ãã£ããããæ°ã®è©±é¡ãåºãã®ã§ãé¢é£ããŠ
x^nãx^2-x-1ã§å²ã£ãåãšäœãã«ã¯ãã£ããããæ°ã坿¥ã«é¢ãã£ãŠããã
x^2 = (x^2 - x - 1)*(1) + (x + 1)
x^3 = (x^2 - x - 1)*(x + 1) + (2*x + 1)
x^4 = (x^2 - x - 1)*(x^2 + x + 2) + (3*x + 2)
x^5 = (x^2 - x - 1)*(x^3 + x^2 + 2*x + 3) + (5*x + 3)
x^6 = (x^2 - x - 1)*(x^4 + x^3 + 2*x^2 + 3*x + 5) + (8*x + 5)
x^7 = (x^2 - x - 1)*(x^5 + x^4 + 2*x^3 + 3*x^2 + 5*x + 8) + (13*x + 8)
x^8 = (x^2 - x - 1)*(x^6 + x^5 + 2*x^4 + 3*x^3 + 5*x^2 + 8*x + 13) + (21*x + 13)
x^9 = (x^2 - x - 1)*(x^7 + x^6 + 2*x^5 + 3*x^4 + 5*x^3 + 8*x^2 + 13*x + 21) + (34*x + 21)
x^10 = (x^2 - x - 1)*(x^8 + x^7 + 2*x^6 + 3*x^5 + 5*x^4 + 8*x^3 + 13*x^2 + 21*x + 34) + (55*x + 34)
x^11 = (x^2 - x - 1)*(x^9 + x^8 + 2*x^7 + 3*x^6 + 5*x^5 + 8*x^4 + 13*x^3 + 21*x^2 + 34*x + 55) + (89*x + 55)
x^12 = (x^2 - x - 1)*(x^10 + x^9 + 2*x^8 + 3*x^7 + 5*x^6 + 8*x^5 + 13*x^4 + 21*x^3 + 34*x^2 + 55*x + 89) + (144*x + 89)
x^13 = (x^2 - x - 1)*(x^11 + x^10 + 2*x^9 + 3*x^8 + 5*x^7 + 8*x^6 + 13*x^5 + 21*x^4 + 34*x^3 + 55*x^2 + 89*x + 144) + (233*x + 144)
x^14 = (x^2 - x - 1)*(x^12 + x^11 + 2*x^10 + 3*x^9 + 5*x^8 + 8*x^7 + 13*x^6 + 21*x^5 + 34*x^4 + 55*x^3 + 89*x^2 + 144*x + 233) + (377*x + 233)
x^15 = (x^2 - x - 1)*(x^13 + x^12 + 2*x^11 + 3*x^10 + 5*x^9 + 8*x^8 + 13*x^7 + 21*x^6 + 34*x^5 + 55*x^4 + 89*x^3 + 144*x^2 + 233*x + 377) + (610*x + 377)

>ãã£ããããæ° {F(n)}ïŒ0,1,1,2,3,5,8,13,21,35,ãã«é¢ããŠãå¿
ã瀺ãããæŒžååŒã
>ããF(n+2)=F(n+1)+F(n)
>ãããã§ããã®ãã£ããããæ°ã®m乿°:F(n)^mã«ã€ããŠèª¿ã¹ããšã
>F(n+3)^2=2*F(n+2)^2+2*F(n+1)^2-F(n)^2
>F(n+4)^3=3*F(n+3)^3+6*F(n+2)^3-3*F(n+1)^3-F(n)^3
>F(n+5)^4=5*F(n+4)^4+15*F(n+3)^4-15*F(n+2)^4-5*F(n+1)^4+F(n)^4
>ãã
>ãæç«ããŠããŸãã
>ãm=5ã6ããã«ææŠããŠã»ããã
(F(n+6))^5, (F(n+7))^6 ã¯æ¬¡ã®ããã«ãªããŸãã
(F(n+6))^5=8*(F(n+5))^5+40*(F(n+4))^5-60*(F(n+3))^5-40*(F(n+2))^5+8*(F(n+1))^5+(F(n))^5,
(F(n+7))^6=13*(F(n+6))^6+104*(F(n+5))^6-260*(F(n+4))^6-260*(F(n+3))^6+104*(F(n+2))^6+13*(F(n+1))^6-(F(n))^6.
äžè¬ã«ã¯ã次ã®ããã«ãªããŸãã
mãæ£æŽæ°ãs,tã宿°(ãã ããt^2+4*sâ 0,tâ 0)ãšãããšããæŒžååŒ
a(n+2)=s*a(n)+t*a(n+1)
ãæºããæ°å {a(n)} ã«å¯ŸããŠãçåŒ
(a(n+m+1))^m
=Σ[k=1ïœm+1](a(n+m+1-k))^m*((-1)^(k+1))*((-s)^(k*(k-1)/2))*(Î [j=1ïœk]A(m+2-j)/A(j))
ãæãç«ã¡ãŸãã
ããã§ã{A(n)}ã¯ä»¥äžã§å®ãŸãæ°åã§ãã
A(0)=0,
A(1)=1,
A(n+2)=s*A(n)+t*A(n+1) (nâ§0).
(蚌æ)
α=(t+â(t^2+4*s))/2,β=(t-â(t^2+4*s))/2 ãšããŸãã
a(n)=v*α^n+w*β^n (v,wã¯å®æ°) ãšè¡šããŸãã
G(z)=Σ[nâ§0](a(n))^m*z^n ãšãããšã
G(z)
=Σ[nâ§0](v*α^n+w*β^n)^m*z^n
=Σ[nâ§0]z^n*(Σ[jâ§0]comb(m,j)*(v*α^n)^j*(w*β^n)^(m-j))
=Σ[nâ§0]z^n*(Σ[jâ§0]comb(m,j)*(v^j*w^(m-j))*((α/β)^j*β^m)^n)
=Σ[nâ§0]Σ[jâ§0]comb(m,j)*(v^j*w^(m-j))*(z*(α/β)^j*β^m)^n
=Σ[jâ§0]comb(m,j)*(v^j*w^(m-j))*(Σ[nâ§0](z*(α/β)^j*β^m)^n)
=Σ[jâ§0]comb(m,j)*(v^j*w^(m-j))*(1/(1-z*(α/β)^j*β^m)).
ãã£ãŠã
G(z/(β^m))=Σ[jâ§0]comb(m,j)*(v^j*w^(m-j))*(1/(1-z*(α/β)^j)).
䞡蟺㫠Π[j=0ïœm](1-z*(α/β)^j) ãããããšã
G(z/(β^m))*Î [j=0ïœm](1-z*(α/β)^j)=(zã«ã€ããŠã®m次以äžã®å€é
åŒ)
ãšãªããŸãã䞡蟺㮠z^(n+m+1) ã®ä¿æ°ãæ¯èŒããŠã
[z^(n+m+1)](G(z/(β^m))*Î [j=0ïœm](1-z*(α/β)^j))=0.
[z^(n+m+1)](G(z/(β^m))*Î [j=0ïœm](1-z*(α/β)^j))
=Σ[k=0ïœm+1]([z^(n+m+1-k)]G(z/(β^m)))*([z^k]Î [j=0ïœm](1-z*(α/β)^j))).
ããã§ã[z^(n+m+1-k)]G(z/(β^m))=(a(n+m+1-k))^m*(1/β)^(m*(n+m+1-k)).
ãŸãã[z^k]Î [j=0ïœm](1-z*(α/β)^j)ã¯å°ã
åä»ã§ããã
[z^k]Î [j=0ïœm](1-z*(α/β)^j)
=((-1)^k)*((α/β)^(k*(k-1)/2))*Î [j=1ïœk](1-(α/β)^(m+2-j))/(1-(α/β)^j)
ãšãªããŸãã
(äžè¬ã«ã[z^k](Î [j=0ïœm](1-z*γ^j))
=((-1)^k)*(γ^(k*(k-1)/2))*Î [j=1ïœk](1-γ^(m+2-j))/(1-γ^j))
ãšãªããŸãããã®ããšã¯åŸã«èšŒæããŸãã)
ãã£ãŠã
[z^(n+m+1)](G(z/(β^m))*Î [j=0ïœm](1-z*(α/β)^j))
=Σ[k=0ïœm+1](a(n+m+1-k))^m*(1/β)^(m*(n+m+1-k))*((-1)^k)*((α/β)^(k*(k-1)/2))*Î [j=1ïœk](1-(α/β)^(m+2-j))/(1-(α/β)^j)
=Σ[k=0ïœm+1](a(n+m+1-k))^m*((-1)^k)*((α*β)^(k*(k-1)/2))*(Î [j=1ïœk](β^(m+2-j)-α^(m+2-j))/(β^j-α^j))*(1/β)^(m*(n+m+1))
=Σ[k=0ïœm+1](a(n+m+1-k))^m*((-1)^k)*((-s)^(k*(k-1)/2))*(Î [j=1ïœk]A(m+2-j)/A(j))*(1/β)^(m*(n+m+1)).
ããã 0 ã«çããã®ã§ã
(a(n+m+1))^m = Σ[k=1ïœm+1](a(n+m+1-k))^m*((-1)^(k+1))*((-s)^(k*(k-1)/2))*(Î [j=1ïœk]A(m+2-j)/A(j)).
------------------------------------------------------------------
[z^k](Î [j=0ïœm](1-z*γ^j))
=((-1)^k)*(γ^(k*(k-1)/2))*Î [j=1ïœk](1-γ^(m+2-j))/(1-γ^j)
ã§ããããšã®èšŒæïŒ
G(γ,z)=Î [j=0ïœm](1-z*γ^j)ãšãããG(γ,z)ãå±éãããšãã® z^k
ã®ä¿æ°ã U(γ,k) ãšããŸãã
ãããããšãG(γ,z)=Σ[k=0ïœm+1]U(γ,k)*z^k.
