ããã€ãã®æ¡ä»¶ã®ãã¡ãå°ãªããšã1ã€ãæºãããã¿ãŒã³æ°ãæ±ããã®ã«ãå
é€åçãçšããããŸãã
ã€ãŸãã
ïŒæ¡ä»¶ãã1åéžãã§ããããæºãããã¿ãŒã³æ°ãåºãâŠâŠã®Comb[n,1]ãã¿ãŒã³ã®åèšïŒ
-ïŒæ¡ä»¶ãã2åéžãã§ããããæºãããã¿ãŒã³æ°ãåºãâŠâŠã®Comb[n,2]ãã¿ãŒã³ã®åèšïŒ
+ïŒæ¡ä»¶ãã3åéžãã§ããããæºãããã¿ãŒã³æ°ãåºãâŠâŠã®Comb[n,3]ãã¿ãŒã³ã®åèšïŒ
-âŠâŠ
+(-1)^(n-1)*ïŒæ¡ä»¶ããnåéžãã§ããããæºãããã¿ãŒã³æ°ãåºãâŠâŠã®Comb[n,n]ãã¿ãŒã³ã®åèšïŒ
ã§æ±ããããŸãã
ïŒComb[n,r]ã¯äºé
ä¿æ°ïŒ
ããã®å€åœ¢ã§ãã¡ããã©1ã€ã ãæ¡ä»¶ãæºãããã¿ãŒã³æ°ã¯
1*ïŒæ¡ä»¶ãã1åéžãã§ããããæºãããã¿ãŒã³æ°ãåºãâŠâŠã®Comb[n,1]ãã¿ãŒã³ã®åèšïŒ
-2*ïŒæ¡ä»¶ãã2åéžãã§ããããæºãããã¿ãŒã³æ°ãåºãâŠâŠã®Comb[n,2]ãã¿ãŒã³ã®åèšïŒ
+3*ïŒæ¡ä»¶ãã3åéžãã§ããããæºãããã¿ãŒã³æ°ãåºãâŠâŠã®Comb[n,3]ãã¿ãŒã³ã®åèšïŒ
-âŠâŠ
+(-1)^(n-1)*n*ïŒæ¡ä»¶ããnåéžãã§ããããæºãããã¿ãŒã³æ°ãåºãâŠâŠã®Comb[n,n]ãã¿ãŒã³ã®åèšïŒ
ã§æ±ããããŸãã
ãããŸã§ã¯ç¥ã£ãŠããã®ã§ãããæšæ¥ãã¡ããã©måã ãæ¡ä»¶ãæºãããã¿ãŒã³ãæ±ããå¿
èŠã«åºããããŸããã
ãªããšãªãã®çŽæã§
Comb[m,m]*ïŒæ¡ä»¶ããmåéžãã§ããããæºãããã¿ãŒã³æ°ãåºãâŠâŠã®Comb[n,m]ãã¿ãŒã³ã®åèšïŒ
-Comb[m+1,m]*ïŒæ¡ä»¶ããm+1åéžãã§ããããæºãããã¿ãŒã³æ°ãåºãâŠâŠã®Comb[n,m+1]ãã¿ãŒã³ã®åèšïŒ
+ Comb[m+2,m]*ïŒæ¡ä»¶ããm+2åéžãã§ããããæºãããã¿ãŒã³æ°ãåºãâŠâŠã®Comb[n,m+2]ãã¿ãŒã³ã®åèšïŒ
-âŠâŠ
+(-1)^(n-m)*Comb[n,m]*ïŒæ¡ä»¶ããnåéžãã§ããããæºãããã¿ãŒã³æ°ãåºãâŠâŠã®Comb[n,n]ãã¿ãŒã³ã®åèšïŒ
ããªããšæã£ãã®ã§ãäžãå
«ãããã§è§£çãæåºãããåã£ãŠãããããªãã§ããããããæ¹ããŠèšŒæããããšããŠããªããªãé£ããã§ãã
åççãªèšŒæã¯ãªãããã§ããããïŒ
åºäŒã£ãåé¡
AtCoder Beginner Contest 423 F - Loud Cicada
No.2790DD++9æ15æ¥ 22:40
nçš®é¡ã®æ§è³ªã®ãã¡ã®ãã¡ããã©kçš®é¡ã®æ§è³ªã®ã¿ãä¿æãã
ãªããžã§ã¯ãã®æ°ã e_k ãšããŸãã
ãŸããnçš®é¡ã®æ§è³ªã®ãã¡ã®ãç¹å®ã®kçš®é¡ã®æ§è³ªãä¿æãã
(ãã®kçš®é¡ä»¥å€ã®æ§è³ªãä¿æããŠããŠããã)ãªããžã§ã¯ãã®æ°ã
n_kãšãããã¹ãŠã® k-éšåéå(ãããã®éšåéåã¯å
šéšã§comb(n,k)åãã)
ã«å¯ŸããŠn_kãè¶³ãåããããã®ã N_k ãšããŸãã
ãã®ãšããçåŒ
N_k = Σ[j=kïœâ]comb(j,k)*(e_j) --- (â
)
ãæç«ããŠããŸãã
E(x)=Σ[kâ§0](e_k)*x^kïŒ
N(x)=Σ[kâ§0](N_k)*x^k
ãšããŸãããããããšã
N(x)
=Σ[kâ§0](N_k)*x^k
=Σ[kâ§0](Σ[jâ§k]comb(j,k)*e_j)*x^k
=Σ[jâ§0](e_j)Σ[kâ§0]comb(j,k)*x^k
=Σ[jâ§0](e_j)*(1+x)^j
=E(1+x)
ãšãªããŸãã
ãã£ãŠãE(x)=N(x-1).ã
ãã®ããšããe_kã¯æ¬¡ã®ããã«èšç®ã§ããŸãã
e_k
=[x^k]E(x)
