(æºåïŒ
6åã®ãµã€ã³ããåé¢ã«æ¬¡ã®3æ¡ã®æ°åãæžãã€ãããã®ãå·¥äœããã
æ°åã®è²; é», é, èµ€, æ©, ç·, 玫
ãµã€ã³ã1;111, 118, 127, 132, 146, 159ã
ãµã€ã³ã2;137, 144, 153, 158, 172, 185
ãµã€ã³ã3;161, 168, 177, 182, 196, 209
ãµã€ã³ã4;160, 167, 176, 181, 195, 208
ãµã€ã³ã5;149, 156, 165, 170, 184, 197
ãµã€ã³ã6;155, 162, 171, 176, 190, 203
(éã³æ¹)
çžæã«6åã®ãµã€ã³ãã®äžã§1åã®ãµã€ã³ããéžã°ãããïŒãããåãåã)
6è²ã®äžã§äžã€ã®è²ã決ããŠãããã
ãã®åŸæ®ãã®5ã€ã®ãµã€ã³ããäžçªäžãæå®ãããè²ä»¥å€ã®5çš®é¡ãå
šãŠåºæãããã«
䞊ã¹ãŠãããã
ããªãã¯çžæãäœæ¥ãçµãã£ããšåæã«äžçªäžã«çŸããå3æ¡ã®æ°åã®åèšã
çŽã«æžãã€ããäŒããŠããã
ãããçžæã«èŠããŠããäžçªäžã«æžãããæ°åã®åèšãããŠãããšé Œãã
èŠåŽã®æ«åèšãçµãã£ããããã®åèšã®æ°åãèšã£ãŠãããã
ããªãã¯äœæ°ã«çŽã«æžãã€ããã¡ã¢ãèŠããã
(è§£æ)
ãã®æç®ã®é人ãå¯èœãªããããä»çµã¿ãçºèŠããŠãã ããã
n=1,2,3,ã
ãã£ããããæ°å{fn};1,1,2,3,5,8,13,21,
ãx^nã®ä¿æ°ãšãªã
F(x)=â[n=1,â]fn*x^n
ã§å®çŸ©ããã颿°F
åã³
å€åœ¢ãã£ããããæ°å{gn};1,4,5,9,14,23,37,
ãx^nã®ä¿æ°ãšãã
G(x)=â[n=1,â]gn*x^n
ã§å®çŸ©ããã颿°Gã§ãããšããã
ãã®æ
F(â2-1)=1
F(1/2)=2
F((â13-2)/3)=3

G((â5-1)/4)=1
G(1/2)=2
G(â22-2)/6)=3

ãªã©ãæç«ããããã«ãªãã
ããã§
(1)F(x)=4,5,6,7,8,9
ãããããæãç«ã€åxã«å¯Ÿå¿ããå€ãæ±ãã
ãŸãxãæçæ°ã§F(x)ã10000以äžã®æ£ã®æŽæ°å€ãåãåŸããã®ã¯äœåããã§ããããïŒ
(2)G(x)=4,5,6,7,8,9
ãããããæãç«ã€åxã«å¯Ÿå¿ããå€ãæ±ãã
ãŸãxãæçæ°ã§G(x)ã1000000以äžã®æ£ã®æŽæ°å€ãåãåŸããã®ã¯äœåããã§ããããïŒ
åé¡ã®è§£éãšããã°ã©ã ãæ£ãããã°ãã§ãã
F(x)=x/(1-x-x^2)ãïŒ|x|ïŒ1ïŒãªã®ã§
F^(-1)(y)=(-y-1+â(5y^2+2y+1))/(2y)ãïŒâµ|x|ïŒ1ïŒ
ããã«4ïœ9ã代å
¥ããŠ
F^(-1)(4)=(-5+â89)/8
F^(-1)(5)=(-3+â34)/5
F^(-1)(6)=(-7+â193)/12
F^(-1)(7)=(-4+â65)/7
F^(-1)(8)=(-9+â337)/16
F^(-1)(9)=(-5+â106)/9
ãxãæçæ°ã§F(x)ã10000以äžã®æ£ã®æŽæ°å€ãåãã
âãyã10000以äžã®æ£ã®æŽæ°ã§5y^2+2y+1ãå¹³æ¹æ°ã
ãyã10000以äžã®æ£ã®æŽæ°ã§5y^2+2y+1ãå¹³æ¹æ°ããæºããyã¯
5å(2,15,104,714,4895)ãªã®ã§
ãxãæçæ°ã§F(x)ã10000以äžã®æ£ã®æŽæ°å€ãåãããæºããxã¯
5å(1/2,3/5,8/13,21/34,55/89)
G(x)=(1+3x)x/(1-x-x^2)ãïŒ|x|ïŒ1ïŒãªã®ã§ïŒG(1/2)=5, G(2/5)=2ã§ã¯ïŒïŒ
G^(-1)(y)={-y-1±â(5y^2+14y+1)}/(2(y+3))ãïŒyïŒ2ïŒ
G^(-1)(y)={-y-1+â(5y^2+14y+1)}/(2(y+3))ãïŒyâ§2ïŒ
ããã«4ïœ9ã代å
¥ããŠ
G^(-1)(4)=(-5+â137)/14
G^(-1)(5)=(-3+7)/8=1/2
G^(-1)(6)=(-7+â265)/18
G^(-1)(7)=(-4+â86)/10
G^(-1)(8)=(-9+â433)/22
G^(-1)(9)=(-5+â133)/12
ãxãæçæ°ã§G(x)ã1000000以äžã®æ£ã®æŽæ°å€ãåãã
âãyã1000000以äžã®æ£ã®æŽæ°ã§5y^2+14y+1ãå¹³æ¹æ°ã
ãyã1000000以äžã®æ£ã®æŽæ°ã§5y^2+14y+1ãå¹³æ¹æ°ããæºããyã¯
14å(2,5,21,42,152,296,1050,2037,7205,13970,49392,95760,338546,656357)ãªã®ã§
ãxãæçæ°ã§G(x)ã1000000以äžã®æ£ã®æŽæ°å€ãåãããæºããxã¯
14å(2/5,1/2,7/12,3/5,19/31,8/13,50/81,21/34,131/212,55/89,343/555,144/233,898/1453,377/610)
åºé¡ãã¹ïŒã¿ã€ããã¹)
G(2/5)=2 ã§ããã
(G(1/2)=5ïŒ
ãã®ãã¹ã«ãæããã
F(x)<10000ã§ã®5å
G(x)<1000000ã§ã®14åã®xã®æçæ°ããã¹ãŠå®ç§ã«æ£è§£ã§ãã
äžã®5åããã£ããããæ°ã®æçæ°ã§æ§æãããŠããã®ã«æ¯ã¹