çåŒ (1-z*γ^(m+1))*G(γ,z)=(1-z)*G(γ,z*γ) ãæãç«ã¡ãŸãã
ãã®çåŒã®äž¡èŸºã®z^kã®ä¿æ°ãæ¯èŒããŠã
U(γ,k)-U(γ,k-1)*γ^(m+1)=U(γ,k)*γ^k-U(γ,k-1)*γ^(k-1).
ãã£ãŠã
U(γ,k)
=((γ^(m+1)-γ^(k-1))/(1-γ^k))*U(γ,k-1)
=((γ^(m+1)-γ^(k-1))*(γ^(m+1)-γ^(k-2))/((1-γ^k)*(1-γ^(k-1))))*U(γ,k-2)
=âŠ
=(Î [j=1ïœk](γ^(m+1)-γ^(k-j))/(1-γ^j))*U(γ,0)
=Î [j=1ïœk](γ^(m+1)-γ^(k-j))/(1-γ^j)
=((-1)^k)*(γ^(k*(k-1)/2))*Î [j=1ïœk](1-γ^(m+2-j))/(1-γ^j).
2幎åã®æçš¿ã ã£ãã®ã§å¿ããŠããŸããã
ã¡ãªã¿ã«10ä¹ãŸã§ã®åŒã眮ããŠãããŸãã
F(n+8)^7=21*(F(n+7))^7+273*(F(n+6))^7-1092*(F(n+5))^7-1820*(F(n+4))^7 +1092*(F(n+3))^7+273*(F(n+2))^7-21*(F(n+1))^7-(F(n))^7
F(n+9)^8=34*(F(n+8))^8+714*(F(n+7))^8-4641*(F(n+6))^8-12376*(F(n+5))^8 +12376*(F(n+4))^8+4641*(F(n+3))^8-714*(F(n+2))^8-34*F(n+1))^8+(F(n))^8
F(n+10)^9=55*(F(n+9))^9+1870*(F(n+8))^9-19635*(F(n+7))^9-85085*(F(n+6))^9+136136*(F(n+5))^9+85085*(F(n+4))^9-19635*(F(n+3))^9-1870*(F(n+2))^9+55*(F(n+1))^9+(F(n))^9
F(n+11)^10=89*(F(n+10))^10+4895*(F(n+9))^10-83215*(F(n+8))^10-582505*(F(n+7))^10+1514513*(F(n+6))^10+1514513*(F(n+5))^10
-582505*(F(n+4))^10-83215*(F(n+3))^10+4895*(F(n+2))^10 +89*(F(n+1))^10-(F(n))^10
ãªã10ä¹ã®åŒãæ§æããã«ã¯ãããã°ã©ã çã«
gp > A(n)=matrix(n,n,i,j,binomial(i-1,n-j));
gp > charpoly(A(11),x)
%150 =
x^11 - 89*x^10 - 4895*x^9 + 83215*x^8 + 582505*x^7 - 1514513*x^6
- 1514513*x^5 + 582505*x^4 + 83215*x^3 - 4895*x^2 - 89*x + 1
ãªã
gp > A(11)
%151 =
[0 0 0 0 0 0 0 0 0 0 1]
[0 0 0 0 0 0 0 0 0 1 1]
[0 0 0 0 0 0 0 0 1 2 1]
[0 0 0 0 0 0 0 1 3 3 1]
[0 0 0 0 0 0 1 4 6 4 1]
[0 0 0 0 0 1 5 10 10 5 1]
[0 0 0 0 1 6 15 20 15 6 1]
[0 0 0 1 7 21 35 35 21 7 1]
[0 0 1 8 28 56 70 56 28 8 1]
[0 1 9 36 84 126 126 84 36 9 1]
[1 10 45 120 210 252 210 120 45 10 1]
ã®è¡åãæå³ããã(ãã¹ã«ã«ã®äžè§åœ¢ãå³è©°ãã§äœãã)
ãã®è¡åã®ç¹æ§æ¹çšåŒãå°ãã®ãcharpolyã³ãã³ãã§ãã
ãã®åŒãã%150=0ãšçœ®ããŠ
äžæ°ã«
x^11=89*x^10 + 4895*x^9 - 83215*x^8 - 582505*x^7 + 1514513*x^6
+ 1514513*x^5 - 582505*x^4 - 83215*x^3 + 4895*x^2 + 89*x - 1
ã®è¡šç€ºãå
¥æã§ãããããå
ã«çµã¿ç«ãŠãããã
èªç¶æ°nãç©ã«ãããŠã¯çŽ æ°ã倧åãªåœ¹å²ãæ
ãã®ã«å¯Ÿã
åã«ãããŠã¯ãã£ããããæ°{1,2,3,5,8,13,21,34,55,}
ããã®ä»»ãæ
ãäœãªããšãæããŠãããã®ã
Zeckenrorf's Theorem(ãŒãã±ã³ããªãã®å®çïŒã§
âããããèªç¶æ°nã¯é£ç¶ããªããã£ããããæ°ã®åã§å¿
ãæ§æå¯èœã§
ãã®è¡šçŸã¯ãã äžéãâ
ãšãããã®ã«åºäŒã£ãã
確ãã«100ãŸã§ã®èªç¶æ°ã¯
1 = 1
2 = 2
3 = 3
4 = 1 + 3
5 = 5
6 = 1 + 5
7 = 2 + 5
8 = 8
9 = 1 + 8
10 = 2 + 8
11 = 3 + 8
12 = 1 + 3 + 8
13 = 13
14 = 1 + 13
15 = 2 + 13
16 = 3 + 13
17 = 1 + 3 + 13
18 = 5 + 13
19 = 1 + 5 + 13
20 = 2 + 5 + 13
21 = 21
22 = 1 + 21
23 = 2 + 21
24 = 3 + 21
25 = 1 + 3 + 21
26 = 5 + 21
27 = 1 + 5 + 21
28 = 2 + 5 + 21
29 = 8 + 21
30 = 1 + 8 + 21
31 = 2 + 8 + 21
32 = 3 + 8 + 21
33 = 1 + 3 + 8 + 21
34 = 34
35 = 1 + 34
36 = 2 + 34
37 = 3 + 34
38 = 1 + 3 + 34
39 = 5 + 34
40 = 1 + 5 + 34
41 = 2 + 5 + 34
42 = 8 + 34
43 = 1 + 8 + 34
44 = 2 + 8 + 34
45 = 3 + 8 + 34
46 = 1 + 3 + 8 + 34
47 = 13 + 34
48 = 1 + 13 + 34
49 = 2 + 13 + 34
50 = 3 + 13 + 34
51 = 1 + 3 + 13 + 34
52 = 5 + 13 + 34
53 = 1 + 5 + 13 + 34
54 = 2 + 5 + 13 + 34
55 = 55
56 = 1 + 55
57 = 2 + 55
58 = 3 + 55
59 = 1 + 3 + 55
60 = 5 + 55
61 = 1 + 5 + 55
62 = 2 + 5 + 55
63 = 8 + 55
64 = 1 + 8 + 55
65 = 2 + 8 + 55
66 = 3 + 8 + 55
67 = 1 + 3 + 8 + 55
68 = 13 + 55
69 = 1 + 13 + 55
70 = 2 + 13 + 55
71 = 3 + 13 + 55
72 = 1 + 3 + 13 + 55
73 = 5 + 13 + 55
74 = 1 + 5 + 13 + 55
75 = 2 + 5 + 13 + 55
76 = 21 + 55
77 = 1 + 21 + 55
78 = 2 + 21 + 55
79 = 3 + 21 + 55
80 = 1 + 3 + 21 + 55
81 = 5 + 21 + 55
82 = 1 + 5 + 21 + 55
83 = 2 + 5 + 21 + 55
84 = 8 + 21 + 55
85 = 1 + 8 + 21 + 55
86 = 2 + 8 + 21 + 55
87 = 3 + 8 + 21 + 55
88 = 1 + 3 + 8 + 21 + 55
89 = 89
90 = 1 + 89
91 = 2 + 89
92 = 3 + 89
93 = 1 + 3 + 89
94 = 5 + 89
95 = 1 + 5 + 89
96 = 2 + 5 + 89
97 = 8 + 89
98 = 1 + 8 + 89
99 = 2 + 8 + 89
100 = 3 + 8 + 89

ãšããã«ãçŽ å æ°åè§£ãããæ§ã«ããŠãã£ããããæ°åè§£ãããŠããã
ãã®ãé£ç¶ããªããã®æ¡ä»¶ãå€ãã°ãäŸãã°n=100ã§ã¯
100=1+2+8+89
=3+8+34+55
=1+2+3+5+89
=1+2+8+34+55
=3+8+13+21+55
=1+2+3+5+34+55
=1+2+8+13+21+55
=1+2+3+5+13+21+55
ãšãã以å€ã«ã8åãèš9éãã®æ§æãå¯èœã«ãªãã
ããã§
n=7777 ã®å Žåã®Zeckenrorfçåè§£åãš
ä»ã®é£ç¶ãèš±ãåè§£åã®å®äŸã瀺ããŠã»ããã
ãã¡ããããã°ã©ã çã«äœæ¥ãããŠãæ§ããŸããããèšç®ã«ããã£ãæéã瀺ããŠã»ããã
7777
=1+3+21+987+6765 (Zeckendorf)
=1+3+8+13+987+6765
=1+3+21+377+610+6765
=1+3+8+13+377+610+6765
=1+3+21+144+233+610+6765
=1+3+8+13+144+233+610+6765
=1+3+21+55+89+233+610+6765
=1+3+8+13+55+89+233+610+6765
=1+3+8+13+21+34+89+233+610+6765
=1+3+21+987+2584+4181
=1+3+8+13+987+2584+4181
=1+3+21+377+610+2584+4181
=1+3+8+13+377+610+2584+4181
=1+3+21+144+233+610+2584+4181
=1+3+8+13+144+233+610+2584+4181
=1+3+21+55+89+233+610+2584+4181
=1+3+8+13+55+89+233+610+2584+4181
=1+3+8+13+21+34+89+233+610+2584+4181
=1+3+21+377+610+987+1597+4181
=1+3+8+13+377+610+987+1597+4181
=1+3+21+144+233+610+987+1597+4181
=1+3+8+13+144+233+610+987+1597+4181
=1+3+21+55+89+233+610+987+1597+4181
=1+3+8+13+55+89+233+610+987+1597+4181
=1+3+8+13+21+34+89+233+610+987+1597+4181
èš25å
å®è¡æé:çŽ0.01ç§
Zeckendorfã®è¡šçŸãå©çšãããšããã®ä»ã®è¡šãæ¹ãå«ãç·æ°ã®åæ°ãæ±ããèšç®æ¹æ³ã¯è²ã
ãªè³æãèªãäžã§åãã£ãŠèšç®äžçŽãã«
æ±ããããææ®µã¯ããããŸããã
ãšããããã®å®äŸã¯ãšãªããšãäœãšããŒãã±ã³ãã«ãã®ãã£ããããæ°ã䜿ãããéšåã1ã䜿ã£ãŠããªããã®ã¯0ã§è¡šç€ºããŠãããšã
ïŒ7777=>[1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,1]ãšãªããïŒ
æ¬ã§ã®èª¬æã§ã¯ãã®åã§ã®1,0,0ã®éšåã0,1,1ãžå€æŽããã°è¯ããšã®èª¬æãèªãããæ¡ããã£ãšçããã®ãªãäœãšãããã§æ±ãŸããš