=[x^k]N(x-1)
=[x^k]Σ[jâ§0](N_j)*(x-1)^j
=[x^k]Σ[jâ§0](N_j)*Σ[râ§0](comb(j,r)*(x^r)*(-1)^(j-r))
=Σ[jâ§0](N_j)*(comb(j,k)*(-1)^(j-k))
=Σ[jâ§k](N_j)*(comb(j,k)*(-1)^(j-k))
=N_k-comb(k+1,k)*N_(k+1)+comb(k+2,k)*N_(k+2)- ⊠+(-1)^(n-k)*comb(n,k)*N_n
ãšãªããŸãã
çåŒ(â
)ã®å³å¯ãªèšŒæããäžèšãã¡ã€ã«ã«ãããŸãã
https://www2.math.upenn.edu/~wilf/gfology2.pdf
(ãã¡ã€ã«ã®116ããŒãž 4.2 A generatingfunctionological view of the sieve method)
ãŸãæ¬¡ã®æ¬ã«ããE(x)=N(x-1)ã§ããããšã®èšŒæããããŸãã
ã Combinatorial Enumeration ã(Dover)
Ian P.Goulden, David M.Jackson è
46ããŒãžããã³47ããŒãžïŒã(Chap.2 2.2.28.ããã³ 2.2.29)ã
以äžããããŠã³ããŒããå¯èœã§ãã
https://vdoc.pub/documents/combinatorial-enumeration-4vpn3s5kq2c0
No.2791at9æ18æ¥ 07:45
ãªãã»ã©ã圢åŒçåªçŽæ°ã£ãŠæããããŸãããã
ããããšãããããŸãã
No.2792DD++9æ19æ¥ 16:16
ãã倧åŠå
¥è©Šåé¡ã«
æ£äžè§åœ¢ã®é ç¹ãšå¯Ÿè§ç·ã®äº€ç¹ã§äœãããäžè§åœ¢ã«ã€ããŠ
å°ãªããšã2ã€ã®é ç¹ãæ£äžè§åœ¢ã®é ç¹ã§ãããããªç°ãªãäžè§åœ¢ã¯
äœåãããã
ãšããåé¡ãåãããã
ãã ããã«äžããããè§£çã¯æ£äžè§åœ¢ã®7ã€ã®é ç¹ãšäžã«çºçãã
亀ç¹ãã3ç¹ãéžãã§äœãããäžè§åœ¢ãšã¿ãŠè§£ãããã®ã§ãã£ãã
ããããã®æç« ããã¯æ£äžè§åœ¢ãšåŒãããå
šå¯Ÿè§ç·ã®ç¶æ
ã«ãããŠã®
äžè§åœ¢ãšããŠèããã¹ãã§ã¯ãªãããšæãããŠããŸããŸãã
ããã§çãããž
äžèšã®è§£éãšãäžèšã§ã®è§£éãããå Žåã®ããããã®åæ°ãæ±ããŠé ãããã®ã§ããã»ã»ã»
No.2784GAI9æ12æ¥ 23:18
èªè§£åã®ãªãç§ã«ã¯
åŸè
ãæ£äžè§åœ¢ãšåŒãããå
šå¯Ÿè§ç·ã®ç¶æ
ã«ãããŠã®äžè§åœ¢ã
ã®æå³ãçè§£ã§ããŸããã
åè
ãæ£äžè§åœ¢ã®7ã€ã®é ç¹ãšäžã«çºçãã亀ç¹ãã3ç¹ãéžãã§äœãããäžè§åœ¢ã
ãšã®éããæããŠäžããã
ïŒåè
ã®ã¿ã«å«ãŸãããã®ããããã¯åŸè
ã®ã¿ã«å«ãŸãããã®ã®äŸããé¡ãããŸããïŒ
No.2785ãããã9æ13æ¥ 00:52
ç§ãæ¥æ¬èªã®äœ¿ãæ¹ã«äžå®ãæ±ããæéäžè¶³ã®åãããããŸããã
åŸè
ã®æå³ã¯
ãæ£äžè§åœ¢ãšåŒãããå
šå¯Ÿè§ç·ã®ç¶æ
ã
ã«ãããŠã¯å¯Ÿè§ç·ã«ãã£ãŠäžã«35åã®äº€ç¹ãçºçããäžå¿éšã§ã¯
å°ããæ£äžè§åœ¢ãäœãããŠããå³åœ¢ãçŸããŠããŸãã
åŸã£ãŠèãããäžè§åœ¢ã¯ä»ã®ç¶æ
ã«ãããŠå³ã®äžã«çºèŠã§ãããã®ã«
éã£ãŠã®äžè§åœ¢ãã«ãŠã³ãããããšã«ãªããŸãã
ã§ãããäžå¿éšã®å°ããæ£äžè§åœ¢ã®äº€ç¹ã®7ã€ãã3ã€ãéžãã§åºæ¥ã
äžè§åœ¢ã¯å¯Ÿè±¡å€ã«ããã
ã€ãŸã
åè
ã¯åºæ¥ã亀ç¹ãå
ã«äœãããäžè§åœ¢ã®ç·æ°
åŸè
ã¯åºæ¥ãå³åœ¢ã«å«ãŸããäžè§åœ¢ã®åœ¢ç¶ã®ç·æ°
ã®ãã¥ã¢ã³ã¹ã§ãã
No.2786GAI9æ13æ¥ 08:38
ãããªãã°ããšããããå
ã®å顿ã