äžã®14åã¯å¶æ°çªç®ïŒ1/2,3/5,8/13,21/34,55/89,144/233,377/610 ããã£ããããæ°ã§ã®æçæ°
ãããŠå¥æ°çªç®ïŒ2/5,7/12,19/31,50/81,131/212,343/555,898/1453 ãç䌌ãã£ããããæ°ã§ã®æçæ°
ã§æ§æãããã®ãé¢çœãã§ãã
æ¯é¢æ°ããäžæ°ã«é颿°ãèããããšãèªåã®æ¹æ³ãšç°ãªãããã®æãæãå¹çããé²ããããããšã
æããããŸããã
F(x)ïŒ10000ã®5åã®æ°å 2,15,104,714,âŠã¯ A081018 ã«ãããŸããã
ãã£ãŠåé¡ãF(x)ïŒ1000000000000000000000000000000000000000000000
ã§ãã£ãŠã容æã«çããããŸãïŒãã®å Žå54åïŒã
G(x)ã®æ¹ã®æ°å 2,5,21,42,152,⊠ã¯OEISã«ãããŸãããã
挞ååŒãç«ãŠãã°åæ§ã«å·šå€§æ°ãŸã§ã§ãçãããããšæããŸãã
ã¡ãªã¿ã«
åè
ã®æŒžååŒã¯ a[1]=2, a[2]=15, a[n+2]=7a[n+1]-a[n]+1
åŸè
ã®æŒžååŒã¯ a[1]=2, a[2]=5, a[3]=21, a[4]=42, a[n+4]=7a[n+2]-a[n]+7
ç§ã®åå¿é² > å°åœ±å¹Ÿäœ
http://shochandas.xsrv.jp/projection/projectivegeometry.htm
ã«ãããŠã
ç§ã什åïŒå¹ŽïŒïŒæïŒïŒæ¥ã«ã³ã¡ã³ãããå
容ã«é¢ããŠ
ãã®åŸã«èããããšãèšäºã«ããŸããã
ã¡ãã©ãŠã¹ã®å®çãšãã§ãã®å®çã®äžè¬å | Mathlog
https://mathlog.info/articles/TdvnRiSb0n8XacFyN5ba
çŽ æ°ã®åºçŸé çªãšçŽ æ°ãç¹ãã§ã¿ãŸãããïŒæ²èŒã®éœåã§100çªã§æ¢ããŠãŸããããã®å
ã©ããŸã§ã§ãå¯èœã§ãã)
1*2 = 2 | 2*5 = 10 | :
2*15 = 30 | 3*7 = 21 | :
3*17 = 51 | 5*6 = 30 | :
4*18 = 72 | 7*6 = 42 | 7*2 = 14
5*22 = 110 | 11*5 = 55 | 11*5 = 55
6*22 = 132 | 13*5 = 65 | 13*2 = 26
7*25 = 175 | 17*42 = 714 | 17*1 = 17
8*24 = 192 | 19*43 = 817 | 19*2 = 38
9*26 = 234 | 23*4 = 92 | 23*3 = 69
10*29 = 290 | 29*35 = 1015 | 29*90 = 2610
11*29 = 319 | 31*36 = 1116 | 31*81 = 2511
12*31 = 372 | 37*33 = 1221 | 37*76 = 2812
13*32 = 416 | 41*32 = 1312 | 41*93 = 3813
14*31 = 434 | 43*33 = 1419 | 43*98 = 4214
15*314 = 4710 | 47*32 = 1504 | 47*45 = 2115
16*332 = 5312 | 53*31 = 1643 | 53*72 = 3816
17*35 = 595 | 59*3 = 177 | 59*63 = 3717
18*34 = 612 | 61*3 = 183 | 61*38 = 2318
19*353 = 6707 | 67*29 = 1943 | 67*57 = 3819
20*355 = 7100 | 71*29 = 2059 | 71*20 = 1420
21*35 = 735 | 73*3 = 219 | 73*77 = 5621
22*36 = 792 | 79*28 = 2212 | 79*18 = 1422
23*361 = 8303 | 83*28 = 2324 | 83*81 = 6723
24*371 = 8904 | 89*27 = 2403 | 89*16 = 1424
25*39 = 975 | 97*26 = 2522 | 97*25 = 2425
26*39 = 1014 | 101*26 = 2626 | 101*26 = 2626
27*382 = 10314 | 103*27 = 2781 | 103*9 = 927
28*383 = 10724 | 107*27 = 2889 | 107*4 = 428
29*376 = 10904 | 109*27 = 2943 | 109*81 = 8829
30*377 = 11310 | 113*27 = 3051 | 113*10 = 1130
31*41 = 1271 | 127*25 = 3175 | 127*53 = 6731
32*41 = 1312 | 131*25 = 3275 | 131*72 = 9432
33*416 = 13728 | 137*241 = 33017 | 137*9 = 1233
34*41 = 1394 | 139*25 = 3475 | 139*6 = 834
35*426 = 14910 | 149*24 = 3576 | 149*15 = 2235
36*42 = 1512 | 151*24 = 3624 | 151*36 = 5436
37*425 = 15725 | 157*24 = 3768 | 157*41 = 6437
38*43 = 1634 | 163*234 = 38142 | 163*26 = 4238
39*43 = 1677 | 167*234 = 39078 | 167*17 = 2839
