é«æ ¡æ°åŠç¯å²ã§ã以äžããéã解æ³ïŒç¹ã«ãåŒãããããåããªãåç幟äœç解æ³ïŒã¯ãããã§ããããïŒ
-----
åžåè§åœ¢ã®ã¿èããã°ããããšã¯æããã§ãã
â D ã®å€§ãããå€æ° Ξ ãšãããŸãã
åžåè§åœ¢ã®ã¿èããŠããã®ã§ã0 < Ξ < Ï ã§ãã
â B ã®å€§ãããå€æ° Ï ãšãããŸãã
ãã¡ãã¯èŸºã®é·ãã®éœåã§ã0 < Ï < Ï ããã¯çãããç¯å²ããåããŸãã
äœåŒŠå®ç㧠AC^2 ã 2 éãã«è¡šãããšã«ããã
3^2 + 5^2 - 2*3*5*cosΞ = 10^2 + 12^2 - 2*10*12*cosÏ
ããªãã¡
34 - 30cosΞ = 244 - 240cosÏ
ãã
cosΞ + 7 = 8cosÏ âŠâŠ (A)
ã0 < Ï < Ï ããã¯çãããç¯å²ãã§ã¯ cosÏ ã¯ç矩å調æžå°é¢æ°ãªã®ã§ãΞ ã決ããã° Ï ã 1 ã€ã«æ±ºãŸãã
ã€ãŸã Ï ã¯ Îž ã®é¢æ°ãšã¿ãªãããšãã§ããŸãã
(A) åŒã Ξ ã§åŸ®åãããšã
-sinΞ = -8sinÏ*(dÏ/dΞ)
ã€ãŸãã
dÏ/dΞ = (1/8)*(sinΞ/sinÏ)
ãšå°é¢æ°ãåŸãããŸãã
ãŸããsinΞ > 0, sinÏ > 0 ã§ããããšãã Ï ã¯ Îž ã®å調å¢å é¢æ°ã§ããããšãããããŸãã
åè§åœ¢ã®é¢ç© S ãèããŸãã
S = (1/2)*3*5*sinΞ + (1/2)*10*12*sinÏ
= (15/2)sinΞ + 60sinÏ
ãªã®ã§ã
dS/dΞ = (15/2)cosΞ + 60cosÏ*(dÏ/dΞ)
= (15/2)cosΞ + (15/2)cosÏ*(sinΞ/sinÏ)
= (15/2)*sin(Ξ+Ï)/sinÏ
sinÏ > 0 ã§ããããšããã
Ξ+Ï âŠ Ï ãšãªãç¯å²ã§ã¯ S ã¯å調å¢å ã
Ξ+Ï â§ Ï ãšãªãç¯å²ã§ã¯ S ã¯å調æžå°ã§ãã
ãããš Ï ã Ξ ã®å調å¢å é¢æ°ã§ããããšãåãããŠèãããšã
Ξ+Ï = Ï ãšãªããšãã S ãæ倧ã«ãªããšãã§ãã
ãã®ãšã (A) åŒãã cosΞ = -7/9, cosÏ = 56/9
ãã£ãŠ sinΞ = sinÏ = 4â2/9 ãªã®ã§
S = (15/2)*(4â2/9) + 60*(4â2/9) = 30â2
No.1638DD++1æ9æ¥ 22:47
åç幟äœçã§ããªããéãããªãã§ããããšããããäžè§é¢æ°ã䜿ããªã解æ³ã§ãã
BD^2=xãšãããšã
> 3蟺ã®é·ãã®2ä¹ãp,q,rã§ããäžè§åœ¢ã®é¢ç©ã¯
> (1/4)â{2(pq+qr+rp)-(p^2+q^2+r^2)}
ãšããããã³ã®å
¬åŒã®äºçš®ã«ãã
4â³ABD=â{2(1296+153x)-(81+20736+x^2)}=â{(x-81)(225-x)}
4â³BCD=â{2(2500+125x)-(625+10000+x^2)}=â{(x-25)(225-x)}
4S=4(â³ABD+â³BCD)=â{(x-81)(225-x)}+â{(x-25)(225-x)}