ãæ£äžè§åœ¢ã®é ç¹ãšå¯Ÿè§ç·ã®äº€ç¹ã§äœãããäžè§åœ¢ã«ã€ããŠã
ã®ããã«ãç¹ã§äœããããäžè§åœ¢ãšèšã£ãŠããŸãã®ã§ã
å
ã®åé¡ã®è§£éã¯åè
ã§ããã
# 察象ããç¹ãã®ã¿ã®ããã蟺ããã察è§ç·ãã¯é¢ä¿ãªããã€ãŸã
# 蟺ã察è§ç·ããªã42åã®ç¹ãæ£ãã°ã£ãŠããç¶æ
ãã
# ïŒäžçŽç·äžã«ãªãïŒ3ç¹ãéžãã§çµã³ã
# äžè§åœ¢ãæããšããããšã«ãªããšæããŸãã
ããåŸè
ã®è§£éãªãã°ãç¹ãã«èšåããå¿
èŠããããŸããã®ã§
ãæ£äžè§åœ¢ã®èŸºãšå¯Ÿè§ç·ã§äœãããäžè§åœ¢ã
ãšè¡šçŸããããšæããŸãã
åŸè
ã®å Žåãèãéãããªããã°
3ç¹ãæ£äžè§åœ¢ã®é ç¹ â 7C3å
2ç¹ãæ£äžè§åœ¢ã®é ç¹ â 7C4Ã4å
èš175å
ãšãªãæ°ãããŸãã
No.2787ãããã9æ13æ¥ 14:36
> 2ç¹ãæ£äžè§åœ¢ã®é ç¹ â 7C4Ã4å
ãã®èšç®åŒã ãã§åŠçå¯èœãªçç±ã解説ããŠäžããã
ã§ãããåè
ã®å Žåã®èšç®æ¹æ³ãæããŠäžããã
No.2788GAI9æ14æ¥ 07:00
2ç¹ãæ£äžè§åœ¢ã®é ç¹ã§æ®ã1ç¹ã察è§ç·ã®äº€ç¹ããã€ãã®å¯Ÿè§ç·ã
æåã®2ç¹ããåºãŠããç·ãªãã°ãããã2æ¬ã®å¯Ÿè§ç·ã®å察åŽã¯
æ£äžè§åœ¢ã®é ç¹ãªããã§ããããããšããã4ã€ã®é ç¹ãšå¯Ÿè§ç·ã®
亀ç¹ãã4ã€ã®äžè§åœ¢ãæ§æãããããšãããããŸãã
ãã®å¯Ÿå¿ã«ã¯éè€ã¯ãããŸããã®ã§ã7C4Ã4ã§èšç®ãããããšã«ãªããŸãã
åè
ã®èšç®ã¯
察è§ç·ã®äº€ç¹ã2é ç¹ãéãçŽç·äžã«ããå Žåãå«ãããšã
å
šéšã§7C2Ã35å
ãã®ãã¡å¯Ÿè§ç·ã®äº€ç¹ã2é ç¹ãéãçŽç·äžã«ãããã®ã¯
亀ç¹1ã€ã«ã€ã2åæ°ããããŠããã®ã§ã
1é ç¹ã察è§ç·ã®äº€ç¹ã§ãããã®ã¯ 7C2Ã35-35Ã2=665å
ãã¹ãŠæ£äžè§åœ¢ã®é ç¹ã§ãããã®ã¯7C3=35åãªã®ã§ã
æ±ããåæ°ã¯665+35=700å
No.2789ãããã9æ14æ¥ 08:34
ãa,bãèªç¶æ°ãšãããšãã
ïœ/aãšã(2a+b)/(a+b)ãšã®éã«ãâïŒããååšãããïŒåå€å±åžå€§ïŒ
ããã§ãããâïŒã¯ãã©ã®ãããªåŒã®éã«ããã§ããããïŒ
No.2762ks8æ15æ¥ 17:12
â3ã¯b/aãš(3a+b)/(a+b)ã®éã«ãããšæããŸãã
ããäžè¬ã«
ânã¯b/aãš(na+b)/(a+b)ã®éã«ãããšæããŸãã
No.2763ãããã8æ15æ¥ 18:57
a,b ã¯æ£ã®æ°ã§ aân â b ã§ãããšãã
pân > q ãæºããæ£ã®æ° p,q ã«å¯ŸããŠã
ân 㯠b/a ãš (npa+qb)/(qa+pb) ã®éã«ããã
ãã£ãŠã次ã®ããã«ããããäœãããã§ããã
â3 㯠b/a ãš 3(2a+b)/(3a+2b) ã®éã«ããã
â3 㯠b/a ãš (9a+5b)/(5a+3b) ã®éã«ããã
â3 㯠b/a ãš 3(7a+4b)/(12a+7b) ã®éã«ããã
No.2764ããã²ã8æ16æ¥ 01:55
é£åæ°å±éãšé¢ä¿ããŠããã®ãããããŸããã
No.2765Dengan kesaktian Indukmu8æ17æ¥ 09:23
pân > q ãæºããæ£ã®æ° p,q ã«å¯ŸããŠã
(n*p*a+q*b)/(q*a+p*b)
ã®åæ°ãã©ã®æ§ãªåœ¢ãæãã®ãã調ã¹ãŠè¡ããš
ïŒäœãn=3ãšããŠèª¿æ»ãããã®)
[p,q]=[2,3]=>(6*a+3*b)/(3*a+2*b)
[3,4]=>(9*a+4*b)/(4*a+3*b)
[3,5]=>(9*a+5*b)/(5*a+3*b)
[4,5]
[4,6]
[5,6]
[5,7]
[5,8]
[6,7]
[6,8]
[6,9]
[6,10]