40*433 = 17320 | 173*232 = 40136 | 173*80 = 13840
41*437 = 17917 | 179*23 = 4117 | 179*79 = 14141
42*431 = 18102 | 181*233 = 42173 | 181*82 = 14842
43*445 = 19135 | 191*23 = 4393 | 191*73 = 13943
44*44 = 1936 | 193*23 = 4439 | 193*8 = 1544
45*438 = 19710 | 197*23 = 4531 | 197*85 = 16745
46*433 = 19918 | 199*232 = 46168 | 199*54 = 10746
47*45 = 2115 | 211*223 = 47053 | 211*77 = 16247
48*465 = 22320 | 223*216 = 48168 | 223*76 = 16948
49*464 = 22736 | 227*22 = 4994 | 227*87 = 19749
50*458 = 22900 | 229*22 = 5038 | 229*50 = 11450
51*457 = 23307 | 233*22 = 5126 | 233*47 = 10951
52*46 = 2392 | 239*22 = 5258 | 239*68 = 16252
53*455 = 24115 | 241*22 = 5302 | 241*33 = 7953
54*465 = 25110 | 251*216 = 54216 | 251*54 = 13554
55*468 = 25740 | 257*215 = 55255 | 257*15 = 3855
56*47 = 2632 | 263*213 = 56019 | 263*12 = 3156
57*472 = 26904 | 269*212 = 57028 | 269*53 = 14257
58*468 = 27144 | 271*215 = 58265 | 271*98 = 26558
59*47 = 2773 | 277*213 = 59001 | 277*67 = 18559
60*469 = 28140 | 281*214 = 60134 | 281*60 = 16860
61*464 = 28304 | 283*216 = 61128 | 283*67 = 18961
62*473 = 29326 | 293*212 = 62116 | 293*34 = 9962
63*488 = 30744 | 307*206 = 63242 | 307*9 = 2763
64*486 = 31104 | 311*206 = 64066 | 311*24 = 7464
65*482 = 31330 | 313*21 = 6573 | 313*5 = 1565
66*481 = 31746 | 317*21 = 6657 | 317*98 = 31066
67*495 = 33165 | 331*203 = 67193 | 331*57 = 18867
68*496 = 33728 | 337*202 = 68074 | 337*64 = 21568
69*503 = 34707 | 347*2 = 694 | 347*27 = 9369
70*499 = 34930 | 349*201 = 70149 | 349*30 = 10470
71*498 = 35358 | 353*202 = 71306 | 353*7 = 2471
72*499 = 35928 | 359*201 = 72159 | 359*8 = 2872
73*503 = 36719 | 367*2 = 734 | 367*19 = 6973
74*505 = 37370 | 373*2 = 746 | 373*38 = 14174
75*506 = 37950 | 379*2 = 758 | 379*25 = 9475
76*504 = 38304 | 383*2 = 766 | 383*72 = 27576
77*506 = 38962 | 389*2 = 778 | 389*93 = 36177
78*51 = 3978 | 397*197 = 78209 | 397*74 = 29378
79*508 = 40132 | 401*198 = 79398 | 401*79 = 31679
80*512 = 40960 | 409*196 = 80164 | 409*20 = 8180
81*518 = 41958 | 419*194 = 81286 | 419*99 = 41481
82*514 = 42148 | 421*195 = 82095 | 421*42 = 17682
83*52 = 4316 | 431*193 = 83183 | 431*93 = 40083
84*516 = 43344 | 433*194 = 84002 | 433*48 = 20784
85*517 = 43945 | 439*194 = 85166 | 439*15 = 6585
86*516 = 44376 | 443*195 = 86385 | 443*2 = 886
87*517 = 44979 | 449*194 = 87106 | 449*63 = 28287
88*52 = 4576 | 457*193 = 88201 | 457*84 = 38388
89*518 = 46102 | 461*194 = 89434 | 461*49 = 22589
90*515 = 46350 | 463*195 = 90285 | 463*30 = 13890
91*514 = 46774 | 467*195 = 91065 | 467*73 = 34091
92*521 = 47932 | 479*193 = 92447 | 479*48 = 22992
93*524 = 48732 | 487*191 = 93017 | 487*39 = 18993