äœéšã¯åºæ¥ããã§ããããããèªåã§ããã°ã©ã ããããšãããšäŸãã°ãã®äŸã®ããã«1,0,0 ã®éšåãäœéããããå Žåã1ãæã ã倿Ž
ã2ãæåæã«å€æŽãããªã©ããããããªæåãããèµ·ãã£ãŠãã£ãŠããŸããã©ã®æ§ã«çµãã§è¡ã£ãŠããã®ãåãããªããªããŸããã
åŸã£ãŠããã£ããããæ°ã®åæ°19ãã5,6,7,8,9,10,11,12ååãåºãåçµåããåã7777ã«ãªããã®ããã§ãã¯ãããšããææ³ããããã
ãã®èšç®æéã¯äœãšåæ¥ä»¥äžãšãã,0.01ç§ã倢ã®ãŸã倢ã®ç¶æ
ã§ããã
ãããããããããã¯ããã°ã©ã çã«ã©ã®ãããªçµè·¯ã§åºåã§ãããã®ãç²ççã§ãè¯ãã®ã§æããŠäžããã
倧ããé ã«ãã£ããããæ°ã䜿ããã©ããã§åå²ããŸãã
7777以äžã®æå€§ã®ãã£ããããæ°ã¯6765
6765ã䜿ãå Žåãšäœ¿ããªãå Žåã§åå²
ã6765ã䜿ãå Žåã¯ããš1012
ã1012以äžã®æå€§ã®ãã£ããããæ°ã¯987
ã987ã䜿ãå Žåãšäœ¿ããªãå Žåã§åå²
ãã987ã䜿ãå Žåã¯ããš25
ããã25以äžã®æå€§ã®ãã£ããããæ°ã¯21
ããã21ã䜿ãå Žåãšäœ¿ããªãå Žåã§åå²
ãããã21ã䜿ãå Žåã¯ããš4
ããããã4以äžã®æå€§ã®ãã£ããããæ°ã¯3
ããããã3ã䜿ãå Žåãšäœ¿ããªãå Žåã§åå²
ãããããã3ã䜿ãå Žåã¯ããš1â1+3+21+987+6765
ãããããã3ã䜿ããªãå Žåã¯ããæªæºã®ãã£ããããæ°ã®åã4æªæºãªã®ã§äžé©
ãããã21ã䜿ããªãå Žåã¯æ¬¡ã®ãã£ããããæ°ã¯13
ããããïŒãã®ãšãæ®ãã®ãã£ããããæ°ã®åã25以äžãã©ãããã§ãã¯ãããã32ãªã®ã§OKïŒ
ãããã13ã䜿ãå Žåãšäœ¿ããªãå Žåã§åå²
ããããã13ã䜿ãå Žåã¯ããš12
ãããããã12以äžã®æå€§ã®ãã£ããããæ°ã¯8
ãããããã8ã䜿ãå Žåãšäœ¿ããªãå Žåã§åå²
ããããããã8ã䜿ãå Žåã¯ããš4 â äžãšåãåŠçãªã®ã§çç¥
ããããããã8ã䜿ããªãå Žåã¯ããæªæºã®ãã£ããããæ°ã®åã12æªæºãªã®ã§äžé©
ããããã13ã䜿ããªãå Žåã¯ããæªæºã®ãã£ããããæ°ã®åã25æªæºãªã®ã§äžé©
ãã987ã䜿ããªãå Žåã¯æ¬¡ã®ãã£ããããæ°ã¯610
ã»ã»ã»ã»
å®éã«ã¯ååž°ã§åŠçããŠããããŸããåå²ããšæžããŠããã®ã¯å®éã«åå²ããŠããããã§ã¯ãªã
ãã©ã®ãã£ããããæ°ã䜿ããããšãã19ãããã®ãã©ã°ã«1ãç«ãŠããã©ããã§ãã
ãŸããããæªæºã®ãã£ããããæ°ã®åãããã ã¡ã«åŸãããããã«ã
Σ[k=1ïœn]F(k)ã®ããŒãã«ãæåã«äœã£ãŠããŸãã
説æããŠããã£ãããã°ã©ã ã®åå²ãåçŸããããšãã£ãŠãããã§ãã
ãã¯ãé£ãããããåçŽã«7777ã®Zeckendorf衚瀺
7777=[1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,1]
ãã¬ããŒã¹ããã
[1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1]
ã«ãããŠ
[0,0,1]ã®éšåãããã°ãããã[1,1,0]ãžå€æŽãããäœæ¥ããã®éœåºŠ
è¡ããæ°ãã«ããããéããéåãäœã£ãŠããããšãç¹°ãè¿ããŠã¿ãŸããã
2ãæä»¥äžãã£ãŠããåæã«å€åãããããšã¯ããªããŠããããã®å€åã
éããããšã«ããŸããã
ã§ãããã1åç®ã®æäœã§ã¯æ¬¡ããã®éåã«ãªããŸãã
[[1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1],
[ 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1],
[ 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1],
[ 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0]]
2åç®ã¯ãã®éåã«å¯Ÿãåæ§ãªæäœãããããã«è¡ã£ãŠãããããã®éåã«
æ°ãã«è¿œå ããŠãããŸããã
äœãåããã®ãéãªã£ãå Žåã¯ããã¯ãã®éãªããè§£æ¶ããæäœãå
¥ããŠãããŸãã
ãããæ°åç¹°ãè¿ããŠããã°ãéãŸã£ãŠããéåã®åæ°ãäžå®ã®æ°ã«åæããŠãã
ãã以äžã¯å¢ããæžããããªããªããŸããã
ãããèŠã€ãããããã®éåã«å¯Ÿããã£ããããæ°ãå²ãæ¯ã£ãŠæ§æã§ããŸããã
äœãæåŸã®æåã0ããããã®ã¯ããã®0ãåãé€ãäœæ¥ãããŠãããŸãã
ãããŸã§ãèªåã§ããããããã°ã©ã ãæºåãããããã£ãšèšãéã«å
šãã£ããããæ°ã®
å解衚çŸã䞊ã°ããããšãã§ããŸããã
ã¡ãªã¿ã«n=123456ã§Zeckendorf衚瀺ã¯ã
[1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,
1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393]
ãŸã§ã䜿ããããã£ããããæ°ãªã®ã§ãæå€§ãªãã£ããããæ°ãæ¡çšããŠãããš(貪欲æ³)
gp > 123456-121393ã(25çªç®ã䜿ã)
%176 = 2063
gp > 2063-1597 (16çªç®ã䜿ã)
%177 = 466
gp > 466-377 (13çªç®ã䜿ã)
%178 = 89 (10çªç®ã䜿ã)
ã䜿ãã°ããããšã«ãªãã®ã§åŸã¯äœ¿ããããã£ããããæ°ãäœåãã§ç€ºãã°ããã®ã§
123456=[1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
ããã«ããã°ã©ã ãé©å¿ããã
1; 89 + 377 + 1597 + 121393
2; 89 + 377 + 1597 + 46368 + 75025
3; 89 + 377 + 1597 + 17711 + 28657 + 75025
4; 89 + 377 + 1597 + 6765 + 10946 + 28657 + 75025
5; 89 + 377 + 1597 + 2584 + 4181 + 10946 + 28657 + 75025
6; 89 + 377 + 610 + 987 + 121393
7; 89 + 377 + 610 + 987 + 46368 + 75025
8; 89 + 377 + 610 + 987 + 17711 + 28657 + 75025
9; 89 + 377 + 610 + 987 + 6765 + 10946 + 28657 + 75025
10; 89 + 377 + 610 + 987 + 2584 + 4181 + 10946 + 28657 + 75025
11; 89 + 144 + 233 + 1597 + 121393
12; 89 + 144 + 233 + 1597 + 46368 + 75025
13; 89 + 144 + 233 + 1597 + 17711 + 28657 + 75025
14; 89 + 144 + 233 + 1597 + 6765 + 10946 + 28657 + 75025
15; 89 + 144 + 233 + 1597 + 2584 + 4181 + 10946 + 28657 + 75025
16; 89 + 144 + 233 + 610 + 987 + 121393
17; 89 + 144 + 233 + 610 + 987 + 46368 + 75025
18; 89 + 144 + 233 + 610 + 987 + 17711 + 28657 + 75025
19; 89 + 144 + 233 + 610 + 987 + 6765 + 10946 + 28657 + 75025
20; 89 + 144 + 233 + 610 + 987 + 2584 + 4181 + 10946 + 28657 + 75025
21; 34 + 55 + 377 + 1597 + 121393
22; 34 + 55 + 377 + 1597 + 46368 + 75025
23; 34 + 55 + 377 + 1597 + 17711 + 28657 + 75025
24; 34 + 55 + 377 + 1597 + 6765 + 10946 + 28657 + 75025
25; 34 + 55 + 377 + 1597 + 2584 + 4181 + 10946 + 28657 + 75025
26; 34 + 55 + 377 + 610 + 987 + 121393
27; 34 + 55 + 377 + 610 + 987 + 46368 + 75025
28; 34 + 55 + 377 + 610 + 987 + 17711 + 28657 + 75025
29; 34 + 55 + 377 + 610 + 987 + 6765 + 10946 + 28657 + 75025
30; 34 + 55 + 377 + 610 + 987 + 2584 + 4181 + 10946 + 28657 + 75025
31; 34 + 55 + 144 + 233 + 1597 + 121393
32; 34 + 55 + 144 + 233 + 1597 + 46368 + 75025
33; 34 + 55 + 144 + 233 + 1597 + 17711 + 28657 + 75025
34; 34 + 55 + 144 + 233 + 1597 + 6765 + 10946 + 28657 + 75025
35; 34 + 55 + 144 + 233 + 1597 + 2584 + 4181 + 10946 + 28657 + 75025
36; 34 + 55 + 144 + 233 + 610 + 987 + 121393
37; 34 + 55 + 144 + 233 + 610 + 987 + 46368 + 75025
38; 34 + 55 + 144 + 233 + 610 + 987 + 17711 + 28657 + 75025
39; 34 + 55 + 144 + 233 + 610 + 987 + 6765 + 10946 + 28657 + 75025
40; 34 + 55 + 144 + 233 + 610 + 987 + 2584 + 4181 + 10946 + 28657 + 75025
41; 13 + 21 + 55 + 377 + 1597 + 121393
42; 13 + 21 + 55 + 377 + 1597 + 46368 + 75025
