Nakaoæ°ãã
rank 2(5å)ã®a=43, 58, 82, 85, 93ã«ã€ããŠã¯ã宿é¡ãšããã
ãšå®¿é¡ãåºãããã®ã§ãæ¥ãã§æ¥åæ²ç·ã®ã«ããå匷ã«åãçµã¿
äœãšã次ã®çµæãæã«å
¥ããŸããã
a=43ã§ã¯
[78752608,26570953,248372300]
ããã¯
(78752608+26570953*sqrt(43))^3+(78752608-26570953*sqrt(43))^3=248372300^3 ãæå³ããã
[5759176448000,86894244937,7326452106160]
[14813486445024,4971980067191,46567086225660]
a=58ã§ã¯
[4352114448,36036444981023,12529136618460]
a=82ã§ã¯
[26896,1177,38540]
[133467750,8962007,215653230]
a=85ã§ã¯
[7225,839,14960]
[2667168,11759,3365964]
a=93ã§ã¯
[2883,47,3720]
[111132,15565,260946]
ãªãäœãã«å€§ãããªãçµã¿åããã¯çç¥ããŸããã
Indukmuããããã®æçš¿ããã£ããã«åãæ§é ããã€æ°åŒãææ¢ãã§æ¢ãäžã§
ãããæ¢ããŠãèŠã€ãããªãç©ããåãsqrt(a)ã§ãã£ãŠãè²ã
ãªç«æ¹æ°ãæ§æ
åºæ¥ããã®ãªã©ãæ¢ãã°æ¢ãã ãäžæè°ããæ·±ãŸãäžNakaoæ°ã®ç®ã®èŠãããããª
çš®æãããèŠããŠãããããã³ãã³æçš¿ãããŠããéèœããªã倧ããªæ°ã§ã®çåŒ
ã®ã©ããé¢çœããã ãããšæããŠãããã§ããããã®åé¡ã®æ¬è³ªãæ¥åæ²ç·ã®
æ§é ãã®ãã®ã§ããããšãèŠããããäžæ°ã«æ¥åæ²ç·ã®åã«é
äºãããŸããã
ã«ããå匷ã ãã§ãšãŠãåãã£ããšã¯èšããªããã§ããã人éã®çŽæãé¥ãã«
è¶ããããšãå¯èœãªäžæè°ã§é¢çœãæ§è³ªãããããå
å«ããŠããæèŠãæã¡ãŸãã
DD++æ°ã®ææãæãã§ãããå
±åœ¹çæ§é ã«ããŠããæ¹ãçŸããæ°ãããŸããã
åé¡ãçç¢ºã«æŽããŸãã®ã§ç§ã¯ãã®åé¡èšå®ã®æ¹ã奜ãã§ãã
1/tan(Pi/3)=tan(Pi/6)
1/tan(Pi/4)=tan(Pi/4)
1/tan(Pi/6)=tan(Pi/3)
ãªã©ãæç«ããã®ã§
1/tan(Pi/5)=tan(Ξ1)
1/tan(Pi/7)=tan(Ξ2)
1/tan(Pi/8)=tan(Ξ3)
1/tan(Pi/9)=tan(Ξ4)
1/tan(Pi/10)=tan(Ξ5)
ãããããæºããΞ1,Ξ2,Ξ3,Ξ4,Ξ5
ã¯äœãæ¢ããŠã»ããã
cotãšåãã§ãÏ/2ããåŒããå€ã§ããã
äžèŸºãaã®2ã€ã®æ£æ¹åœ¢ã®æãçŽãéããŠçœ®ã
äžã®æãçŽãæ£æ¹åœ¢ã®äžå¿ã®åšãã«Îžå転ããŠ
åã³éããã
2æã®æãçŽãéãªãéšåã®å³åœ¢ãPãšãããšã
Pã®é¢ç©ã衚ãåŒãäœã£ãŠæ¬²ããã
ããã«ãã®åŒããããã
sin,cos,tan
åç¬ã®é¢æ°ã ãã䜿ã£ãŠè¡šãåŒãäœã£ãŠã¿ãŠäžããã
ãã ãsin(Ξ)ã ãã§ãªãsin(2*Ξ),sin(Ξ/2)ãªã©ã
æ··åšããŠããŠãæ§ããŸããã
(0<Ξ<Ï/2ã«éããšããŸã)
ãšãããã
P = 2a^2/(1+(â2)sin(Ξ+Ï/4))
ãïŒ2a^2/(1+(â2)cos(Ξ-Ï/4))
ã§åã£ãŠãŸãããïŒ
# äœãèšæ¶ã«ãããªïœãšæã£ãã®ã§ãããã¡ãã£ãšåã«èšç®ããã®ã¯æ£äžè§åœ¢ã®å Žåã§ã
# äžèŸºãaã®æ£äžè§åœ¢ã®ãšã㯠(â3/2)a^2/(1+2sin(Ξ+Ï/6)) ïŒ(â3/2)a^2/(1+2cos(Ξ-Ï/3))ã§ããã
# åŒã䌌ãŠãã®ã§ãæ£nè§åœ¢ãã§ãããããã§ããã
(远èš)
# 2åŒããæšæž¬ãããšãæ£nè§åœ¢ã®å Žåã¯
# (äžèŸºãaã®æ£nè§åœ¢ã®é¢ç©)Ã2÷(1+cos(Ξ-Ï/n)/cos(Ï/n))
# ïŒãã ã0âŠÎžâŠ2Ï/nïŒ
# ãããã«ãªãã®ããªïŒ
ãã¿ãªäžèŽããŸãã
æå座æšã«èŒããŠãããããçµæ§è€éãªèšç®ãé²ããŠæã«å
