è€çŽ æ°z=(1+i)(2+i)âŠâŠ(n+i)ãçŽèæ°ãšãªãæ£ã®æŽæ°nããã¹ãŠæ±ããŠãã ããã
No.1816ããã3æ25æ¥ 23:14
n=3 ã ãïŒ
äžè¬ã«arctan(1/n)ã«ã€ããŠã®æ§è³ªã調ã¹ãŠãããã次ã®ãããªé¢ä¿åŒãæç«ããŠããããšã«æ°ä»ããŸããã
arctan(1)-arctan(1/2)=arctan(1/3)
arctan(1)-arctan(1/3)=arctan(1/3)+arctan(1/7)
arctan(1)-arctan(1/4)=arctan(1/3)+arctan(1/7)+arctan(1/13)
arctan(1)-arctan(1/5)=arctan(1/3)+arctan(1/7)+arctan(1/13)+arctan(1/21)
arctan(1)-arctan(1/6)=arctan(1/3)+arctan(1/7)+arctan(1/13)+arctan(1/21)+arctan(1/31)
arctan(1)-arctan(1/7)=arctan(1/3)+arctan(1/7)+arctan(1/13)+arctan(1/21)+arctan(1/31)+arctan(1/43)
arctan(1)-arctan(1/8)=arctan(1/3)+arctan(1/7)+arctan(1/13)+arctan(1/21)+arctan(1/31)+arctan(1/43)+arctan(1/57)
arctan(1)-arctan(1/9)=arctan(1/3)+arctan(1/7)+arctan(1/13)+arctan(1/21)+arctan(1/31)+arctan(1/43)+arctan(1/57)+arctan(1/73)
arctan(1)-arctan(1/10)=arctan(1/3)+arctan(1/7)+arctan(1/13)+arctan(1/21)+arctan(1/31)+arctan(1/43)+arctan(1/57)+arctan(1/73)+arctan(1/91)
No.1818GAI3æ26æ¥ 08:46
解çããããšãããããŸãã
n=3ã ããªæ°ãããŸããããããã蚌æãé£ããã§ããããã
Σarctan(1/(k^2+k+1)) =Σarctan(1/k)-arctan(1/(k+1)) =arctan(1/1)-arctan(1/(n+1)) ã§ããïŒ
No.1820ããã3æ26æ¥ 18:10
ããšäžæ©ãŸã§è¿«ã£ãŠããæãã§ãããçŽæçã«ã¯èªæãªæåŸã®éšåãã©ã蚌æãããã®ãâŠâŠã
ãã®è€çŽ æ°ã¯ãå®éšèéšãšãæŽæ°ã§ãã
ãã£ãŠãæºèæ°ã§ãããªãã°ãã®è€çŽ æ°ã®çµ¶å¯Ÿå€ã¯èªç¶æ°ã§ãã
ãããã£ãŠã
â2 * â5 * â10 * âŠâŠ * â(n^2+1)
ãèªç¶æ°ã«ãªãããšãããªãã¡
2 * 5 * 10 * âŠâŠ * (n^2+1)
ãå¹³æ¹æ°ã«ãªãããšããå¿
èŠæ¡ä»¶ãšãªããŸãã
ãšããã§ãk^2+1 ãããçŽ æ° p ã®åæ°ã«ãªããããªèªç¶æ° k ã¯ã1âŠkâŠp-1 ã®ç¯å²ã«é«ã
2 ã€ãããªãã2 ã€ããå Žåã¯ãã®åã p ã«ãªããŸãã
ããªãã¡ãç©
2 * 5 * 10 * âŠâŠ * (n^2+1)
ã®äžã§ k^2+1 ãçŽ æ°ã§ããå Žåããããå¹³æ¹æ°ã«ãªãã«ã¯å°ãªããšã (k^2-k+1)^2+1 ãŸã§ç©ãç¶ããŠããå¿
èŠããããŸãã
ããŠãnâ§4 ã®è§£ããããã©ãããèããŸãã
4^2+1 = 17 ã¯çŽ æ°ã§ãã
ãã£ãŠãn ⧠17-4 = 13 ã§ããå¿
èŠããããŸãã
10^2+1 = 101 ã¯çŽ æ°ã§ãã
ãã£ãŠãn ⧠101-10 = 91 ã§ããå¿
èŠããããŸãã
90^2+1 = 8101 ã¯çŽ æ°ã§ãã
ãã£ãŠãn ⧠8101-90 = 8011 ã§ããå¿
èŠããããŸãã
ãããæéã®é£éã§æ¢ãŸãããšã nâ§4 ã§ãã解ãååšããå¿
èŠæ¡ä»¶ïŒååæ¡ä»¶ã§ã¯ãªãïŒã§ãã
ã€ãŸãã察å¶ãåãã°ããã®é£éãç¡éã«ç¶ãããšã瀺ãããã° nâ§4 ã«è§£ãååšããªã蚌æãšãªããŸãã
çŽæçã«ã¯èªæãªæããããŸããããã蚌æãããšãããããšãããŠã©ããããã®ãã
No.1822DD++3æ26æ¥ 21:25
解çããããšãããããŸãã
ãªãã»ã©ïŒã€ãŸãn^2+1åçŽ æ°ãç¡éã«ååšããã°è¯ããšããããšã«ãªããŸãããããããããã¯ããã£ã³ãã¹ããŒäºæ³ãšããŠæªè§£æ±ºåé¡ã«ãªã£ãŠããããã§ãããããé£ããã
No.1823ããã3æ27æ¥ 10:43
å°ãéããŸããã
n^2+1 åçŽ æ°ãç¡éã«ãã£ãŠãããã®é£éãç¡éã«ç¶ããšã¯éããŸããã
äŸãã°ïŒå®éã«ãããªããšã¯ãªããšæããŸããïŒã
ãã90^2+1 ã®æ¬¡ã«çŽ æ°ã«ãªãã®ã (10000ãè¶
ããæ°)^2+1 ã ã£ãå Žåãé£éãéåããŠãã9000ååŸã®ãšããã«è§£ãããå¯èœæ§ã¯æ®ããŸãã
