2/65 ãïŒã€ã®åäœåæ°ã®åãšããŠè¡šçŸããæ¹æ³ãäœéãããã®ãã«ã€ããŠçããã«äŒºããããšåããŸãã
twitter ãšããååã®ã€ããæž
æ¿äœµãæã€ã¬ã³ãžã¹å·ã«ããã³ãã©ã³ãšæµããŠãã tweet ã«è§Šçºãããåãã§ãã
ãªããšãªãã§ãããå°ãªããšã 5 éã以äžã¯ããããã§ããééã£ãŠãããããããªããããã£ãšãããŸãããïŒ
æçåŒ
2/(a*(2*b -a)) = 1/(a*b) +1/(b*(2*b -a))
ããã
(a, b) = (1, 33) or (5, 9) or (13, 9) or (65, 33)
ã® 4 éãã
äžèšã«åœãŠã¯ãŸããªããã®ã
2/65 = 1/35 +1/455
4éãã«èŠããŸããã代å
¥ãããš
2/65=1/33+1/2145
2/65=1/45+1/117
2/65=1/117+1/45
2/65=1/2145+1/33
ãšãªããŸãã®ã§2éããããªãã§ããã
ä»ã«ã¯
2/65=1/39+1/195
ãš
2/65=1/65+1/65
ããã£ãŠãèš5éãã§ãã
(è¿œèš)
æçåŒã®åæ¯ã«cãæããŠ
2/(a*(2*b-a)*c)=1/(a*b*c)+1/(b*(2*b-a)*c)
ãšããã°ã
(a,b,c)=(1,33,1) â 2/65=1/33+1/2145
(a,b,c)=(1,7,5) â 2/65=1/35+1/455
(a,b,c)=(1,3,13) â 2/65=1/39+1/195
(a,b,c)=(5,9,1) â 2/65=1/45+1/117
(a,b,c)=(1,1,65) â 2/65=1/65+1/65
ã®ããã«å
šè§£ãåºãŠããŸããã
ã¡ãªã¿ã«é
ã®å
¥ãæ¿ãã¯
(a,b,c)=(5,3,13) â 2/65=1/195+1/39
(a,b,c)=(13,7,5) â 2/65=1/455+1/35
(a,b,c)=(13,9,1) â 2/65=1/117+1/45
(a,b,c)=(65,33,1) â 2/65=1/2145+1/33
ã®ããã«ãªããŸãã
ããã£ïŒïŒ
EXCELLENTïŒ
2/65 = 1/x + 1/y
ãã
2xy = 65x + 65y
ããªãã¡
(2x-65)(2y-65) = 65^2
x, y ã®å°ãªããšãäžæ¹ã¯ 65 以äžã§ããããšãã巊蟺ãè² ã®æ°å士ã®ç©ã«ãªãããšã¯ãªãã®ã§ã
2x-65 =ã65^2 ã®æ£ã®çŽæ°ã
ãå
šãŠè§£ããŠããã° 5 çš® 9 åã®è§£ãåŸãããŸãã
DD++ããããšãŠãæ Œå¥œããã§ããææããŸããã
ãããã«ã³ã¹ã«ããæ¥çžŸãããšã«
ããã¬ãã€ãªã¹ã¯ 1 å垰幎ã®é·ãã
365 +1/4 -1/300 (åäœã¯æ¥æ°)
ãšããŠãããšã®ã§ãã
ãšãžããåŒåæ°ã®æµããæ±²ãã§ããæš¡æ§ã§
æŽæ°ãšåäœåæ°ãšã§è¡šçŸããŠããã®ã§ããã
äœããäžè¬ã«ãšãžããåæ°ã§ã¯åäœåæ°ã®åãšããŠããã®ã«å¯ŸããŠãããã¬ãã€ãªã¹ã«ããå垰幎ã®é·ãã§ã¯ãåäœåæ°ãæžç®ããæäœãèš±ããŠããããã§ã¯ãããŸãã
以äžãèžãŸããŸããŠä»åã¯ååšç(ã®è¿äŒŒå€)ãèªç¶æ°ãšåäœåæ°ãšã®å æžç®ã§è¡šçŸããŠã¿ãŸããããªãã¡ã
Ï â 3 +1/7 -1/791
第äºé
ãŸã§ã§æã¡åããŸããšæåãªæçæ°è¿äŒŒå€
22/7
ãšçãã
第äžé
ãŸã§ãèšç®ããŸããšããããŸãæåãªæçæ°è¿äŒŒå€
355/113
ãšçãããªããŸãã
é¢çœãããšã§ãã
æç®äžã§ã¯ç¥ãããŠããªãã ãã§åå€ã
3 +1/7 -1/791
ã¯ãã²ãã£ãšããŠå€ä»£ã§ããããã¯ç¥ãããŠããã®ã§ã¯ãªãããããšå€¢æ³ããŠã¿ããããªããŸãã
Ïã®ãšãžããåŒåæ°ã«ããè¿äŒŒã
æžç®ãèš±ããªããã°ä»¥äžã®ããã«ãªããš OEIS ãæããŠãããŸããã A001466