¥ããã®ã
P=a^2*(sinΞ+cosΞ-1)/(sinΞ*cosΞ)
ã§ããã
ãã®ååã忝ã«sinΞ+cosΞ+1ãæããŠå€åœ¢ããŠãããš
P1=2*a^2/(sinΞ+cosΞ+1)
ã®åœ¢ãšãªãã忝ãåæããããšã§ããããããã®åŒãšãªããŸãã
ãªãsin,cosã«äœ¿ãè§åºŠãÎžã«æãã°
P2=2*a^2*(sinΞ-2*sin^2(Ξ/2))/sin(2*Ξ)
P3=a^2/cosΞ*(1-sqrt((1-cosΞ)/(1+cosΞ)))
ãŸãtanã ãã䜿ã£ãŠ
P4=a^2*(1+tan^2(Ξ/2))/(1+tan(Ξ/2))
ãªã©ãåãæ°å€ãäžããŠãããŸããã
ããããæ£nè§åœ¢ã®å Žåãèå¯ã§ãããšã¯æã£ãŠãããŸããã§ããã
ãã ããã確èªããææ®µãç§ã«ã¯ç¡çã§ãã
æ£nè§åœ¢ã®å Žåã¯äžã®åŒã§æ£ããã£ãããã§ãã
sshmathgeom.private.coocan.jp/volume/volume27.html
âãã¡ãã®ããŒãž(ã®äŸé¡3ã®äžã®æ¹)ã«äžèŸºã1ã®æ£nè§åœ¢ã®å Žåã®åŒã
n(sin(α/2))^2/(sinΞ+sin(α+Ξ)+sinα)
ïŒãã ãαã¯å
è§ããªãã¡Ï-2Ï/nïŒ
ã§ãããšæžãããŠããããããå€åœ¢ãããš
(n/2)cot(Ï/n)/(1+cos(Ξ-Ï/n)/cos(Ï/n))
ãšãªããŸããäžæ¹ç§ã®æžããåŒã®ãäžèŸºãaã®æ£nè§åœ¢ã®é¢ç©ãã¯
a=1ãšãããš(n/4)cot(Ï/n)ãšãªããŸãã®ã§ããã¿ãªäžèŽããŸããã
ã¡ãªã¿ã«ç§ãæ£æ¹åœ¢ã®å Žåã®åŒãåºããæ¹æ³ã¯
æ£æ¹åœ¢ã®äžèŸºã2ãšããŠéãªãéšåã®å
«è§åœ¢ã®1/8ã®äžè§åœ¢ã®åœ¢ãå³åœ¢çã«èå¯ãããšã
ããã¯xyå¹³é¢ã«ãããŠ
xcos(Ξ/2)+ysin(Ξ/2)=1 ãš y=0 ãš y=x ã§äœãããäžè§åœ¢
ãšåãã§ããããšããããã
xcos(Ξ/2)+ysin(Ξ/2)=1 ãš y=0 ãšã®äº€ç¹ã¯ (1/cos(Ξ/2),0)
â åç¹ããã®è·é¢ã¯ 1/cos(Ξ/2)
xcos(Ξ/2)+ysin(Ξ/2)=1 ãš y=x ãšã®äº€ç¹ã¯ (1/(cos(Ξ/2)+sin(Ξ/2)),1/(cos(Ξ/2)+sin(Ξ/2)))
â åç¹ããã®è·é¢ã¯ â2/(cos(Ξ/2)+sin(Ξ/2))=1/cos(Ξ/2-Ï/4)
ãã£ãŠæ±ããé¢ç©ã¯
8ã»1/cos(Ξ/2)ã»1/cos(Ξ/2-Ï/4)ã»sin(Ï/4)ã»(1/2)
=2â2/(cos(Ξ/2)cos(Ξ/2-Ï/4))
ããã¯æ£æ¹åœ¢ã®äžèŸºã2ã®å Žåãªã®ã§ãäžèŸºãaãªãã°
a^2/â2ã»1/(cos(Ξ/2)cos(Ξ/2-Ï/4))
=a^2/â2ã»1/(cos(Ξ-Ï/4)+cos(Ï/4))
=2a^2/(1+(â2)cos(Ξ-Ï/4))
ã®ããã«å°åºããŸããã
çãŸããŠåããŠèŠãŸããã
x.com/M32820510/status/1988514371165647330?t=5sCiRQaRgQ1DeinY-J2cVw&s=19
60°ãå
ã«ãããã90°ãå
ã«ããæ¹ã綺éºã«æžããŸãããã
sinΞ°=(i^(Ξ/90)-i^(-Ξ/90))/(2i)
cosΞ°=(i^(Ξ/90)+i^(-Ξ/90))/2
60°ã45°ã«ããŠãããšè€éã«ããŠãã®ããªïŒ
次ã®åœé¡ãæãç«ã¡ãããªã®ã§ãããããèšŒææ¹æ³ïŒæç«ããªããªãåäŸïŒãããã§ããããã
n=3,4,5ã®ãšãã®æ°å€èšç®ããäºæ³ããŸããã
-------
Mãæ£æ¹è¡åãšãããšããMã®éè¡åãinv(M)ïŒMã®äœå åè¡åãadj(M)ãšè¡šãã
næ¬¡ã®æ£åè¡åPãäžããããŠãããšããsim(ã»)ãæ¬¡ã®ããã«å®ããã
næ¬¡æ£æ¹è¡åMã«å¯Ÿã㊠sim(M) = inv(P)MP ãšããã
n次å
ã®è¡ãã¯ãã«xã«å¯Ÿã㊠sim(x) = xP ãšããã
n次å
ã®åãã¯ãã«yã«å¯Ÿã㊠sim(y) = inv(P)y ãšããã
næ¬¡æ£æ¹è¡åMãã第iè¡ãšç¬¬jåãåãé€ããŠåŸãããå°è¡åãM[i,j]ãšæžãããšã«ããã
n次å
è¡ãã¯ãã«xããkçªç®ã®æåãåãé€ããŠåŸãããn-1次å