43; 13 + 21 + 55 + 377 + 1597 + 17711 + 28657 + 75025
44; 13 + 21 + 55 + 377 + 1597 + 6765 + 10946 + 28657 + 75025
45; 13 + 21 + 55 + 377 + 1597 + 2584 + 4181 + 10946 + 28657 + 75025
46; 13 + 21 + 55 + 377 + 610 + 987 + 121393
47; 13 + 21 + 55 + 377 + 610 + 987 + 46368 + 75025
48; 13 + 21 + 55 + 377 + 610 + 987 + 17711 + 28657 + 75025
49; 13 + 21 + 55 + 377 + 610 + 987 + 6765 + 10946 + 28657 + 75025
50; 13 + 21 + 55 + 377 + 610 + 987 + 2584 + 4181 + 10946 + 28657 + 75025
51; 13 + 21 + 55 + 144 + 233 + 1597 + 121393
52; 13 + 21 + 55 + 144 + 233 + 1597 + 46368 + 75025
53; 13 + 21 + 55 + 144 + 233 + 1597 + 17711 + 28657 + 75025
54; 13 + 21 + 55 + 144 + 233 + 1597 + 6765 + 10946 + 28657 + 75025
55; 13 + 21 + 55 + 144 + 233 + 1597 + 2584 + 4181 + 10946 + 28657 + 75025
56; 13 + 21 + 55 + 144 + 233 + 610 + 987 + 121393
57; 13 + 21 + 55 + 144 + 233 + 610 + 987 + 46368 + 75025
58; 13 + 21 + 55 + 144 + 233 + 610 + 987 + 17711 + 28657 + 75025
59; 13 + 21 + 55 + 144 + 233 + 610 + 987 + 6765 + 10946 + 28657 + 75025
60; 13 + 21 + 55 + 144 + 233 + 610 + 987 + 2584 + 4181 + 10946 + 28657 + 75025
61; 5 + 8 + 21 + 55 + 377 + 1597 + 121393
62; 5 + 8 + 21 + 55 + 377 + 1597 + 46368 + 75025
63; 5 + 8 + 21 + 55 + 377 + 1597 + 17711 + 28657 + 75025
64; 5 + 8 + 21 + 55 + 377 + 1597 + 6765 + 10946 + 28657 + 75025
65; 5 + 8 + 21 + 55 + 377 + 1597 + 2584 + 4181 + 10946 + 28657 + 75025
66; 5 + 8 + 21 + 55 + 377 + 610 + 987 + 121393
67; 5 + 8 + 21 + 55 + 377 + 610 + 987 + 46368 + 75025
68; 5 + 8 + 21 + 55 + 377 + 610 + 987 + 17711 + 28657 + 75025
69; 5 + 8 + 21 + 55 + 377 + 610 + 987 + 6765 + 10946 + 28657 + 75025
70; 5 + 8 + 21 + 55 + 377 + 610 + 987 + 2584 + 4181 + 10946 + 28657 + 75025
71; 5 + 8 + 21 + 55 + 144 + 233 + 1597 + 121393
72; 5 + 8 + 21 + 55 + 144 + 233 + 1597 + 46368 + 75025
73; 5 + 8 + 21 + 55 + 144 + 233 + 1597 + 17711 + 28657 + 75025
74; 5 + 8 + 21 + 55 + 144 + 233 + 1597 + 6765 + 10946 + 28657 + 75025
75; 5 + 8 + 21 + 55 + 144 + 233 + 1597 + 2584 + 4181 + 10946 + 28657 + 75025
76; 5 + 8 + 21 + 55 + 144 + 233 + 610 + 987 + 121393
77; 5 + 8 + 21 + 55 + 144 + 233 + 610 + 987 + 46368 + 75025
78; 5 + 8 + 21 + 55 + 144 + 233 + 610 + 987 + 17711 + 28657 + 75025
79; 5 + 8 + 21 + 55 + 144 + 233 + 610 + 987 + 6765 + 10946 + 28657 + 75025
80; 5 + 8 + 21 + 55 + 144 + 233 + 610 + 987 + 2584 + 4181 + 10946 + 28657 + 75025
81; 2 + 3 + 8 + 21 + 55 + 377 + 1597 + 121393
82; 2 + 3 + 8 + 21 + 55 + 377 + 1597 + 46368 + 75025
83; 2 + 3 + 8 + 21 + 55 + 377 + 1597 + 17711 + 28657 + 75025
84; 2 + 3 + 8 + 21 + 55 + 377 + 1597 + 6765 + 10946 + 28657 + 75025
85; 2 + 3 + 8 + 21 + 55 + 377 + 1597 + 2584 + 4181 + 10946 + 28657 + 75025
86; 2 + 3 + 8 + 21 + 55 + 377 + 610 + 987 + 121393
87; 2 + 3 + 8 + 21 + 55 + 377 + 610 + 987 + 46368 + 75025
88; 2 + 3 + 8 + 21 + 55 + 377 + 610 + 987 + 17711 + 28657 + 75025
89; 2 + 3 + 8 + 21 + 55 + 377 + 610 + 987 + 6765 + 10946 + 28657 + 75025
90; 2 + 3 + 8 + 21 + 55 + 377 + 610 + 987 + 2584 + 4181 + 10946 + 28657 + 75025
91; 2 + 3 + 8 + 21 + 55 + 144 + 233 + 1597 + 121393
92; 2 + 3 + 8 + 21 + 55 + 144 + 233 + 1597 + 46368 + 75025
93; 2 + 3 + 8 + 21 + 55 + 144 + 233 + 1597 + 17711 + 28657 + 75025
94; 2 + 3 + 8 + 21 + 55 + 144 + 233 + 1597 + 6765 + 10946 + 28657 + 75025
95; 2 + 3 + 8 + 21 + 55 + 144 + 233 + 1597 + 2584 + 4181 + 10946 + 28657 + 75025
96; 2 + 3 + 8 + 21 + 55 + 144 + 233 + 610 + 987 + 121393
97; 2 + 3 + 8 + 21 + 55 + 144 + 233 + 610 + 987 + 46368 + 75025
98; 2 + 3 + 8 + 21 + 55 + 144 + 233 + 610 + 987 + 17711 + 28657 + 75025
99; 2 + 3 + 8 + 21 + 55 + 144 + 233 + 610 + 987 + 6765 + 10946 + 28657 + 75025
100; 2 + 3 + 8 + 21 + 55 + 144 + 233 + 610 + 987 + 2584 + 4181 + 10946 + 28657 + 75025
ãšäžæ°ã«å
šéšã®ãã£ããããæ°ã§ã®åã«åè§£ããŠãããŸããã
ïŒåŸæ¥ã®æ¹æ³ã§ã¯3æ¥ã¯èšç®ã«èŠããæéããããããã§ããïŒ
ãŸãå
šéšã§100åã®æ¹æ³ãããããšã¯ã次ã®èšç®æ¹æ³ã§æ±ãŸãããã§ãã
123456=[1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
ã®Zeckendorf衚瀺ãããããã0ãç¶ãæ°ã10ã®ææ°ã«æ¡çšããŠ
10^8*10^2*10^2*10^9
ãšè¡šã
äžè¬ã«10^dãæ¬¡ã®2Ã2è¡åM(d)=[1 1]
[floor(d/2) ceil(d/2)] (floor;åºé¢æ°ãceil;倩äºé¢æ°)
ããã«ããäžèšã®æ°ã¯
M(8)*M(2)*M(2)*M(9)
= [1 1]*[1 1]^2*[1 1]
[4 4] [1 1] [4 5]
=[20 24]
[80 96]
æåŸã«ãã®è¡åã[1 1],[1 0]~ã§æã¿
[1 1]*[20 24]*[1]=[100]
[80 96] [0]
ãªãè¡åèšç®ã§åŠçã§ãããšãããïŒãããããªæ¹æ³ãç·šã¿åºããªïœïŒ
ç§ã®æ¹æ³ã¯äœãèããã«åãç®çã®æ°ã«ãªãçµåããæ¢ãã ããªã®ã§ã
ããããZeckendorf衚瀺ããåè§£ããGAIããã®æ¹æ³ã®æ¹ãéãã§ããããã
çããå€ããã§ããããïŒ
äœãã«æçš¿ãæŽæ°ãããªãã®ã§ãå¿é
ããŠãŸãã
ãã€ãåæã«æçš¿ãããŠããã£ãŠæçž®ãªãã§ããããã€ãèŠãç»é¢ãåãã®ã
éå±ãªã®ã§ããã®é æ°ä»ããããšãèŒããŠã¿ãŸãã
138901917
ã®9æ¡ã®èªç¶æ°ãå¹³æ¹ãããš
138901917^2=19293742546274889
ãªã18æ¡ã®å€ã«ãªãã奿°äœã«çç®ãããš
ãããã =[1]9[2]9[3]7[4]2[5]4[6]2[7]4[8]8[9]
ãšç¶ºéºã«1ïœ9ã®æ°åãé çªéãã«äžŠãã§ããã
ããã§ä»åºŠã¯9æ¡ã®ããæ°ãå¹³æ¹ããŠ18æ¡ã®æ°åã䞊ãã æ
奿°äœãå¶æ°äœå
±ã«å¿
ã1ãã9ãŸã§ã®æ°åãäžåºŠã¯åºçŸããŠããïŒé çªã¯åããªãïŒ
ç¶æ
ãèµ·ãããã®ãæ¢ããŠãããïŒçµæ§å€ã286éãããã£ããïŒ
ãã®äžã«å
ã®9æ¡ã®æ°ãå¶æ°ã®digitsã°ãã(0ãå«ã)ã§æ§æãããŠãããã®ããã äžã€
ååšããŠããã
å¶æ°ã°ããã®æ°åãªã®ã«ãããã»ã©å€çš®ã®æ°åããã©ã³ã¹è¯ãçã¿åºããŠããããšã«é©ããŸããã
ã§ã¯ãã®9æ¡ã®æŽæ°ãèŠã€ããŠäžããã
æŽã«ããŒãžã§ã³ã¢ããããŠ
10æ¡ã®æŽæ°ã§ïŒãã ã0ãã9ãŸã§ã®æ°åãå¿
ãäžã€ã¯å«ãïŒ
ãããå¹³æ¹ãããš20æ¡ã®æ°ãšãªã
奿°äœãå¶æ°äœã«ã¯ã©ã¡ãã0ãã9ãŸã§ã®æ°åãäžåºŠã¯åºçŸããŠãããšããã
ãã®10æ¡ã®æ°ãšã¯?
