äºé
ä¿æ°ã®äžå€®å€ã§ãã
Central binomial coefficients: binomial(2*n,n) = (2*n)!/(n!)^2 (;A000984)
ããšãŠãååšçÏãšå¯æ¥ãªé¢ä¿ãä¿æããŠããããšãèµ·ãã£ãŠããããšã«
ãªã£ãŠããæš¡æ§ã§ãã
次ã®ç¡éçŽæ°åãèµ·ããããã§ãã
2^2/(1*2C1)+2^3/(2*4C2)+2^4/(3*6C3)++2^(n+1)/(n*2nCn)+=Ï
ãããå
·äœçãªæ°å€ã§ç€ºããš
2+2/3+4/15+4/35+16/315+16/693+32/3003+32/6435+256/109395+256/230945+=Ï
ãèšç®äžæç«ããããã§ãã
ãŸãå°ã圢ãå€ããŠ
2^4/(1*2C1^2), 2^8/(2*4C2^2), 2^12/(3*6C3^2),, 2^(4n)/(n*2nCn^2),
ã®äžè¬é
ã¯n->ooã§ã¯
lim[n->oo]2^(4n)/(n*2nCn^2)=Ï
ã§æç«ã®æš¡æ§ã
æ®éÏãšã¯
1-1/3+1/5-1/7+1/9-=Ï/4
1+1/2^2+1/3^2+1/4^2+1/5^2+=Ï^2/6
çã§é¡ã衚ãããšã§ãã芪ããã§ããªãã£ãã®ã§ãæ°é®®ãªæèŠã«å
ãŸããŸããã
æŽã«å®ç©åãšãç¹ãããŠ
Ï*2nCn=â«[x=-1->1](2*x)^(2n)/â(1-x^2)dx
ãèµ·ããããã§ãã
èªæã§ãªããäºçµã®æ°ã«ã€ããŠã
äŸãïŒïŒïŒïŒïŒïŒïŒãšïŒïŒïŒïŒïŒïŒïŒ
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒã2ÃïŒÃïŒïŒïŒÃïŒÃïŒ
ãæãç«ã€ã
ä»ã«åãšç©ãæãç«ã€çµãäºæ¡ãäžæ¡ããããŸããïŒ
ãããã§ããããããªæãã§ãããå®éæ¢çŽ¢ãããšãããã§ããããŸãã
äŸãã°
10+16+39=12+13+40=65
10*16*39=12*13*40=6240
100+108+119=102+105+120=327
100*108*119=102*105*120=1285200
ããããããããã€ãããããšãããããŸãã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒã»ïŒã»ïŒïŒïŒïŒã»ïŒã»ïŒïŒïŒïŒ
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒã»ïŒã»ïŒïŒïŒã»ïŒã»ïŒïŒïŒïŒïŒ
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒïœ¥ïŒïŒã»ïŒïŒïŒã»ïŒã»ïŒïŒïŒïŒïŒïŒ
ã©ã®ããã«ãæ±ãããããã®ãåãããªããŠã
äžã±ã¿ãåã±ã¿ããããã§ããã
åŸãçŽ å æ°ããïŒïŒïŒïŒïŒïŒïŒãïŒïŒãïŒïŒïŒããããŸããã
ïŒïŒãèå³ã¯å°œããŸãããå
šãŠã®çŽ å æ°ã«ã€ããŠãããããå«ã
çµãããããã§ããã
ïŒåçµ
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒïœ¥ïŒã»ïŒã»ïŒïŒïŒã»ïŒã»ïŒã»ïŒïŒïŒïŒ
ïŒåçµ
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒã»ïŒã»ïŒã»ïŒã»ïŒïŒïŒã»ïŒã»ïŒã»ïŒã»ïŒïŒïŒïŒ
1ãè¶³ããŠããã°ãäœåã®çµã§ããäœãããã§ããã
äž¡çµã«åãæ°ã䜿ããªãããšæ¡ä»¶ãå€ããã°ã©ããªãã§ããããïŒ
6,7,8åã®çµãäœããŸããïŒ
åæ°ãã4åãããå¢ãããŠããããšããèããŠã¿ãŠãåçŽãªè§£ããããæ¡ä»¶ãå€ããŠããïŒåçµãšïŒåçµãç¹ãã§ããã°ãïŒåçµãã§ãããã§ããã
ïŒåçµã¯ãã©ãããããããã§ããããïŒ
æãŠããªããç¶ãåé¡ã§ãããé£ãããªããŸãã
ããããããŠããããªãå®çã«åºäŒããŸããã
çŽ æ°ã®åã§ãçå·®ã«ãªã£ãŠãããã®
é·ãïŒã®ãã®ã7ïŒ37ïŒ67ïŒ97ïŒ127ïŒ157ãçå·®ã30
ïŒïŒïŒïŒå¹Žã§ãé·ã26ãæé·
ã«ãé¢ããããGreen-Taoã2004
çŽ æ°ã®ã¿ããæ§æãããä»»æã®é·ãã®çå·®æ°åãååšããã
å
·äœçã«ã¯èŠããªãããã©ãååšãããæ°åŠã®ååãã§ãã
5åçµã¯2å+3åã§ããã®ã§ã¯ïŒ
> "ks"ãããæžãããŸãã:
> çŽ æ°ã®åã§ãçå·®ã«ãªã£ãŠãããã®
> é·ãïŒã®ãã®ã7ïŒ37ïŒ67ïŒ97ïŒ127ïŒ157ãçå·®ã30
ãé¢çœãã£ãã®ã§ããã®å
ãæ¢ããŠã¿ãã
7åé£ç¶
[7, 157, 307, 457, 607, 757, 907]
[47, 257, 467, 677, 887, 1097, 1307]
[53, 1103, 2153, 3203, 4253, 5303, 6353]
8åé£ç¶
[61, 9931, 19801, 29671, 39541, 49411, 59281, 69151]
[73, 5953, 11833, 17713, 23593, 29473, 35353, 41233]
[103, 4723, 9343, 13963, 18583, 23203, 27823, 32443]
[199, 9439, 18679, 27919, 37159, 46399, 55639, 64879]
9åé£ç¶
[17, 6947, 13877, 20807, 27737, 34667, 41597, 48527, 55457]
[137, 8117, 16097, 24077, 32057, 40037, 48017, 55997, 63977]
10åé£ç¶
[199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089]
[443, 32783, 65123, 97463, 129803, 162143, 194483, 226823, 259163, 291503]
11åé£ç¶
[1619, 3413489, 6825359, 10237229, 13649099, 17060969, 20472839, 23884709, 27296579, 30708449, 34120319]
[3617, 213827, 424037, 634247, 844457, 1054667, 1264877, 1475087, 1685297, 1895507, 2105717]
12åé£ç¶
[18439, 33291679, 66564919, 99838159, 133111399, 166384639, 199657879, 232931119, 266204359, 299477599, 332750839, 366024079]
13åé£ç¶
[4943, 65003, 125063, 185123, 245183, 305243, 365303, 425363, 485423, 545483, 605543, 665603, 725663]