ãŸããããã£ã³ãã¹ããŒã¯äžè¬çãªå€é
åŒã«ã€ããŠã®è©±ã§ããã
n^2+1ã«éã£ã話ã§ããã°ãã£ãšåçŽã«è§£æ±ºããå¯èœæ§ã¯ååã«ããã§ãããã
No.1826DD++3æ28æ¥ 07:41
https://oeis.org/A101686
âãã¡ãã«ãããšããã®æ°åã§å¹³æ¹æ°ã¯1ãš100ã ããšèšŒæãããŠããããã§ãã
ãã£ãŠè§£ã¯n=3ã®ã¿ã§ããã
No.1827ãããã3æ29æ¥ 20:05
ããããšãããããŸãïŒãŸããã£ããèªãã§ã¿ãŸãïŒ
ããã§ã¯ããããåé¡ã§ãé¢çœããããããªãã§ãã
è€çŽ æ° z = (1^n + i)(2^n + i)(3^n + i)· · ·(k
^n + i) ãçŽèæ°ãšãªãæ£ã®æŽæ°ã®çµ (k, n) ãæ±ããŠãã ããã
No.1828ããã3æ29æ¥ 21:37
(1^2+1)*(2^2+1)*(3^2+1)**(n^2+1)
ãå¹³æ¹æ°ãšãªãã®ã¯n=3ã®ã¿
ã«å¯Ÿã
(2^2-1)*(3^2-1)*(4^2-1)**(n^2-1)
ãå¹³æ¹æ°ãšãªãnã¯ïŒ
ãé¢çœãã£ãã§ãã
No.1829GAI3æ30æ¥ 08:57
> (2^2-1)*(3^2-1)*(4^2-1)**(n^2-1) ãå¹³æ¹æ°ãšãªãnã¯ïŒ
n=((3+2â2)^(k+1)+(3-2â2)^(k+1)-2)/4ãïŒkã¯æ£æŽæ°ïŒ
ã§ããããã
No.1830ãããã3æ30æ¥ 10:46
äžè¬åŒã§äœãããã ïŒ
ãã¿ãªäžèŽããŠããŸãã
No.1831GAI3æ30æ¥ 17:58
> è€çŽ æ° z = (1^n + i)(2^n + i)(3^n + i)· · ·(k
> ^n + i) ãçŽèæ°ãšãªãæ£ã®æŽæ°ã®çµ (k, n) ãæ±ããŠãã ããã
nâ§2 ã®å Žåã(2^n+i) 以éã®åè§ã®åèšã Ï/4 ã«å±ããŸããã
ãããã£ãŠç©ã®å®éšã¯åžžã«æ£ã§ãããçŽèæ°ã«ã¯ãªããŸããã
ãã£ãŠ n=1 ã®å Žåã®ã¿èããã°ãããå
ã®åé¡ã«åž°çããŸãã
No.1832DD++3æ30æ¥ 21:13
2ç¹A(x1,y1),B(x2,y2)
ãéãçŽç·ã®æ¹çšåŒã
y-y1=(y2-y1)/(x2-x1)*(x-x1)
ã§äœ¿ãå
¬åŒããããããããè¡ååŒãå©çšããŠ
|x y 1|
|x1 y1 1|= 0
|x2 y2 1|
ãšãã圢åŒã«ããŠããã°
3ç¹A(x1,y1),B(x2,y2),C(x3,y3)ãéãåã®æ¹çšåŒã¯
|x^2 + y^2 x y 1|
|x1^2+y1^2 x1 y1 1|= 0
|x2^2+y2^2 x2 y2 1|
|x3^2+y3^2 x3 y3 1|
ãŸã空éã§ã
3ç¹A(x1,y1,z1),B(x2,y2,z2),C(x3,y3,z3)ãéãå¹³é¢ã®æ¹çšåŒã¯
|x y z 1|
|x1 y1 z1 1|= 0
|x2 y2 z2 1|
|x3 y3 z3 1|
åãã
4ç¹A(x1,y1,z1),B(x2,y2,z2),C(x3,y3,z3),D(x4,y4,z4)ãéãçé¢ã®æ¹çšåŒã¯
|x^2 + y^2 + z^2 x y z 1|
|x1^2+y1^2+z1^2 x1 y1 z1 1|
|x2^2+y2^2+z2^2 x2 y2 z2 1|= 0
|x3^2+y3^2+z3^2 x3 y3 z3 1|
|x4^2+y4^2+z4^2 x4 y4 z4 1|
ïŒå¿è«ååŸãæ£ã®å®æ°ã§ãšããããã«4ç¹ã¯éžã¶å¿
èŠã¯ãããŸãã
ãªã©ã§æ§æã§ããããã§ãã
ïŒå¹Ÿã€ãã§å®éšããã ãã§èšŒæããããã§ã¯ãããŸããã)
No.1817GAI3æ26æ¥ 07:52
5ç¹A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),E(x5,y5)ãéãåºçŸ©ã®äºæ¬¡æ²ç·(â»)ã®æ¹çšåŒã¯
|x^2 x*y y^2 x y 1|
|x1^2 x1*y1 y1^2 x1 y1 1|
|x2^2 x2*y2 y2^2 x2 y2 1| = 0
|x3^2 x3*y3 y3^2 x3 y3 1|
|x4^2 x4*y4 y4^2 x4 y4 1|
|x5^2 x5*y5 y5^2 x5 y5 1|
â»åºçŸ©ã®äºæ¬¡æ²ç·âŠãééåäºæ¬¡æ²ç·(æ¥åã»æŸç©ç·ã»åæ²ç·)ããã2çŽç·ããã1ç¹ããã1çŽç·ã
******
åå¿ç³»ããªããªã4ç¹A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4)ãéãåºçŸ©ã®çŽè§åæ²ç·(â»â»)ã®æ¹çšåŒã¯
|x^2 x*y y^2 x y 1|
|x1^2 x1*y1 y1^2 x1 y1 1|
|x2^2 x2*y2 y2^2 x2 y2 1| = 0
|x3^2 x3*y3 y3^2 x3 y3 1|
|x4^2 x4*y4 y4^2 x4 y4 1|
|1 0 1 0 0 0|
ãããã¯ãåŒå€åœ¢ããã°ã
|x^2-y^2 x*y x y 1|
|x1^2-y1^2 x1*y1 x1 y1 1|