3+1/8+1/61+1/5020+1/128541455+1/162924332716605980+1/28783052231699298507846309644849796+1/871295615653899563300996782209332544845605756266650946342214549769447+ãâŠâŠâŠã
æã«å®å®è¹ãçéžãããã¢ããèšç»ã§ããèšç®ã«ã¯ 3.1416 ã䜿ã£ãŠãããããã®ã§ãå·¥åŠçãªå®çšäžã§ã¯ã
3+1/8+1/61+1/5020
ã§ãåºãç¯å²ã§å
åã§ããããšããšã
ãã¯ãæžç®ãèš±ããã»ãããåæïŒã¯éããããã§ãåæ¯ã倧ãããªãéããâŠâŠ
3 +1/7 -1/791 -1/3748629 +1/151648960887729 -1/1323497544567561138595307148089 +1/41444465282455711991644958522615049159671653083333293470875123 âŠâŠâŠ
OEIS A001467 ããã
> 以äžãèžãŸããŸããŠä»åã¯ååšç(ã®è¿äŒŒå€)ãèªç¶æ°ãšåäœåæ°ãšã®å æžç®ã§è¡šçŸããŠã¿ãŸããããªãã¡ã
> Ï â 3 +1/7 -1/791
> 第äºé
ãŸã§ã§æã¡åããŸããšæåãªæçæ°è¿äŒŒå€
> 22/7
> ãšçãã
> 第äžé
ãŸã§ãèšç®ããŸããšããããŸãæåãªæçæ°è¿äŒŒå€
> 355/113
> ãšçãããªããŸãã
> é¢çœãããšã§ãã
ããã§ãã£ãã®ããš
S=[1,1,1,7,-791,-3740526,1099482930,-2202719155,6600663644,-26413901692,96840976853,-496325469560,2346251883960,-44006595799206,]
ãšããŠ
gp > for(n=4,14,print1(sum(k=1,n,1/S[k])","))
22/7,355/113,103993/33102,104348/33215,208341/66317,312689/99532,833719/265381,1146408/364913,4272943/1360120,5419351/1725033,80143857/25510582,
ãšååšçÏã®è¿äŒŒåæ° (A002485/A002486)ã䞊ãã§ãããã(åæã¹ããŒãã¯é
ãã)
A006784ã«ã¯åæãéãããªãã®ãèŒã£ãŠããŸãã
â 亀代çŽæ°ã®ããã«åäœåæ°ããããããã足ãããåŒããããããŠååšçã®è¿äŒŒå€ãè¡šããŠã¿ãŸãã
â»ãããã§ãé
æ°ã®å€ããã®ãäœããããã§ãããããŸã§ã¯âŠâŠ
Ï â 3 +1/7 -1/784 +1/90160 -1/14155120 +1/5265704640 -1/2274784404480
= 1429289194723/454956880896ã
â 3.14159265359
âŠâŠãåŸãããŸãã
â æ±ãæ¹
https://oeis.org/A061233
ãåèã«ããŸããã
PARI/gp ãå©çšããŸããããA061233 ã«æžãããŠããããã°ã©ã ã¯ããããããªãã£ãã®ã§ä»¥äžã®ãã®ã䜿ããŸããã
(PARI)? r=1/(4-Pi) ; for(n=1, 6, r=r/(r-floor(r)); print1(floor(r), ", "))
åºåã¯
7, 112, 115, 157, 372, 432,
ã§ããã
ããããã次ã®ããã«ããŸãã
Ï â 4 -1/1 +1/7 -1/(7*112) +1/(7*112*115) -1/(7*112*115*157) +1/(7*112*115*157*372) -1/(7*112*115*157*372*432)
= 3 +1/7 -1/784 +1/90160 -1/14155120 +1/5265704640 -1/2274784404480
= 1429289194723/454956880896ã
â 3.14159265359
Android ã¹ããçšã® PARI ã®ã¢ããªãã¿ã€ããã®ã§ãè©Šãã«äœ¿ããããªããäžã®ããã«éãã§ã¿ãŸããã
[1988] ã§ã [1991] ã§ã
亀代çŽæ°ã®åäœåæ°ã®äžè¬é
ã¯å®ãé£ããã®ããããŸãã