94*523 = 49162 | 491*192 = 94272 | 491*34 = 16694
95*526 = 49970 | 499*191 = 95309 | 499*5 = 2495
96*524 = 50304 | 503*191 = 96073 | 503*32 = 16096
97*525 = 50925 | 509*191 = 97219 | 509*33 = 16797
98*532 = 52136 | 521*19 = 9899 | 521*38 = 19798
99*529 = 52371 | 523*19 = 9937 | 523*13 = 6799
100*541 = 54100 | 541*185 = 100085 | 541*100 = 54100
ã»ç°¡åãªåé¡
äžè¡šã®å³åã®åŒã§ã7çªç®ã®17ã«ã*1ãããããŸããã
次ã«å³åã®åŒã§ã*1ããåºãŠããã®ã¯äœçªç®ã®çŽ æ°ã§ããããã
ãŸããäžåã§ã*1ããåºãŠããã®ã¯äœçªç®ã®çŽ æ°ã§ããããã
ã»ããé£ããåé¡
å³åã§åºãŠãã10åç®ã®ã*1ãã¯ãäœçªç®ã®çŽ æ°ã§ããããã
ã»è§£ããªãåé¡
äžåã§åºãŠãã7åç®ã®ã*1ãã¯ãäœçªç®ã®çŽ æ°ã§ããããã
ã»ç°¡åãªåé¡
9551çªç®ãš6455çªç®ã®çŽ æ°
ã»ããé£ããåé¡
1;17
2;99551
3;4303027
4;6440999
5;14968819
ãŸã§ã¯èŠã€ããããã®å
10åãèŠã€ããèªä¿¡ãªã
ãšæã£ãŠOEISã®æ€çŽ¢ãæãããA046883ãçºèŠ
ã«ã³ãã³ã°ã§
12426836115943
ã»è§£ããªãåé¡
1;64553
2;64567
3;64577
4;64591
5;94601
6;64661
ãŸã§ã¯é£ãªãèŠã€ããã
ããããå
ç¯å²ãåºããŠæçŽ¢ããŠãèŠã€ãããã
A236469ã«é¢é£ãããïŒ
A046883(16) = 23540145178774772939
A046883(16) = p(540145178774772939)
A046883(17) = 39904678560078237431
A046883(17) = p(904678560078237431)
ãšããæ
å ±ãã¿ã€ããŸããã
OEIS ã«ã¯ãšã³ããªãŒãããŠããªãã§ããâŠ
https://www.primepuzzles.net/puzzles/puzz_1083.htm
åçããããšãããããŸãã
ç°¡åãªåé¡âæ£è§£
ããé£ããåé¡
ã«ã³ãã³ã°ã§çããç¹ã¯æ£è§£ã§ãã
ãã ããäœçªç®ã®çŽ æ°ããšããåé¡ãªã®ã§ãæ£è§£ã¯426836115943ã§ãã
A046883ã®12426836115943ã ããèŠãŠã
2426836115943ãªã®ã426836115943ãªã®ã26836115943ãªã®ã
確å®ããŸããã®ã§ããäœçªç®ããã®æ°åã§ããA067248ãèŠã€ããŠ
çããã°å®ç§ã§ããã
è§£ããªãåé¡
èŠã€ãã£ãŠãã6åã¯
n=[p(n)/10]ãšãªã£ãŠããããã§ããã
ãã®åŸã¯p(n)/nã¯10ãã倧ãããªã£ãŠå¢å ããŠããŸãããã
7çªç®ã®å€ã¯åããŠ
n=[p(n)/100]ãšãªãå€ã§ãã
ïŒãã ãããã®ãããªå€ãããã°ãã§ããå€åãããšã¯æããŸããïŒ
ããã«ã€ããŠèšç®ããŠã¿ããš
çŽ7.38202775Ã10^41çªç®ã®çŽ æ°ã
çŽ7.38202775Ã10^43ãšãªãããã®èŸºã«çããããããã§ãã
çŸåšçŽ æ°ã®æ£ç¢ºãªåæ°ãããã£ãŠããã®ã¯10^29ãŸã§ã®ããã§ãã®ã§ã
åœåã¯èŠã€ãããªãã§ãããã
https://oeis.org/A006880/b006880.txt
10^29 ãŸã§âŠâŠãããã§ãããã©ãã ãæéãããã®ã§ããããã
https://jkoizumi144.com/puzzles.html
ã®åé ã«æ¬¡ã®ãããªããºã«ããããŸãã
åŒçšéå§
1. Fake coins and a magic bag
There are 7 gold coins and 9 silver coins. Among them, there is one fake gold coin and one fake silver coin. You want to identify these fake coins using a magic bag. When you put coins into the magic bag and cast a spell, it emits a suspicious glow only if both fake coins are inside the bag. How many times do you need to cast the spell to determine both fake coins?
åŒçšçµãã
â :5 åã®åªæã®è© å±ã§ã¯ç¡çã ãšããèå¯ãããŸãã
ããã°ãå
ãã»å
ããªãã®1ãããã®æ
å ±ãïŒã€éããŠããæå€§ã§ 2^5 = 32 éãã®åå¥ãã§ããã«ãããŸããã
äžæ¹ã«ãããŠ
ééã®åœã³ã€ã³ã®ããããã±ãŒã¹ãæ°ãããããš
7â9=63
ã§ãã
32 < 63
ã§ãããã