|x2^2-y2^2 x2*y2 x2 y2 1| = 0
|x3^2-y3^2 x3*y3 x3 y3 1|
|x4^2-y4^2 x4*y4 x4 y4 1|
â»â»åºçŸ©ã®çŽè§åæ²ç·âŠãç矩ã®çŽè§åæ²ç·(挞è¿ç·ãçŽäº€ããåæ²ç·)ãããçŽäº€ãã2çŽç·ããã1çŽç·ã
ã¡ãªã¿ã«ã4ç¹A,B,C,Dãåå¿ç³»ããªãå ŽåãäžåŒã®å·ŠèŸºã¯(x,y)ã«äŸããæççã«0ã«ãªããŸãã
ãããæå³ããã®ã¯ãä»»æã®ç¹ã(4ç¹ãéã)åºçŸ©ã®çŽè§åæ²ç·äžã«ãããšããããšã§ãã
å®éã®ãšããã¯ãåå¿ç³»ããªã4ç¹ãéãåºçŸ©ã®çŽè§åæ²ç·ãç¡æ°ã«ååšãããã®4ç¹ãé€ãä»»æã®ç¹ã¯ãããã®ãã¡ã®1æ¬ã®äžã«ãããŸãã
******
GAIãããèŒããåã®æ¹çšåŒãã次ã®ããã«æžãã°äºæ¬¡æ²ç·ã«æ¡ä»¶ä»å ããããã®ãšããã®ããããããããªããŸãã
ãã ãã®åŒã¯è¡ååŒã®å±éãšåºæ¬å€åœ¢ã«ããç°¡åã«GAIããã®åŒã«ãªãã®ã§ãã¡ãªããã¯ããŸããããŸãããâŠâŠã
3ç¹A(x1,y1),B(x2,y2),C(x3,y3)ãéãåºçŸ©ã®å(â»â»â»)ã®æ¹çšåŒã¯
|x^2 x*y y^2 x y 1|
|x1^2 x1*y1 y1^2 x1 y1 1|
|x2^2 x2*y2 y2^2 x2 y2 1| = 0
|x3^2 x3*y3 y3^2 x3 y3 1|
|1 0 -1 0 0 0|
|0 1 0 0 0 0|
â»â»â»åºçŸ©ã®åâŠãç矩ã®åããã1çŽç·ã
No.1825ããã²ã3æ28æ¥ 04:39
å¥æ°ã¯ãå
šãŠãäžè¶³æ°ã®ããã§ãããéå°æ°ãããã®ã§ããããïŒ
å®å
šæ°ã¯ãèŠã€ãã£ãŠãªãããã§ããã
No.1819ks3æ26æ¥ 16:55
945
gp > sigma(945)-945
%485 = 975
ä»ã«ãå€ãã®éå°æ°ã¯å¥æ°ã®äžã«èŠã€ãããšæããŸãã
å§åçã«äžäœã®æ°ã¯5ã®ãã¿ãŒã³ãèµ·ãããããã®ã§ããïŒä»ã«ã
81081
153153
207207
189189
ãªã©ã®ããã§ããªããã®ãååšããŠããããã§ãã
No.1821GAI3æ26æ¥ 19:41
GAIãããæ©éã®ãè¿äºããããšãããããŸãã
äºæ¡ã§ã¯ãèŠã€ãããŸããã§ããã
ç¡è¬ã«ããå¥æ°ã®å®å
šæ°ãããªãããšãèçæ³ã§ç€ºãããšããŠããŸããã
ïŒïŒ°ïŒŸÎ±âŠïŒ±ïŒŸÎ²ãå¥çŽ æ°ã®ç©ãšããŠã
ïŒïŒïŒâŠïŒïŒ°ïŒŸÎ±ïŒâŠïŒïŒïŒâŠïŒïŒ±ïŒŸÎ²ïŒïŒ2ããæãç«ã€ãšã
å³èŸºã¯ãçŽ å æ°ïŒããäžã€ã ããªã®ã§ã巊蟺ã®äžã€ããå¥æ°åãä»ã¯å¶æ°åã®çŽ å æ°ã«ãªãããšãããããŸããããå¥æ°åãšããŠã
αïŒïŒïœïŒïŒã®ãšãã¯ãïŒã®åæ°ã«ãªããççŸ
αïŒïŒïœïŒïŒã®ãšãã¯ãïŒïŒhïŒïŒãšãïŒhïŒïŒã«å ŽååããããŸãããããã以äžã¯é²ããŸããã§ããã
No.1824ks3æ27æ¥ 15:02
äžå以äžïŒïŒïŒïŒïŒïŒåïŒã®å¹³æ¹æ°ïŒéè€ãå¯ïŒã®åããŸãã¯ãå·®ã«ããã
ïŒïœïŒïŒïŒãŸã§ãè¡šãããšãã§ããŸããã
ïŒïŒïŒãã倧ããæ°ã«ã€ããŠã¯ãã©ãã§ããããïŒ
No.1809ïœïœ3æ17æ¥ 17:16
1,4,9,16,âŠã®é£æ¥é
ã®å·®ã3,5,7,âŠã§æ£ã®å¥æ°ã¯2å以äžã®å¹³æ¹æ°ã§è¡šããŸãã®ã§
ãããæ°ããå¥æ°ãªããã®ãŸãŸ2å以äžã§ãå¶æ°ãªãå¥æ°ã®å¹³æ¹æ°ã足ããåŒããããŠå¥æ°ã«ããããšã§
çµå±3å以äžã§è¡šããŸããã
ïŒè¿œèšïŒ
å¥æ°ã¯2å¹³æ¹æ°ã®å·®ã§è¡šããŸãããçµ±äžçã«3å¹³æ¹æ°ã®å æžã§è¡šãåŒãäœããŸããã
ä»»æã®æŽæ°nïŒè² ã®æ°ãå«ãïŒã«å¯ŸããŠ
(5[n/2]+17)^2-(10[n/2]+15-3n)^2-(4n+8-5[n/2])^2=n
ãæãç«ã¡ãŸãïŒ[ã]ã¯ã¬ãŠã¹èšå·ïŒã
ã¬ãŠã¹èšå·ã䜿ããã«
{(10n+63+5(-1)^n)/4}^2-{(4n+25+5(-1)^n)/2}^2-{(6n+37-5(-1)^n)/4}^2=n
ã®ããã«ãè¡šããŸãããå°ãé·ããªããŸãã
ïŒå{ã}å
ã¯æŽæ°ã«ãªããŸãïŒ
第2é
ã®ã«ãã³å
ã¯n=-5ã®ãšãã ã0ã第3é
ã®ã«ãã³å
ã¯n=-7ã®ãšãã ã0ã§ããã
6^2-5^2-4^2=-5, 1^2-2^2-2^2=-7ãæãç«ã€ããšããã
ãä»»æã®æŽæ°ã¯(èªç¶æ°)^2-(èªç¶æ°)^2-(èªç¶æ°)^2ã®åœ¢ã§è¡šããã
ããšãèšããŸãã
â»ç¬Šå·ãå転ããããšã§(èªç¶æ°)^2+(èªç¶æ°)^2-(èªç¶æ°)^2ã®åœ¢ã§ãè¡šããããšã«ãªããŸãã