æ¢ãç¯å²ãäºæ³ãã€ããªãã®ã§ãé©åœãªç¯å²ã§ãã£ãŠããŸãã®ã§ãèŠèœãšããŠãããã®ããããšã¯æãããŸãã
14å以äžã«ææŠããŠããŸããããèªåã§èšå®ããç¯å²ã§ã¯æ¢ãåºãããšã¯åºæ¥ãŸããã§ããã
äœæ¹ãç¶ãåã³è£å
ããé¡ãããŸãã
æ€çŽ¢ããŠããã
146141+54444390*k
äœãã0â€kâ€13
ãäŸç€ºãããŠããŸããã
OEISã«ããã°
ä»ã¿ã€ãã£ãŠããæãé·ãæ°åã¯æ¬¡ã®ãã®ã§ãã
A261152 - OEIS
https://oeis.org/A261152
> "Dengan kesaktian Indukmu"ãããæžãããŸãã:
> æ€çŽ¢ããŠããã
> 146141+54444390*k
> äœãã0â€kâ€13
> ãäŸç€ºãããŠããŸããã
ããããšãããããŸãã
次ãèŠã€ãããªãã¯ãã ããããªã«ãåé
ãé ãé¢ããŠãããšã¯ïŒ
ãªãåé
ã®æ°ã¯å¶æ°çªç®ã®çŽ æ°ã155åå ããå€ãšãªãããšã¯å¶ç¶ãªã®ã§ãããïŒ
gp > vector(155,i,prime(2*i))
%226 =
[3, 7, 13, 19, 29, 37, 43, 53, 61, 71, 79, 89, 101, 107, 113, 131, 139,
151, 163, 173, 181, 193, 199, 223, 229, 239, 251, 263, 271, 281, 293, 311,
317, 337, 349, 359, 373, 383, 397, 409, 421, 433, 443, 457, 463, 479, 491,
503, 521, 541, 557, 569, 577, 593, 601, 613, 619, 641, 647, 659, 673, 683,
701, 719, 733, 743, 757, 769, 787, 809, 821, 827, 839, 857, 863, 881, 887,
911, 929, 941, 953, 971, 983, 997, 1013, 1021, 1033, 1049, 1061, 1069, 1091,
1097, 1109, 1123, 1151, 1163, 1181, 1193, 1213, 1223, 1231, 1249, 1277, 1283,
1291, 1301, 1307, 1321, 1361, 1373, 1399, 1423, 1429, 1439, 1451, 1459, 1481,
1487, 1493, 1511, 1531, 1549, 1559, 1571, 1583, 1601, 1609, 1619, 1627, 1657,
1667, 1693, 1699, 1721, 1733, 1747, 1759, 1783, 1789, 1811, 1831, 1861, 1871,
1877, 1889, 1907, 1931, 1949, 1973, 1987, 1997, 2003, 2017, 2029, 2053]
gp > vecsum(%)
%227 = 146141
ç§ãåŸã§èª¿ã¹ãŠã¿ãã26åé£ç¶ã¯A204189,A261140,A317163,A317164,A317255,A317259,A317914ãèŠã€ãã£ãŠããããã§ããã
ãŸã2019幎4æã«æ°ãã«çºèŠãããé£ç¶27åã®ãã®ãA327760ã«èŒã£ãŠããŸããã
ããã£ãŠå¶ç¶ç¯å²ãããã°æ°ããé·ãã®çå·®æ°åçŽ æ°ãçºèŠã§ããããç¥ããŸãããã
ãé°æ§ã§ãäºåã®çµããèŠã€ãããŸããã
1ïŒ4ïŒ8ïŒ9ïŒ10ïŒ2ïŒ3ïŒ5ïŒïŒïŒ16
1ã»4ã»8ã»9ã»10ïŒ2ã»3ã»5ã»6ã»16
ä»ã«ãããããšã¯æããŸããã
ãã®åé¡ã§ã¯æ£æ¹åœ¢ã«ãªã£ãŠããŸãããå®ã¯é·æ¹åœ¢ãšããæ¡ä»¶ã§ãè§£ãããšãã§ããŸãã
ãã€ã³ã㯠AB ãš DM ãå·Šäžæ¹åã«å»¶é·ããŠäº€ç¹ãäœãããšã
æç¥çå
¬ç«é«æ ¡å
¥è©Šã¯ãªããå³åœ¢åé¡ããããé£ããããã®é·æ¹åœ¢ã®å€ã«ã¯ã¿åºãè£å©ç·ã®åŒãæ¹ãããªãã®é »åºŠã§åºé¡ãããŸãã
ä»ã®éœéåºçã§ã¯ã©ããªãã§ãããïŒ
åŸåããããªã«ãŒãããããã§ããã
DP : PE = 1 : 4
DM : ME = 1 : 1
ãã
DP : PM : ME = 2 : 3 : 5
ãã£ãŠ
â³AMP = â³AEP * (3/8) = 30
ã®æ¹ãæš¡ç¯è§£çã«ã¯ãã䜿ãããå°è±¡ã§ãã
2,3,5,7,11,13,17ã®7åã®çŽ æ°ãèŸæžåŒã«äžŠã¹çŽããš
11,13,17,2,3,5,7
ãšãªãã®ã§ãããæ¹ããŠ
p1=11,p2=13,p3=17,p4=2,p5=3,p6=5,p7=7
ãšçªå·ãæ¯ãä»ãããš
å
šéšã§7åã®çŽ æ°ã§ã¯p7=7
ãªãçŸè±¡ãçºçããã
ããã§
çŽ æ°2ããå§ãçŽ æ°ãå
šéšã§kåéã
ãããèŸæžåŒé åºã«ããŠçªå·ãæ¯ãä»ã
p1,p2,,pk
ãšããæ
pk=kãªãããšãèµ·ããïœãããšïŒã€ã»ã©çºèŠããŠã»ããã
ãããšïŒã€ãã97ãš997ã§æ£ãããã°ããã®æ¬¡ã¯999âŠ(9ã139å)âŠ9997ã€ãŸã10^140-3ããªïŒ
ïŒããããããããããå°ãããã®ãããããïŒ
ãã®3ã€ãæ¢ããåŸã¯ãã諊ããŠããŸããã
ã©ãããŠç¬¬4ã®ãšãã§ããªããã®ãèŠã€ããããã®ãïŒïŒïŒ
ãããããŠ
99999999999999997(=10^17-3)ãããã®ã§ããããïŒ
9999997(=10^990-3)ãããã§ããïŒ
https://stdkmd.net/nrr/9/99997.htm#primeãåèã«ãªããŸããã
> "ãããã"ãããæžãããŸãã:
> ãããšïŒã€ãã97ãš997ã§æ£ãããã°ããã®æ¬¡ã¯999âŠ(9ã138å)âŠ9997ã€ãŸã10^140-3ããªïŒ
> ïŒããããããããããå°ãããã®ãããããïŒ
ããã¯
999âŠ(9ã139å)âŠ9997ã§ããã§ãããïŒ
ãã¿ãŸãã现ããããšã§
> 999âŠ(9ã139å)âŠ9997ã§ããã§ãããïŒ
ãã£ãããéãã§ããåçŽã«ééããŸããã
ããã¯å
èšäºãä¿®æ£ããŸããã
> 99999999999999997(=10^17-3)ãããã®ã§ããããïŒ
ããã¯NGã§ãã
99999999999999997 çªç®ã®çŽ æ°ã¯
4185296581467695521 ã§ããã
ãã以äžã®çŽ æ°ã§
999999999999999989
ããããŸãã®ã§
99999999999999997ã¯æåŸã«ãªããŸããã
999âŠ(9ã139å)âŠ9997 (140æ¡) ã®å Žåã¯ã
999âŠ(9ã139å)âŠ9997 çªç®ã®çŽ æ°ã¯
32*********************** (143æ¡) ãšããæ°ã§ããã
999âŠ(9ã139å)âŠ999 7x (141æ¡)
999âŠ(9ã139å)âŠ999 8x (141æ¡)
