 33 41 42 1]
[18 26 34 35 43 2 10]
[27 28 36 44 3 11 19]
S=
[0 1 0 0 0 0 0]
[0 0 1 0 0 0 0]
[0 0 0 1 0 0 0]
[0 0 0 0 1 0 0]
[0 0 0 0 0 1 0]
[0 0 0 0 0 0 1]
[1 0 0 0 0 0 0]
α=
[S^4*A*S^4, S^5*A*S^4, S^6*A*S^4, A*S^4, S*A*S^4, S^2*A*S^4, S^3*A*S^4]
[S^4*A*S^5, S^5*A*S^5, S^6*A*S^5, A*S^5, S*A*S^5, S^2*A*S^5, S^3*A*S^5]
[S^4*A*S^6, S^5*A*S^6, S^6*A*S^6, A*S^6, S*A*S^6, S^2*A*S^6, S^3*A*S^6]
[ S^4*A, S^5*A, S^6*A, A, S*A, S^2*A, S^3*A]
[ S^4*A*S, S^5*A*S, S^6*A*S, A*S, S*A*S, S^2*A*S, S^3*A*S]
[S^4*A*S^2, S^5*A*S^2, S^6*A*S^2, A*S^2, S*A*S^2, S^2*A*S^2, S^3*A*S^2]
[S^4*A*S^3, S^5*A*S^3, S^6*A*S^3, A*S^3, S*A*S^3, S^2*A*S^3, S^3*A*S^3]
β=
[S^3*B*S^3, S^2*B*S^3, S*B*S^3, B*S^3, S^6*B*S^3, S^5*B*S^3, S^4*B*S^3]
[S^3*B*S^2, S^2*B*S^2, S*B*S^2, B*S^2, S^6*B*S^2, S^5*B*S^2, S^4*B*S^2]
[ S^3*B*S, S^2*B*S, S*B*S, B*S, S^6*B*S, S^5*B*S, S^4*B*S]
[ S^3*B, S^2*B, S*B, B, S^6*B, S^5*B, S^4*B]
[S^3*B*S^6, S^2*B*S^6, S*B*S^6, B*S^6, S^6*B*S^6, S^5*B*S^6, S^4*B*S^6]
[S^3*B*S^5, S^2*B*S^5, S*B*S^5, B*S^5, S^6*B*S^5, S^5*B*S^5, S^4*B*S^5]
[S^3*B*S^4, S^2*B*S^4, S*B*S^4, B*S^4, S^6*B*S^4, S^5*B*S^4, S^4*B*S^4]
49次ã®äºééæ¹é£ã«ã€ããŠã¯
http://kuiperbelt.la.coocan.jp/magicsquare/bimagic/bimagic-49.html
ãåç
§ã
No.2416kuiperbelt2024幎12æ22æ¥ 08:21
ïŒæ¬¡ã®äºééæ¹é£ã«ãããŠãµãã€ãã察è§ç·ã®ãç«æ¹åããçãããªã£ãŠããã®ã§ããã匷çã§ããã
No.2418Dengan kesaktian Indukmu2024幎12æ22æ¥ 14:30