ãšããããããç°¡åãªäžè¬é
ãæã¡åŸããšç¥ã£ãŠãPARI/GP ã§ç¢ºèªããŠã¿ãŸããã以äžã察話ã§ããâââ
? \p 300
realprecision = 308 significant digits (300 digits displayed)
? A = 3 +sumalt(n=1,((-1)^(n+1))/(n*(n+1)*(2*n+1)))
%1 = 3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097566593344612847564823378678316527120190914564856692346034861045432664821339360726024914127
? B = Pi - A
%2 = 0.E-307
ãã®ãã¿ãŒã³ã¯åããŠã¿ãŸãããïŒç¢ºãã«èŠãããããïŒ
調ã¹ãŠã¿ããšåãã®3ãå«ã
48*sumalt(n=0,(-1)^n/((6*n+1)*(6*n+3)*(6*n+5)))
ã«ãã£ãŠãÏãæ§æãããã¿ããã§ããã
äºãéãã®åã£ãŠå€§ããã§ããã
GAI ããã
1/((6*n+1)*(6*n+3)*(6*n+5))
ãã¡ããç§ãåèŠã§ãã
äžæè°ãªåœ¢ã§ããâŠâŠ
GAI ããã
[1993] ã«é¢ä¿ããŸãããã©ãã
48*(1/(1*3*5)-1/(7*9*11)+1/(13*15*17)-1/(19*21*23)+1/(25*27*29)-1/(31*33*35)) -4*(1-1/3+1/5-1/7+1/9-1/11+1/13-1/15+1/17-1/19+1/21-1/23+1/25-1/27+1/29-1/31+1/33-1/35)
= 248269474984/4512611027925
â 0.0550168125388
é
æ°ãå¢ãããŠãããšã0 ã«åæããæ°é
ãæããŸããã蚌æãã§ããªãã§ãããŸãã
48/((6k+1)(6k+3)(6k+5)) = { 6/(6k+1) - 6/(6k+3) + 6/(6k+5) } - 2/(2k+1)
ãšå€åœ¢ããã°ãããã®äº€ä»£ç¡éçŽæ°ã
6*(Ï/4) - 2*(Ï/4) = Ï
ãš 2 çµã®ã©ã€ããããçŽæ°ã§èšç®ã§ããŸããã
ããããã®çŽæ°ã¯çµ¶å¯Ÿåæããããã§ã¯ãªãã®ã§ãåãæ±ãã«å°ã泚æãå¿
èŠã§ããã
DD++ ããã
ããããšãããããŸããïŒ
> "DD++"ãããæžãããŸãã:
> 48/((6k+1)(6k+3)(6k+5)) = { 6/(6k+1) - 6/(6k+3) + 6/(6k+5) } - 2/(2k+1)
> ãšå€åœ¢ããã°ãããã®äº€ä»£ç¡éçŽæ°ã
> 6*(Ï/4) - 2*(Ï/4) = Ï
> ãš 2 çµã®ã©ã€ããããçŽæ°ã§èšç®ã§ããŸããã
> ããããã®çŽæ°ã¯çµ¶å¯Ÿåæããããã§ã¯ãªãã®ã§ãåãæ±ãã«å°ã泚æãå¿
èŠã§ããã
ã©ããã£ãŠæ£åœåããã°ããã®ãããããªãã£ãã®ã§
f(x) = 6*arctan(x) -2*arctan(x^3)
ãããŒã©ãŒå±éããŠïŒé
ã¥ã€åºåãããšã§
ãªããšããªããããšæããŸããã
f(x) = (6*x-4*x^3+(6*x^5)/5)
-((6*x^7)/7-(4*x^9)/3+(6*x^11)/11)
+((6*x^13)/13-(4*x^15)/5+(6*x^17)/17)
-((6*x^19)/19-(4*x^21)/7+(6*x^23)/23)
+âŠâŠ
= (6*x-(12*x^3)/3+(6*x^5)/5)
-((6*x^7)/7-(12*x^9)/9+(6*x^11)/11)
+((6*x^13)/13-(12*x^15)/15+(6*x^17)/17)
-((6*x^19)/19-(12*x^21)/21+(6*x^23)/23)
+âŠâŠ
ããšã¯ã6*k+1, 6*k+3, 6*k+5
ãããŸã 䜿ã£ãŠãã£ãŠæŽçããŠãããŠ
æåŸã« x=1 ãšããŠãããŸãã
ãããé£ãããšããã§ãçŽæ°ã絶察åæããªãã®ã§ãåã®é åºå
¥ãæ¿ãäžå¯ãªã®ã§ãâŠâŠã
ãã¯ããŒãªã³å±éã®ç¬¬ n é
ãŸã§ã®åãäžçåŒè©äŸ¡ããæã¿æã¡ããæãã«ãªããŸããã