{4S}'=(306-2x)/{2â{(x-81)(225-x)}}+(250-2x)/{2â{(x-25)(225-x)}}
={(306-2x)â(x-25)+(250-2x)â(x-81)}/{2â{(x-25)(x-81)(225-x)}}
={(153-x)â(x-25)+(125-x)â(x-81)}/â{(x-25)(x-81)(225-x)}
(153-x)â(x-25)+(125-x)â(x-81)=0ãšãããš
(153-x)â(x-25)=-(125-x)â(x-81)
(x-25)(153-x)^2=(x-81)(x-125)^2
(x-25)(x^2-306x+23409)=(x-81)(x^2-250x+15625)
x^3-331x^2+31059x-585225=x^3-331x^2+35875x-1265625
4816x=680400
âŽ43x=6075
ãã£ãŠé¢ç©ã®æ倧å€ã¯
S=(1/4){â{(x-81)(225-x)}+â{(x-25)(225-x)}}
=(â(225-x)/4){â(x-81)+â(x-25)}
={â(225*43-43x)/(4*43)}{â(43x-43*81)+â(43x-43*25)}
={â(9675-6075)/(4*43)}{â(6075-3483)+â(6075-1075)}
={â3600/(4*43)}{â2592+â5000}
={60/(4*43)}(â2){â1296+â2500}
={30/(2*43)}(â2)(36+50)
=(30/86)(â2)*86
=30â2
No.1639ãããã1æ10æ¥ 07:55
DD++ããã®èšç®çµæããABCDã¯åã«å
æ¥ããããšãã
A(-6,0),B(6,0)ãšx軞äžã«ãšããäžç¹ãåç¹ãšãy軞ã®æ£ã®æ¹åã«Cããšããš
C(-16/9,40/9*sqrt(2)), D(-237/43,90/43*sqrt(2))
ãããã4ç¹ãéãåã®æ¹çšåŒã
x^2+(y-3/8*sqrt(2))^2=(3/4*sqrt(129/2))^2
ãšãªããŸããã
No.1640GAI1æ10æ¥ 08:26
ãã¬ãŒãã·ã¥ãã€ããŒã®å
¬åŒã§ç€ºãããå蟺圢ã®é¢ç©ããã£ãšçšããšãé¢ç©ãæ倧ã«ãªãã®ã¯ãå
¬åŒäžã® cos() ã«åŒãæž¡ãããå€æ°ã®å€ã Ï/2 ã«ãªããšããšããããŸãã
ãã®å Žåã«å蟺圢ã¯åã«å
æ¥ããŸãã
ãã®å蟺圢ã®é¢ç©ã¯ãã©ãŒãã°ãã¿ã®å
¬åŒã§æ±ããããŸãã
ãšããããšã«ïŒ
No.1642Dengan kesaktian Indukmu1æ10æ¥ 09:57
ãã¬ãŒãã·ã¥ãã€ããŒã®å
¬åŒãã®ãã®ã¯é«æ ¡ç¯å²ã§ã¯ãªãã
ãããé«æ ¡ç¯å²ã®ç¥èã§ãã¬ãŒãã·ã¥ãã€ããŒã®å
¬åŒã®èšŒæãæžãããšãããšãå€åç§ã®è§£æ³ããé·ããªããããªæ°ãããŸãã
ããšããã©ãŒãã°ãã¿ã¯äœã®ããã«æã¡åºãããŠãããã§ãããïŒ
æã¡åºãããšã«äœã®æå³ããªããããªïŒ
No.1643DD++1æ10æ¥ 12:53
DD++ããã
ãŸããããã£ãããéãã§ããã