è¡ãã¯ãã«ãx'[k]ãšæžãããšã«ããã
n次å
åãã¯ãã«yããkçªç®ã®æåãåãé€ããŠåŸãããn-1次å
åãã¯ãã«ãy'[k]ãšæžãããšã«ããã
nâ§3ãšããã
n次å
è¡ãã¯ãã«xïŒnæ¬¡æ£æ¹è¡åMïŒn次å
åãã¯ãã«y ãäžãããããšãã«å®ãŸãè¡åR(x,M,y)ãæ¬¡ã®ããã«å®çŸ©ããã
R(x,M,y)ã®(i,j)æåãr[i,j]ãšãããšãã
r[i,j] = x'[i]((-1)^(i+j)*adj(M[j,i]))y'[j]
ãšããã
ãã®ãšãã
R(sim(x),sim(M),sim(y)) = sim(R(x,M,y))
ãæãç«ã€ã
-------
ãšããäºæ³ã§ãã
åœé¡ã®äžèº«ãèšèã§è¡šããšãè¡åR(x,M,y)ã«å¯ŸããŠå€æè¡åPã«ããåºåºã®å€æãççŸãªãé©çšãããããšããæãã«ãªãããšæããŸãã
å®è¡ããŠãªãæãã€ãã§ããâŠâŠ
iè¡ç®ã®åé€ããåäœè¡åããiè¡ç®ãæ¶ããè¡åS[i]ãå·ŠããæããæŒç®ããšããŠæžããjåç®ã®åé€ãåæ§ã«ããšããã®ããšããããèªç¶ãªçºæ³ã«èŠããŸãããã
adjã®äžã«æ£æ¹ã§ãªãè¡åã®ç©ãå
¥ã£ã¡ãããããã®å
ãé£ããããªïŒ
n=3 ã®å ŽåãããæŒãã§èšç®ããŸããã
https://mathlog.info/articles/0kO5cJBKcTqurCc5NyzK
ç§ã¯ãã®äºæ³ã®ãã£ãããšãªã£ãå¥ã®èšç®ã«æ»ãããã®ã§ã
ãã®åé¡ã«ã€ããŠå€åãã以äžèããªããšæããŸãã
(1)äžèŸºã®é·ãã10(cm)ã®æ£äžè§åœ¢ABCã®å
éšã«1ç¹Pããšãã
å³åœ¢ãæãæ²ããŠ3ç¹ã®é ç¹ããã¹ãŠPãšéãªãæ§ã«ããã
æãæ²ããããå³åœ¢ã6蟺圢ãšãªãæ§ãªPã®ååšç¯å²ã®
å¢çç·ãå«ãããã®å³åœ¢ã®é¢ç©ãæç€ºçãªåŒã§è¡šããŠ
äžãããã
(2)äžè§åœ¢ã®3蟺ã7,9,10(cm)ã§ãããã®ã§åæ§ãªããšãããæ
ãã®é¢ç©ã¯åŠäœã»ã©ã«ãªããïŒ
ããã¯æç€ºçã«ç€ºãã®ã¯å°é£ã«æãããŸãã®ã§ããã®æ°å€ã
å°æ°ç¬¬5äœãåæšäºå
¥ããããšã§å°æ°ç¬¬4äœãŸã§ã®æ°å€ã§ç€ºããŠ
äžããã(ææ®µã¯äœã䜿ãããŠãçµæ§ã§ããïŒ
å¢çç·äžãå³å¯ã«ã¯å«ãŸããªãããšã¯æ°ã«ããªããšããããšã§ãããã§ãããïŒ
(1)
S = (25/2)Ï - (25/2)â3
éè§äžè§åœ¢ã®å Žåãå蟺ãçŽåŸãšãã3ã€ã®åå
šãŠã®å
éšã«ãªããŸãã
ãã£ãŠãååŸ5ãäžå¿è§Ï/3ã®æåœ¢ã3ã€è¶³ããŠã1蟺5ã®æ£äžè§åœ¢ã2ååŒãã°ããã§ãã
(2)
ææ®µã¯äœã䜿ã£ãŠããããããªã®ã§ãèšç®æ¹æ³ãæããŠchatGPTã«èšç®ããŠããã£ãçµæã
S = (1/4)*(149*acos(17/35) + 181*acos(11/15) + 130*acos(5/21) - 115*pi) - 3*sqrt(26)
= 11.0678
ã ããã§ãïŒããŸãä¿¡é Œã¯ããŠããªãïŒ
å
±ã«æ£è§£ã§ãã
(1)ã¯äœåºŠãçŽãæã£ãŠå®éšããŠããŠãã£ãšã®ããšã§æ°ä»ããŸããã
ç¹ã«(2)ã¯èªåã§é©åœã«æ°å€ãæå®ããŠã座æšã§äžè§åœ¢ãé
眮ãã·ã³ã·ã³ãšèšç®ãç¹°ãè¿ããŠ
çµæ§é¢åãªäœæ¥ãçµã¿åãããŠãããŸããã
ãŠã£ãããããªé¢åãªå€ãäžã€ã®åŒã§è¡šãããšã¯æã£ãŠãã¿ãªãã£ãã®ã§ãããchatGTPã§ã¯
ãããªè¿äºãè¿ããŠãããã§ããïŒ
ãŸãã«ãã®åŒãèšç®ãããŠã¿ããããã ãæéããããŠãã£ãšèŸ¿ãçããå€ã«å°æ°ç¬¬äœäœãŸã§ã
ãã¿ãªãšäžèŽããã§ã¯ãªãã§ããïŒ
æãã¹ãGTP
ã ãããã®å
¬åŒã説æããŠãããŸãããïŒ
ããåã£ãŠãŸããããchatGPTããªããªããããŸããã
æã£ãåŸãå
è§åœ¢ã«ãªããšããããšã¯ãå
ã
ã®3ã€ã®èŸºãããããäžéšãå€åšãšããŠæ®ããã°ãªããŸããã