[7,8]

ã®æ§ã«åpã«å¯ŸããŠåæ°ãæ§æå¯èœãªqã®æå€§å€ã远ã£ãŠãããš
3,5,6,8,10,12,13,15,17,19,20,22,24,25,
ãã®æ°åãã¡ããã©A022838;Beatty sequence forãsqrt(3)
ã«å¯Ÿå¿ããæ°åãšç¹ãã£ãŠããŸããã
sqrt(3)ç¹ããã§ã¡ãã£ãšé¢çœãæããŸããã
No.2766GAI8æ17æ¥ 10:31
a,b ã¯æ£ã®æ°ã§ aân â b ã§ãããšãã
pân > q ãæºããæ£ã®æ° p,q ã«å¯ŸããŠã
ân 㯠b/a ãš (npa+qb)/(qa+pb) ã®éã«ããã
蚌æãæžããŠãããŸãããã
ç°¡åãªã®ã§ã
Y
= (ân - b/a) * (ân - (npa+qb)/(qa+pb))
= (ân - b/a) * (-1) * pa/(qa+pb) * (ân - b/a) * (ân - q/p)
= (-1) * pa/(qa+pb) * (ân - q/p) * (ân - b/a)^2
ãšããã
ããã§ã
pa/(qa+pb) > 0,
ân - q/p > 0,
(ân - b/a)^2 > 0
ãªã®ã§ã
Y < 0
ãšãªãã
ãân > b/a ã〠ân < (npa+qb)/(qa+pb)ã
ãããã¯
ãân < b/a ã〠ân > (npa+qb)/(qa+pb)ã
ã®ãããããæãç«ã¡ã
ân ã b/a ãš (npa+qb)/(qa+pb) ã®éã«ããããšããããã
No.2767ããã²ã8æ18æ¥ 21:12
b/aãš(2a+b)/(a+b)ã«éã«âïŒãããã
(2a+b)/(a+b)ã«è¿ãããšããèžãŸããŠããããç¹°ãè¿ããŠ
a=b=1ã§ãå
·äœçã«ãåæ°ã®è¿äŒŒãèšç®ããŸããã
1/1,3/2,7/5,17/12,41/29,99/70.239/169,577/408
1393/985, 3363/2378, 8119/5741, 19601/13860
47321/33461=ïŒ.ïŒïŒïŒïŒïŒïŒïŒïŒïŒâŠ
No.2773ïœïœ8æ28æ¥ 12:07
b/aãš(ma+b)/(a+b)ã«éã«âmãããã
(ma+b)/(a+b)ãæ¥µéå€ãαããã€ãªãã°ããããç¹°ãè¿ããŠ
x(n)=b(n)/a(n)âα ãšçœ®ããšã
x(n+1)=(m+x(n))/(1+x(n)) ãã
αïŒïŒïœïŒÎ±ïŒ/(1ïŒÎ±ïŒ
α^2=m ãšãªãαïŒâïœãåŸãã
No.2777ks9æ1æ¥ 10:26
3乿 ¹ã®å Žåã¯ãã©ããªããŸããïŒ
äŸãã°ãïŒã®ïŒä¹æ ¹
No.2781ks9æ2æ¥ 17:41
2^(1/3)㯠b/a ãš (2a^2+ab+b^2)/(a^2+ab+b^2) ã®éã«ãããŸãã
n^(1/3)㯠b/a ãš (na^2+ab+b^2)/(a^2+ab+b^2) ã®éã§ãã
No.2782ãããã9æ3æ¥ 02:46
䌌ããããªåŒã§ããã
ïŒ2a^2+a*bïŒ/(a^2+b^2)ããïŒã®äžä¹æ ¹ã«åæãããšæããŸããã
å¹ççã§ãªããŠãçŽãã«ããªãŒããŒãããŒããŸãã
çŽ æ°ã®ãŠã£ã«ãœã³ã®å
¬åŒã¿ããã«ãå¹ççã§ãªãããšããããŸããã
No.2783ks9æ3æ¥ 16:30
f(x)=(x+2)*(x-10)^2
g(x)=(x+2)*(x-5)
ã®2ã€ã§å²ãŸããç¯å²å
éšïŒå¢çäžã®ç¹ãå«ãŸããïŒã«ããæŽæ°(x,y)ã®çµã¯äœåãããïŒ
No.2778GAI9æ2æ¥ 13:05
å¹çããããšã¯èšããªããããäžè¬çãªè§£ãæ¹ã§ãã
h(x)=f(x)-g(x)=(x+2)(x^2-21x+105)=x^3-19x^2+63x+210
ãšãããšh(x)=0ã®è§£ã¯x=-2,(21±â21)/2â(21±4.6)/2={8.2,12.8}
ãŸã
i(n)=Σ[x=1ïœn]h(x)=(n(n+1)/2)^2-19n(n+1)(2n+1)/6+63n(n+1)/2+210n
=(3n^3-70n^2+267n+2860)n/12
ãã£ãŠå²ãŸããå
éšã®æ Œåç¹ã®æ°ã¯
Σ[x=-1ïœ12](|h(x)|-1)