äžã€ç®ã¯
660400884^2=436129327587981456
äºã€ç®ã¯
3284591706^2=10788542675123990436
ãš
3946751820^2=15576849928673312400
ã§ããã
ãããã«ãããããã
ä»äºãæ©ãã§ããã
ãªãå¶æ°ã ãã®digitsã§ã®äŸã§
4044044202^2=16354293507729816804
ã¯ããŸããŸæ€çŽ¢ã«åŒã£ããã£ãã®ã§ããããã¹ãŠã«ã€ããŠã¯æªèª¿æ»ã§ãã
ä»ã«ååšããŸããïŒ
ããšäžã€ã ããããŸããã
6604008840^2=43612932758798145600
æåã®è§£ã®10åã§ãã
ã§ã¯é¡é¡ã§ãã
2ä¹ãããš0ïœ9ããããã3åãã€ç»å Žãã30æ¡ã®æ°ã«ãªããããª15æ¡ã®æ°ã§ã
ãæ°åã2çš®é¡ã®ã¿ããã€ãåæïŒæ¡ãéé ã«äžŠã¹ãŠãåãïŒããšãªã£ãŠããæ°ã¯ïŒ
坿ãã«æçš¿ã«æ°ä»ããŠãå¯åºã§ããããæ¹æ³ãèããŠããã
ãªããªãå¯ä»ããã3æåããèµ·ãäžããããããããã°ã©ã ãã©ãçµã¿äžããŠããã°ããã
æªæŠèŠéãç¹°ãè¿ãã
ïŒäŸã®15æ¡æ§æããã¿äžããŠè¡ãæé ã«èŠæŠããŸãããäžå€®éšãïŒéãã«åãããå¯èœæ§ãæã€ãïŒ
äœãšã5æåãããäžã®ãã®ã«ãããããŸããã
677777767777776^2 = 459382702493824850617319506176
ä»ã®ãã¿ãŒã³(å
šéšã§8000éãè¿ãããã)ã調ã¹ãŸãããããããã äžäŸã ãã§ãããã
ã¯ããæ£è§£ã§ãã
2çš®é¡ã®æ°åã§æ§æããã15æ¡ã®èªç¶æ°ã§2ä¹ãããš0ïœ9ã3åãã€ã«ãªããã®ã¯
ïŒããã°ã©ã ã«ãã°ããªããã°ïŒå
šéšã§23éãã§ããã®ãã¡ãã®äžã€ã
é¢çœã圢ã ã£ãã®ã§åºé¡ããŸããã
888988889888889 ã 822288882228888 ãæ¯èŒçé¢çœã圢ã§ããã
565656565656555 ã¯æããã
ç°ãªãæ£ã®æŽæ°a,b(a<b)ãæºåããã
ããããæ¬¡ã®èŠåã§æ¬¡ã
ãšæ°åãæ§æããŠãããã®ãšããã
aã第1é
bã第2é
a+bã第3é
第4é
ã¯ãããŸã§æ§æãã2ã€ã®æ°ã§ãã äžéãã®åã§äœããã第3é
ãè¶ãã
æå°ã®æŽæ°ãšããã
第5é
ã¯ãããŸã§æ§æãã2ã€ã®æ°ã§ãã äžéãã®åã§äœããã第4é
ãè¶ãã
æå°ã®æŽæ°ãšããã
以äžåæ§ã«ããŠãããã®ãšããã
<äŸ>
a=1;b=2ãªããã®åU(a,b)ã¯
1,2,3,4,6,8,11,13,16,
ãªããªã
4=1+3
5=1+4=2+3ãš2éãã®åã§æ§æãããŠããŸãã®ã§5ã¯ãã®æ°åã«ã¯å
¥ããªãã
6=2+4ã®ã¿
7=1+6=3+4
8=2+6ã®ã¿
9=1+8=3+6
10=2+8=4+6
11=3+8ã®ã¿
12=1+11=4+8
13=2+11ã®ã¿

ããã§ã
U(2,3)ã®åã1000å䞊ã¹ããšãããšããã®äžã«å¶æ°ã¯äœåå«ãŸããããšã«ãªãã§ãããïŒ
ãŸã
U(2,5)ã§ã¯ã©ããªãã?