蟺ABã®äžéšãå
è§åœ¢ã§ã蟺ãšããŠæ®ã
âç·åPAãšPBã®åçŽäºçåç·ã蟺ABã®å€ã§äº€ãã
ââ³PABã®å€å¿ã蟺ABã®å€ã«ãã
ââ APBãéè§
âç¹Pã蟺ABãçŽåŸãšããåã®å
éšã«ãã
ãšããããšãªã®ã§ãå蟺ãçŽåŸãšããåã3ã€æããŠããããå
šãŠã®å
éšãã€äžè§åœ¢ã®å
éšã§ããé åãç¹Pã®ååšç¯å²ã§ãã
ãããã®3åãã¹ãŠã®å
éšã«ããç¯å²ã¯ã蟺ãèšããã äžè§åœ¢ã¢ããDEFã¿ãããªåœ¢ãããŠããããã®3é ç¹D,E,Fã¯â³ABCã®åé ç¹ããåããã®èŸºã«åŒããåç·ã®è¶³ã®äœçœ®ã«ãããŸãã
â³ABCãéè§äžè§åœ¢ã®å Žåã¯ãå³åœ¢çã«èããã°ãäžè§åœ¢ã¢ããDEFã¯èšãã¿åãŸã§â³ABCã®äžã«å®å
šã«åãŸããŸãã
ãšããããšã§ãæçµçã«æ±ããã¹ãã¯äžè§åœ¢ã¢ããDEFã®é¢ç©ã§ãã
ããã¯
(i) â³DEFã®é¢ç©ãåºãïŒâ³ABCã®1/4)
(ii) 蟺DEããèšããã éšåã®é¢ç©ãåºãïŒæåœ¢ããäºç蟺äžè§åœ¢ãåŒãïŒ
(iii) 蟺EFããèšããã éšåã®é¢ç©ãåºã
(iv) 蟺FDããèšããã éšåã®é¢ç©ãåºã
(v) ããã4ã€ãåèšãã
ã§å¯èœã§ãã
(1)ã¯èªåã§ããã(2)ã¯ãã®æé ãchatGPTã«æç€ºããŠãã£ãŠããããŸããã
> ãšããããšã§ãæçµçã«æ±ããã¹ãã¯äžè§åœ¢ã¢ããDEFã®é¢ç©ã§ãã
> ããã¯
> (i) â³DEFã®é¢ç©ãåºãïŒâ³ABCã®1/4)
> (ii) 蟺DEããèšããã éšåã®é¢ç©ãåºãïŒæåœ¢ããäºç蟺äžè§åœ¢ãåŒãïŒ
> (iii) 蟺EFããèšããã éšåã®é¢ç©ãåºã
> (iv) 蟺FDããèšããã éšåã®é¢ç©ãåºã
> (v) ããã4ã€ãåèšãã
> ã§å¯èœã§ãã
ãã®ããæ¹ã§èªåãªãã«æ±ããæããããŠäžã€ã®åŒã§è¡šããš
gp > 748/735*sqrt(26)+1/8*(7^2*(c1-sin(c1))+9^2*(c2-sin(c2))+10^2*(c3-sin(c3)))
%577 = 11.0677912894652773427086973960
äœã
c1=acos(-17/225);
c2=acos(647/1225);
c3=acos(391/441);
ãšããŸãã
ãªãGTPããã®åŒ
gp > (1/4)*(149*acos(17/35) + 181*acos(11/15) + 130*acos(5/21) - 115*Pi) - 3*sqrt(26)
%578 = 11.0677912894652773427086973960
ã§å
šãåãå€ãåºãŸãã
èšããã éšåãåºãæã«è§åºŠãå
¬åŒã«äœ¿ãããŠããâ A,â B,â C
ã®éšåã ãã§æžãŸãããŠããã®ãäžæè°ã§ãªããŸããã
ãŸããsin(c1)ãªã©ã¯ãcos(c1)ãããã£ãŠããã®ã ããæ±ããããŸããã
acosã®äžèº«ã®éãã¯ã1-2*(5/21)^2 = 391/441ãªã©ã®é¢ä¿ãæãç«ã€ããšããããããããæåœ¢ã®äžå¿è§ãååã«ããŠçŽè§äžè§åœ¢ã§æ±ãããããäœåŒŠå®çã§æ±ããããã®éããåºãŠããã®ããªãšæããŸãã
ããšã¯ãc1+c2+c3=Ïã«ãªãé¢ä¿ã䜿ã£ãŠãchatGPTã¯è¬ã®å€åœ¢ãæåŸã«ããããã§ããã
Ïæ¶ããšãããã°ããã®ã«ã
748/735*sqrt(26)+1/8*(7^2*(c1-sin(c1))+9^2*(c2-sin(c2))+10^2*(c3-sin(c3)))(*)
ãã ã
c1=acos(-17/225);
c2=acos(647/1225);
c3=acos(391/441);
(1/4)*(149*acos(17/35) + 181*acos(11/15) + 130*acos(5/21) - 115*Pi) - 3*sqrt(26)(**)
(*)ãã(**)ãå°ã
{*)åŒã§ã®
c1=acos(-17/225)=acos(1-2*(11/15)^2)=acos(-(2*(11/15)^2-1))=Pi-acos(2*(11/15)^2-1)â
ããã§â³ABCã§ããcos(C)=(a^2+b^2-c^2)/(2*a*b)=(10^2+9^2-7^2)/(2*10*9)=11/15