=Σ[x=-1ïœ8](h(x)-1)+Σ[x=9ïœ12](-h(x)-1)
=(h(-1)-1)+(h(0)-1)+Σ[x=1ïœ8](h(x)-1)+Σ[x=1ïœ12](-h(x)-1)-Σ[x=1ïœ8](-h(x)-1)
=(-1-19-63+210-1)+(210-1)+Σ[x=1ïœ8](2h(x))-Σ[x=1ïœ12](h(x)+1)
=126+209+2Σ[x=1ïœ8]h(x)-Σ[x=1ïœ12]h(x)-12
=323+2Σ[x=1ïœ8]h(x)-Σ[x=1ïœ12]h(x)
=323+2i(8)-i(12)
=323+16(1536-4480+2136+2860)/12-(5184-10080+3204+2860)
=323+4(2052)/3-(1168)
=323+2736-1168
=1891
No.2780ãããã9æ2æ¥ 16:35
0<xâŠyâŠzã§
A=x+y+z;
B=x*y+y*z+z*x;
C=x*y*z;
ãšãããšã
ã€ãã®é¢ä¿åŒãæºããæŽæ°è§£(x,y,z)ã¯ããããäœãïŒ
(1)A+C=B+25
(2)A+B=C+7
(3)B+C=A+77
ãªãã ãããããè«ççã«æ±ãããã¯ããã¯ã瀺ããªãããé¡ãããŸãã
No.2774GAI8æ28æ¥ 18:01
æ®éã®è§£ãæ¹ã§ãã
(1) x+y+z+xyz=xy+yz+zx+25
æŽçã㊠(x-1)(y-1)(z-1)=24
âŽ(x,y,z)=(2,2,25),(2,3,13),(2,4,9),(2,5,7),(3,3,7),(3,4,5)
(2) x+y+z+xy+yz+zx=xyz+7
xâ§4ãšãããš
x+y+z+xy+yz+zxâŠz+z+z+yz+yz+yz
=3z+3yzïŒyz+3yz=4yzâŠxyzïŒxyz+7
ãšãªãåŒãæãç«ããªãã®ã§xâŠ3
x=1ã®ãšã
1+y+z+y+yz+z=yz+7
y+z=3
âŽy=1,z=2ãªã®ã§(x,y,z)=(1,1,2)
x=2ã®ãšã
2+y+z+2y+yz+2z=2yz+7
(y-3)(z-3)=4
âŽ(y,z)=(4,7),(5,5)ãªã®ã§(x,y,z)=(2,4,7),(2,5,5)
x=3ã®ãšã
3+y+z+3y+yz+3z=3yz+7
(y-2)(z-2)=2
âŽ(y,z)=(3,4)ãªã®ã§(x,y,z)=(3,3,4)
åŸã£ãŠçãã¯
(x,y,z)=(1,1,2),(2,4,7),(2,5,5),(3,3,4)
(3) xy+yz+zx+xyz=x+y+z+77
x(y-1)+y(z-1)+z(x-1)+xyz=77
xyzâŠ77
âŽxâŠ4
x=1ã®ãšã
y+yz+z+yz=1+y+z+77
yz=39
âŽ(y,z)=(1,39),(3,13)ãªã®ã§(x,y,z)=(1,1,39),(1,3,13)
x=2ã®ãšã
2y+yz+2z+2yz=2+y+z+77
(3y+1)(3z+1)=238=2Ã7Ã17
âŽ(y,z)=(2,11)ãªã®ã§(x,y,z)=(2,2,11)
x=3ã®ãšã
3y+yz+3z+3yz=3+y+z+77
(2y+1)(2z+1)=81
âŽ(y,z)=(4,4)ãªã®ã§(x,y,z)=(3,4,4)
x=4ã®ãšã
4y+yz+4z+4yz=4+y+z+77
5yz+3y+3z=81
25yz+15y+15z=405
(5y+3)(5z+3)=414
4âŠyâŠzãã(巊蟺)â§23^2=529ãªã®ã§è§£ãªã
åŸã£ãŠçãã¯
(x,y,z)=(1,1,39),(1,3,13),(2,2,11),(3,4,4)
No.2775ãããã8æ28æ¥ 23:09
é®®ãããªè§£çããããšãããããŸããã
> (1) x+y+z+xyz=xy+yz+zx+25
> æŽçã㊠(x-1)(y-1)(z-1)=24
è§£ãšä¿æ°ãšäœãçµã³ã€ããããªããã®ãïŒ
ãšããããææ¡ããŠ30åã»ã©ããŠãã£ãšãã®åŒã«èŸ¿ãçããŸããã
> (2) x+y+z+xy+yz+zx=xyz+7
> xâ§4ãšãããš
> x+y+z+xy+yz+zxâŠz+z+z+yz+yz+yz
> =3z+3yzïŒyz+3yz=4yzâŠxyzïŒxyz+7
> ãšãªãåŒãæãç«ããªãã®ã§xâŠ3
ãã®xã®è©äŸ¡ããã®æ§ã«é®®ããã«æãã€ããã®ãç§ã«ã¯é©ãã§ãã