999âŠ(9ã139å)âŠ999 9x (141æ¡)
999âŠ(9ã139å)âŠ999 7xx (142æ¡)
999âŠ(9ã139å)âŠ999 8xx (142æ¡)
999âŠ(9ã139å)âŠ999 9xx (142æ¡)
ããã¹ãŠåææ°ã§ããããšã確èªã§ããããã
999âŠ(9ã139å)âŠ9997 ã¯æåŸã«ãªããæ¡ä»¶ãæºãããŠããŸãã
9999997(=10^990-3)ã®å Žåã¯ã
9999997çªç®ã®çŽ æ°ã
çŽ2.29Ã10^993ã§ããããã
9999997x
9999998x
9999999x
9999997xx
9999998xx
9999999xx
9999997xxx
9999998xxx
9999999xxx
ããã¹ãŠåææ°ã§ããããšã確èªã§ããã°OKã«ãªããŸããã
察象ãçµæ§å€ãã®ã§çŽ æ°ãå«ãŸããŠããã®ã§ã¯ãªãããšããæ°ãããŸãã
ãããããããããå°ããã®ãããããããšããã®ã¯ã
999991
ãªã©ã§æ¡ä»¶ãæºãããã®ãããããã°ããšããæå³ã§ããã
æ«å°Ÿã1ã§ãããã確ççã«äœããšæããæªèª¿æ»ã§ãã
ããã ããªã調æ»ããããšã¯ã§ããŸããã
næ¡ã®æåŸã
999989 ãšã
999983 ãšã
999979
ã®ãããªå Žåãªã©èãããšå€§å€ãããªã®ã§èª¿æ»ã¯ãããŸããã
gp > for(i=70,99,if(isprime(10^2*(10^989-1)+i)==1,print1(10^2*(10^989-1)+i",")))
gp > for(i=700,999,if(isprime(10^3*(10^989-1)+i)==1,print1(10^3*(10^989-1)+i",")))
gp > for(i=7000,9999,if(isprime(10^4*(10^989-1)+i)==1,print1(10^4*(10^989-1)+i",")))
ã«å¯Ÿãäœã®åå¿ãèµ·ããªãã£ãã
äžå¿äžã®989æ¡ã®ãã®ã§ãã¡ãããšçŽ æ°ãšå€å®ããŠãããã
gp > isprime(10^990-3)
%53 = 1
å³ã¡
10^990-3çªç®ã«åºçŸããçŽ æ°(994æ¡ã®2ãé ã«ããçŽ æ°)
ããåã«ããçŽ æ°ã§10^990-3ãã倧ããªçŽ æ°ã¯äžåãååšããªããšå€å®ãããçµå±èŸæžåŒé åºã®æåŸã«äžŠã¶ã
ãã£ãŠæ±ããkã®å€ãšããŠ
10^140-3ã®æ¬¡ã«10^990-3ãèªããããã
ãã®å€å®ã§ããã®ã§ããããïŒ
ãªãå±ãªã次ã®çŽ æ°ãåºçŸãããã10^990-3ããåã«èŸæžåŒé åºã§ã¯äœçœ®ããŠãããããã§ãã
999(9ã989å)999199
999(9ã989å)999329
999(9ã989å)9993893
ããã§ããã10^17-3ã§è©Šããšã¡ãããšçŽ æ°ã衚瀺ãããŸãã®ã§ãåé¡ãªããšæããŸãã
ïŒïŒïŒæŽæ°ããçŽ æŽãªé·ãã®èšç®ïŒã
ïŒïŒãšæ±ºãŸã£ããšããã§ã
ãã®åã®ååŸãæ±ããããšã¯å¯èœã§ããããã
AB=AC=4ãâ ABCâŠ30°ã§ããäºç蟺äžè§åœ¢ABCãé©åœã«æãã
â ABCâŠ30°ãªã®ã§BCäžã«AE=2ãâ AEBâ§90°ã§ããç¹Eããšãããšãã§ããã
ãã®ãšãâ³ABCã®å€æ¥åãæããŠãã®åãšçŽç·AEãšã®äº€ç¹ã®ãã¡
Aã§ãªãæ¹ãDãšãããšãDE=6ãšãªãã
ãšããããšãšåãã§ããããåã®ååŸã¯ã4以äžããšããæ±ºãŸãããæ±ããããšã¯ã§ããŸããã
ãããããã
æé£ãããããŸãã
äžã€ã ãæ±ããæ¹æ³ããããŸãã
ããã¯ããã®å³ãæ£ç¢ºã«æžããŠãå®èŠã§æž¬ãã
æ£ç¢ºã«æžããŠããèªèº«ã¯ãããŸããã
çŽïŒã§ããã
ãããªæ¹æ³ããæããããªïŒ
èšç®ã§æ±ããããšãåºæ¥ãªãã®ãªãæåŸã®ææ®µããã
ããŒã€ã³ã°ãæ¥ããïŒïŒŸïŒŸïŒ
ãããããã
æšæ¥ã¯è¶
åéãã»è¶
æ¥ããããããšãæžããŠããŸããŸããã
ãã®å ŽåãååŸã¯å®ãŸããªãç¡æ°ã«ããã®ã§ããã
倧å€ããæ¥ããããéãã§ãã
次å
衚é¢ç©ãããããããäœç©ïŒ
ïŒæ¬¡å
ïŒÏïœ ããããããÏïœ^2
ïŒæ¬¡å
ãïŒÏïœ^ïŒããããã4Ïïœ^ïŒ/3
ïŒæ¬¡å
2Ï^ïŒïœ^ïŒãããÏ^ïŒïœ^ïŒ/2
ïŒæ¬¡å
8Ï^ïŒïœ^ïŒ/3ããããïŒÏ^ïŒïœ^ïŒ/15
ïŒæ¬¡å
Ï^ïŒïœ^5ãããã Ï^ïŒïœ^6/6
ïŒæ¬¡å
ïŒïŒÏ^ïŒïœ^ïŒ/15 ïŒïŒÏ^ïŒïœ^ïŒ/105
éç©åã§ãæ±ããŠã¿ãŸããã
A005021ã瞊ç·ã6æ¬ã®æã暪ç·ãåèšnæ¬åŒããæã®ãã¿ã ããã®ãã¿ãŒã³æ°ãšããŠ
ãã®ãµã€ãã«ç¹ãã£ãŠãããã§ã¯Random Walksã®è§£èª¬ãšãªã£ãŠããããšã«èå³ãæã¡
ã©ããªå
容ãªã®ãèªãã§ã¿ããš
P_6ãšåŒã°ããéïŒçŽç·äž6ç¹A,B,C,D,E,Fã䞊ãã§ãããïŒ
ãAããåºçºã2*n+5(æ©)ã«ãŠFã®å°ç¹ã«å°çããé
æ©ã®ã³ãŒã¹ãäœéãã§ãããïŒ
ãšããããšãããã
n=1ãªãå
šéšã§7æ©ãªã®ã§ã次ã®5ã³ãŒã¹ããããšããã
1;[A, B, A, B, C, D, E, F]
2;[A, B, C, B, C, D, E, F]
3;[A, B, C, D, C, D, E, F]
4;[A, B, C, D, E, D, E, F]
5;[A, B, C, D, E, F, E, F]
ããã§n=2ãªãå
šéšã§9æ©ãªã®ã§ãå
šã³ãŒã¹ãæ§æããŠã¿ãã
1;[A, B, A, B, A, B, C, D, E, F]
2;[A, B, A, B, C, B, C, D, E, F]
3;[A, B, A, B, C, D, C, D, E, F]
4;[A, B, A, B, C, D, E, D, E, F]
5;[A, B, A, B, C, D, E, F, E, F]
6;[A, B, C, B, A, B, C, D, E, F]
7;[A, B, C, B, C, B, C, D, E, F]
8;[A, B, C, B, C, D, C, D, E, F]
9;[A, B, C, B, C, D, E, D, E, F]
10;[A, B, C, B, C, D, E, F, E, F]
11;[A, B, C, D, C, B, C, D, E, F]
12;[A, B, C, D, C, D, C, D, E, F]
13;[A, B, C, D, C, D, E, D, E, F]
14;[A, B, C, D, C, D, E, F, E, F]
15;[A, B, C, D, E, D, C, D, E, F]
16;[A, B, C, D, E, D, E, D, E, F]
17;[A, B, C, D, E, D, E, F, E, F]
18;[A, B, C, D, E, F, E, D, E, F]