é«æ ¡æ°åŠã®ã·ããªã倱念ããŠãããŸããã
ãªãããã©ãŒãã°ãã¿ã«ã€ããŠã¯
GAIããããABCDã¯åã«å
æ¥ããããšæžããŠããã§ã§ããŠãã®ããšãç§ã®é ã«åé¿ããŠãããŸããããªãã°ãã©ãŒãã°ãã¿ã§é¢ç©ãåºããšã
ãªãã°ãã©ãŒãã°ãã¿ã§ã¯åŠçã§ããªããšãã®ãã¬ãŒãã·ã¥ãã€ããŒã®å
¬åŒããããæ倧ããåŸãããŠãããã ãããšã®
éç®ã®çºæ³ã§ããèå°è£ã¯ãããªãšãããªã®ã§ããã
No.1649Dengan kesaktian Indukmu1æ11æ¥ 21:17
æ°å¹Žæ©ã
èœç»å°éã«ã¯é©ããŸããã
ãã¥ãŒã¹ã®åéã«ãäžèã
[1]
4ã€ã®éè² æŽæ°a,b,c,dã§
åã21ãæ§æã§ããã®ã¯äœéãïŒ
(a,b,c,d)=
(21,0,0,0)
(20,1,0,0)
(20,0,1,0)

(0,0,0,21)
[2]
3Ã3ã®ãããªãã¯ã¹Mã§22ãå§ããšãã
M=[binomial(22,1) binomial(22,2) binomial(22,3)]
ã [binomial(23,1) binomial(23,2) binomial(23,3)]
ã[binomial(24,1) binomial(24,2) binomial(24,3)]
ãæåã«æã€è¡ååŒã®å€ã¯ïŒ
[3]
èªç¶æ°p,qã§åã23ãšãã
p+q=23
ã®é¢ä¿ããã€(p,q)ã®åãåããã®ãã¹ãŠã«ã€ããŠ
p*qã®å€ã®åã¯ïŒ
1*22+2*21+3*20++22*1
No.1622GAI1æ2æ¥ 09:43
www.youtube.com/watch?v=Rgk0q6ecOeU&t=1000
âãã¡ãããã®ç¥èããã£ãã®ã§[1]ãš[3]ã¯èšç®äžèŠã§ããã
No.1623ãããã1æ2æ¥ 11:20
ãããæ¬å¹Žããããããé¡ãããŸãã
æ©éã解çã¯ã»ã»ã»ã
1ç°ãªãïŒåã®ãã®ããéè€ãèš±ããŠïŒïŒåãšãçµåãã®æ°ã«çããã®ã§ã421ïŒ2421ïŒ243ïŒïŒïŒïŒïŒïŒéãïŒ
2è¡ååŒãèšç®ããŠã2024 ãšãªããŸããã
3Σ(k=1~22)ïœ(23ïŒïœ)ïŒ23*22*23/2ïŒ22*23*45/ïŒïŒ5819ïŒ3795ïŒ2024
No.1624管çè
1æ2æ¥ 11:22 ãããŸããŠããã§ãšãããããŸãã
æšå€ããæšå€ã«ãããŠ
接波ããéããŠãããŸããã
äºå ±ã§ã¯ïŒã¡ãŒãã«äºæ³ã§ããã®ã§ãèªåè»ã§ïŒæéã»ã©å
éžãžã
ã©ãžãªèããŠã接波第ïŒæ³¢ã®é«ããããã»ã©ã§ããªããæ§ãã€ãã¿ãŒæ
å ±ã§ã被害ããªããããªã®ã§ããããèªå®
ã«ãã©ã£ãŠã飯é£ã¹ãŠé
å°ãã£ãŠå¯ã€ããŸããã
2024 ãšããã°ãèãããšããã§ã¯ä»¥äžãé¢çœãã®ã ããã§ããçããæ°åãšããããšã§ããããå°åŠçã«ãããããã¿ã§ãã
https://t.co/wwW6gNE4SH