> (3) xy+yz+zx+xyz=x+y+z+77
> x(y-1)+y(z-1)+z(x-1)+xyz=77
> xyzâŠ77
> âŽxâŠ4
ãããxã®è©äŸ¡ã®ä»æ¹ãç®ããé±ã§ãã
ãªããããã«äœ¿ã£ãŠãã宿°25,7,77
ã¯xâŠyâŠzâŠ100
ã®ç¯å²ã§ããã°ã©ã çã«å
šè§£ã調æ»ããåŸ
åºé¡ãšããŠè§£ã倿§ã«æ£ãã°ããã®ãéžãã§èšå®ããŠãããŸããã
èªåã ãã§åçããææ®µãšããããŠä»äººã®æ¹æ³ãæ¯èŒããããšã§
åŠäœã«æ¹åã®äœå°ãç§ããŠããã®ããçåã«æããããŠãšãŠãåèã«ãªããŸãã
No.2776GAI8æ30æ¥ 06:50
äºæ¬¡åŒãXïŒXïŒïŒïŒïŒ41ã
Xã«ã0ãã39ã®ïŒïŒåã®æ°ã«å¯ŸããŠãé£ç¶ããŠå
šãŠçŽ æ°ã«ãªããšãã
ãªã€ã©ãŒã£ãèŠã€ããåŒã§
åããããª
XïŒXïŒïŒïŒïŒPïŒçŽ æ°ïŒãšããŠæé·ã®ããã§ãã
åŒã®åœ¢ãä¿æ°ããå€ããŠãæé·ã§ããããïŒ
ãã£ãšãé·ããé£ç¶ããŠçŽ æ°ãçã¿åºãåŒããããŸããïŒ
No.2768ks8æ22æ¥ 10:43
ããŸãæå³ã®ãªãåŒã§ãããäŸãã°
X(X-79)+1601
ã¯X=0ïœ79ã®80åã§çŽ æ°ã«ãªããŸãã
(远èš)
äžæ¬¡åŒã§ããã°ããããã§ãé·ãé£ç¶ãããããšã¯èšŒæãããŠããŸãã
ïŒãã ããå
·äœå€ã¯æé·ã§27é£ç¶ããããŸã§ããèŠã€ãã£ãŠããŸãããïŒ
No.2769ãããã8æ22æ¥ 20:04
ããããšãããããŸãã
ããããããã®åŒã¯ãïŒïŒæšªãžå¹³è¡ç§»åããŠåŸãããšãã§ããŸããã
å
ã®åŒã¯ãé£ç¶ã§ãªããŠããä»ã®æ°ã§ããçŽ æ°ã«ãªããŸããã
ãã¯ããç¹å¥æãããããŸãã
äºæ¬¡ã®é
ã®ä¿æ°ãå€ããŠãAX^2ïŒBXïŒCãã®åœ¢ã§ã¯
äœãæ°ããçµæããªãã§ããããïŒ
No.2770ks8æ23æ¥ 17:51
å°ããæ°ã«ã€ããŠã¯æ¢çŽ¢ããŠã¿ãŸãããã
40åãé£ç¶ãããã®ã¯ä»ã«èŠã€ãããŸããã§ããã
ä»ã§èŠã€ãã£ãæå€§ã¯2x^2+29ã®29é£ç¶(x=0ïœ28)ã§ãã
No.2771ãããã8æ24æ¥ 01:07
éªéã§ããæ¬¡ã®æ§ãªäºæ¬¡åŒã§ã¯éäžãã€ãã¹ã®ç¬Šå·ã¯åãããå€ãšããŠã¯çŽ æ°ã
å
æãããã®ãäœãšãèªããŠãããšé£ç¶45ãšã43ãšãã¯ããããã§ãã
gp > f1(x)=36*x^2-810*x+2753
gp > for(x=0,45,print(x";"f1(x)" ; "isprime(f1(x))))
0;2753 ; 1
1;1979 ; 1
2;1277 ; 1
3;647 ; 1
4;89 ; 1
5;-397 ; 0ã(ãã€ãã¹ãé€ããšçŽ æ°ãšãªã)
6;-811 ; 0
7;-1153 ; 0
8;-1423 ; 0
9;-1621 ; 0
10;-1747 ; 0
11;-1801 ; 0
12;-1783 ; 0
13;-1693 ; 0
14;-1531 ; 0
15;-1297 ; 0
16;-991 ; 0
17;-613 ; 0
18;-163 ; 0
19;359 ; 1
20;953 ; 1
21;1619 ; 1
22;2357 ; 1
23;3167 ; 1
24;4049 ; 1
25;5003 ; 1
26;6029 ; 1
27;7127 ; 1
28;8297 ; 1
29;9539 ; 1
30;10853 ; 1
31;12239 ; 1
32;13697 ; 1
33;15227 ; 1
34;16829 ; 1
35;18503 ; 1
36;20249 ; 1
37;22067 ; 1
38;23957 ; 1
39;25919 ; 1
40;27953 ; 1
41;30059 ; 1
42;32237 ; 1
43;34487 ; 1
44;36809 ; 1
45;39203 ; 0
gp > f2(x)=47*x^2-1701*x+10181