5 åã®åªæã®è© å±ã§ã¯ç¡çãããšå€æã§ããŸãã
â¡:ïŒåã®è© å±ã§åœã³ã€ã³ãã€ããšããæ¹æ³ã¯ãããŸãã(çç¥)
â¢: 6åã®è© å±ã§ããŸãã¯ã¬ããŒãªæ¹æ³ãããã®ãã©ããæ°ã«ãªããŸãã
63 < 2^6 = 64
ã§ãããããã³ã¬ã ãã§ã¯è¯ãæ¹æ³ãç¡ããšã¯æèšã§ããªãããšããâŠããºã«ãšããŠã¯è¯ãç·ãçªããŠããæããããŸãã
å®éãéã8æãéã8æã ãšãïŒåã®è© å±ã§ããŸãæ¹æ³ã¯ãããŸãã®ã§ããã¡ããå
ã®ããºã«ã®å§¿ã§ããããã²ãã£ãŠéïŒæéïŒæã«çŽããŠãããããªâŠâŠ
ãã®ãããªã«ã©ããªæå³ãããã®ãé ãåŸããŠããŸãã
çæ§ã®ãç¥æµãã貞ããã ããã
éïŒæéïŒæã®ã±ãŒã¹ã§ã¯
ïŒåã®åªæè© å±ã§ç¢ºå®ã«åœã³ã€ã³ãç¹å®ã§ãããšå€æããããŸããã
é£ããèããŠããããã«ã©ããã«åµã£ãŠããããã§ãã
ãéšããããããŸããã
ãã£ããã§ãã®ã§
éïŒæéïŒæã®ã±ãŒã¹ã§
åªæè© å±ïŒåã®ããæ¹ãã²ãšã€ãæ¡å
ãããŠããã ããŸãã
éãG1, G2,G3
éãS1,S2,S3,S4,S5
ãšããŸããåœã³ã€ã³ã®ããããã±ãŒã¹ã¯15éãã§ããæ·»ä»ã®å³ãã芧ãã ããã
ïŒåç®ã®èšæž¬ã§ã¯â ãã«ããŒããããã«è¢ã«ãããŠåªæãå±ããŸããè¢ãå
ãã°ãæ®ãïŒåã®åªæã§â ã®ãªãã«ããåœã³ã€ã³ãã¢ã確å®ããã課é¡ã¯ã€ãŒãžãŒã§ãã
ïŒåç®ã®èšæž¬ã§å
ããªãå Žåã«ã¯æ¬¡ã®ã¹ãããã«è¡ããŸãã
ïŒåç®ã®èšæž¬ã§ã¯â¡ãã«ããŒããããã«è¢ã«ãããŠåªæãå±ããŸããè¢ãå
ãã°ãæ®ãïŒåã®åªæã§â¡ã®ãªãã«ããåœã³ã€ã³ãã¢ã確å®ããã課é¡ã¯ã€ãŒãžãŒã§ãã
ïŒåç®ã®èšæž¬ã§å
ããªãå Žåã«ã¯æ¬¡ã®ã¹ãããã«è¡ããŸãã
ïŒåç®ã®èšæž¬ã§ã¯â¢ãã«ããŒããããã«è¢ã«ãããŠåªæãå±ããŸããè¢ãå
ãã°åœã³ã€ã³ãã¢ã¯ç¢ºå®ã§ãã(G1:S5)
ïŒåç®ã®èšæž¬ã§å
ããªãå Žåã«ã¯æ¬¡ã®ã¹ãããã«è¡ããŸãã
ïŒåç®ã®èšæž¬ã§ã¯â£ãã«ããŒããããã«è¢ã«ãããŠåªæãå±ããŸããè¢ãå
ãã°åœã³ã€ã³ãã¢ã¯ç¢ºå®ã§ãã(G2:S5)
ïŒåç®ã®èšæž¬ã§å
ããªãå Žåã«ã¯åœã³ã€ã³ãã¢ã¯ç¢ºå®ã§ãã(G3:S5)
ãªããäžèšã®ããæ¹ã¯å®¹æã«æ¡åŒµã§ããŠ
é7æé9æã®ã±ãŒã¹ã§åªæïŒåã§æžãŸããæ¹æ³ãããããšãããããŸãã
é7æé9æã®ã±ãŒã¹ã®å³è§£ãäœããŸããã
åœã³ã€ã³ã®ãã¢ã
â€ã«å«ãŸããŠããã°æ®ãïŒåã®è© å±ã§ç¢ºå®ã
ãããªããã°
â£ã«å«ãŸããŠããã°æ®ãïŒåã®è© å±ã§ç¢ºå®ã
ãããªããã°
â¢ã«å«ãŸããŠããã°æ®ãïŒåã®è© å±ã§ç¢ºå®ã
ãããªããã°
â¡ã«å«ãŸããŠããã°æ®ãïŒåã®è© å±ã§ç¢ºå®ã
ãããªããã°
â ã«å«ãŸããŠããã°æ®ãïŒåã®è© å±ã§ç¢ºå®ã
ãããªããã°
â»ã§ç¢ºå®
ãšããããšã«ãªããŸãã
ãµãšæãç«ã¡ãŸããŠã
chatgpt-4o-latest-20250326 ã«ããããŠ
äžèšã®ããã«åºé¡ããŸãããã誀çãè¿ããŠæ¥ãŸããããªããè±æãªã®ã¯ãã®ã»ããçæAIã«ãšã£ãŠçè§£ãããããšããã£ãããã§ãã
(誀çã«ã€ããŠã¯ãã³ã»ã³ã¹ãªã®ã§çç¥ããããŸãã)
åºé¡å
容ã®äžã«ã¯ãç§ãããŸåãçµãã§ããããšãä»èšãããŠããã ããŸãã
çããã«ãå©åãé¡ããã°å¹žãã§ãããããããé¡ãç³ãäžããŸãã
âŠåºé¡å
容âŠ
Fake Coins and a Magic Bag
You have a collection of 9 coins in total: 3 gold coins, 3 silver coins, and 3 bronze coins. Among these, exactly one gold coin, exactly one silver coin, and exactly one bronze coin are counterfeit.
Assume that the three coins of each metal are distinguishable (e.g., labeled G_1, G_2, G_3, S_1, S_2, S_3, B_1, B_2, B_3).
You are provided with a magic bag that has the following property:
When you place any subset of coins into the bag and cast a spell, the bag glows if and only if the subset contains all three counterfeit coins simultaneously, regardless of any additional genuine coins that might be included.