ãã£ãŠ C=acos(11/15)
ããã«2åè§ã®å
¬åŒã§
cos(2*Ξ)=(cos(Ξ))^2-1 ããâ ã¯
c1=Pi-acos(cos(2*C))=Pi-2*C
ãŸã
sin(c1)=sin(Pi-2*C)=sin(2*C)
ãããã
c1-sin(c1)=Pi-2*C-sin(2*C)
åæ§ã«ããŠ
c2-sin(c2)=Pi-2*B-sin(2*B)
c3-sin(c3)=Pi-2*A-sin(2*A)
以äžãã
(*)=748/735*sqrt(26)+1/8*(49*(Pi-2*C-sin(2*C))+81*(Pi-2*B-sin(2*B))+100*(Pi-2*A-sin(2*A)))
=748/735*sqrt(26)+1/8*(230*Pi-49*(2*C+sin(2*C))-81*(2*B+sin(2*B))-100*(2*A+sin(2*A)))
=748/735*sqrt(26)+115/4*Pi-230/4*Pi+230/4*Pi+1/8*(-98*C-162*B-200*A)-1/8*(49*sin(2*C)+81*sin(2*B)+100*sin(2*A))
=748/735*sqrt(26)+115/4*Pi-230/4*Pi+460/8*Pi+1/8*(-98*C-162*B-200*A)-1/8*(49*sin(2*C)+81*sin(2*B)+100*sin(2*A))
=748/735*sqrt(26) -115/4*Pi+460/8*(A+B+C)+1/8*(-98*C-162*B-200*A)-1/8*(49*sin(2*C)+81*sin(2*B)+100*sin(2*A))
=748/735*sqrt(26)-115/4*Pi+1/8*((460-98)*C+(460-162)*B+(460-200)*A)-1/8*(49*sin(2*C)+81*sin(2*B)+100*sin(2*A))
=748/735*sqrt(26)-115/4*Pi+1/8*(362*C+298*B+260*A)-1/8*(49*sin(2*C)+81*sin(2*B)+100*sin(2*A))
=748/735*sqrt(26)-115/4*Pi+1/4*(181*C+149*B+130*A)-1/8*(49*sin(2*C)+81*sin(2*B)+100*sin(2*A))
ããŠããããæåŸã®( )ã®éšåã¯
49*sin(2*C)+81*sin(2*B)+100*sin(2*A)
=98*sin(C)*cos(C)+162*sin(B)*cos(B)+200*sin(A)*cos(A)
=98*sqrt(1-(11/15)^2)*11/15+162*sqrt(1-(17/35)^2)*17/35+200*sqrt(1-(5/21)^2)*(5/21)
=98*2/15*sqrt(26)*11/15+162*6/35*sqrt(26)*17/35+200*4/21*sqrt(26)*5/21
=(98*2*11/(15*15)+162*6*17/(35*35)+200*4*5/(21*21))*sqrt(26)
=23624/735*sqrt(26)
åŸã£ãŠsqrt(26)ã®éšåãæŽçãããš
(748/735-1/8*23624/735)*sqrt(26)=-3*sqrt(26)
ãããæ¹ããŠæŽçããã°
(*)=1/4*(130*A+149*B+181*C-115*Pi)-3*sqrt(26)
=1/4*(130*acos(5/21)+149*acos(17/35)+181*acos(11/15)-115*Pi)-3*sqrt(26)=(**)
ãã£ãšçè§£ã§ããŸããã
ååŸ1ã®åã«å
æ¥ããåè§åœ¢ABCDããã
DA=2*AB,â BAD=120°ã§ãã
察è§ç·BD,ACã®äº€ç¹ãEãšãããšã
æ¬¡ã®æ¡ä»¶ã®ãšããããããã®åè§åœ¢ABCDã®é¢ç©Sãæ±ããã
(1)Eã¯BDã3:4ã«å
åããã
(2)Eã¯BDã2:3ã«å
åããã
å€åããŸãè§£ãæ¹ãããã®ã ãããšæããŸããã
å
šãæãã€ããªãã£ãã®ã§ãŽãªãŽãªèšç®ããŸããã
BEïŒED=aïŒbã®ãšãt=a/(a+b)ãšãããš
AEïŒEC=7t^2-4t+1ïŒ7t(1-t)
ãããã
(åè§åœ¢ABCD)={(3t+1)/(7t^2-4t+1)}â³ABD
ããè§ãΞã察蟺ãaãæ®ã2èŸºã®æ¯ãbïŒcã§ããäžè§åœ¢ã®é¢ç©ã¯
S=(a^2sinΞ)/{2(b/c+c/b-2cosΞ)}
ã§ããããšããâ³ABD=3â3/14
ãã£ãŠåè§åœ¢ABCDã®é¢ç©ã¯