19;[A, B, C, D, E, F, E, F, E, F]
ãã®æ§ã«ã€ãã¯n=3ã§ã®11æ©ã§ã®ã³ãŒã¹ã¥ãããããã°å
šéšã§66ã³ãŒã¹
åããn=4ã§ã®13æ©ã§ã®221ã³ãŒã¹
n=5ã§ã®15æ©ã§ã®728ã³ãŒã¹

ãšããã«èŒããããŠããæ°ã®ã³ãŒã¹ã次ã
ãšå€æãããšããããšã«ãªã£ãŠããæ§ã ã
ãŸããããã¿ã ãããé
ã£æãã®æ©ãæ¹ãšç¹ãã£ãŠãããšã¯å€¢ã«ãæããªãã£ãã(䌌ãŠãªãããªããïŒ)
ç§ããã³ã¡ããã«å±ãããã®çªçµãèŠãŠããŠ
瞊ç·ã5æ¬ã暪ç·ã8æ¬ãããªããã¿ã ããã®å
šãã¿ãŒã³æ°ã9841éããã
äžã®ç· 1 | 2 | 3 | 4 | 5
äžã®ç·(1ã®äžãa,,5ã®äžãe)
a; 43.92 | 24.61 |16.53 |10.25 | 4.68
b; 24.61 |25.46 |22.06 |17.61 |10.25
c; 16.53 |22.06 |22.81 |22.06 |16.53
d; 10.25 |17.61 |22.06 |25.46 |24.61
e; 4.68 |10.25 |16.53 |24.61 |43.92
ã®è¡šãæ åã«åºããïŒéæ¢ç»é¢ã«ããŠã¡ã¢ãããïŒ
確ãã«çäžã«åœãããããã°ããããã¹ã¿ãŒãããã°ç¢ºçãé«ãã
ãã®ç¢ºçãã©ããããåºããã®ãè²ã
ææŠããŠããã®ã ãããªããªããã®å€ãæãããããªãã
ãŸã9841ã¯ã©ãããã©ãããŠç®åºãããã®ãªã®ãïŒ
暪ç·ã®ç«äœäº€å·®ã¯ã¢ãªã§ãããïŒ
ããšãã°ã
â å·ŠããïŒæ¬ç®ã®çžŠç·ãšïŒæ¬ç®ã®çžŠç·ãšã®ããã ã«æšªç·ãïŒåã€ãªããããã ããïŒæ¬ç®ã®çžŠç·ãšãã®æšªç·ãšã¯ç«äœäº€å·®ã«ããã
â¡æšªç·ã©ããã§ç«äœäº€å·®ãããã
ç¹ã«ç«äœäº€å·®ã®ã³ã¡ã³ãã¯ç¡ãã£ãã®ã§ãéåžžã®ãã¿ã ã®æšªç·ã®åŒãæ¹ã§èãããã®ã ãšæããŸãã
https://manabitimes.jp/math/1157
ã«ãããš
瞊ç·5æ¬ã暪ç·8æ¬ã§ã®ãã¿ã ããã®è¡ãå
ã®ç¢ºçã¯
P5=
[3/4 1/4 0 0 0]
[1/4 1/2 1/4 0 0]
[ 0 1/4 1/2 1/4 0]
[ 0 0 1/4 1/2 1/4]
[ 0 0 0 1/4 3/4]
ãã
P5^8=
[12155/32768 19449/65536 12393/65536 1581/16384 765/16384]
[19449/65536 8627/32768 3345/16384 9129/65536 1581/16384]
[12393/65536 3345/16384 6995/32768 3345/16384 12393/65536]
[ 1581/16384 9129/65536 3345/16384 8627/32768 19449/65536]
[ 765/16384 1581/16384 12393/65536 19449/65536 12155/32768]
ãããå°æ°ãžçŽã
=
[ 0.37094116 0.29676819 0.18910217 0.096496582 0.046691895]
[ 0.29676819 0.26327515 0.20416260 0.13929749 0.096496582]
[ 0.18910217 0.20416260 0.21347046 0.20416260 0.18910217]
[0.096496582 0.13929749 0.20416260 0.26327515 0.29676819]
[0.046691895 0.096496582 0.18910217 0.29676819 0.37094116]
ãšãªããã§ã¯ãªãããšæããã§ãããã»ã»ã»ïŒ
ãã®ãµã€ãã§ã¯æšªç·ã®åŒãæ¹ãm^néããšèšã£ãŠããŸãã®ã§ã確çååžãéãã®ã§ã¯ãªãã§ããããã
äŸãã°
ââ¡â¡ââ¡â¡ââ¡â¡â
ââââ€â¡â¡ââ¡â¡â
ââ¡â¡ââ¡â¡ââââ€
ââ¡â¡ââââ€â¡â¡â
ââ¡â¡ââ¡â¡ââ¡â¡â
ãš
ââ¡â¡ââ¡â¡ââ¡â¡â
ââ¡â¡ââ¡â¡ââââ€
ââââ€â¡â¡ââ¡â¡â
ââ¡â¡ââââ€â¡â¡â
ââ¡â¡ââ¡â¡ââ¡â¡â
ãå¥ã®ãã®ãšèããŠããã®ã§ã¯ïŒ
# å
šéšãã¡ããšèªãã ããã§ã¯ãããŸããã®ã§ã
# ãããšãã¡ããããªããšãèšã£ãŠãããã容赊äžããã
ãã€ãã¿ãŒæ€çŽ¢ã§èª¿ã¹ãã
ãã³ã¡ããã®çªçµã§ãã¿ã ããã«ã€ããŠè§£èª¬ããå
çã岩æå€§åŠã®çå·¥åŠéšã®å±±äžå
ä¹
ææã§ãããšããããŸããã
OEIS ã®ãµã€ãã§ãã®å
çã®ååã§æ€çŽ¢ããããããããŸããã
https://oeis.org/A006245
A006245 ã®åèæç®ã«ä»¥äžããããããŠããŸããã
ã²ãšã€ã
Katsuhisa Yamanaka, Takashi Horiyama, Takeaki Uno and Kunihiro Wasa, Ladder-Lottery Realization, 30th Canadian Conference on Computational Geometry (CCCG 2018) Winnipeg.
ãµãã€ã
K. Yamanaka, S. Nakano, Y. Matsui, R. Uehara and K. Nakada, Efficient enumeration of all ladder lotteries and its application, Theoretical Computer Science, Vol. 411, pp. 1714-1722, 2010.
ãªã
ladder lotteries ãšã¯ã¢ããã¯ãžã®ããšã§ãã
9841éãã®èšç®ã¯
Σ[i=0ïœ8]Σ[j=0ïœ8-i](i+j)CjÃ9C(i+j+1)=9841
ãšããåŒã§åºããŸããã
iã¯2æ¬ç®ã®çžŠç·ãš3æ¬ç®ã®çžŠç·ã®éã«æãæšªç·ã®æ°ã
jã¯3æ¬ç®ã®çžŠç·ãš4æ¬ç®ã®çžŠç·ã®éã«æãæšªç·ã®æ°ã
(i+j)Cjã¯ã2æ¬ç®ã®çžŠç·ãš3æ¬ç®ã®çžŠç·ã®éã®æšªç·ããš
ã3æ¬ç®ã®çžŠç·ãš4æ¬ç®ã®çžŠç·ã®éã®æšªç·ãã®äœçœ®é¢ä¿ã®å Žåã®æ°ã
9C(i+j+1)ã¯æ®ãã®8-i-jæ¬ã®æšªç·ãã1æ¬ç®ã®çžŠç·ãš2æ¬ç®ã®çžŠç·ã®éããš
ã4æ¬ç®ã®çžŠç·ãš5æ¬ç®ã®çžŠç·ã®éãã«é
眮ããå Žåã®æ°ã§ãã
ãããããããåãã§ãã
ãã®æ°å€ãã¯ããåºãæ°åŒãèŠã€ãããªããŠããã¯ãªã§ãã
åæãããŠé ããŸããã
[i,j] [binomial(i+j,j)"*"binomial(9,8-(i+j))] [2ã€ã®ç©]
0,0 1*9 9
0,1 1*36 36
0,2 1*84 84