U(2,3)ã«é¢ããŠã¯ç®¡ç人ããã調ã¹ããã1000åäžãå¶æ°ã¯492åïŒçŽåæ°ïŒ
ãçºçããŸããããããU(2,5)ã«ãªããš1000åäžå
ãã«2,12ã®ã¿ã®2åããçºçããªãããã§ãã
å®ã¯ããã®å
ã©ããŸã§ãé²ãã§ããã®2åããçŸããªããšããã
ãããU(2,3)ã«é¢ããŠã¯äœãèŠåãèŠåœãããªãããU(2,5)ã«é¢ããŠã¯ããã§çºçããæ°åã{a(n)}(n=1,2,3,ïŒ
ã§è¡šããš(A007300åç
§ã®ããš)
a(n+32)-a(n)=126 (n=7,8,9,)ã®é¢ä¿åŒãçãŸããŠãããšããã
åãã
U(2,7)ã§ã¯
a(n+26)-a(n)=126 (n=8,9,10,)
U(2,9)ã§ã¯
a(n+444)-a(n)=1778 (n=9,10,11,)
U(2,11)ã§ã¯
a(n+1628)-a(n)=6510 (n=10,11,12,)
U(2,13)ã§ã¯
a(n+5906)-a(n)=23622 (n=11,12,13,)
U(2,15)ã§ã¯
a(n+80)-a(n)=510 (n=12,13,14,)

以äž
A100729;ãA100730;ãçåç
§
ãã®æ§ã«äžè¬ã«
U(2,2*n+1)åã§ã®æ°åçºçããã¯
n=1ã§ã¯å¥æ°ãå¶æ°ã倧äœå¹³çã«çºçããã
n>=2ã§ã¯å¶æ°ã¯å
ãã«2åã®ã¿ããçŸãããããã2åç®ã®å¶æ°çºçãã以éã§ã®æ°åã§ã¯
ãã®éå·®ã¯é·ãã¹ãã³ã§äžå®ã®èŠåã§ç¹°ãè¿ãçŸè±¡ã«ãªããšããã
ã«ãŒã«ã¯åãã§ããåæå€ã®èšå®æ¡ä»¶ã§ãããªã«ããã®åŸã®æ°ã®çºçãç°ãªã£ãŠããããšã«ããã¯ãªããŸããã
OEISã®ãµã€ãã§ã®ãªã³ã¯ã蟿ã£ãŠè¡ã£ãŠã¿ãŠæã£ãããšã§ããã
äœæ¹ã
U(4,4*n+1) (n=1,2,3,)
ã§ã®æ°å{a(n)}ã«ã€ããŠãäžèšA100729;ãA100730;
ã«çžåœããæ°åãèšç®ããŠããããªãã§ããïŒ
ãã¶ãããã¯OEISã«ã¯æ²èŒãããŠããªããšæããŸããã
ïŒäžå¿n=1ïœ5ã§ã¯èª¿ã¹ãŠã¿ãŸããã)
ãšãããã50å
U(4,5): a[n+32]-a[n]=192 (nâ§10)
U(4,9): a[n+88]-a[n]=640 (nâ§14)
U(4,13): a[n+104]-a[n]=896 (nâ§17)
U(4,17): a[n+248]-a[n]=2304 (nâ§21)
U(4,21): a[n+280]-a[n]=2816 (nâ§24)
U(4,25): a[n+304]-a[n]=3328 (nâ§28)
U(4,29): a[n+320]-a[n]=3840 (nâ§31)
U(4,33): a[n+712]-a[n]=8704 (nâ§35)
U(4,37): a[n+776]-a[n]=9728 (nâ§38)
U(4,41): a[n+824]-a[n]=10752 (nâ§42)
U(4,45): a[n+856]-a[n]=11776 (nâ§45)
U(4,49): a[n+896]-a[n]=12800 (nâ§49)
U(4,53): a[n+928]-a[n]=13824 (nâ§52)
U(4,57): a[n+952]-a[n]=14848 (nâ§56)
U(4,61): a[n+968]-a[n]=15872 (nâ§59)
U(4,65): a[n+2072]-a[n]=33792 (nâ§63)
U(4,69): a[n+2200]-a[n]=35840 (nâ§66)
U(4,73): a[n+2296]-a[n]=37888 (nâ§70)
U(4,77): a[n+2360]-a[n]=39936 (nâ§73)
U(4,81): a[n+2440]-a[n]=41984 (nâ§77)
U(4,85): a[n+2504]-a[n]=44032 (nâ§80)
U(4,89): a[n+2552]-a[n]=46080 (nâ§84)
U(4,93): a[n+2584]-a[n]=48128 (nâ§87)
U(4,97): a[n+2656]-a[n]=50176 (nâ§91)
U(4,101): a[n+2720]-a[n]=52224 (nâ§94)
U(4,105): a[n+2768]-a[n]=54272 (nâ§98)
U(4,109): a[n+2800]-a[n]=56320 (nâ§101)
U(4,113): a[n+2840]-a[n]=58368 (nâ§105)
U(4,117): a[n+2872]-a[n]=60416 (nâ§108)
U(4,121): a[n+2896]-a[n]=62464 (nâ§112)
U(4,125): a[n+2912]-a[n]=64512 (nâ§115)
U(4,129): a[n+6088]-a[n]=133120 (nâ§119)
U(4,133): a[n+6344]-a[n]=137216 (nâ§122)
U(4,137): a[n+6536]-a[n]=141312 (nâ§126)
U(4,141): a[n+6664]-a[n]=145408 (nâ§129)
U(4,145): a[n+6824]-a[n]=149504 (nâ§133)
U(4,149): a[n+6952]-a[n]=153600 (nâ§136)
U(4,153): a[n+7048]-a[n]=157696 (nâ§140)
U(4,157): a[n+7112]-a[n]=161792 (nâ§143)
U(4,161): a[n+7256]-a[n]=165888 (nâ§147)
U(4,165): a[n+7384]-a[n]=169984 (nâ§150)
U(4,169): a[n+7480]-a[n]=174080 (nâ§154)
U(4,173): a[n+7544]-a[n]=178176 (nâ§157)
U(4,177): a[n+7624]-a[n]=182272 (nâ§161)
U(4,181): a[n+7688]-a[n]=186368 (nâ§164)
U(4,185): a[n+7736]-a[n]=190464 (nâ§168)
U(4,189): a[n+7768]-a[n]=194560 (nâ§171)
U(4,193): a[n+7904]-a[n]=198656 (nâ§175)
U(4,197): a[n+8032]-a[n]=202752 (nâ§178)
U(4,201): a[n+8128]-a[n]=206848 (nâ§182)
ç§ã5ååã®çµæãç¥ãããã«è¡ã£ãäœæ¥æéã¯ãã¶ã2æé以äž
ããã«å¯Ÿãããããããã¯50ååã®çµæïŒæ°ã倧ãããªããšããã ãæéã¯ããããšæããïŒ
ãé£ãªãïŒæåŸã®ã¹ãã³ã¯8128ãšãããšé·ããŸã§ïŒç€ºãããŠããã
ããã§ç§ã®2æéã®äœæ¥ãç¡é§ã§ã¯ãªãã£ãäºã確èªã§ããŠããã£ãã§ãã
ãã®çµæã¯æ¯éOEISãžç»é²ããŠãã ããã
ãã®ãµã€ã¯ã«æ¢ããããã°ã©ã çã«ããããšè©Šã¿ãŠããã®ã§ãããã©ãããŠãã¢ã«ãŽãªãºã ã
é£ããããã®äœæ¥ã¯ã»ãšãã©æäœæ¥ç¶æ
ã§ããã
> æ°ã倧ãããªããšããã ãæéã¯ããããšæãã
ããã§ãããU(4,201)ã¯3ç§çšã§ãããU(4,401)ã«ãªããš1åçšããããŸãã
ïŒU(4,5)ïœU(4,201)å
šéšã§ã¯50ç§çšïŒ
ïŒã¡ãªã¿ã«U(4,401)ã¯a[n+24320]-a[n]=823296 (nâ§357)ã§ãïŒ
> ãã®ãµã€ã¯ã«æ¢ããããã°ã©ã çã«ããããšè©Šã¿ãŠããã®ã§ãããã©ãããŠãã¢ã«ãŽãªãºã ã
> é£ããããã®äœæ¥ã¯ã»ãšãã©æäœæ¥ç¶æ
ã§ããã
ãµã€ã¯ã«æ¢ãã¯å°ãæ©ã¿ãŸããããããŸãæ¹æ³ãæãã€ããŸããã
a[3],a[4],a[5],âŠãé æ¬¡æ±ããŠãããšåæã«1ã€åãšã®å·®å
(a[3]-a[2],a[4]-a[3],a[5]-a[4],âŠ)ãèšç®ããŸãã
ãããŠãä»ãŸã§ã®å·®åãšæ¯èŒããŠæå€§ãã©ããã
ïŒæå€§ã®æŽæ°æã ãã§ãªãæå€§å€ãšã®äžèŽãå«ãïŒ
ã調ã¹ãŠãæå€§å€ã®å Žåã¯ãä»ãŸã§ã®æå€§å€ããæŽæ°ãã
ïŒå€ãããªãå ŽåãããïŒãšãšãã«ããã®ãšãã®
ã€ã³ããã¯ã¹ïŒa[n]-a[n-1]ã®nïŒãèšæ¶ããŸãã
ãã®ããã§ãååèšæ¶ããã€ã³ããã¯ã¹ãšã®å·®ãã
èŠããŠããããã®å·®ãåãå€ã§é£ç¶ããŠäœåãïŒäŸãã°5åïŒ
ç¶ãããããããä»®ã«åšæãšããŸãã
ãããŠä»ãŸã§æ±ããæ°åã«å¯ŸããŠa[n+k]-a[n]=dããã°ãã
äžå®ã§ç¶ããŠãããã©ããããããããé ã«èª¿ã¹ãŠã
OKãªãã°ãããåšæã«ç¢ºå®ããŸãã
ãã®æ¹æ³ã§ã¯ãããäžåšæã®äžã«å·®åãæå€§å€ã«ãªããã®ã
è€æ°åãããšåšæãæ£ããæ±ãŸããªããšããåé¡ã¯ãããŸããã
ãšããããU(4,201)ãŸã§ã§ãã®ãããªåé¡ã¯çºçããŸããã§ããã
> ãã®çµæã¯æ¯éOEISãžç»é²ããŠãã ããã
è±èªãèŠæã§ç»é²ã«ã¯äžèŠåŽããŸãã®ã§ããããããããã°
GAIããã®æ¹ã§(GAIããã®ååã§)ç»é²ããŠé ããã°ãšæããŸãã
æ¬¡ã®æ¹çšåŒã®å®æ°è§£ãããããæ±ããŠäžããã
(1)x - âx - 1 = 0
(2)x - 1/âx - 2 = 0
(3)1/x - 1/(x-3) - 3 = 0
äœã®å·¥å€«ããªãè§£ãæ¹ã§ãã
(1)
x-âx-1=0
x-1=âxã(â»)
x^2-2x+1=x
x^2-3x+1=0
x=(3屉5)/2
(â»)ããxâ§1ãªã®ã§ã
æ¡ä»¶ãæºããè§£ã¯x=(3+â5)/2
(2)
x-1/âx-2=0
x-2=1/âxã(â»)
x^2-4x+4=1/x
x^3-4x^2+4x-1=0
(x^3-1)-4x(x-1)=0
(x-1)(x^2-3x+1)=0
x=1,(3屉5)/2
(â»)ããxâ§2ãªã®ã§ã
æ¡ä»¶ãæºããè§£ã¯x=(3+â5)/2
(3)
1/x-1/(x-3)-3=0
(x-3)-x-3x(x-3)=0
x^2-3x+1=0
âŽx=(3±â5)/2
3^x+4^x=5^xãæºããx=?
ãšå°ãããããšx=2ãšçããããã
ã§ã¯
(1) 2^x+3^x=4^xãæºããx=?
(2) 4^x+5^x=6^xãæºããx=?
(3) 4^x+6^x=9^xãæºããx=?