No.1810ãããã3æ17æ¥ 18:38
æ¬æ¥ã®æ¥ä»(西æŠ2024幎3æ20æ¥) ã«ããããŠãå¹³æ¹æ°ãã€ãã¹å¹³æ¹æ°ãã€ãã¹å¹³æ¹æ°ã§è¡šèšã
50600817^2 -40480655^2 -30360488^2
= 20240320
ãªãã»ã©åŒ·ãâŠâŠâŠ
ããããããåã
ãªãã»ã©åãã
No.1812Dengan kesaktian Indukmu3æ20æ¥ 00:57
æçš¿åŸã«ããµãšæããŸãããã
50600817^2 -40480655^2 -30360488^2 = 20240320
ããã
5^2 -4^2 -3^2 = 0
ã®ãã¿ãŽã©ã¹ã®äžå¹³æ¹ã®å®çãæºããã5,4,3
ã®çµã¿ãã¡ãã£ãšããããŠããæããããŸããã
No.1813Dengan kesaktian Indukmu3æ20æ¥ 01:04
> 5,4,3ã®çµã¿ãã¡ãã£ãšããããŠããæããããŸããã
åŒã®äœãæ¹ããããŠçµæçã«ãããªããŸãã
çæ³ã¯
(am+b)^2-(cm+d)^2-(em+f)^2=2m or 2m+1
ãã
a^2-c^2-e^2=0
ab-cd-ef=1
b^2-d^2-f^2=0 or 1
ãšããæ¹çšåŒã解ãããšã§ãã
ããã°ã©ã ãäœã£ãŠæ¢çŽ¢ãããš
(5m+3)^2-(4m+2)^2-(3m+2)^2=2m+1
(5m+9)^2-(4m+8)^2-(3m+4)^2=2m+1
(5m+17)^2-(4m+12)^2-(3m+12)^2=2m+1
(5m+17)^2-(4m+15)^2-(3m+8)^2=2m
(5m+29)^2-(4m+21)^2-(3m+20)^2=2m
(5m+35)^2-(4m+30)^2-(3m+18)^2=2m+1
(13m+9)^2-(12m+8)^2-(5m+4)^2=2m+1
(13m+17)^2-(12m+15)^2-(5m+8)^2=2m
(13m+19)^2-(12m+18)^2-(5m+6)^2=2m+1
(13m+37)^2-(12m+35)^2-(5m+12)^2=2m
(17m+5)^2-(15m+4)^2-(8m+3)^2=2m
(17m+9)^2-(15m+8)^2-(8m+4)^2=2m+1
(17m+13)^2-(15m+12)^2-(8m+5)^2=2m
(17m+35)^2-(15m+30)^2-(8m+18)^2=2m+1
(25m+19)^2-(24m+18)^2-(7m+6)^2=2m+1
(25m+33)^2-(24m+32)^2-(7m+8)^2=2m+1
(25m+37)^2-(24m+35)^2-(7m+12)^2=2m
(29m+5)^2-(21m+4)^2-(20m+3)^2=2m
(29m+17)^2-(21m+12)^2-(20m+12)^2=2m+1
(37m+13)^2-(35m+12)^2-(12m+5)^2=2m
(37m+19)^2-(35m+18)^2-(12m+6)^2=2m+1
(37m+25)^2-(35m+24)^2-(12m+7)^2=2m
(41m+33)^2-(40m+32)^2-(9m+8)^2=2m+1
ã®ããã«ããããèŠã€ãããŸãããäžã«æžããåŒã¯æãç°¡åãª
(5m+17)^2-(4m+12)^2-(3m+12)^2=2m+1
(5m+17)^2-(4m+15)^2-(3m+8)^2=2m
ã®äºã€ãnã®å¶å¥ã©ã¡ãã§ãæãç«ã€ããã«
(5m+17)^2-(4m+27/2+(3/2)(-1)^n)-(3m+10-2(-1)^n)=n
ã®ããã«ãŸãšããmã[n/2]ã«ã(-1)^nã4[n/2]-2n+1ã«çœ®ãæããŠ
æŽçãããã®ãªã®ã§ãå€ã¯5ïŒ4ïŒ3ã«è¿ããªããŸãã
(13m+17)^2-(12m+15)^2-(5m+8)^2=2m
(13m+19)^2-(12m+18)^2-(5m+6)^2=2m+1
ã®äºã€ããŸãšããŠ
(13m+18-(-1)^n)^2-(12m+33/2-(3/2)(-1)^n)^2-(5m+7+(-1)^n)^2=n
ãšããŠæŽçããå Žåã¯
(9[n/2]+17+2n)^2-(6[n/2]+15+3n)^2-(9[n/2]+8-2n)^2=n
ãšããåŒã«ãªããããã«n=20240320ã代å
¥ãããš
131562097^2-121441935^2-50600808^2=20240320
ãšãªã£ãŠ13ïŒ12ïŒ5ã«è¿ããªããŸãã
No.1814ãããã3æ20æ¥ 02:55
ãããããããçŽ æŽãã解説ãæé£ãããããŸãã
No.1815Dengan kesaktian Indukmu3æ21æ¥ 09:31
3ä¹æ ¹[3]âã§è¡šããæ°å€ã«é¢ãã©ãããžã£ã³ã
(1) [3]â([3]â2 - 1) = [3]â(1/9) - [3]â(2/9) + [3]â(4/9)
(2) â([3]â5 - [3]â4) = ([3]â2 + [3]â20 - [3]â25)/3
ã®çåŒãèšããŠãããšã®èšäºã§èªã¿èšç®ãœããã§ç¢ºããããš
æ£ãããã¿ãªãšå³èŸº=巊蟺ãã®èšç®ãäžèŽããã§ã¯ãªããïŒ
gp > sqrtn(sqrtn(2,3)-1,3)
%233 = 0.63818582086064415301550365944406770127