0,3 1*126 126
0,4 1*126 126
0,5 1*84 84
0,6 1*36 36
0,7 1*9 9
0,8 1*1 1
1,0 1*36 36
1,1 2*84 168
1,2 3*126 378
1,3 4*126 504
1,4 5*84 420
1,5 6*36 216
1,6 7*9 63
1,7 8*1 8
2,0 1*84 84
2,1 3*126 378
2,2 6*126 756
2,3 10*84 840
2,4 15*36 540
2,5 21*9 189
2,6 28*1 28
3,0 1*126 126
3,1 4*126 504
3,2 10*84 840
3,3 20*36 720
3,4 35*9 315
3,5 56*1 56
4,0 1*126 126
4,1 5*84 420
4,2 15*36 540
4,3 35*9 315
4,4 70*1 70
5,0 1*84 84
5,1 6*36 216
5,2 21*9 189
5,3 56*1 56
6,0 1*36 36
6,1 7*9 63
6,2 28*1 28
7,0 1*9 9
7,1 8*1 8
8,0 1*1 1
åèš 9841
ããã§
i,j=0,2 ã§ã1*84=84
ã®è§£éã
瞊ç·2,3çªç®ã«ã¯0æ¬,3,4çªç®ã«ã¯2æ¬åŒãããŠããã®ã§
1,2ãš4,5éã«ã¯åèš6æ¬ã®çžŠç·ãããã
ããã§
1,2çªéã;4,5çªé
6 ;0
5 ;1
4 ;2
3 ;3
2 ;4
1 ;5
0 ;6
æ¬ã®ç·ãããå Žåã«å¥ããã
ãšããã§2,3çªéã«ã¯i=0ããäžèšã®å·Šã®æ¬æ°ã¯äœã®å¶éããªãåŒãããšãåºæ¥ãã
äžæ¹j=2ããæ¢ã«3,4çªéã«ã¯2æ¬ã®æšªæ£ãåŒãããŠããã
ããã§äžèšã®å³ã®æ¬æ°ã®æšªæ£ãåŒãäœçœ®ã¯ããããéè€çµåããã
3H0=1
3H1=3
3H2=6
3H3=10
3H4=15
3H5=21
3H6=28
ããã®åèšã84ãšãªãã
ãªããšãããäžçºã§9C6=9C3=9*8*7/(3*2*1)=3*4*7=84ãªããã§ããã
åãã
i,j=0,3 ã§1*126=126ã¯
1,2çªéã;4,5çªé
5 ;0
4 ;1
3 ;2
2 ;3
1 ;4
0 ;5
äžèšã®å³ã®æ¬æ°ã®æšªæ£ãåŒãäœçœ®ã¯ããããéè€çµåããã
4H0=1
4H1=4
4H2=10
4H3=20
4H4=35
4H5=56
ãã®åèšã126
åããäžçºã§9C5=9C4=9*8*7*6/(4*3*2*1)=126
ãããªä»çµã¿ã§èšç®ãããŠãããã§ããïœ
5æ¬ã®çžŠç·ã«næ¬ã®æšªç·ãåŒãå Žåã(3^(n+1)-1)/2 éãã§ããïŒ
ïŒïŒæ¬ã®çžŠç·ã«næ¬ã®æšªç·ãåŒãå Žåã(3^(n+1)-1)/2 éãã§ããïŒ
ãããªæå¿«ãªåŒã«ãªããšã¯ïŒ
ã²ãã£ãšããŠæãå·Šã®çžŠç·ãšæãå³ã®çžŠç·ãšãåäžèŠããŠåèšïŒæ¬ã®çžŠç·ãšã¿ãªãããšã«ãã£ãŠå
šãŠã®çžŠç·ã«ã€ããŠå¯Ÿç§°ãšãããã¯ããã¯ã䜿ããšããããšãªã®ã§ããããïŒ
((4-1)^(n+1)-1)/2
-1ãã®ãã¡ã¯ã¿ãŒã®æå³ãåããŸãããâŠâŠ orz
(3^(n+1)-1)/2 éãã®å Žå
n=3ãªã40ãšãªãã
å¥ã§èª¿æ»ããã°ç¢ºãã«40éããšãªããŸããã
äŸã®
(i,j)=
(0,0)-->4
(0,1)-->6
(0,2)-->4
(0,3)-->1
(1,0)-->6
(1,1)-->8
(1,2)-->3
(2,0)-->4
(2,1)-->3
(3,0)-->1
ã§èš40éã
äœã瞊ç·mæ¬,暪ç·næ¬ã®ãã¿ã ããã§ã®äžè¬åŒãäœãããã§ããã
äžè¬åŒãäœãããšæã£ãŠãããã瞊ç·ã奿°ãšå¶æ°ã§ã¯æ§é ãå€ããæ§ã«
æããã®ã§çžŠç·ã4æ¬ã§æšªç·ãnæ¬ã§ããå Žåã®ãã¿ã ããã®çš®é¡ã調ã¹ãŠã¿ããã
n=1-->3
n=2-->8
n=3-->21
n=4-->55
n=5-->144
n=6-->377
ãããŸã§èª¿ã¹ãŠããã®æ°åã¯ãªããèŠãããšãããïŒ
ã§æ€çŽ¢ãããšãã£ããããæ°åfibo(n)ã§ã®
fibo(2*n+2)ã®éšåã察å¿ããŠããã
ãªã
ãã®ååèšæ°ã¯æ¬¡ã®çµåã颿°nCr(=binomial(n,r))ã䜿ããš
gp > T(n,k)=binomial(n+k,2*k-1);
gp > for(n=1,10,S=[];for(k=1,n+1,S=concat(S,[T(n,k)]));print(n"=>"S";"vecsum(S)))
1=>[2, 1];3
2=>[3, 4, 1];8
3=>[4, 10, 6, 1];21
4=>[5, 20, 21, 8, 1];55
5=>[6, 35, 56, 36, 10, 1];144
6=>[7, 56, 126, 120, 55, 12, 1];377
7=>[8, 84, 252, 330, 220, 78, 14, 1];987
8=>[9, 120, 462, 792, 715, 364, 105, 16, 1];2584
9=>[10, 165, 792, 1716, 2002, 1365, 560, 136, 18, 1];6765
10=>[11, 220, 1287, 3432, 5005, 4368, 2380, 816, 171, 20, 1];17711
ã§æ±ããŠããããšã«ãªã£ãŠããã
ããã瞊ç·ã6æ¬ã®å Žåã¯æªèª¿æ»ãªã®ã§ãŸã äœãšãèšããªãã§ãã
瞊ç·ã m æ¬ã§ããå Žåã
ã1 ãã m-1 ãŸã§ã®æ°ãéè€ãèš±ã㊠n å䞊ã¹ãããã ãçŽåã®æ°ãã 2 ã€ä»¥äžå°ãããªã£ãŠã¯ãããªãã
ã®äžŠã¹æ¹ã®ç·æ°ãšäžèŽããŸãã
ãªã®ã§ã
瞊ç·3æ¬
[1,1] * [[1,1],[1,1]]^(n-1) * t[1,1] = 2^n
瞊ç·4æ¬
[1,1,1] * [[1,1,0],[1,1,1],[1,1,1]]^(n-1) * t[1,1,1] = 1/â5 * ( ((3+â5)/2)^(n+1) - ((3-â5)/2)^(n+1) )
瞊ç·5æ¬
[1,1,1,1] * [[1,1,0,0],[1,1,1,0],[1,1,1,1],[1,1,1,1]]^(n-1) * t [1,1,1,1] = (3^(n+1)-1)/2
ãšåºããŸãã
瞊ç·6æ¬ã¯åºæå€ã綺éºã«åºãªãã®ã§é£ãããã
ïŒæ¬ã®çžŠç·ãããå Žåã«ã€ããŠæšªç·ãnæ¬ã®å Žåã®æ§ææ°ã«ã€ããŠèª¿ã¹ãŠã¿ãŸããã
n=1-->5
n=2-->11
n=3-->40
n=4-->145
n=5-->525
n=6-->1900
n=7-->6875
n=8-->24875
ãããŸã§ã§OEISã®ãäžè©±ã«ãªããšn=1ãé€ããŠA136775ãããããããããã«ã¯
Number of multiplex juggling sequences of length n, base state <1,1> and hand capacity 2.