gp > for(x=0,45,print(x";"f2(x)" ; "isprime(f2(x))))
0;10181 ; 1
1;8527 ; 1
2;6967 ; 1
3;5501 ; 1
4;4129 ; 1
5;2851 ; 1
6;1667 ; 1
7;577 ; 1
8;-419 ; 0ãã(ãã€ãã¹ãé€ããšçŽ æ°ãšãªã)
9;-1321 ; 0
10;-2129 ; 0
11;-2843 ; 0
12;-3463 ; 0
13;-3989 ; 0
14;-4421 ; 0
15;-4759 ; 0
16;-5003 ; 0
17;-5153 ; 0
18;-5209 ; 0
19;-5171 ; 0
20;-5039 ; 0
21;-4813 ; 0
22;-4493 ; 0
23;-4079 ; 0
24;-3571 ; 0
25;-2969 ; 0
26;-2273 ; 0
27;-1483 ; 0
28;-599 ; 0
29;379 ; 1
30;1451 ; 1
31;2617 ; 1
32;3877 ; 1
33;5231 ; 1
34;6679 ; 1
35;8221 ; 1
36;9857 ; 1
37;11587 ; 1
38;13411 ; 1
39;15329 ; 1
40;17341 ; 1
41;19447 ; 1
42;21647 ; 1
43;23941 ; 0
No.2772GAI8æ24æ¥ 08:47
0.9999ã»ã»ã»ïŒïŒãšãããïŒã¯æçæ°ãªã®ã§ã0.9999ã»ã»ã»ãæçæ°ã
ãã£ãŠã
ãããã ããã 9999999999999999999ã»ã»ã»
0.9999ã»ã»ã»=------------------------------------------
ãããã ããã10000000000000000000ã»ã»ã»
ãŸãã0.9999ã»ã»ã»ïŒïŒããã
ããããã ãã 9999999999999999999ã»ã»ã»
0.9999ã»ã»ã»=-----------------------------------ïŒïŒ
ããããã ãã10000000000000000000ã»ã»ã»
ãã£ãŠã
9999999999999999999ã»ã»ã»ïŒ10000000000000000000ã»ã»ã»
ãšããã§ã巊蟺ã®åæ¡ã®æ°ã®åã¯ïŒã®åã§ãããã巊蟺ã¯ïŒã®åæ°ã
ãšããããå³èŸºã¯10ã®åæ°ã
ãã£ãŠççŸ
0.9999ã»ã»ã»ïŒïŒã§ã¯ãªãã
ããã«ã
0.9999ã»ã»ã»â ïŒ
ãããã£ãŠã
ïŒïŒ0.999ã»ã»ã»ïŒÎ²
ããŠãβïŒ1ãŒ1/n (ãã ã nã¯èªç¶æ°ïŒããããšããã
ïŒããªãã¡ã0.999ã»ã»ã»ïŒ1/nïŒ
1ãŒ0.999ã»ã»ã»ïŒ1ãŒ1/n=1ãŒ0.9999ã»ã»ã»p
1ãŒ0.999ã»ã»ã»ïŒ1ãŒ0.9999ã»ã»ã»p
0.999ã»ã»ã»ïŒ0.9999ã»ã»ã»pïŒ1/n
ãŸããpã¯10鲿°ã®å®çŸ©ã«ãããïŒãã9ã®ããããã§ãªããã°ãªããªãã
ãšãããã
0.999ã»ã»ã»ã¯ãã¹ãŠ9ãªã®ã§ã0.9999ã»ã»ã»ïœãæºãã9ããããããªpã¯ååšããªãã
ãã£ãŠã0.999ã»ã»ã»ïŒ0.9999ã»ã»ã»p
ãããã£ãŠã1/nã¯ååšããªãã
ã€ãŸããïŒïŒïŒïŒïŒã»ã»ã»ãšïŒã®éã«ïŒïŒïŒïŒïŒã»ã»ã»ããããããª1/nããããšããããšã¯ãªããã€ãŸããéãã€ãªããã®ã¯ãªããšããäºã§ãé£ç¶ã§ãªã(0.9999ã»ã»ã»â ïŒããæããã§ãã)ãããã¯é¢ããŠãããšããäºã§ãããïŒÎ²ïŒïŒïŒ
ããã¯ãã©ãããããšããšãããš10é²å°æ°ã¯éååãããŠãããšããäºã§ããã
远èšïŒ
ãã¡ãããäœé²æ°ã§ããæãç«ã¡ãŸãã
ããšãã°ãm+1鲿°ãªãã
0.mmmmmã»ã»ã»â 1
ããšãã°ãïŒ=7+1鲿°ãªãã
0.7777ã»ã»ã»â 1
ããšãã°ã5=4+1鲿°ãªãã
0.4444ã»ã»ã»â 1
m+1鲿°ã«ãããŠãäœåãèšæ³ã§ã¯ãå®çŸ©ã«ãã£ãŠã0.mmmã»ã»ã»ã»ïŒïŒãïŒãã ããäœåãèšæ³ã®åæ¡ã®å€ãmã®ãšãã0.mmmã»ã»ã»ã»ã®æ¬¡ã¯æ¡äžããããŠïŒã§ããããïŒ