gp > sqrtn(1/9,3)-sqrtn(2/9,3)+sqrtn(4/9,3)
%234 = 0.63818582086064415301550365944406770127
gp > sqrt(sqrtn(5,3)-sqrtn(4,3))
%235 = 0.35010697609230455692617090560659825895
gp > 1/3*(sqrtn(2,3)+sqrtn(20,3)-sqrtn(25,3))
%236 = 0.35010697609230455692617090560659825895
ãããæç«ããããšãè«ççã«ç€ºãã«ã¯ã©ãããããããã§ããããïŒ
èŠãéã3ä¹æ ¹ã§ã®çåŒã®å§¿ã¯æã£ãŠããªã圢ã§ç¹ãã£ãŠããŸããã§ããã
é¡ããçåŒãæãã€ããŸãããïŒ
No.1799GAI3æ12æ¥ 06:17
(1)
1+t+t^2=(t^3-1)/(t-1)ã§t=[3]â2ãšãããš
1+[3]â2+[3]â4=1/([3]â2-1)
ãŸã
1-t+t^2=(t^3+1)/(t+1)ã§t=[3]â2ãšãããš
1-[3]â2+[3]â4=3/([3]â2+1)
ãã£ãŠ
{1-[3]â2+[3]â4}^3={3/([3]â2+1)}^3=27/(2+3[3]â4+3[3]â2+1)
=9/(1+[3]â2+[3]â4)=9([3]â2-1)
ãªã®ã§
[3]â(1/9)-[3]â(2/9)+[3]â(4/9)=[3]â([3]â2-1)
(2)
a=[3]â2, b=[3]â5ãšãããš
[3]â2+[3]â20-[3]â25=a+a^2b-b^2
(a+a^2b-b^2)^2
=a^2+a^4b^2+b^4+2a^3b-2ab^2-2a^2b^3
=a^2+2ab^2+5b+4b-2ab^2-10a^2
=9b-9a^2
=9([3]â5-[3]â4)
ãªã®ã§
([3]â2+[3]â20-[3]â25)/3=â([3]â5-[3]â4)
No.1800ãããã3æ12æ¥ 09:03
( A*x^2 + B*x*y + C*y^2 )^3 ã® A, B, C ãé©åœã«æ±ºãããã®ãçšæããŸãã
äŸãšããŠã( x^2 - x*y + y^2 )^3 ã§ãããŸãã
ãŸããå±éããŸãã
x^6 - 3*x^5*y + 6*x^4*y^2 - 7*x^3*y^3 + 6*x^2*y^4 - 3*x*y^5 + y^6
ææ°ã 3 ã§å²ã£ãããŸããçãããã®ããŸãšããŸãã
( x^6 - 7*x^3*y^3 + y^6 ) + x^2*y*( - 3*x^3 + 6*y^3 ) + x*y^2*( 6*x^3 - 3*y^3 )
ã©ããã® ( ) å
ã 0 ã«ãªãããã« x^3 ãš y^3 ã®å€ã決ããå
šãŠã® ( ) å
ã«ä»£å
¥ããŸãã
äŸãšããŠãx^2*y*( - 3*x^3 + 6*y^3 ) ã 0 ã«ãªãããã«ãx^3 = 2, y^3 = 1 ãšããŸãã
- 9 + 9*x*y^2
ããã§ã
( x^2 - x*y + y^2 )^3 = - 9 + 9*x*y^2
ãã§ããŸããã®ã§ã
x^2 - x*y + y^2 = ( - 9 + 9*x*y^2 )^(1/3)
ãåŸãããŸããã
æ®ã£ã x, y ã«ãäžä¹æ ¹ã®åœ¢ã§ä»£å
¥ãã䞡蟺 9^(1/3) ã§å²ãã°ã
[3]â([3]â2 - 1) = [3]â(1/9) - [3]â(2/9) + [3]â(4/9)
ãåŸãããŸãã
䌌ããããªæ¹æ³ã§åæ§ã®åŒããããã§ãäœããŸããã
No.1801DD++3æ12æ¥ 21:58
DD++ããã®ã¢ããã€ã¹ã«ãã
(x^2-2*x*y+y^2)^3ã®å±éåŒãã
[3]â(25/9) - [3]â(80/9) + [3]â(4/9) = [3]â(7*[3]â(20) - 19)ãã®çåŒãçºç
gp > sqrtn(25/9,3)-sqrtn(80/9,3)+sqrtn(4/9,3)
%45 = 0.097375599902564072029769441954982002773
gp > sqrtn(7*sqrtn(20,3)-19,3)
%47 = 0.097375599902564072029769441954982004339
------------------------------------------------
(x^2-3*x*y+y^2)^3ã®å±éåŒãã
- [3]â(100) + [3]â(810) - [3]â(9) = [3]â(1241 - 273*[3]â(90)) ã®çåŒãçºç
gp > -sqrtn(100,3)+sqrtn(810,3)-sqrtn(9,3)
%52 = 2.6000248611968935936928541072898271257
gp > sqrtn(1241-273*sqrtn(90,3),3)
%53 = 2.6000248611968935936928541072898271256
-----------------------------------------------
(x^2-4*x*y+y^2)^3ã®å±éåŒãã
- [3]â(289/9) + 4*[3]â(68/9) - [3]â(16/9) = [3]â(631 - 91*[3]â(272)) ã®çåŒãçºç