ãšããåãããããã説æãä»ããããŠããã
ãã ããã®æ°å€ã¯ãããããããæ§æãããŠããããã°ã©ã ãåèã«ãããŠããã
F(n)=for(i=0,n,for(j=0,n-i,for(k=0,n-i-j,\
print(i","j","k"=>"binomial(i+j,j)"*"binomial(j+k,k)"*"binomial(n-1,n-(i+j+k))"=>"\
binomial(i+j,j)*binomial(j+k,k)*binomial(n-1,n-(i+j+k))))))
ã§
2,3çªç®ã®éã«ããæšªç·ã®æ°ãi
3,4çªç®ã®éã«ããæšªç·ã®æ°ãj
4,5çªç®ã®éã«ããæšªç·ã®æ°ãkæ¬
ãšããŠ
ãã®æšªç·ã®åãæ¹ãbinomial(i+j,j)*binomial(j+k,k)ã§èµ·ãããŠ
æ®ãã®æ¬æ°n-(i+j+k)ã1,2çªç®ãš5,6çªç®ã®éã«åããå Žåã®å¯èœæ§ãbinomial(n-1,n-(i+j+k))ãš
ããŠããããšã§äžæãåãããšã芳å¯ããŠã¿ãã
ããããã¹ãŠæãåãããããšã§ã(i,j,k)ã«å¯Ÿãããã¿ãŒã³æ°ãæ±ãŸã£ãŠããã®ã§ããã¹ãŠã®ç·åãã
n>=2ã§ã®æ°å€ãæ±ããŠè¡ããŸããã
n=6ã§1900ãšãªãçµéãäžã®è¡šã§ãã(F(6)ããã®è¡šç€º)
(i,j,k)
0,0,0= 1*1*0= 0
0,0,1= 1*1*1= 1
0,0,2= 1*1*5= 5
0,0,3= 1*1*10= 10
0,0,4= 1*1*10= 10
0,0,5= 1*1*5= 5
0,0,6= 1*1*1= 1
0,1,0= 1*1*1= 1
0,1,1= 1*2*5= 10
0,1,2= 1*3*10= 30
0,1,3= 1*4*10= 40
0,1,4= 1*5*5= 25
0,1,5= 1*6*1= 6
0,2,0= 1*1*5= 5
0,2,1= 1*3*10= 30
0,2,2= 1*6*10= 60
0,2,3= 1*10*5= 50
0,2,4= 1*15*1= 15
0,3,0= 1*1*10= 10
0,3,1= 1*4*10= 40
0,3,2= 1*10*5= 50
0,3,3= 1*20*1= 20
0,4,0= 1*1*10= 10
0,4,1= 1*5*5= 25
0,4,2= 1*15*1= 15
0,5,0= 1*1*5= 5
0,5,1= 1*6*1= 6
0,6,0= 1*1*1= 1
1,0,0= 1*1*1= 1
1,0,1= 1*1*5= 5
1,0,2= 1*1*10= 10
1,0,3= 1*1*10= 10
1,0,4= 1*1*5= 5
1,0,5= 1*1*1= 1
1,1,0= 2*1*5= 10
1,1,1= 2*2*10= 40
1,1,2= 2*3*10= 60
1,1,3= 2*4*5= 40
1,1,4= 2*5*1= 10
1,2,0= 3*1*10= 30
1,2,1= 3*3*10= 90
1,2,2= 3*6*5= 90
1,2,3= 3*10*1= 30
1,3,0= 4*1*10= 40
1,3,1= 4*4*5= 80
1,3,2= 4*10*1= 40
1,4,0= 5*1*5= 25
1,4,1= 5*5*1= 25
1,5,0= 6*1*1= 6
2,0,0= 1*1*5= 5
2,0,1= 1*1*10= 10
2,0,2= 1*1*10= 10
2,0,3= 1*1*5= 5
2,0,4= 1*1*1= 1
2,1,0= 3*1*10= 30
2,1,1= 3*2*10= 60
2,1,2= 3*3*5= 45
2,1,3= 3*4*1= 12
2,2,0= 6*1*10= 60
2,2,1= 6*3*5= 90
2,2,2= 6*6*1= 36
2,3,0= 10*1*5= 50
2,3,1= 10*4*1= 40
2,4,0= 15*1*1= 15
3,0,0= 1*1*10= 10
3,0,1= 1*1*10= 10
3,0,2= 1*1*5= 5
3,0,3= 1*1*1= 1
3,1,0= 4*1*10= 40
3,1,1= 4*2*5= 40
3,1,2= 4*3*1= 12
3,2,0= 10*1*5= 50
3,2,1= 10*3*1= 30
3,3,0= 20*1*1= 20
4,0,0= 1*1*10= 10
4,0,1= 1*1*5= 5
4,0,2= 1*1*1= 1
4,1,0= 5*1*5= 25
4,1,1= 5*2*1= 10
4,2,0= 15*1*1= 15
5,0,0= 1*1*5= 5
5,0,1= 1*1*1= 1
5,1,0= 6*1*1= 6
6,0,0= 1*1*1= 1
ãåèš 1900
ã¯ãŠããã¯äžã€ã®åŒã§äœããã®ãïŒ
> æ®ãã®æ¬æ°n-(i+j+k)ã1,2çªç®ãš5,6çªç®ã®éã«åããå Žåã®å¯èœæ§ãbinomial(n-1,n-(i+j+k))
ããã¯
binomial(n+1-j,n-(i+j+k))
ã«ããªããšãããªããšæããŸã(äžå€®ã«äœ¿ã£ãjæ¬ã¯æ®ãæ¬æ°ã«åœ±é¿ããŸããé
眮ã«åœ±é¿ããŸãã)ã
ãã£ãŠn=1,2,3,âŠã«å¯Ÿããæ§ææ°ã¯
5,19,66,221,728,2380,7753,25213,81927,âŠ
ã®ããã«ãªããŸãã
ïŒn=2ãæäœæ¥ã§æ°ããŠã¿ããšã19ã§æ£ããããšãããããšæããŸããïŒ
ãããŠãã®æ°åã¯A005021ã«ãããæŒžååŒã
a[1]=5, a[2]=19, a[3]=66, a[n+3]=5a[n+2]-6a[n+1]+a[n]
ãšæžãããŠããŸãã®ã§ããããè§£ããŠäžè¬é
ã¯
a[n]=up^n+vq^n+wr^n
ãã ã
u={-(4â91)sin(arcsin(127â91/2366)/3)+7}/21
v={-(4â91)cos(arccos(-127â91/2366)/3)+7}/21
w={(4â91)cos(arccos(127â91/2366)/3)+7}/21
p={-(2â7)cos(arccos(-â7/14)/3)+5}/3
q={-(2â7)sin(arcsin(â7/14)/3)+5}/3
r={(2â7)cos(arccos(â7/14)/3)+5}/3
ãšããããŸãã
# u,v,wã¯49x^3-49x^2-105x+1=0ã®3è§£ãp,q,rã¯x^3-5x^2+6x-1=0ã®3è§£ã§ãã
ããããããããã®ææãåããŠæ¹ããŠ(æ°åã®ãã¿ãŒã³ã§ãããšåæã«æã£ãŠããŸãæªãç)
ïŒæ¬ã®çžŠç·ãããå Žåã«ã€ããŠæšªç·ãnæ¬ã®å Žåã®æ§ææ°ã«ã€ããŠèª¿ã¹ãŠã¿ãŸããã
n=1-->5
n=2-->19
n=3-->66
n=4-->221
n=5-->728
n=6-->2380
n=7-->7753
n=8-->25213
ãããŸã§ã§OEISã®ãäžè©±ã«ãªããšA005021ããããããã
ãããããããšn=3ã§éã£ãã®ã§
(i,j,k)
0,0,0= 1*1*4= 4
0,0,1= 1*1*6= 6
0,0,2= 1*1*4= 4
0,0,3= 1*1*1= 1
0,1,0= 1*1*3= 3
0,1,1= 1*2*3= 6
0,1,2= 1*3*1= 3
0,2,0= 1*1*2= 2
0,2,1= 1*3*1= 3
0,3,0= 1*1*1= 1
1,0,0= 1*1*6= 6
1,0,1= 1*1*4= 4
1,0,2= 1*1*1= 1
1,1,0= 2*1*3= 6
1,1,1= 2*2*1= 4
1,2,0= 3*1*1= 3
2,0,0= 1*1*4= 4
2,0,1= 1*1*1= 1
2,1,0= 3*1*1= 3
3,0,0= 1*1*1= 1
åèš; 66
ã§ãã§ãã¯ããŠã¿ãã®ã§ãããã©ãããŠã67ã«ã¯ãªããªãã®ã§ããã»ã»ã»?