ããŠãããä»®ã«ãïŒãš0.mmmã»ã»ã»ã»ã®éã«0.mmmã»ã»ã»pãšããå°æ°ããããšãããšã
0.mmmã»ã»ã»ã»ïŒ0.mmmã»ã»ã»pïŒïŒ
ãšããã§ããæ¡ã®pã¯m+1鲿°ãªã®ã§å®çŸ©ã«ãã£ãŠ0ãmã§ãªããã°ãªããªãã
ãããã0.mmmã»ã»ã»ã»ã¯ãã¹ãŠã®æ¡ãmãªã®ã§ãããæ¡ã®pã¯m+1ã§ãªããã°ãªããªãããããã¯ïœïŒïŒé²æ°ã®å®çŸ©ã«ãã£ãŠäžå¯èœã§ããã
ãããã£ãŠã0.mmmã»ã»ã»pã¯ååšããªãã
ãŸãã0.mmmã»ã»ã»ã»ïŒïŒããã1ãŒ0.mmmã»ã»ã»ã»ïŒÎ²>0
ããã«ãm+1鲿°ã«ãããŠãå°æ°ã¯éååãããŠããã
No.2761ããããã¯ã¡ã¹ã8æ15æ¥ 11:17
åºãç®ã®ååžã0ãã99ãŸã§å
šãŠã®éè² æŽæ°ãšãªã ãã®ãã®ç確çã§åºçŸãã10é¢ãã€ã¹ã®ãã¢ã¯èªæãªãã®ãé€ããš
A=[0,1,4,5,8,9,12,13,16,17]ããB=[0,2,20,22,40,42,60,62,80,82]
A=[0,1,2,3,4,25,26,27,28,29]ããB=[0,5,10,15,20,50,55,60,65,70]
A=[0,5,10,15,20,25,30,35,40,45]ããB=[0,1,2,3,4,50,51,52,53,54]
A=[0,1,20,21,40,41,60,61,80,81]ããB=[0,2,4,6,8,10,12,14,16,18]
A=[0,5,20,25,40,45,60,65,80,85]ããB=[0,1,2,3,4,10,11,12,13,14]
A=[0,1,10,11,20,21,30,31,40,41]ããB=[0,2,4,6,8,50,52,54,56,58]
ã®6çµããããŸãããã6çµã®10é¢ãã€ã¹ãã¢ãDMMã®3Dããªã³ããµãŒãã¹ã§ã€ãããŸããã
https://make.dmm.com/market/item/1707731/
https://make.dmm.com/market/item/1707732/
No.2759kuiperbelt8æ11æ¥ 17:53
é»åéã³
789
456
123
ã®ããã«ããã¿ã³ãã䞊ãã§ãããåãæ°ã®,å°»åãã¿ããã«
789+963+321+147ïŒ2220
896+632+214+478ïŒ2220
ã©ãããã§ããå³åãã§ããå·Šåãã§ã2220
No.2754KS8æ9æ¥ 06:55
äœéãã§ãã§ããŸããïŒ
555+555+555+555=2220
222+444+666+888=2220
111+333+777+999=2220
No.2758ks8æ10æ¥ 21:00
ãããå£ããµããããŸããã
ã©ããããããªéçãèŠã€ããŠããããšããâŠâŠ
No.2753Dengan kesaktian Indukmu8æ8æ¥ 23:14
èªåã®èšç®æ©ã§ã¯280ã«ãªã£ãŠããŸãïŒ
gp > floor(sqrt(sqrt(exp(exp(2)))))!/floor(log(sqrt(exp(exp(2)))))+floor(sqrt(exp(exp(2))))
%193 = 280
ïŒå
ããïŒ
gp > floor(sqrt(sqrt(exp(exp(2)))))!
%194 = 720
gp > floor(log(sqrt(exp(exp(2)))))
%195 = 3
gp > floor(sqrt(exp(exp(2))))
%196 = 40
No.2755GAI8æ9æ¥ 07:09
æåŸã®exp 2ã«ã€ããŠããã«ãã³ã¯[ã]ã§ããã€ãŸã
floor(sqrt(exp(exp(2)))) = 40
ã§ã¯ãªã
floor(sqrt(exp(floor(exp(2))))) = 33
ã§ãã
No.2756ãããã8æ9æ¥ 07:24
ãéã³ã§2ã5åã䜿ã£ãŠã¿ãŸããã
gp > round(exp(2+2)/(log(2)-sin(2)-cos(2)))
%253 = 273
No.2757GAI8æ10æ¥ 08:51