gp > -sqrtn(289/9,3)+4*sqrtn(68/9,3)-sqrtn(16/9,3)
%56 = 3.4591342953019819946599609819643520211
gp > sqrtn(631-91*sqrtn(272,3),3)
%55 = 3.4591342953019819946599609819643520211
倩æã«ãªãããããªæèŠã«ãªããŸããã
No.1808GAI3æ16æ¥ 07:21
調åæ°åãŒlognâγïŒãªã€ã©ãŒïŒ
äžå®åœ¢âïŒâã®åœ¢ãããŠããŸãã
ä»ã«ãïœæ¬¡å€é
åŒãŒïœæ¬¡å€é
åŒ
lim(ïœââ)ïœlog(ax^n+ ⊠)-log(bx^n+âŠãã)ïœ=loga/b
ãã®ä»ããããŸãããããææãã ããã
No.1795ks3æ9æ¥ 16:57
â(n+3ân) - â(n-ân)â2
(n!)^(1/n) - (n-1)!^(1/(n-1))â1/e
ãªã©ãèµ·ããããã§ãã
No.1796GAI3æ10æ¥ 08:57
ã¡ãã£ãšè©±é¡ããããŸãã
â - â
ã®ããŒããšããŠãææ°žæ¯äžéå
çã»ããããŒãã«è³ãããã£ãããããã¿çè«ããšããã®ãæãåºããŸããã
埡åè: http://catbirdtt.web.fc2.com/kurikomirironntohananika.html
No.1797Dengan kesaktian Indukmu3æ10æ¥ 17:04
Dengan kesaktian Indukmuããã玹ä»ããããªã³ã¯ãèªãã§ã¿ãŠãããã«åºãŠãã137ãšããçŽ æ°ã«
é
ãããã人ç©ã«ãã¡ã€ã³ãã³ãšããŠãªãæãåºããŸãã
æã«ããŠãªã¯è¥ãããŠ(58æ³)èµèçã§äº¡ããªã£ããšãããããã®æã«å
¥é¢ããŠããéšå±ã®çªå·ãæ£ã«
èå³ãæ±ãç¶ããŠããæ°å€ã«ãã¿ãªäžèŽãã137å·å®€ã§ãã£ãããšã«ãèªåã®éåœãå¯ç¥ãããšãã
éžè©±ãäŒããããŠãããšããã
æ°åŠè
ãããã§ãããç©çåŠè
ãã»ããšã«äºçŽ°ãªããšã«çŽ°å¿ã®æ³šæãæãèåŸã«æœãé¢ä¿æ§ãæ³åã
ãã®ã®èŠäºã«æŽãåãå端ãªãã§ããã
ããŒãšçããŠãããããŒããšãã³ã¡ããã«å±ããããã§ãã
No.1798GAI3æ11æ¥ 18:42
(ΣïŒ/k)^2ïŒÎ£ïŒ/ïœïœïŒïœãšïœã¯ç°ãªãïŒïŒÎ£ïŒ/n^2
ããããç¡éã«èšç®ãããšãã©ãã§ããããïŒ
No.1803ks3æ13æ¥ 10:12
âïŒn^2+2nïŒãŒãn ãâãïŒ
No.1807ks3æ15æ¥ 14:26
ã¡ã€ã¯ãã³ãšãåŒã°ããŠããåé¡ã§ããã
ãïŒä»¥å€ã®ïŒã€ã®æ°ãç°ãªããšãã¯ãå¿
ãïŒïŒãåµãããšãå¯èœã
ã®ããã«ãå€ãã®æ°ã«é©çšã§ãããã®ãããã°ããææãã ããã
No.1611ks2023幎12æ23æ¥ 22:00
ãïŒä»¥å€ã®ïŒã€ã®æ°ãç°ãªããšãã¯ãå¿
ãïŒïŒãåµãããšãå¯èœã
æŒç®ãååæŒç®ã«éã£ãŠæ¬åŒ§ã®äœ¿çšããããã4ã€ã®æ°ã¯äžæ¡ã®æ°ã§ãäºãã«çžç°ãªãããšã®æå³ã§ããã
No.1612Dengan kesaktian Indukmu2023幎12æ23æ¥ 22:08
ããã§ãšãããããŸãã
ä»ãé ã«ããã®ã¯ã
ïŒãšïŒãäœãããšã
AïŒBïŒïŒïŒãšãªãããš
åœããåã®ãçµæã ãã§ãã
äºã€ãäžã€åããšãã®ãã¿ãŒã³ãã§å®åŒåã§ãããã®ãèãäžã§ãã
No.1632ks1æ8æ¥ 12:13
ããšãã°ããããããšã§ããããïŒ
âãä¹é€ç®ãâ¡ãå æžç®ãšãã
(aâ(bâ¡(c÷d)))
ã®ãã¿ãŒã³ã§ãã®ã¿ãã¡ã€ã¯ãã³ãå¯èœãªã®ã¯
以äžã®ïŒéãã§ãã
1158 (8÷(1-(1÷5)))=10
1199 (9Ã(1+(1÷9)))=10
1337 (3Ã(1+(7÷3)))=10
3478 (8Ã(3-(7÷4)))=10
No.1633Dengan kesaktian Indukmu1æ8æ¥ 18:36
> Dengan kesaktian Indukmuãã
1555 (5Ã(1ïŒ(5÷5)))=10
1566 (5Ã(1ïŒ(6÷6)))=10
1599 (5Ã(1ïŒ(9÷9)))=10
2289 (2Ã(9ïŒ(8÷2)))=10
2477 (2Ã(4ïŒ(7÷7)))=(7Ã(2ïŒ(4÷7)))=10
2666 (2Ã(6ïŒ(6÷6)))=10
3577 (5Ã(3ïŒ(7÷7)))=10
3588 (5Ã(3ïŒ(8÷8)))=10
ãããã®ã§ã¯ïŒ
# ãc÷dãæŽæ°ã«ãªããã®ãé€ãããšããããšã§ããããã
No.1634ãããã1æ9æ¥ 01:45
ããããããã
(aâ(bâ¡(c÷d)))
ã®ãã¿ãŒã³ã§ãã®ã¿ã
ã®ã€ããã§ããã
1555 ã§ã¯ã
(1+5÷5)*5
ããããŸãã®ã§ããã®ã¿ãã«ã¯è©²åœããŸããã§ããã
No.1635Dengan kesaktian Indukmu1æ9æ¥ 09:45
ããããèãæ¹ãªãã°ã