If the subset contains only one, only two, or none of the counterfeit coins, the bag does not glow.
All tests are deterministic and error-free. There are no restrictions on how many or which coins you may include in a single test, and coins may be reused in multiple tests.
Your task is to devise a strategy that is guaranteed to identify all three counterfeit coins using no more than 5 tests.
Justify your answer with a logical or mathematical argument.
âŠåºé¡å
容ã¯ãããŸã§âŠ
â¥ç§ãä»ããããŠããããšâ¥
ãã®åºé¡ã«ã€ããŠã©ã®ãããªãã³ã(èªå°)ã远å ããã°çæAI(chatgptãªã©)ãæ£è§£ã«èŸ¿ãçãã工倫ãããŠããã®ã§ããæªæŠèŠéããŠãããŸãã
çããã«äŒºãããã®ã§ãã
ãªã«ãè¯ãã¢ã€ãã¢ã¯ãªããã®ã§ããããïŒ
ç³ãé
ããŸããã
æ±ºå®æšãæ±ããŠã»ããã£ããã§ãã
äžèšã®å³ã®ãããªã
åå²çµ±æ²»æŠç¥ã§äºåæšãäœãããããã®æã«ãããŠåæã«å¿
èŠãªæ
å ±ããããé床ã«å€§ãããªããªãããã«ã
å鲿³ã§è¡šèšãããæ°
NïŒa10^n+b10^n-1++c10+dâ¡ïŒ(mod p) pã¯ã7ãã倧ããªçŽ æ°ã®ãšãã
a10^(n-1)ïŒ+b10^(n-2)+âŠ+cãŒXdâ¡ïŒ(mod p)ãšãªãããã«ã
ïœé²äœã§ãXãéžã¶ããšãã§ããã
10ãã䞡蟺ã«ãããŠãã
a10^n+b10^n-1++c10-10Xdâ¡ïŒ(mod p)
-10Xâ¡1ãšãªãããã«ããéžã¹ã°ããã
ãããããšãå
ã®åŒã«æ»ããŸããïœã®å€ã¯ãã«ãã£ãŠç°ãªã,以äž
P X
7 2
11 1
13 9
17 5
19 17
23 16
29 26
31 3
37 11
41 4
43 30
47 14
53 37
73 51
瞊æžãã§å€±ç€ŒããŸãã
è¶³ãããåŒããã©ã¡ãã§ã
ïŒïŒïŒïŒïŒïŒ22ãªã®ã§ãïŒïŒâ¡ãŒ51ïŒmod73)
æ¡æ°ãäžåãã€äžããŠããã®ã§ãèšç®åæ°ãå¢ããŸãã
âããããã®Xã®æ°å(73â51)
oeis.org/A103876
âããã察ã«ãªãæ°å(73â22)
oeis.org/A357913
倧ããªæ°ã®å Žåãåã±ã¿ãã€åºåããåã€æ°ã®ã奿°çªç®ã®åãšå¶æ°çªç®ã®åã
åŒããŠ73ã§ãå²ããæãïŒïŒã§ãå²ãåãã
åããåŒããçµæããïŒïŒïŒã§ãå²ãåããæãïŒïŒïŒã§å²ãåããããšãã
åãããŸããã
ïŒ000ïŒïŒïŒïŒïŒÃïŒïŒ
ïŒïŒïŒïŒïŒïŒïŒã®ãšãã¯ãïŒã±ã¿ãã€ã§ããã
ææãåããŠãä¿®æ£ããŸããã
äŸãã°740001ã¯4æ¡ãã€åºåã£ãŠå·®ããšããš73ã§ãã73ã§å²ãåããŸããããã®æ°ã¯137ã§ã¯å²ãåããŸããã
åã«73ã®åæ°ãå€å®ãããªã
N=10*A+bã73ã®åæ°<==>A+22*bã73ã®åæ°
ã䜿ããã
äŸN=9012288(=10*901228+8)
901228+22*8=9012228+176=901404
åãã
90140+22*4=90228
9022+22*8=9198
919+22*8=1095
109+22*5=219
ãã蟺ãã§219=73*3ã倿
ãã£ãŠå
ã®
N=9012288ã73ã§å²ããã(73*123456=N)
ã¡ãªã¿ã«137ã®åæ°ã®å€å®ã§ã¯
N=10*A+bã137ã®åæ°<==>A - 41*bã137ã®åæ°
ã®åçã䜿ããã
4æ¡ãããå·®åãšåããããšéããã§ããã
9012288
2288-901=1387
138+22*7=292
29+22*2=73
çŽ æ°5以äžã®çŽ æ°p1ãªããã®æ°ãæ«å°Ÿã«æã€ãã®ã®äžã§æ¬¡ã®çŽ æ°p2ã§å²ãåããã®ãå¿
ãååšããã
p1=5ãªã
15,25,35,45,,105,ã»ã»ã»,175,
ãªã©ãåè£ã§ããã®äžã§æ¬¡ã®çŽ æ°ïœïŒïŒïŒã§å²ãåããã®ã¯
35,105,175,245,315,çãèŠã€ããã
ããã§ãã®äžã®æå°å€ã®35ã«æ³šç®ããã
p1=7ãªãp2=11ã§å²ãåãããã®ãšããŠ
77,187,297,407,ãªã®ã§77ãéžã¶ã
ããããŠåçŽ æ°p1ã«å¯Ÿããæ«å°Ÿã«p1ãæã¡ããããæ¬¡ã®çŽ æ°p2ã§å²ãåããæå°ã®æŽæ°ãåããŠè¡ãã
ããããŠèŠã€ããæå°ã®æŽæ°ã®åã
5âŠp1âŠ100000
ã®ç¯å²ã§äœã«ãªãããæ±ããŠäžããã
22405801611641
ã§åã£ãŠããŸããïŒ
224ãŸã§ã¯åã£ãŠãããšæãããŸãããã®å ããã¯ç°ãªã£ãŠããããã§ãã
åã£ãŠããªãçç±ãããããŸããã
5âŠp1âŠ100000 ã§ã¯ãªã