ïŒããïŒä¿®æ£ããããã§ãããå®å¿ããŸãããïŒ
A005021ã®ã³ã¡ã³ãã¯Random walksãšãªã£ãŠããã®ã§ãšãŠãé©ããŠããŸãã
9人ã®ããéçããŒã ã®ã¬ã®ã¥ã©ãŒéžæã
åæãªã°ã«ãŒãã«åããããšããããšã(äžäººã§ã1ã°ã«ãŒããšã¿ãã)
åãæ¹ã«ãã£ãŠã¯è²ã
ãªåãæ¹ã®æ°ãå€åããŠããã
ãã ãåæ°ã§ã®ã°ã«ãŒãåãã¯èŠåããã€ããªããã®ãšããã
ãšããã§9人ã®å Žåãã®åãæ¹ã®æ°ã6éãã®å Žåã«
ã¯å
šéšãåãæ¹ã®æ¹æ³ã«ãããåãæ°ãšãªããšããã
ããŠãã®6éãã®åãæ¹ã¯åŠäœãªãåãæ¹ã§ããã®ãïŒ
æç« èªè§£åã«ä¹ããç§ã«ã¯ã¡ãã£ãšçè§£ã§ããªãã®ã§ããã
ãšãããããå
šç¶ãã¯äœãã®å€æãã¹ã§ããïŒ
æç« åãç¡ãæç« ã§æ··ä¹±ãããŸããŠç³ãèš³ãããŸããã
9ã幟ã€ããã€ã®ã°ã«ãŒãã«åããæ¹æ³ã¯
[9],[8,1],[7,2],[6,3],[5,4],[7,1,1],,[1,1,1,1,1,1,1,1,1]
ãªã©å
šéšã§30éãã®ãã¿ãŒã³ãååšãããã®ã°ã«ãŒãã«9äººãæ¯ãåããã«ã¯
ããããã«å¯Ÿããæ¯ãåãæ¹ãèšç®ãããã(åèšæ°ã¯ãã«æ°Bell(9)=21147éããšãªãã)
ãã®æãåãæ°ãèµ·ãã6çµã®ã°ã«ãŒãã®åãæ¹ãååšããŠããã
(10人ã§ãåæ°ãšãªãçµåããå¿è«çºçã¯ããã®ã§ãããå€ããŠ4çµã§ããã®ã§ã
æ¯èŒçå°ãªã人æ°ã§éãªãçµåãã6åãçºçãã9人ãåé¡ã«éžã³ãŸããã
ãªã16人ãªã8çµãéãªãããã¿ãŒã³ãå€ãããã)
é©åœã«åè£ãèãããèŠã€ãããŸããã
[4,3,2]=[3,2,2,2]ãèŠã€ããã°çµããã§ããã
åãæ°ããªããã®äžã€ã ãããã©ããŠãå Žåã®æ°ãå€ãããŸããã®ã§ã
[4,3,2]=[1,1,1,1,3,2]=[4,1,1,1,2]=[4,3,1,1]
[3,2,2,2]=[1,1,1,2,2,2]
ã§6éãã§ãã
(远èš)
16人ã®å Žåã¯äžèšã®[4,3,2]=[3,2,2,2]ã«7人ã°ã«ãŒããä»ãå ããã ãã§ããã§ããã
[4,3,2]=[3,2,2,2]ãã[7,4,3,2]=[7,3,2,2,2]ãæãç«ã€ããšã¯æããã§
[7,4,3,2]=[1,1,1,1,1,1,1,4,3,2]=[7,1,1,1,1,3,2]=[7,4,1,1,1,2]=[7,4,3,1,1]
[7,3,2,2,2]=[1,1,1,1,1,1,1,3,2,2,2]=[7,1,1,1,2,2,2]
ãªã®ã§8éãã«ãªããŸãã
çè§£ããããšãã¡ãŸã¡è§£æ±ºãããŸããã
ããããã¡ããæã£ãŠãªãçºæ³ã§ãã³ã³ãã¥ãŒã¿ã«é Œãããšãªã
ãã£ããªãæ£è§£ãåºãŠããŸãã
ç§ã¯äœãšãn人ã®å岿¹æ³ãšãã®çµã¿å²ãæ°ã察å¿ããããããã°ã©ã ãäœãããš
çŽ2æéããããŠïŒããããã¿ããç¬ããããšæããŸãã)ãã£ãšå®æã§ã
ããã§è²ã
å®éšããŠããæãåæ°ã«ãªããã®ãçµæ§çºçããŠãããã®ã ãšæããã
äžã§ã9人ã®å岿¹æ³ã§ã¯å€æ°ã®åæ°ãæã€å岿¹æ³ãååšããŠããããšãé¢çœãã£ãã
ããããå€ããã®ãæ¢ããŠãããšãã£ãšïŒïŒäººã®å岿¹æ³ïŒå
šéšã§231éããããã)
ã§çµæããšã¯ã»ã«ã«è²Œãä»ããœãŒãããäœæ¥ãéããŠãã£ãš8çµãååšããŠããããšã
èªèã§ããŸããã
ãããªæéããããªãããããããã®æèæ¹æ³ã«ã¯åªã
é ã¯äœ¿ãããã ïŒãšæå¿ããã°ããã§ãã
ãn=9ã§æå€§6çµãn=16ã§æå€§8çµãã«ã€ããŠ
ä»ã®nã§ã¯ã©ããªãã®ãæ°ã«ãªã£ãã®ã§ããã°ã©ã ãäœã£ãŠèª¿ã¹ãŠã¿ãŸããã
n=1ïœ34ã«å¯Ÿããæå€§çµæ°ã®æ°åã¯
1,2,2,2,3,4,4,3,6,4,7,6,6,9,11,8,11,9,11,14,14,19,21,18,23,24,27,30,29,31,33,34,36,40
ãšãªããŸãããããããã«ãããªå€ãªæ°åã¯OEISã«èŒã£ãŠããŸãããã
æ°èŠã«èŒããããšæã£ãŠã説æãè€éã«ãªããŸãã®ã§ãè±èªãèŠæãªç§ã«ã¯æ®å¿µãªããäžå¯èœã§ãã
çµæãèŠãŠã¿ããšãn=9ãšn=16ã ããæäœæ¥ã§æ±ããããŸããããn=15ãn=17ã§ã¯å³ãããã§ãã
# n=34ã§ãããã®ã¯ãnâ§35ã§ã¯n!ã笊å·ãªã128ããã倿°ã«åãŸããªããªã£ãŠ
# ããã°ã©ã ã®å€æŽãå¿
èŠã«ãªãããã§ãããå®è¡æéçãªåé¡ã§ã¯ãããŸããã
çµæ§15人ãå€ãã®çµåãããäžèŽãããã§ããã
æ¹ããŠæ¢ããã6306300ã§çäžèŽããŸããã
[2, 3, 4, 6]
[3, 3, 4, 5]
[1, 1, 3, 4, 6]
[2, 2, 2, 3, 6]
[1, 1, 1, 2, 4, 6]
[1, 1, 1, 1, 2, 3, 6]
[1, 1, 1, 1, 3, 3, 5]
[1, 1, 1, 2, 2, 2, 6]
[1, 1, 1, 1, 1, 3, 3, 4]
[1, 1, 1, 1, 1, 1, 2, 3, 4]
[1, 1, 1, 1, 1, 1, 2, 2, 2, 3]
調æ»ãããäžã§2çªç®ã«å€ãã£ãn=33人ã§ã®åå²ã§ã®36éããçäžæã«æããã®ãèŠããã£ãã®ã§ææŠããŠã¿ãŸããã
ãã¹ãŠ30051520145226019440000ã®ãã¿ãŒã³æ°ã§äžèŽããŸããã
ç®ã ãã§ç¹æ€ããŠããã®ã§ä»ã®éšåãèŠèœãšããŠããããã»ã»ã»
1; [3, 3, 4, 4, 5, 6, 8]
2; [1, 2, 2, 4, 4, 5, 6, 9]
3; [2, 2, 2, 3, 4, 6, 6, 8]
4; [2, 2, 2, 4, 4, 6, 6, 7]
5; [2, 2, 3, 3, 4, 4, 5, 10]
6; [1, 1, 2, 2, 3, 4, 4, 6, 10]
7; [1, 2, 2, 2, 2, 4, 5, 6, 9]
8; [2, 2, 2, 2, 3, 3, 4, 5, 10]
9; [2, 2, 2, 2, 3, 3, 5, 5, 9]
10; [1, 1, 1, 1, 2, 3, 4, 6, 6, 8]
11; [1, 1, 1, 1, 2, 4, 4, 6, 6, 7]
12; [1, 1, 1, 1, 4, 4, 4, 5, 5, 7]
13; [1, 1, 1, 2, 2, 2, 4, 6, 6, 8]
14; [1, 1, 2, 2, 2, 2, 3, 4, 6, 10]
15; [2, 2, 2, 2, 2, 2, 3, 4, 5, 9]
16; [1, 1, 1, 1, 1, 3, 3, 4, 4, 6, 8]
17; [1, 1, 1, 1, 1, 3, 4, 4, 4, 5, 8]
18; [1, 1, 1, 1, 2, 2, 2, 3, 6, 6, 8]
19; [1, 1, 1, 1, 2, 2, 2, 4, 5, 5, 9]
20; [1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 10]
21; [1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 6, 8]
22; [1, 1, 1, 1, 1, 1, 3, 3, 4, 4, 5, 8]
23; [1, 1, 1, 1, 1, 2, 2, 2, 4, 4, 5, 9]
24; [1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 10]
25; [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 5, 10]
26; [1, 1, 1, 2, 2, 2, 2, 2, 2, 4, 5, 9]
27; [1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 10]
28; [1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 5, 9]
29; [1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 4, 4, 5, 6]
30; [1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 4, 6, 6]
31; [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 9]
32; [1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 6, 6]
33; [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5]
34; [1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 5, 5]
35; [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 5]
36; [1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 5]