1199ã¯(1+1÷9)Ã9=10
1337ã¯(1+7÷3)Ã3=10
3478ã¯(3-7÷4)Ã8=10
ãšãæžããŸãã®ã§ã該åœããã®ã¯1158ã ãã§ããã
# âã«ä¹ç®ã䜿ããã®ãšâ¡ã«å ç®ã䜿ããã®ã¯ãã¹ãŠé€å€ãããŸãã®ã§ã
# æ¡ä»¶ãæºããã®ã¯(a÷(bïŒ(c÷d)))ãšãããã¿ãŒã³ã®ã¿ã«ãªããŸããã
No.1636ãããã1æ9æ¥ 10:37
ããããããã
åããŸããã(â ãâ ^â _â ^â )â ã
#æ°å¹Žæ©ã
ã«æã蟌ã¿çºåã§ããããæ¥ããããããšã§ãã
No.1637Dengan kesaktian Indukmu1æ9æ¥ 14:23
å¥ä»¶ã§ããã
ïŒïŒïŒïŒïŒïŒïŒã«å¯ŸããŠã
ïŒïŒÃïŒïŒïŒïŒÃ·ïŒïŒ(ïŒïŒïŒÃïŒ)÷ïŒïŒïŒïŒ
åãšç©ã¯ã亀æå¯èœã§ããã®ã§ãïŒéããšæ°ãããšã
ä»ã«ãïŒéãã®æ°ãïŒéããïŒéããâŠãâ¡
ãæ±ãã
No.1641ks1æ10æ¥ 09:24
> åãšç©ã¯ã亀æå¯èœã§ããã®ã§ãïŒéããšæ°ãããšã
äŸãã°
5÷(9÷(9+9))ïŒ10
ãš
5÷9Ã(9+9)ïŒ10
ã¯ïŒéããšæ°ããªãã®ã§ããããã
ã©ããŸã§ãïŒéããšèããããããŸãç°¡åã§ã¯ãªãæ°ãããŸãã
No.1644ãããã1æ10æ¥ 14:15
å®çŸ©ã¯ãé£ããã§ããã
ïŒïŒïŒãš4÷ïŒã¯ãèšå·ããç°ãªãã®ã§å¥ã ãšããã®ã¯ã
ã©ãã§ããããïŒã
()ã®åæ°ãšãã
ïŒãÃããïŒ/ïŒã§Ã·ãã§ãããã埮åŠ
No.1645ks1æ11æ¥ 09:54
5555
5+5+5-5=10
(5+5)÷ïŒÃïŒïŒïŒïŒ
ïŒÃ·ïŒÃïŒïŒïŒïŒïŒïŒ
ïŒÃïŒÃ·ïŒïŒïŒïŒïŒïŒ
ãšãããããïŒéã以äžïŒ
No.1657ks1æ13æ¥ 08:39
5ïŒ5ïŒ5ïŒ5=10
5ïŒ5ïŒ5ïŒ5=10
5ïŒ5ïŒ5ïŒ5=10
5ïŒ5ïŒ(5ïŒ5)=10
5ïŒ(5ïŒ5)ïŒ5=10
5ïŒ(5ïŒ5ïŒ5)=10
5ïŒ(5ïŒ(5ïŒ5))=10
5ïŒ5Ã5÷5=10
5Ã5÷5ïŒ5=10
5ïŒ5÷5Ã5=10
5÷5Ã5ïŒ5=10
5÷5Ã(5ïŒ5)=10
5Ã(5ïŒ5)÷5=10
5÷(5÷5)ïŒ5=10
5ïŒ5÷(5÷5)=10
5÷(5÷(5ïŒ5))=10
(5ïŒ5)Ã5÷5=10
(5ïŒ5)÷5Ã5=10
(5ïŒ5)÷(5÷5)=10
ããã ãããäžã§ã©ããšã©ããåäžèŠãããããšããããšã«ãªããŸããã
No.1659ãããã1æ13æ¥ 09:16
äºéåè£
ïŒïŒïŒïŒ
ïŒÃïŒÃïŒïŒïŒïŒïŒïŒ
ïŒ2ïŒïŒïŒÃïŒïŒïŒïŒïŒïŒ
No.1667ks1æ14æ¥ 15:33
55xy ã®åœ¢ã®4ã±ã¿ã®æŽæ°ã¯ã
ïŒã€ã®äŸå€ãé€ããŠãïŒïŒãåµãããšãã§ãããã§ãã
No.1804ks3æ14æ¥ 09:43
5548ãš5584ã®äºã€ïŒ
No.1805ãããã3æ14æ¥ 17:57
è±ç·ã§ãã
5548 㧠30 ãäœãã®ãã¡ãã£ãšã ãé¢çœãã§ãã
No.1806Dengan kesaktian Indukmu3æ14æ¥ 20:23
京倧åææç³»ã®åé¡ã§
管ç人æ§ã
ãæ°åã®æ±ãã«æ¬çªã®è©Šéšã§ã¯èªä¿¡ãæãŠãªãããš
æžãããŠããŸãããã
ç§ãçãã®æ°åãæ±ããšãééã£ãŠããã®ã§ã¯ãšã
çžåœäžå®ã«ãªããŸãã粟ç¥é¢ã®åŒ·ããè©ŠãããŠããããŒãªããã
No.1802ã«ã«ãã¹3æ13æ¥ 00:41
é£å¡©æ°Žãäœãã«ã¯åœç¶æ°Žãšå¡©ãæ··ããŠäœãã
ãããäœãããã«1(g)åäœã§èšæž¬ã§ãããã«ãªãæºåãããŠãããšããã
ä»æ°Žã100(cc)ãããªã(1(cc)=1(g)ãšãã),å¡©ã¯å€§éã«ãããã®ãšããã
ããŠæž¬ããéããæŽæ°ããèš±ãããªããšãããšãããã äžéãã®çµåã
ã§ããäœããªãæŽæ°ã§ã®é£å¡©æ°Žæ¿åºŠã¯äœ%ã®é£å¡©æ°Žã«ãªããïŒ
ãŸãéã«ã©ããªæŽæ°ã®æ°Žã«å¯ŸããŠã察å¿ããå¡©ã枬ããŠããŸãæŽæ°ã®
é£å¡©æ°Žæ¿åºŠã¯äœ%ã®ãã®ãå¯èœãïŒ
No.1788GAI3æ6æ¥ 06:06
1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 27 (%)
ã§å
šéšã§ãããã
æ°Žã®éã w (g) ãé£å¡©ã®éã s (g) ãé£å¡©æ°Žæ¿åºŠã x% (0<x<28.20) ãšãããšã
s/(w+s) = x/100
ã€ãŸã
w = (100-x)s/x
ãšãªããŸãã
wâŠ50 ã§ããã° w ãš s ãã©ã¡ãã 2 åã«ãã解ãååšããŸãã
ãããŠã100-x ãš x ãäºãã«çŽ ã§ãªãå Žåãå³èŸºãæŽæ°ã«ãªãæå°ã® s ããšãã°ãwâŠ49 ã®è§£ãååšããŸãã