ã«å¯Ÿã(1),(2)ã¯xãå°æ°ç¹ä»¥äž16æ¡ãŸã§ãæ±ãã(3)ã«ã€ããŠã¯xã®æç€ºåŒã瀺ããŠäžããã
(1)
f(x)=2^x+3^x-4^xãšããŸãã
f(1.5)=2â2+3â3-8â0.02458ïŒ0ãf(2)=4+9-16=-3ïŒ0ãªã®ã§
è§£ã¯1.5ãš2ã®éãããã1.5ã«ããªãè¿ãæ¹ã«ããããšãããããŸãã
g(a,b)={af(b)-bf(a)}/{f(b)-f(a)} ãšããŸãã
f(a)â0,f(b)â0,aâ bãšãªãããã«a=1.5,b=1.6ãšããŸãã
ïŒâ»f(a)ãšf(b)ã®ç¬Šå·ãç°ãªãå¿
èŠã¯ãããŸããïŒ
èšç®ã¯å°æ°ç¹ä»¥äž20æ¡(以äžåæšäºå
¥)ãšããŸãã
g(1.5,1.6)=1.50641450252233033645âa
g(1.50641450252233033645,1.6)=1.50705566866716387863âb
g(1.50641450252233033645,1.50705566866716387863)=1.50712664860928688768âa
g(1.50712664860928688768,1.50705566866716387863)=1.50712659163409698130âb
g(1.50712664860928688768,1.50712659163409698130)=1.50712659163865313369âa
g(1.50712659163865313369,1.50712659163409698130)=1.50712659163865313399âb
16æ¡ä»¥äžæ±ãŸã£ãã®ã§çµäº
âŽxâ1.507126591638653134
(2)
f(x)=4^x+5^x-6^xãšããŸãã
f(2)=16+25-36=5ãf(2.5)=32+25â5-36â6â-0.28ïŒ0ãªã®ã§
è§£ã¯2ãš2.5ã®éãããã2.5ã«ããªãè¿ãã»ãã«ããããšãããããŸãã
g(a,b)={af(b)-bf(a)}/{f(b)-f(a)} ãšããŸãã
f(a)â0,f(b)â0,aâ bãšãªãããã«a=2.4,b=2.5ãšããŸãã
èšç®ã¯å°æ°ç¹ä»¥äž20æ¡(以äžåæšäºå
¥)ãšããŸãã
g(2.4,2.5)=2.48609166514948013282âa
g(2.48609166514948013282,2.5)=2.48790297657867599533âb
g(2.48609166514948013282,2.48790297657867599533)=2.48793928282775205771âa
g(2.48793928282775205771,2.48790297657867599533)=2.48793917311166965240âb
g(2.48793928282775205771,2.48793917311166965240)=2.48793917311817466637âa
g(2.48793917311817466637,2.48793917311166965240)=2.48793917311817466754âb
16æ¡ä»¥äžæ±ãŸã£ãã®ã§çµäº
âŽxâ2.48793917311817467
(3)
4^x+6^x=9^x
(2^x)^2+(2^x)(3^x)=(3^x)^2
(2^x)^2+(2^x)(3^x)-(3^x)^2=0
{2^(x+1)+(â5+1)(3^x)}{2^(x+1)-(â5-1)(3^x)}=0
2^(x+1)+(â5+1)(3^x)ïŒ0ãªã®ã§
2^(x+1)-(â5-1)(3^x)=0
2^(x+1)=(â5-1)(3^x)
(3/2)^x=2/(â5-1)=(â5+1)/2
âŽx=log((â5+1)/2)/log(3/2)â1.1868143902809817
g(a,b)={af(b)-bf(a)}/{f(b)-f(a)}
ã®åŒããããªæã§åœ¹ç«ã€ãã§ããã
åèæžã«ã¯å¿
ãäžèšã®åŒãæžãçŽãïŒ=a-f(a)/f'(a) :as bâa)
åé¡ãåãããŠããæ§ã«èšæ¶ããŠããŸããã
ã€ãŸãy=f(x)äžã§ã®ç¹(a,f(a))ã§ã®æ¥ç·ãïœè»žãšäº€ãã座æš
ã²ããŠã¯ãã®æäœãç¹°ãè¿ãããšã«ããf(x)=0ã®è§£xãå°ãåºã
ãã¥ãŒãã³æ³ã®æŽ»çšã«å©çšã§ããã®ãïŒ
æã£ãŠããªãææ³ã§è§£æ±ºãããŠããã®ã§ãšãŠãåèã«ãªããŸãã
ãã®ææ³ã¯äœå¹Žãåã«èªåã§èããã®ã§ããã
仿¥æ€çŽ¢ããŠã¿ããæ¢ã«ãããŸããïŒåœç¶ãâŠïŒã
https://ja.wikipedia.org/wiki/%E5%89%B2%E7%B7%9A%E6%B3%95
ãå²ç·æ³ããŸãã¯ãã»ã«ã³ãæ³ããšãããããã§ãã
1.ïŒæã®ãšãŒã¹ãéžã³ããŒãã«ã«è¡šåãã«äžŠã¹ãŠåºãã
2.ãã®ããããã«ä»»æã®è£åãã§ïŒæã®ã«ãŒããèŒããã
3.客ã«èµ€ããšãŒã¹ã®ïŒã€ã®ãã±ãããéããŠæž¡ããèªç±ã«æãã£ããã·ã£ããã«ãããã
ãïŒïŒæã®ã«ãŒãã®äžã«ïŒæã®è¡šåãã®ãšãŒã¹ãã©ã®äœçœ®ã«ããŠãæ§ããªããïŒ
ãããªããé»ã®ãšãŒã¹ã®ã«ãŒã矀ãæãã客ãšåæ§èªç±ã«ã·ã£ããã«ããã
4.å®¢ãæž¡ããã±ããã峿ã«ãã¡ãå·Šæã«ã¯èªåãã·ã£ããã«ãããã±ãããã²ã£ããè¿ããŠ
ãä¿æãããïŒïŒæã®è¡šåãã«ãŒããšïŒæã®è£åãã®ãšãŒã¹ã«ãŒãã®ç¶æ
ãïŒ
ãïŒå®¢ã®ãã±ããã¯ïŒæãè£åãã§ãïŒæã®ãšãŒã¹ã¯è¡šåããïŒ
5.äž¡æã«æã€ãã±ããã®äžããããŒãã«ã«äº€äºã«äžæãã€ã®ã«ãŒãéããªãã眮ããŠããã
ãïŒè¡šåãã ã£ãããè£åãã ã£ããããã«ãŒããéãªã£ãŠãããïŒ
6.åºãçµãã£ãã«ãŒãã®æãæŽããŠã客ã«ä»»æã®å Žæã§ã«ãããããã
ã(ã«ããã¯ã·ã£ããã«ãšã¯ç°ãªããã«ãŒãå
šäœã§ã®åç°çé åºãå€ããªããïŒ
7.ãããåãåãããŒãã«ã«ïŒåã«äžæãã€åºããŠéããŠãããïŒåå±±ïŒæãã€ãïŒ
8.ïŒã€ã®å±±ã«åºæ¥ãã«ãŒãã®æã§ãå³ç«¯ã®å±±ããã¹ãŠã²ã£ããè¿ãããã®å·Šé£ã®å±±ã«éããã
ããããŠããã®éããå±±ã®æå
šäœããã¹ãŠã²ã£ããè¿ãããŸããã®å·Šé£ã®å±±ã«éããã
ããã®ããšãããäžåºŠç¹°ãè¿ããïŒã€ãã£ãå±±ãäžã€ã®ã«ãŒãã®æã«ããã
9.ãã®éãªã£ããã±ãããããŒãã«ã«ãªãã³ã¹ãã¬ããããæãäœãèµ·ãããã¯ãèªèº«ã§
ã確ãããŠäžããã
27000001ã®å æ°åè§£ã§
27000001=27000000+1
=300^3+1^3
ããã§a^3+b^3=(a+b)^3-3*a*b*(a+b)=(a+b)*((a+b)^2-3*a*b)
ãã3*a*bã®éšåãå¹³æ¹æ°ãšãªãå Žåã§
ãã®äŸã§ã
=301*(301^2-3*300*1)
=301*(301^2-30^2)
=301*(271)*(331)
=7*43*271*331
ãã®æ§ãª3ä¹ã®åïŒN=a^3+b^3 ããã3*a*bãå¹³æ¹æ°ïŒ
ã§ãäžèšã®ã«ãŒãã§çŽ å æ°åè§£ã§ããã¿ã€ãã®æ°Nã
10^7å°ã«éã£ãŠèª¿æ»ããŠã¿ãŸããã(å
šéšã§89å)
(2*10^7å°ã§ã¯27000001ãåœç¶çŸããã)
N [a , b]=æçµã®å æ°å解圢
10021508[213,71]=2^2*7*71^3
10063872[192,144]=2^12*3^3*7*13
10077704[216,2]=2^3*7*13*109*127
10078208[216,8]=2^11*7*19*37
10083528[216,18]=2^3*3^6*7*13*19
10110464[216,32]=2^9*7^2*13*31
10202696[216,50]=2^3*7*19*43*223
10450944[216,72]=2^11*3^6*7
10706059[196,147]=7^7*13
10892476[219,73]=2^2*7*73^3
11018888[216,98]=2^3*31*157*283
11313512[224,42]=2^3*7^4*19*31
11346272[222,74]=2^5*7*37^3
11375000[200,150]=2^3*5^6*7*13
11390652[225,3]=2^2*3^3*7*13*19*61
11392353[225,12]=3^3*7^2*79*109
11410308[225,27]=2^2*3^6*7*13*43
11501217[225,48]=3^3*7*13*31*151
11812500[225,75]=2^2*3^3*5^6*7
11859211[228,19]=7*13*19^4
11904697[192,169]=7^2*19^2*673
12071241[204,153]=3^3*7*13*17^3
12110644[189,175]=2^2*7^4*13*97
12174848[216,128]=2^9*7*43*79
12291328[228,76]=2^8*7*19^3
12650337[225,108]=3^6*7*37*67
12782924[231,77]=2^2*7^4*11^3
12795328[208,156]=2^6*7*13^4
13287456[234,78]=2^5*3^3*7*13^3
13547807[212,159]=7*13*53^3
13805092[237,79]=2^2*7*79^3
13824125[240,5]=5^3*7^2*37*61