(3â3)(3t+1)/{14(7t^2-4t+1)}
ãªã®ã§
(1)t=3/7ã代å
¥ããŠ6â3/7
(2)t=2/5ã代å
¥ããŠ165â3/182
è§£çããããšãããããŸãã
2ã€ãšãåãå€ã«ãªã£ãŠããŸããã
èªåã®ããæ¹ã«èŒã¹ãé¥ãã«ç°¡ç¥ãªæ¹æ³ã§ããããããã¯æ±ããããŠããŸãã
ãç°¡ç¥ãªæ¹æ³ãã«èŠããã®ã¯ããããããéäžèšç®ã®å€§åãçç¥ãããããããšæããŸãã
å
¬åŒã£ãœããã®ãåºãã ãã§å€§å€æéãããã£ãŠããŸãã
â³ABCã«ãããŠABïŒACãbïŒcã§ãããšããâ A=ΞãBC=aãšããã
AB=bkãAC=ckãšãããšäœåŒŠå®çã«ãã
a^2=b^2k^2+c^2k^2-2bck^2cosΞ
ãããkã«ã€ããŠè§£ããš
k=a/â(b^2+c^2-2bccosΞ)
æ¬åã®å Žåã¯a=â3ãb=1ãc=2ãΞ=120°ãªã®ã§ä»£å
¥ããŠkãæ±ãããš
k=â3/â(1+4+2)=â(3/7)=â21/7
âŽAB=bk=â21/7ãAC=ck=2â21/7
ãŸã
å蟺ã®2ä¹ã¯
a^2
(bk)^2=a^2b^2/(b^2+c^2-2bccosΞ)
(ck)^2=a^2c^2/(b^2+c^2-2bccosΞ)
ç°¡ç¥åã®ããt^2=b^2+c^2-2bccosΞãšãããš
(bk)^2=a^2b^2/t^2
(ck)^2=a^2c^2/t^2
ããã
# å蟺ã®é·ãã®2ä¹ãp,q,rãšãããš
# äžè§åœ¢ã®é¢ç©ã¯S=(1/4)â{2(pq+qr+rp)-(p^2+q^2+r^2)}
ãšããå€åœ¢ããã³ã®å
¬åŒã«ä»£å
¥ããŠæŽçãããš
S=(1/4)â{2(pq+qr+rp)-(p^2+q^2+r^2)}
(éäžèšç®çç¥)
=a^2/(4t^2)*â{(2b^2+2c^2-t^2)t^2-(b^2-c^2)^2}
=a^2/(4(b^2+c^2-2bccosΞ))*â{(2b^2+2c^2-(b^2+c^2-2bccosΞ))(b^2+c^2-2bccosΞ)-(b^2-c^2)^2}
(éäžèšç®çç¥)
=(a^2bcsinΞ)/{2(b^2+c^2-2bccosΞ)}
=(a^2sinΞ)/{2(b/c+c/b-2cosΞ)}
ãããŸã§ã§
AB=â21/7ãAC=2â21/7ãS=(a^2sinΞ)/{2(b/c+c/b-2cosΞ)}
ãåŸãããŸããã
次ã«ããã座æšã«åœãŠã¯ããŸãã
åãx^2+y^2=1ãšãã
B(-â3/2,1/2)
D(â3/2,1/2)
Bãäžå¿ãšããŠååŸãâ(3/7)ã§ããå
(x+â3/2)^2+(y-1/2)^2=3/7
ãšx^2+y^2=1ã®äº€ç¹ãæ±ãããš
A(-3â3/14,13/14)
Eã¯t=0ã®ãšãBã«äžèŽãt=1ã®ãšãDã«äžèŽããããã«
E=B+t(D-B)=((t-1/2)â3,1/2)
ãšããŸãã
AãéãçŽç·ã®åŒã
y=m(x+3â3/14)+13/14
ãšãããšy軞ã«å¹³è¡ãªçŽç·ã衚ããåé¡ãããã®ã§
x=m(y-13/14)-3â3/14
ãšããŸãã
ããã«E((t-1/2)â3,1/2)ã代å
¥ããŠmãæ±ãããš
m=-(7t-2)/â3
ãã£ãŠçŽç·ã®åŒã¯
x=-{(7t-2)/â3}(y-13/14)-3â3/14
=-(â3/42){9+(7t-2)(14y-13)}
ãããx^2+y^2=1ã«ä»£å
¥ããŠxãæ¶å»ããyã®åŒãå°åºãããš
(1/588){9+(7t-2)(14y-13)}^2+y^2=1
(éäžèšç®çç¥)
28(7t^2-4t+1)y^2-4(7t-2)(13t-5)y+13(13t^2-10t+1)=0
âŽy=13/14, (13t^2-10t+1)/{2(7t^2-4t+1)}
AEã®y座æšã®å·®ã¯13/14-1/2=3/7
ECã®y座æšã®å·®ã¯1/2-(13t^2-10t+1)/{2(7t^2-4t+1)}=3t(1-t)/(7t^2-4t+1)
ãã£ãŠ
AEïŒEC=3/7ïŒ3t(1-t)/(7t^2-4t+1)
=(7t^2-4t+1)ïŒ7t(1-t)
ãªã®ã§
AEïŒAC=(7t^2-4t+1)ïŒ(7t^2-4t+1)+7t(1-t)
=7t^2-4t+1ïŒ3t+1
ãšãªã
(åè§åœ¢ABCD)={(3t+1)/(7t^2-4t+1)}â³ABC
ãèšããŸããã
ããããããªã«ãããããã§ãããïŒ
åã«å
æ¥ããåè§åœ¢ABCDãšãã®å¯Ÿè§ç·ã®äº€ç¹Eã«ã€ããŠã