No.1625Dengan kesaktian Indukmu1æ2æ¥ 15:10
ãããŸããŠããã§ãšãããããŸãã
æ¬å¹Žããããããé¡ãèŽããŸãã
åæã«è¿œå ã§
[4]
Σ[k=1âŠ21] 18/{k(k+1)(k+2)(k+3)} ã®å€ã¯ïŒ
No.1626DD++1æ2æ¥ 20:18
幎æãæ©ã
ã«å°éãæ¥ãããæ¥èªæ©ãæµ·äžä¿å®åºã®æ©äœãšæ¥è§ŠããŠçäžãããªã©ã波乱äžäžã®ïŒå¹Žã«ãªãããã§ãããçããããç¡äºã§äœããã§ãã
No.1627管çè
1æ3æ¥ 00:37 ãããŸããŠããã§ãšãããããŸãã
ä»å¹Žããããããé¡ãããŸãã
[4]
Σ[k=1âŠ21] 18/{k(k+1)(k+2)(k+3)}
= Σ[k=1âŠ21] { 6/{k(k+1)(k+2)} - 6/{(k+1)(k+2)(k+3)} }
= 6/(1*2*3) - 6/(22*23*24)
= 1 - 1/2024
= 2023/2024
No.1628ããã²ã1æ4æ¥ 02:54
ããå°çã®èµ€éäžãã²ãã§å·»ãä»ãããã®é·ãã«1(m)ã®é·ãã®ã²ããç¶ã足ããŠ
åã³èµ€éã«å·»ãä»ãããšãããšãã©ãã ãã®ééãäžåšå
šäœã§ç©ºããããšãåºæ¥ããïŒ
ã®åãã«å¯ŸããŠ
èµ€éååŸãRãšããŠ
2*Ï*R+1=2*Ï*(R+x)ãã
x=1/(2*Ï)=0.159154
ã§çŽ16(cm)
ãšé©ããããã(Rã®å€ã«ã¯äŸåããªã!)
ããã§åãèšå®ã§å·»ãä»ããã²ããäžæ¹ã«å¯èœãªéãåŒã£åŒµããããå·»ãä»ããéšå以å€ã¯ãã³ãš
ã²ãã匵ã£ãŠããªãã ã空é«ãéšåã§ã²ããçµã¶æ§åãæ³åããŠæ¬²ããã
ããŠãã®æ§ã«ããŠ1(m)䌞ã°ããã²ããèµ€éäžã§ãã®æ§ã«åã³è²Œãä»ããŠè¡ã£ããšãããšã
ã²ãã¯ã©ãã ãå°äžããé«ãäœçœ®ã«äžããããšãå¯èœãïŒ
äœãå°çã¯å®å
šæ¥åäœãšãèµ€éååŸã¯6378137(m)ãšãããïŒWikipediaãã)
No.1614GAI2023幎12æ27æ¥ 15:47
å·»ãã€ããå°é¢ããé¢ãã 2 ç¹ãããããå°çäžå¿ãšçµãã ãšãããã®éã«ã§ããè§åºŠã 2Ξ ãšãããŸãã
æ¡ä»¶ãã
2RtanΞ + R(2Ï-2Ξ) = 2ÏR + 1
ã€ãŸã
2tanΞ - 2Ξ = 1/R
Ξ ã埮å°ã ãšæãã° tanΞ ã¯
tanΞ â Ξ + (1/3)Ξ^3
ãšè¿äŒŒã§ããã®ã§ã
(2/3)Ξ^3 = 1/R
ãã£ãŠãæ±ããé«ãã¯
R(1/cosΞ-1) â (1/2)RΞ^2 = (3/4)*(2R/3)^(1/3)
å®éã®å€ãšã¯ç°ãªããŸãããèšç®ãããã Râ6144000 ã ãš 120 m ãªã®ã§ãããããããã¡ãã£ãšé«ããããã§ãããã
æèŠçã« 1km ãããè¡ãããšæã£ãŠãã®ã«æå€ãšäœãâŠâŠã
èšç®ãã¹ã£ãŠãªãã§ãããïŒ
No.1619DD++2023幎12æ29æ¥ 08:18