5âŠp1ïŒp2âŠ100000 ã§èšç®ããŠããŠ
(p1,p2)=(99991,100003)ã®åãæããŠãããããšæãããŸãã
ä¿®æ£ããã以äžã®ããã«ãªããŸããã
5âŠp1âŠ10: 112
5âŠp1âŠ100: 69155
5âŠp1âŠ1000: 36941222
5âŠp1âŠ10000: 27951351491
5âŠp1âŠ100000: 22415801611632
5âŠp1âŠ1000000: 18613426663617118
5âŠp1âŠ10000000: 15837879736548209451
5âŠp1âŠ100000000: 13817330053429013602371
ããããã§ãéã£ãŠããããã§ããããã©ããŸã§åã£ãŠãããæããŠäžããã
5âŠp1ïŒp2âŠ100000 ã§èšç®ããŠããŠ
(p1,p2)=(99991,100003)ã®åãæããŠãããããšæãããŸãã
ããŒãªãã»ã©
å
šéšåã£ãŠããŸãã
ãèŠäºã§ãã
äžè¬åãããã°ã©ã¹ãã³æ°ã«ã€ããŠãè±èªçã®Wikipedia(https://en.wikipedia.org/wiki/Grassmann_number)ã®Generalisationsã®é
ã§èšèŒããããŸãã
ã°ã©ã¹ãã³æ°ã«ã¯ãå坿æ§ãšãã£ãŠã2ã€ã®ã°ã©ã¹ãã³æ°Îž1,Ξ2ã«ã€ããŠÎž1Ξ2+Ξ2Ξ1=0ãæãç«ã¡ãç¹ã«ã°ã©ã¹ãã³æ°ã«ã¯Îž^2ïŒ0ãšããåªé¶æ§ããããŸããnåã®ã°ã©ã¹ãã³æ°ããæãã°ã©ã¹ãã³ä»£æ°ã§ã¯2^nåã®åºåºãå«ãŸãã2^nÃ2^nè¡åã§è¡šçŸãããŸãã
äžè¬åãããã°ã©ã¹ãã³æ°ã¯ãΞ^NïŒ0(N>2)ã§ãΞ_{i1},Ξ_{i2},...,Ξ_{iN}ã®ç©ã®å
šãŠã®é åã®ç·åã«ã€ããŠÎž_{i1}Ξ_{i2}...Ξ_{iN}ïŒÎž_{iN}Ξ_{i1}Ξ_{i2}ïŒ...ïŒ0ãæãç«ã¡ãŸãã
Wikipediaã§ã¯ç¹ã«Îž^3ïŒ0ã®å ŽåãåãäžããããŠããŠãΞ1,Ξ2ã®2ã€ã®äžè¬åã°ã©ã¹ãã³æ°ãå«ã代æ°ã¯10Ã10è¡åã§è¡šçŸãããããã§ãããΞi^3ïŒ0(i=1,2)ã®å Žåã¯ãWikipediaã«ããΞ1Ξ2^2+Ξ2Ξ1Ξ2+Ξ2^2Ξ1ïŒ0ãšããæ¡ä»¶ãããã³ãΞ2Ξ1^2+Ξ1Ξ2Ξ1+Ξ1^2Ξ2ïŒ0ãšããæ¡ä»¶ã課ãã ãã§ã¯åºåºãç¡éåã«ãªã£ãŠããŸãã(Ξ1Ξ2)^3ïŒ(Ξ2Ξ1)^3ïŒ0ãšããæ¡ä»¶ãããã«èª²ããŠãåºåºã¯23åãšãªããŸããåºåºã10åãšãªãã«ã¯ãWikipediaã«ããΞ1Ξ2^2ïŒ-(1/2)Ξ2Ξ1Ξ2ïŒÎž2^2Ξ1ãšããæ¡ä»¶ãããã³ãΞ2Ξ1^2ïŒ-(1/2)Ξ1Ξ2Ξ1ïŒÎž1^2Ξ2ãšããæ¡ä»¶ãããã«èª²ãå¿
èŠãããããã®ãšãã10åã®åºåºã¯1,Ξ1,Ξ2,Ξ1^2,Ξ1Ξ2,Ξ2Ξ1,Ξ2^2,Ξ1^2Ξ2,Ξ2^2Ξ1,Ξ1^2Ξ2^2ã§è¡šãããŸãã
Ξ1Ξ2^2ïŒ-(1/2)Ξ2Ξ1Ξ2ïŒÎž2^2Ξ1ãšããæ¡ä»¶ãããã³ãΞ2Ξ1^2ïŒ-(1/2)Ξ1Ξ2Ξ1ïŒÎž1^2Ξ2ãšããæ¡ä»¶ã¯ã©ã®ããã«å°ãåºãããã®ã§ããããã
Ξi^3ïŒ0(i=1,2)ã®å Žåã®äžè¬åã°ã©ã¹ãã³ä»£æ°ã¯10åã®åºåºããã¡ãŸãããΞi^3ïŒ0(i=1,2,3)ã®å Žåãããã³ãΞi^4ïŒ0(i=1,2)ã®å Žåã¯äœåã®åºåºãããã®ã§ããããã
åã倧ããã®æ£å
è§åœ¢ã®æ¿ã100äžåäœã£ãŠããã
åæ¿ã®äžå€®ã«1ããé çªã«100äžãŸã§ã®æ°åã
æžãããŠãããã®ãšããã
ãã®ããŒã¹ãæ¬¡ã®æ§ã«äžŠã¹ãŠè¡ããã®ãšããã
1ãšæžãããããŒã¹ããŸãäžå€®ã«çœ®ããïŒäžäžã«å¹³è¡ç·ãããæ§ã«ããŠãã)
æèšã®12ã®äœçœ®ããåæèšåšãã«å€åŽã«2,3,4,5,6,7ãšæžãããããŒã¹ã
蟺ã«åãããŠçœ®ããŠããã
次ã«ããŸã12æã®äœçœ®ããïŒ2ã®çªå·ã®ããŒã¹ã®äžã«ãªãïŒåæ§ã«2åšç®ãš
ãªãããã«æ°åã®8,9,10,11,12,13,14,15,16,17,18,19ã®ããŒã¹ã1é±ç®
ã®åããŒã¹ã®åèŸºã«æããŠåæèšåšãã«çœ®ããŠããã
ãããç¹°ãè¿ã100äžåã®ããŒã¹ãããã®å·£ç¶ã«çœ®ããã巚倧ãªãã®ã
åºæ¥äžããã(æ³åã ãã«ããŠäžãããå®éäœããªãããã»ã»ã»)
ããã§åããŒã¹ã¯ã©ããåšãã6ã€ã®ããŒã¹ãåãå²ãã ç¶æ
ïŒäžçªå€åŽã¯äŸå€ãšãªããŸãã)
ãªã®ã§æ¬¡ã«äžå€®ã®æ°åãšãããåãå²ãã§ãã6åã®ããŒã¹ã®æ°åã®é¢ä¿ã«çç®ããã
äŸ
äžå€®ã®æ°åãïŒ
ãªããã®åšãã«ã¯2,3,4,5,6,7ãããã
ããã§ååšããšäžå€®ã®æ°åã®å·®ãã¿ããš
1,2,3,4,5,6ãªã®ã§ãã®äžã«ã¯2,3,5ã®3åã®çŽ æ°ãçºçããã
次ã«äžå€®ã®æ°åã2
ãªããã®åšãã«ã¯
8,9,3,1,7,19ãããããšã«ãªãã®ã§ããã®å·®ã¯(絶察å€ã§åŠç)