AB*AD/AE = BC*BA/BE = CD*CB/CE = DA*DC/DE
ãæãç«ã¡ãŸãã
ïŒèšŒæã¯äžè§åœ¢ã®çžäŒŒã§äžç¬ïŒ
BC*BA/BE = DA*DC/DE
ã®éšåã䜿ããŸãã
äºåã«æ£åŒŠå®çã§ BD = â3 ã¯åºããŠãããŸãã
(1)
AB = x ãšãããšãAD = 2x
CB = 3y ãšãããšãCD = 2y
â³ABDãšâ³CBDã«æ³šç®ããŠã
äœåŒŠå®çãã 7x^2 = 7y^2 = 3
ãã£ãŠæ±ããé¢ç©ã¯ S = (x^2 + 3y^2) * â3/2 = 6â3/7
(2)
AB = x ãšãããšãAD = 2x
CB = 4y ãšãããšãCD = 3y
â³ABDãšâ³CBDã«æ³šç®ããŠã
äœåŒŠå®çãã 7x^2 = 13y^2 = 3
ãã£ãŠæ±ããé¢ç©ã¯ S = (x^2 + 6y^2) * â3/2 = 165â3/182
ãã¯ãç°¡åãªè§£ãæ¹ããã£ãã®ã§ããã
å
šãæãã€ããŸããã§ããã
> åã«å
æ¥ããåè§åœ¢ABCDãšãã®å¯Ÿè§ç·ã®äº€ç¹Eã«ã€ããŠã
> AB*AD/AE = BC*BA/BE = CD*CB/CE = DA*DC/DE
> ãæãç«ã¡ãŸãã
> ïŒèšŒæã¯äžè§åœ¢ã®çžäŒŒã§äžç¬ïŒ
ãé¢çœãããã®å€ãäžäœã©ããªå€ãåãã®ãã
(1)Eã¯BDã3:4ã«å
åããã
(2)Eã¯BDã2:3ã«å
åããã
ã®å Žåã«ã€ããŠèª¿ã¹ããš
(1)ãªãâ3
(2)ãªã10*â(3/91)
ã察å¿ããã
ããã§ãã®åã«å
æ¥ããåè§åœ¢ã§ã®èšå®ãäžè¬åããŠ
ååŸRã®åã«å
æ¥ããåè§åœ¢ABCDã§
AD=k*AB,ãâ BAD=Ξ
察è§ç·AC,BDã®äº€ç¹ãEãšãããšã
BE:ED=1:t
ã§ããæã®
AB*AD/AE = BC*BA/BE = CD*CB/CE = DA*DC/DE
ã¯ã©ããªå€ãåãã®ããæ±ããããšãããŠã¿ãã
ãã®çµæ
2*k*(t+1)*R*sin(Ξ)/â(k^2+t^2+2*k*t*cos(Ξ))*(k^2-2*k*cos(Ξ)+1))
ãäžèšã®åæ¯ãäžå®ã®å€ãšãªããã®ãšãªãããã ã
åã«å
æ¥ããåè§åœ¢ã«ãã¬ããŒã®å®çããDD++æ°ãææãã4ã€ã®åçµã§ã®æ¯ã®çžç
ãªã©ããæå³çŸããé¢ä¿ã«ãã©ã³ã¹ãä¿ãããŠããå§¿ãèŠããŸããã
ïŒïŒè¿œèšïŒã什åïŒå¹ŽïŒïŒæïŒïŒæ¥ä»ã
ïŒæ¬¡ã®æ±å倧åŠãåæçç³»ïŒïŒïŒïŒïŒïŒã®åé¡ã¯ãæåŸ
å€ã®èšç®ã§ããã
ïŒåé¡ãïŒããïŒïŒïŒãŸã§ã®æŽæ°ãïŒã€ãã€èšå
¥ãããïŒïŒïŒæã®ã«ãŒãã®å
¥ã£ãç®±ããããã
ïŒã®ç®±ããïŒæã®ã«ãŒããç¡äœçºã«æãåºããŠãããã«æžãããæ°ã奿°ã§ããã°ãã®æ°
ïŒãåŸç¹ãšããå¶æ°ã®å Žåã¯å¥æ°ã«ãªããŸã§ïŒã§å²ã£ãŠåŸããã奿°ãåŸç¹ãšããã
ïŒïŒæã®ã«ãŒããæãåºãããšãã®åŸç¹ã®æåŸ
å€ãæ±ããã
以äžã¯å€§éæãªè§£çã§ãããèšç®ã§æ¥œãã§ãããšèããæçš¿ããŸãã
floor(200/2^0)=200,
floor(200/2^1)=100,
floor(200/2^2)=50,
floor(200/2^3)=25,
floor(200/2^4)=12,
floor(200/2^5)=6,
floor(200/2^6)=3,
floor(200/2^7)=1.
ãã®ããšããã
奿°5ãåŸç¹ãšãªã確çã¯ïŒ(8-2)/200ïŒ
奿°7,9,11 ãåŸç¹ãšãªã確çã¯ããããïŒ(8-3)/200
ã§ããããšããããã
ããã«ïŒÎ£[k=1,n](2*k-1)=n^2 ã§ããããšãèãåããããšã
æ±ããæåŸ
å€ã¯æ¬¡ã®ããã«èšç®ã§ããã
(1/200)*((8-0)*(1^2)+(8-1)*(2^2-1^2)+(8-2)*(3^2-2^2)+(8-3)*(6^2-3^2)+(8-4)*(13^2-6^2)
+(8-5)*(25^2-13^2)+(8-6)*(50^2-25^2)+(8-7)*(100^2-50^2))
=(1/200)*(1^2+2^2+3^2+6^2+13^2+25^2+50^2+100^2)
=(1/200)*(13344)
=1668/25.