ãã£ãŠãã®å Žåã¯å¯äžè§£ã«ãªããŸããã
ãããã£ãŠã100-x ãš x ãäºãã«çŽ ãã€ãŸã x ãš 100 ãäºãã«çŽ ãªå Žåã®ã¿èããã°ååã§ãã
ãã®å Žåãs 㯠x ã®åæ°ã§ãã
ãããŠãs=x ã®è§£ã¯å¿
ãååšããã®ã§ãæ¡ä»¶ãæºããã«ã¯ s=2x ã®è§£ãååšããªãããšãå¿
èŠååæ¡ä»¶ã«ãªããŸãã
ããªãã¡ 100-x>50 ã§ããå¿
èŠããããŸãããããããé£å¡©æ°Žæ¿åºŠã¯ 0<x<28.20 ããååšãåŸãªãã®ã§ãæå³ã®ãªãå¿é
ã§ããã
ãã£ãŠãx 㯠100 ãšäºãã«çŽ 㪠28.20 æªæºã®æŽæ°ãçããšããããšã§ãçãã¯åé ã® 10 åã«ãªããŸãã
ïŒ27%é£å¡©æ°Žã¯å®€æž©ããååšããŸããããç±æ°Žã䜿ã£ãé£å¡©æ°ŽããŸãé£å¡©æ°Žã«ã¯å€ãããªãã®ã§æ¿åºŠäžéã 28.20% ãšããããšã§è§£çã«å«ããŸããïŒ
No.1790DD++3æ6æ¥ 09:48
é£å¡©æ°Žæ¿åºŠã x% (0<x<28.20) ãšãããš
ã®çç±ãã©ãããŠã€ãã®ãããç§ã¯ç解ã§ããªãã§ããŸãã
ãã®éšåã®èª¬æããé¡ãããŸãã
No.1792GAI3æ6æ¥ 15:46
æ°ŽïŒïŒïŒïœã«æº¶ããé£å¡©ã®éã¯ãïŒåºŠã§ã¯ïŒïŒïŒïŒïœïŒïŒïŒïŒïŒïŒ
ïŒãïŒïŒåºŠã§ã¯ïŒïŒïŒïŒïœïŒïŒïŒïŒïŒïŒ
ïŒã
ïŒïŒåºŠã§ã¯ïŒïŒïŒïŒïœïŒïŒïŒïŒïŒïŒ
ïŒãã»ã»ã»ãïŒïŒïŒåºŠã§ã¯ïŒïŒïŒïŒïœïŒïŒïŒïŒïŒïŒ
ïŒã§ããããšãç¥ãããŠããŸãã
åŸã£ãŠãé£å¡©æ°Žã®æ¿åºŠã¯ãïŒïŒïŒïŒïŒ
ãéçãšãªããŸããé£å¡©æ°Žã®äžã«é£å¡©ã®æ²æ®¿ç©ããã£ãŠãããŸããªããšãã芳ç¹
ã§ã¯ããã¡ãããã®éãã§ã¯ãããŸããããé£å¡©æ°Žã®åé¡ã§æ²æ®¿ç©ãæ³å®ããããšã¯ä»ãŸã§çµéšããããŸããã飜åæ°Ž
溶液ãšãã芳ç¹ã§ãç®æ°ã®åé¡ã¯äœæãããŠãããšæããŸãã
No.1793管çè
3æ6æ¥ 16:29 飜åé£å¡©æ°Žãšãã芳念ãå
šãæãèœã¡ãŠããŸã£ãŠããã
é£å¡©æ°Žã®åé¡ãäœããšãããã£ãã30%ã®é£å¡©æ°Žããšãã®è¡šçŸãããã倱ç¬ãã®ã«ãªããŸããã
ããã°ããããã°ã
No.1794GAI3æ6æ¥ 21:07
第 4 åãªãã§ããããããåé¡ãšããŠåºæ¥ãæªãããã«æããŸãã
ïŒãããã¯ãç®æ°ã®ã»ã³ã¹ãããåãéžããããããã«ãããšïŒïŒ
ãã¹ãšéæ¹åã« 90 åéèµ°ãããšãèããŸãã
å
ã
ã®éãã ãšå€ªéãã㯠90 ååŸã® 9 å°ç®ã®ãã¹ã®äœçœ®ãŸã§é²ã¿ã
å€æŽåŸã®é床ã®å Žå㯠90 ååŸã® 10 å°ç®ã®ãã¹ã®äœçœ®ãŸã§é²ã¿ãŸãã
ã€ãŸãã倪éããã 90 åã§é²ãã è·é¢ã®å·® 6km/h * (90/60)h = 9km ãã9 å°ç®ã®ãã¹ãš 10 å°ç®ã®ãã¹ã®ééã§ãã®ã§ãçã㯠9km ã§ãã
âŠâŠæåã®è¿œãæããã話ã¯ãªãã ã£ããã§ãããïŒ
No.1785DD++3æ4æ¥ 09:29
管ç人ããã®è¿œå ã®è§£çã£ãŠãçã¯éã£ãŠããã§ããããïŒ
çæ¹ã¯ 9 åã§çæ¹ã¯ 10 åã ãšããã¹ã®é²ãã è·é¢ãå€ãã£ãŠãããã§ããâŠâŠã
No.1786DD++3æ5æ¥ 12:44
ãã¹ãïŒïŒåã§å°éããè·é¢ãéããå¢ããèªè»¢è»ãïŒåã§å°éãããšèããã®ã§ããïŒïŒïŒã
é床ã¯ãçžå¯Ÿé床ããã¹ã®é床ïŒèªè»¢è»ã®é床ãã§èšç®ããŠããŸãã
No.1787管çè
3æ5æ¥ 16:26 1æ¥èããŠãã£ãšç解ããŸããã
ãã¹ïŒãšèªè»¢è»ïŒãïŒïŒåã§å°éããè·é¢ïŒã®åèšïŒãïŒãã¹ãšïŒéããå¢ããèªè»¢è»ãïŒåã§å°éããïŒã®ã§ãããããã®çžå¯Ÿé床ãè¡šãããšã§æ¹çšåŒãç«ãŠãïŒ
ã§ç解ãã£ãŠãŸããïŒ
No.1789DD++3æ6æ¥ 09:04
åã£ãŠãããšæããŸããããã«ããŠããããã¹ã«ïŒïŒåããšã«è¿œãè¶ãããŸããããšããæ¡ä»¶ã䜿ããã«è§£ããŠããŸãã®ã¯äœãªã®ã§ããããïŒ
ãã¹ã®éããåéïœ(ïœ)ãèªè»¢è»ã®éããïœ(ïœ)ãšããïœãïœ ãå¥åã«æ±ããã«ã¯ãããã¹ã«ïŒïŒåããšã«è¿œãè¶ãããŸãããã®æ¡ä»¶ãå¿
èŠã§ããã
ãã¹ã®éé (ïœ)ãæ±ããã ãã ã£ãããçžå¯Ÿé床 ïœïŒïœ ãåããã°ååã§ããã®ããšã¯ãããããããçäžåŠã®åºé¡è
ã®æ¹ãæ°ãã€ããªãã£ã
ã®ãããããªãã§ããïŒ
No.1791管çè
3æ6æ¥ 11:24
åèš2284件 (æçš¿390, è¿ä¿¡1894)