ãªãn=34äººã®æé«å€ã40ãªãã§ããã©ãæ¢ããŠããã®39ããèŠã€ãããªããŠã»ã»ã»
1; [1, 3, 4, 4, 4, 5, 6, 7]
2; [2, 3, 3, 3, 4, 5, 6, 8]
3; [3, 3, 3, 4, 4, 5, 5, 7]
4; [1, 1, 2, 3, 3, 4, 5, 6, 9]
5; [1, 1, 3, 3, 3, 4, 5, 6, 8]
6; [1, 2, 2, 2, 3, 4, 5, 6, 9]
7; [1, 2, 3, 3, 3, 3, 5, 6, 8]
8; [2, 2, 2, 3, 3, 3, 5, 6, 8]
9; [2, 3, 3, 3, 3, 3, 4, 5, 8]
10; [1, 1, 1, 2, 2, 3, 4, 5, 6, 9]
11; [1, 1, 1, 2, 3, 3, 4, 5, 5, 9]
12; [1, 1, 1, 3, 3, 3, 4, 5, 5, 8]
13; [1, 1, 2, 2, 2, 3, 3, 5, 6, 9]
14; [1, 1, 2, 2, 3, 3, 3, 4, 5, 10]
15; [1, 1, 2, 2, 3, 3, 3, 5, 5, 9]
16; [1, 1, 3, 3, 3, 3, 3, 4, 5, 8]
17; [1, 2, 2, 3, 3, 3, 3, 3, 6, 8]
18; [2, 2, 2, 3, 3, 3, 3, 3, 5, 8]
19; [1, 1, 1, 1, 2, 3, 3, 3, 5, 6, 8]
20; [1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 10]
21; [1, 1, 1, 2, 2, 2, 3, 3, 5, 5, 9]
22; [1, 2, 2, 2, 2, 2, 3, 3, 3, 5, 9]
23; [2, 2, 2, 2, 2, 2, 3, 3, 3, 6, 7]
24; [1, 1, 1, 1, 1, 2, 3, 3, 3, 4, 6, 8]
25; [1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 5, 8]
26; [2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 7]
27; [1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 4, 5, 8]
28; [1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 6, 8]
29; [1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 4, 8]
30; [1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 4, 4, 5, 5]
31; [1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 8]
32; [1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 8]
33; [1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 4, 5, 6]
34; [1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 6]
35; [1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 4, 5]
36; [1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 7]
37; [1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 5]
38; [1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 6]
39; [1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3]
1362335579916912881280000éãã«ãªããã®ã¯39åãããããŸããã
40åããã®ã¯ 14596452641966923728000éãã«ãªããã®ã§ãã
å
ãèšç®ããŠãããŸãæå³ã¯ãªãã®ã§ãããn=34ãŸã§ãšããã®ã¯ã©ãã
äžéåç«¯ã§æ°ã«ãªã£ãã®ã§ãn=100ãŸã§èšç®ããŸããã
n=1ïœ10: 1, 2, 2, 2, 3, 4, 4, 3, 6, 4
n=11ïœ20: 7, 6, 6, 9, 11, 8, 11, 9, 11, 14
n=21ïœ30: 14, 19, 21, 18, 23, 24, 27, 30, 29, 31
n=31ïœ40: 33, 34, 36, 40, 49, 51, 58, 54, 56, 75
n=41ïœ50: 73, 78, 79, 105, 108, 97, 115, 134, 155, 158
n=51ïœ60: 162, 173, 197, 209, 214, 224, 247, 306, 331, 339
n=61ïœ70: 330, 408, 434, 452, 490, 501, 564, 562, 618, 643
n=71ïœ80: 670, 734, 816, 816, 888, 951, 1060, 1130, 1178, 1195
n=81ïœ90: 1360, 1353, 1464, 1549, 1780, 1885, 1955, 2096, 2257, 2338
n=91ïœ100: 2512, 2751, 3062, 3146, 3301, 3733, 3744, 4250, 4428, 4996
n=100ã®èšç®ã¯2æéè¿ãããã£ãŠããŸãã
以åèªå販売æ©ã§ã®éçš®ã®æå
¥æ¹æ³ã§
[500,100,50,10]å硬貚ã§1000åãæ¯æãæ¹æ³ã158éã
[500,100,50,10,5]å硬貚ã§ã¯4908éã
[500,100,50,10,5,1]å硬貚ã§ã¯248908éã
ãå¯èœã§ããããšãèŠã€ããŠè²°ã£ãŠãããã§ãã
ãããããã°ã©ã ã䜿ã£ãŠæ±ããããªãããšRubyã®ãœãããçšããŠ
@cnt = 0
def change(target, coins, usable)
coin = coins.shift
if coins.size == 0 then
ã @cnt += 1 if target / coin <= usable
else
ã (0..target/coin).each{|i|
change(target - coin * i, coins.clone, usable - i)
}
end
end
change(1000, [500, 100, 50, 10], 100)
puts @cnt
ãã
158ãå
¥æã§ã
change(1000, [500, 100, 50, 10, 5], 200)
puts @cnt
ãã
4908ã
change(1000, [500, 100, 50, 10, 5, 1], 1000)
puts @cnt
ãã
248908ãèšç®ã§ããŸããã
ããã§[6, 4, 3, 2]ã§12ãéè€ãèš±ããŠæ¯æãããšãããšã
change(12, [6, 4, 3, 2], 6)
ã§æ±ãŸãã¯ãã ãšå®è¡ãããš
16
ãè¿ããŠããã
æããã«
6+6,6+4+2,6+3+3,6+2+2+2,4+4+4,4+4+2+2,4+3+3+2,4+2+2+2+2,3+3+3+3,3+3+2+2+2,2+2+2+2+2+2
ã®11éããããªãã®ã§ãäž3ã€ãæ£ç¢ºã«è¿ãã®ã«å¯Ÿããªãããã誀ã£ãçµæãè¿ããŠããã®ã
åå ãåãããŸããã
ããã°ã©ã ã®äœãæ¹ã¯èŠããèŠãŸãã§ãã£ãŠããã®ã§è©³ããããšãåãããŸããã
詳ããæ¹æããŠäžããã
[6, 4, 3, 1]ã§12ãéè€ãèš±ããŠæ¯æãããšãããšãã«ã16éãã«ãªããŸãããå¶ç¶ïŒ
1000,[500,100,50,10],100ã®ãããªã±ãŒã¹ã§ã¯
500ãš100ãš50ãããã€ãã€äœ¿ã£ãŠãå¿
ãæ®ãã10ã§å²ãåããŸãã®ã§
ïŒã€ãŸãæå°ä»¥å€ã®æ°(500,100,50)ããã¹ãŠã®æå°ã®æ°(10)ã§å²ãåããïŒ
if target / coin <= usable
ã§åé¡ãèµ·ãããŸãããã
12,[6,4,3,2],6ã®ããã«æå°ã®2ã§å²ãåããªãæ°ããããš
targetã2ã§å²ãåããªãå Žåã§ã
@cnt += 1
ãå®è¡ãããŠããŸããšæããŸãã
ã€ãŸãã3ã奿°å䜿ãããŠæåŸã«targetã奿°ã«ãªã
6+3+2
4+4+3
4+3+2+2
3+2+2+2+2
3+3+3+2
ã®5åïŒãã¹ãŠ1äžè¶³ïŒãäœèšã«æ°ããããŠããŸã£ãŠããã®ã§ãããã
ãif target / coin <= usableã
ã
ãif targetãcoinã§å²ãåãããã€target / coin <= usableã
ã«ä¿®æ£ããã°æ£ããåããšæããŸãã
ïŒRubyã®ææ³ãç¥ããŸããã®ã§èšèã§æžããŸããïŒ
ããããããã®ä»°ãéããªã®ã§ãããã
((x^6)^2+(x^6)+1)*((x^4)^3+(x^4)^2+(x^4)^1+1)*((x^3)^4+(x^3)^3+(x^3)^2+(x^3)^1+1)*((x^2)^6+(x^2)^5+(x^2)^4+(x^2)^3+(x^2)^2+(x^2)^1+1)
ãå±éã㊠x^11 ã®é
ã®ä¿æ°ã 5 ã ãšãã©ãšé ãããã£ãã®ã§ãã
ãtargetã奿°ããšãªãããšãããã°ã©ã ããèªã¿åããŸããã§ãããæ®å¿µãªç§ã