2tanΞ - 2Ξ = 1/R
蟺ããã³ã³ãã¥ãŒã¿çã®å©çšã§ãΞãæ¢ããš
Ξ=0,00617253(rad)
蟺ãã§ãããã
æ倧121.56060(m)
çšåºŠã«ãªããŸããã
ç§ã®å°è±¡ã§ã¯ãããªã«ãé«ããªããããïŒ
ã®æ¹ã§ã®é©ãã§ããã
DD++ããã¯éãªãã§ããã
çŽç·ãšæ²ç·ã¯ãã£ã±ãéãæ§è³ªãæã£ãŠãããã ãªïœïŒåœããåãšèšãã°åœããåãïŒïŒ
ãªããã®è§åºŠã§R*Ξ=39369(m)ãªã®ã§
æé«ã«ãªãå°ç¹ããçŽ40ïœïœæ±è¥¿ã§ã²ãã¯å°é¢ããé¢ãå§ããããšã«ãªãæ§é ã§ãã
No.1620GAI2023幎12æ29æ¥ 09:11
å
šäœãæµ®ãããå Žåã¯çã倧ãããšäžå©ããïŒå®éã¯ããã§ããªãïŒãªã®ã«å¯Ÿãã
äžç®æã ãåŒã£åŒµã£ãŠæµ®ããããªãçã¯å€§ãããã°å€§ããã ãæå©ãªã®ãæããã§ãããããã
No.1621DD++2023幎12æ31æ¥ 09:26
245813719612412378787994384765625
ãµãã€ã®å¹³æ¹æ°ã®åãšããŠãæ°å¹Žã®è¥¿æŠã«ã¡ãªãã§
2024éãã®è¡šãæ¹ãããæ°(ããã)ã§ãã
èšç®æ©ã§ãã«ãŒããã©ãŒã¹çã«ç¢ºèªããã®ã§ãããïŒ
No.1615Dengan kesaktian Indukmu2023幎12æ28æ¥ 00:10
ã€ã³ãã®äºå¹³æ¹åå®çããèããã°ãçŽ å æ°å解ã®åœ¢ã§ãããªãæèšç®ã§ããããŸããã
2024/4 = 506 = 2*11*23 ãªã®ã§ã
4ã§å²ããš1äœãçŽ æ°ã«å°ããé ã« 23-1, 11-1, 2-1 ãææ°ãšããŠäžããã°ããã ãã§ãã
ã€ãŸã N = 5^22 * 13^10 * 17 ã§ãããã
âŠâŠããèªäœã幎æãã«åºé¡ããã°ããã£ãã®ã§ã¯ïŒ
No.1616DD++2023幎12æ28æ¥ 01:20
DD++ããã埡æ瀺ããŸããšã«æé£ãããããŸãã
OEISã§ã¿ãããã®ã«ãæ€çŽ¢ã«ããããªããŠåŸçããŠãããŸããã
幎è³æšæ¶ã®ãã©ã€ã³ã°ã¯ããããšãããã¯ãªã¹ãã¹ãéããã®ã§ããããªããšïŒãéã
No.1617Dengan kesaktian Indukmu2023幎12æ28æ¥ 18:23
URL ãã¿ã€ãããŸããã
https://oeis.org/A016032/b016032.txt
No.1618Dengan kesaktian Indukmu2023幎12æ28æ¥ 20:11
Dengan kesaktian Indukmuãããã玹ä»ããããµã€ãã®é¢é£ãªã³ã¯
http://www.math.aoyama.ac.jp/~kyo/sotsuken/2019/sotsuron_2019_Shoda.pdf
ãèªãã§ããã
ã¬ã³ãé¢æ°Î(z),ãªã€ã©ãŒã®ã¬ã³ãæ°Î³,ãŒãŒã¿é¢æ°Î¶(z)ã®é¢ä¿åŒãšããŠ
Î(1)=1
Î'(1)=-γ
Î''(1)=Ï^2/6+γ^2=ζ(2)+γ^2