6,7,1,1,5,17ãããã¯ã7,5,17ã®3åã®çŽ æ°ããšããã
äžå€®ã®æ°åã3
ãªãåšãã¯
9,10,11,4,1,2ã®æ°åãªã®ã§å·®ã¯
6,7,8,1,2,1ããä»åºŠã¯çŽ æ°ã¯2åãšãªãã
ãããã詊ããŠããã°çŸããçŽ æ°ã®æ°ã¯æå€§ã3åãŸã§ã§ããã以äžã¯çºçããªãã
ãªãäžå€®ã8ãªãåšãã¯
20,21,9,2,19,37ã®æ°åã®ããŒã¹ãªã®ã§å·®ã¯
12,13,1,6,11,29ã§ããã3åã®çŽ æ°ãçºçããŠããã
ããŠããã§åé¡ã§ãã
äžå€®ã®ããŒã¹ãšåãã®6åã®ããŒã¹ãšã®å·®ã3åã®çŽ æ°ãçºçããããã®ã¯ãã®å·šå€§ãª
é
åã«äœåååšããŠããã§ããããïŒ
ãŸããã®äžã§äžå€®ã®æ°åãçŽ æ°ã§ãããã®ã¯ããã€ããã§ããããïŒ
ïŒäžèšã®æ§ã«8ã¯3åã®çŽ æ°ã¯çºçãããã8èªäœã¯çŽ æ°ã§ãªãã®ã§ã«ãŠã³ããããŸããã)
å
šéšã§79åããã®ãã¡äžå€®ãçŽ æ°ã§ãããã®ã¯16åã§ããããã
åšãã«6åæã£ãŠãªããã®ã¯ã©ãããã®ããšæã£ãã®ã§ããã
6åæã£ãŠãªããã®ã§çŽ æ°ã3åãããã®ã¯ãªããã§ããã
é
ççã®ã©ã¹ãã¹ããããããæ£è§£ããã¡ã©ããã«æŽãããšã¯æµç³ã§ãã
å§ãããæ¹ãå
šãæŽãããæ¬åœã«ãã®ã¢ãã«ãå
šéšäœã£ãŠã¿ããããšæãäœ
é ã®äžãæ··ä¹±ããŠãããŸããã
ãšã«ããçŽ æ°ã3åçºçããããã®ãæäœæ¥ã§èŠã€ããŠãããš1,2,8,19,20
ãŸã§ã¯äœãšãæ¢ãåºãããã§ãããæ¬¡ããªããªãããªãã
仿¹ãªã5åšåãå²ããŸã§ã®å€§ããã«æ¡å€§ããŠã¿ããšãã£ãš61ãèŠã€ãã£ãã
ãããŸã§ã¯é£ç¶çã«21,22,23,,60ãäžå¿ãšããŠèª¿ã¹ãŠæ¥ãŠããã®ã§
61ã§3åã«ãªã£ãã®ã¯æ¬åœã«ä¹
ãã¶ããªäºã ã£ãã®ã§ææ¿ããã
ãããŸã§æäœæ¥ã§æ¢ãã¯ãããã®ã®ãã®å
ãããç¶ããæ°åãåºãŸããã§ããã
ã§ãä»ã«ã©ããªæãããã®ãïŒ
ããããŒã¹ãåãå²ãã§ãã6åã®ããŒã¹ã«ã¯ã©ããªç¹ãããæ°åŒã§è¡šçŸã§ããã®ãïŒ
ãããããäœã£ãŠã¿ããä»ãŸã§ã®æäœæ¥ãå
šãŠèªååã§ããããšäœæéããã®åŒ
é ãã«æ©ã¿ç¶ããã
ãããå
šãææãããåºæ¥ãªããã©ããªããŒã¹ãéžãã§ãåšãã®6åã®ããŒã¹ã«æžãããŠ
ããæ°åã¯æ¬åœã«æ°ãŸããã§äžŠãã§ãããïŒæ¬åœã¯èŠåçã«ãã£ãŠããŠã¯ããã
ãããåŒã§è¡šçŸããããšæããšé ãæ··ä¹±ããŠããã)
ãããæäžãç¶æ
ã§ããã
ãµãšèŠã€ãã£ãçªå·ãèµ€ãå¡ã£ãŠãŒãããçºããŠãããšããªãã巚倧ãªããã®å·£ã®
ãããæãšããããã¯äœãçäžã«äžçŽç·ããããã¯ãã®å³æšªã«ãäžçŽç·ã«äžŠã¶ãã§ã¯?
(ãããŸã§ã¯ãã èŠã€ãã£ãæ°åã ãã®æå³ãããªãããã®å Žæã«ã¯ç¡é çã ã£ãã)
ã€ãŸãæ¢ãã¹ãå Žæã¯ãããããšãããæºéãªãæ¢ãã®ã§ã¯ãªãããã®éšåãéäžçã«
調ã¹ãã°äœãšããªããšã»ã»ã»
å·éã«èããŠã¿ãã°æ°åã®çœ®ãæ¹ã12æã®äœçœ®ããã¹ã¿ãŒããããŠããã®åŸã¯é£ç¶çã«
æ°åãåãå²ãã§ããåãå²ã¿çµãã£ããæ¬¡ã®æ°ããŸã12æã®äœçœ®ãžãªã®ã§èšã£ãŠã¿ãã°
ããã§é£ç¶ãšããæ§é ãäžæŠç Žããããšãçºçããå Žã§ãããã
ã€ãŸãé£ç¶åå¿ãé£ãåãã»ãšãã©ã®å Žæã§ã¯çŽ æ°ã3åãçºçããæ§é ã¯èµ·ãã
ãã®æªãæã€12ææ¹åãšãã®å³æšªã§ã®äžçŽç·äžã§ã¯éã«ãã®æªã®ãé°ã§çŽ æ°ã3å
çºçãããå¯èœæ§ãããã®ã ãšæããã
ããŠãããããåã³æŠããå§ãŸããŸããã
12ææ¹åã«äžŠã¶æ°ã¯åŒã§äœããŸããã
åŸã£ãŠãã®äžã€ã®åšããåãå²ã6ããŒã¹ã®åŒãã©ã®æ§ã«ãããããã®ã ãããïŒ
ãããŒããããã®è©Šè¡é¯èª€åŸã«nåšç®ã®12ææ¹åã«ããããŒã¹ãåãå²ã
6ããŒã¹ã®æ°åãïœã®é¢æ°ã§äœãšã衚ãããšã«æåããŸããã
ãããšã¯ãŸãå¥ã«äžèšã®äžå¿ã®å³äžã«ãã£ä»ããŠããããŒã¹ãä»åºŠã¯äžå¿ãšãªã
åãã®6ããŒã¹ãåè£ã§ããã®ã§ãããåšãã«æ¥ã6åã®æ°åããã¯ãnã®é¢æ°ã§
衚çŸããããã§äœãšãæäœæ¥ã§ãã£ãŠãããã®ãèªååã§ããããªèŠéããä»ããŸããã
ããã°ã©ã ããããã®ææãå
ã«ã€ãªãåããèµ°ãããŠã¿ãã61ã®æ¬¡ã¯äœãš128
次ã¯217ãšãšãŠãæäœæ¥ã§ã¯å±ããªãç¯å²ã®ãã®ã次ã
ãšèŠã€ãã£ãŠããŸããã
æ¹ããŠãã®åé¡ãå
è§åœ¢ã§ä»èŸŒãã§èããããŠããæå³ããšãŠãé¢çœãçŸãã
çŽ æ°ã3åã®ç¶æ
ãæªã®2æ¹åã«éäžããŠããŸã察å¿ãèå³ãåŒããŸããã