13832000[240,20]=2^6*5^3*7*13*19
13915125[240,45]=3^3*5^3*7*19*31
14172704[242,6]=2^5*7*13*31*157
14186312[242,24]=2^3*7*19*67*199
14329224[216,162]=2^3*3^9*7*13
14329952[242,54]=2^5*7^2*13*19*37
14336000[240,80]=2^14*5^3*7
14348908[243,1]=2^2*7*31*61*271
14348971[243,4]=7*13*19*43*193
14349636[243,9]=2^2*3^6*7*19*37
14353003[243,16]=7*37*151*367
14364532[243,25]=2^2*7*13*19*31*67
14395563[243,36]=3^6*7^2*13*31
14466556[243,49]=2^2*13*37*73*103
14567148[225,147]=2^2*3^3*19*31*229
14607424[196,192]=2^6*13*97*181
14611051[243,64]=7*13*307*523
14709500[245,15]=2^2*5^3*13*31*73
14880348[243,81]=2^2*3^12*7
14922125[245,60]=5^3*19*61*103
15057224[242,96]=2^3*7*13^2*37*43
15140125[220,165]=5^3*7*11^3*13
15348907[243,100]=7^3*73*613
15438304[246,82]=2^5*7*41^3
15652000[250,30]=2^5*5^3*7*13*43
15777125[240,125]=5^3*7*13*19*73
15981056[224,168]=2^9*7^4*13
16010036[249,83]=2^2*7*83^3
16012269[252,21]=3^3*7^4*13*19
16120468[243,121]=2^2*7*13*67*661
16595712[252,84]=2^8*3^3*7^4
16777243[256,3]=7*37*211*307
16778944[256,12]=2^6*7*13*43*67
16796899[256,27]=7*61*139*283
16852563[228,171]=3^3*7*13*19^3
16887808[256,48]=2^12*7*19*31
17166500[245,135]=2^2*5^3*13*19*139
17195500[255,85]=2^2*5^3*7*17^3
17199091[256,75]=7*13*331*571
17334891[243,144]=3^6*7*43*79
17353000[250,120]=2^3*5^3*7*37*67
17547488[242,150]=2^5*7^2*19^2*31
17755192[232,174]=2^3*7*13*29^3
17809568[258,86]=2^5*7*43^3
18036928[256,108]=2^6*7*13*19*163
18077696[216,200]=2^11*7*13*97
18410392[264,22]=2^3*7*11^3*13*19
18438084[261,87]=2^2*3^3*7*29^3
18468513[225,192]=3^3*7*19*37*139
18689489[236,177]=7*13*59^3
19081216[264,88]=2^11*7*11^3
19175716[243,169]=2^2*7*61*103*109
19656000[240,180]=2^6*3^3*5^3*7*13
19684000[270,10]=2^5*5^3*7*19*37
19739132[267,89]=2^2*7*89^3
19747000[270,40]=2^3*5^3*7^2*13*31
19953739[256,147]=13*31*67*739
ãªã倧åŠå
¥è©Šã«æèšç®ã§æ¬¡ã®æ°ãçŽ å æ°åè§£ããããã®ã
åºé¡ãããŠããŸããã
N=12345654321
N0=110001011
N1=11111111
N2=11112121
N3=133113133
N4=14141441
N5=15151515115
N6=11611661
N7=17171111
N8=1811811818
N9=191111911
ã¯æèšç®ã§å æ°åè§£ã§ãããã®ãªã®ãïŒ
ãšããããç¬æ®ºã§ãããã®ããã
N1 = 11111111 = 1111*10001 = 11*101*10001
ããŠãGAI ãããããã§çµããã ãã®é¢çœã¿ã®ãªãåé¡ãåºããšã¯æããªãã®ã§ã10001 ã¯åææ°ãããããããã倧ããªçŽ æ°ã®ç©ã ãšä¿¡ããããšã«ããŸãã
10001 ã 2 ã€ã®èªç¶æ°ã®ç©ã§æžããšèãããšããã®çžä¹å¹³å㯠â10001 ã§ 100 ãããããã«å€§ããæ°ã§ãã
ãŸãã10001 㯠4 ã§å²ããš 1 äœãæ°ãªã®ã§ãããã 2 ã€ã®æ°ã®ç©ã§ãããªãã°ãã㯠4 ã§å²ããš 1 äœãæ°å士ã®ç©ããããã㯠4 ã§å²ããš 3 äœãæ°å士ã®ç©ã
ã€ãŸãããã® 2 ã€ã®æ°ã®å㯠4 ã§å²ããš 2 äœããŸãã
ããã 2 ã€ã®æ
å ±ã«ãã©ã¡ãããããã倧ããªçŽ å æ°ãšããæ
å ±ã远å ãããšã2 æ°ã®çžå å¹³å㯠100 ããå°ã倧ãã奿°ã§ãããšããããŸãã
ãšããããšã§ãããã 101+2k ãšæžãããšã«ããŸãã
ãããš 2 ã€ã®æ°ãè§£ã«æã€äºæ¬¡æ¹çšåŒã¯
x^2 - 2(101+2k)x + 10001 = 0
ãšãªãããã®å€å¥åŒã¯
D/4 = (101+2k)^2 - 10001 = 4k^2 + 404k + 200 = 4(k^2+101k+50)
ããšã¯ãã®æ¬åŒ§å
ãå¹³æ¹æ°ã«ãªããã㪠k ã®å€ãå°ããé ã«è©Šããªããæ¢ãã°ããã
k=1 ã®ãšã 152 ã¯å¹³æ¹æ°ã§ã¯ãªã
k=2 ã®ãšã 256 ã¯å¹³æ¹æ°
ãšããã«ã¿ã€ãããŸãã
2 æ°ã®çžå å¹³åã 105 ãšããããšã¯å㯠210 ã§ãç©ã 10001 ãªã®ã§ããããå·®ã¯
â(210^2-4*10001) = â4096 = 64
ã€ãŸã 2 æ°ã¯ 105 + 32 = 137 ãš 105 - 32 = 73
以äžãããN1 = 11111111 = 11*73*101*137
åãããæ¹ã§ãã 1 ã€ã
N2 = 11112121 = 11111111+1010
ãšèãããšãN1 ã®çµæãšåãããŠããã 101 ã®åæ°ã§ããããšã¯æããã§ã
N2 = 11112121 = 101*110021
éå¹³æ³ã䜿ã£ãŠé 匵ãã° â110021â331.7 ã§ããšããããšã¯ 2 æ°ã®çžå å¹³å㯠331 ããå°ã倧ãã奿°ãªã®ã§ 331+2k ãšãããŠãåæ§ã«é²ããŠã
D/4 = (331+2k)^2 - 110021 = 4(k^2+331k-115)
ãã®æ¬åŒ§å
ãå¹³æ¹æ°ã«ãªã k ãæ¢ããŸãã
k=1 ã®ãšã 217 ã¯å¹³æ¹æ°ã§ã¯ãªã
k=2 ã®ãšã 551 ã¯å¹³æ¹æ°ã§ã¯ãªã
k=3 ã®ãšã 887 ã¯å¹³æ¹æ°ã§ã¯ãªã
k=4 ã®ãšã 1225 ã¯å¹³æ¹æ°
2 æ°ã®çžå å¹³åã 339 ã§ãåã 678ãç©ã 110021 ãªã®ã§ãå·®ã¯
â(678^2-4*110021) = â19600 = 140
ã€ãŸã 2 æ°ã¯ 339 + 70 = 409 ãš 339 - 70 = 269
以äžãã N2 = 11112121 = 101*269*409
äžå¿ 19 以äžã®çŽ æ°ã§å²ã£ãŠã¿ãŠããããå
šéšçŽ æ°ãšç¢ºèªããŠçµäºã
N7 ããããããšæããŸãããã170011 ã®åŠçããã®æ¹æ³ã§ã¯ç¡çããã§ããã
2 ã€ã®æ°ãããããå以äžå·®ãããããã§ããã®æ¹æ³ã§ã¯ã¡ãã£ãšå³ããã
ããã©ããããããªã
f(k)=(412+2k)^2-170011ãšãããš
f(k)=4k^2+1648k-267
kãå¶æ°ã®ãšãf(k)â¡5(mod8)ãšãªãã
mod8ã§ã®å¹³æ¹å°äœã¯0,1,4ã ããªã®ã§å¹³æ¹æ°ã«ãªããªãã
k=2m-1ãšãããšf(k)=g(m)=16m^2+3280m-1911
mâ¡0,1,2,3,4,5,6,7,8ã«å¯ŸããŠg(m)â¡6,8,6,0,8,3,3,8,0(mod9)ã ã
mod9ã§ã®å¹³æ¹å°äœã¯0,1,4,7ã ããªã®ã§
å¹³æ¹æ°ã«ãªãå¯èœæ§ãããã®ã¯mâ¡3,8(mod9)ã®ãšãã®ã¿ã
mâ¡3(mod9)ã®ãšãm=9t-6ãšãããš
g(m)=h(t)=1296t^2+27792t-21015
h(1)=8073, h(2)=39753ã¯äžã®äœã3ãªã®ã§å¹³æ¹æ°ã§ã¯ãªãã
h(3)=74025ãå¹³æ¹æ°ãªãã°27^2=729,28^2=784ããh(3)=275^2ã§ãªããã°
ãªããªããã275^2=75625ãªã®ã§h(3)ã¯å¹³æ¹æ°ã§ã¯ãªãã
h(4)=110889ãå¹³æ¹æ°ãªãã°33^2=1089,34^2=1156ãã
h(4)=333^2ãŸãã¯337^2ã§ãªããã°ãªããªããã333^2=110889ãªã®ã§
h(4)ã¯å¹³æ¹æ°ã
ïŒããŸããŸèŠã€ãã£ãã®ã§mâ¡8(mod9)ã¯èããå¿
èŠããªããªã£ãïŒ
t=4âm=30âk=59â412+2k=530ãªã®ã§
170011=530^2-333^2ãšãããã以äžç¥ã