ãã®åé¡ã¯ã1ãã200ãŸã§ã®æŽæ°ãã§ããããã1ãã20000ãŸã§ã®æŽæ°ãã«çœ®ãæãã
åé¡ãè§£ããšãæ±ããæåŸ
å€ã¯ã
(1/20000)*Σ[k=0,â](floor((floor(20000/2^k)+1)/2))^2
=(1/20000)*Σ[k=0,14](floor((floor(20000/2^k)+1)/2))^2
=66666783/10000.
çŽç·äžã«éãªããªãæ§ã«nåã®ç¹ã眮ããŠãããš
æéã®é·ãã®n-1åã®ç·åãšç¡éã®é·ããæã€2ã€ã®åçŽç·ã«å¥ããã
å¹³é¢äžã«äžç¹ã§3ã€ã®çŽç·ãéãŸããªãæ§ã«nåã®çŽç·ã眮ããŠãããš
(n-1)*(n-2)/2ïŒå)ã®æéã®é¢ç©ãæã€éšåãš
2*nïŒå)ã®ç¡éã®é¢ç©ãšãªãéšåã«å¥ããã
空éå
ã«3ã€ã®å¹³é¢ãäžã€ã®äº€ç·ã§äº€ãããªãæ§ã«nåã®å¹³é¢ã眮ããŠãããš
(n-1)*(n-2)*(n-3)/6ïŒåïŒã®æéã®äœç©ã®éšåãš
n^2-n+2ïŒåïŒã®ç¡éã®äœç©ãæããéšåã«å¥ããã
ããã§åå²ç·æ°ã ãã«çç®ããã°
çŽç·;n-1+2=n+1
å¹³é¢;(n-1)*(n-2)/2+2*n=n^2/2+n/2+1
空é;(n-1)*(n-2)*(n-3)/6+n^2-n+2=n^3/6+5*n/6+1
ãšããã§ãã®3ã€ã®èšç®çµæã¯
nC0ïŒïœïŒ£1=1+n
nC0+nC1+nC2=1+n+n*(n-1)/2=n^2/2+n/2+1
nC0+nC1+nC2+nC3=1+n+n*(n-1)/2+n*(n-1)*(n-2)/6=n^3/6+5*n/6+1
ãšãªãæ£ããäžèšã®çµæãäžããŠããããïŒãã®æäœãã®æ¬ã§ç¥ã£ãŠæåããã)
ãããŸã§é²ããšæ¬¡å
ãäžããããªãã
ããã§å次å
空éã§ã¯ïŒ
æééšã¯n-1C4=(n-1)*(n-2)*(n-3)*(n-4)/24ããšãªãã¯ããªããïŒ
ç¡ééšã¯æ³åãã€ããªãã
ã§ãç·å岿°ã¯nC0+nC1+nC2+nC3+nC4ãã ããã
ããã§å次å
空éã§ã®ç¡éé åã®æ°ã¯
nC0+nC1+nC2+nC3+nC4-n-1C4 ã®ã¯ãïŒ
ãããèšç®ãããš
=n/3*(n^2-3*n+8)
ã«æŽçãããã
ãã®èšç®çµæã®æ°åãOEISã§æ€çŽ¢ããŠã¿ããA046127ããããããŠããŠ
Maximal number of regions into which space can be divided by n spheres.
ãšããã
äœãšçé¢ã©ãããã¶ã€ããåããããæã«æå€§ã«åå²ãããé åæ°ïŒçé¢ã®å€ã«åºããç¡ééšåã1åã«æ°ãã)
ãšç¹ãã£ãã
忬¡å
äžçã§ã®ç¡éé åãçé¢åå¿ã®å岿°ã«å¯æ¥ã«é¢é£ãåã£ãŠãããšã¯æã£ãŠãã¿ãŸããã§ããã
ããã§æ¹ããŠïŒæ¬¡å
ã§ã®ç¡ééšåã®n^2-n+2ããçºçããæ°åã調ã¹ãŠã¿ããš
n=1,2,3,ã§
2,4,8,14,22,32,44,58,
ããã¯æ£ã«nåã®åã亀ãããããšããå¹³é¢ãæå€§ã«åå²ã§ããæå€§æ°ãäžããïŒ
3 次å
ã§ã®ç¡éé åãäžããå岿°ã¯2次å
ã§ã®åã§ã®å岿°
4 次å
ã§ã®ç¡éé åãäžããå岿°ã¯3次å
ã§ã®çã§ã®å岿°
ãšèŠäºã«å¯Ÿå¿ãã€ããŠãããã§ããã
ããéçãããã³ããçµäºãããããæ¥æ¬äžãæããŠã·ãªãŒãºãå§ãŸã
å£ç¯ã«ãªã£ãŠããŸããã
ããã§ããè³ã«ããéŠäœæè
äºãã«èŠå®æåžãšãããã®ãç»å ŽããŸãã
ããã¯èª¿ã¹ããšè©Šåæ°Ã3.1ã§ç®åºãããã¿ããã§çŸåšã®ããã³ãäºãã«ã¯
åçå£143詊åãè¡ãããŠãã,143*3.1=443.3
å³ã¡444æåžä»¥äžã®æ¡ä»¶ãããããšã«ãªãã
ä»éçéžæã®æçãšã¯0.0001ã®ãšããã§äžžããŠ(åæšäºå
¥)
æç=ãããã®æ°/ææ°
ã«ããç®åºãããããšãšããã
(æ£åŒã«ã¯ç æã ç é£ã åæ»çãèæ
®ãããããã§ã¯ãäºæ¿ã)
ããã§ææ°ã444以äž560以äž(å
šè©Šååºå Žã平忿°3.912çšåºŠã§èŠç©ãã£ãå€)
ã®ãšãæçã0.300 (ã¡ããã©3å²)
ãããŒã¯ã§ããã®ã¯å
šéšã§äœéããããïŒ