ã®å»¶é·ãšããŠ
Î'''(1)=-(2*ζ(3)+3*γ*ζ(2)+γ^3)
ã玹ä»ãããŠããã®ã§æŽã«ç¶ããæ¢ã£ãŠãããš
Î''''(1)=6*ζ(4)+8*γ*ζ(3)+3*ζ(2)^2+6*γ^2*ζ(2)+γ^4
(ãªã³ã¯å
ã®ãã®éšåã¯èšç®ãã¹ãèµ·ããŠãããšæãããŸãã)
æŽã«
Î'''''(1)=-(24*ζ(5)+20*γ*ζ(4)+20*γ^2*ζ(3)+20*ζ(2)*ζ(3)+15*γ^2*ζ(2)^2+10*γ^3*ζ(2)+γ^5)
çã
ã®é¢ä¿åŒãçãŸããŠããããã§ãã
ãããŸã§ã¯äžå¿èšç®æ©ã«ããåãå€ãäžããŠããããšã確èªããŸãããïŒæåŸã®éšåã®ç¢ºèªãäžèš)
gp > gamma'''''(1)
%80 = -117.83940826837742425256416965496496106
äžæ¹
gp > -(24*zeta(5)+30*Euler*zeta(4)+20*Euler^2*zeta(3)+20*Euler^2*zeta(3)\
+20*zeta(2)*zeta(3)+15*Euler*zeta(2)^2+10*Euler^3*zeta(2)+Euler^5)
%81 = -117.83940826837742425256416965496496106
æ®å¿µãªããζ(3),ζ(5)ã«ã¯Ïãå«ãŸããŠããªãã®ã§Î''(1)ãæãçµã³ã€ããæ¥çåã匷ãããã§ãã
ãŸã
γ=1/2*(ζ(2)-1)+2/3*(ζ(3)-1)+3/4*(ζ(4)-1)+4/5*(ζ(5)-1)+
ãªãåŒã«ãåŒãä»ããããŸãã
(åè)
gp > sumpos(n=2,(n-1)/n*(zeta(n)-1))
%83 = 0.57721566490153286060651209008240243103
gp > Euler
%84 = 0.57721566490153286060651209008240243104
No.1613GAI2023幎12æ24æ¥ 17:09
次ã®å®ç©åã®å€ã¯äœïŒ
(1)â«[0â3]floor(x^2)dx
(2)â«[0â3]ceil(x^2+floor(x))dx
(3)â«[1/Ïâ1/2]log(floor(1/x))dx
(4)â«[e^âÏâ(âÏ)^e^2]ceil(x)dx
No.1595GAI2023幎12æ11æ¥ 01:19
åçã§ã¯ãããŸãããç³ãèš³ãããŸããã
æè¿ããããªã®ãèŠãããŸããŠç®ãäžžãããŠãã次第ã§ãã
â«[0â1](1/x -floor(1/x))dx = 1 -γ
x=0 ã®ä»è¿ã§æ¿ããæ¯åããé¢æ°ã®å®ç©åãªã®ã§ã©ããã£ãŠæ±ããã®ããšææ¡æãéŠã§ãã
ãªããwolfalpha ã§ã¯çããŠãããŸããã§ããã
No.1598Dengan kesaktian Indukmu2023幎12æ12æ¥ 16:45
â«[0â1](1/x-floor(1/x))dx
=â«[1/2â1](1/x-1)dx+â«[1/3â1/2](1/x-2)dx+â«[1/4â1/3](1/x-3)dx+âŠ
=lim[nââ]{â«[1/nâ1](1/x)dx-Σ[k=2ïœn](1/n)}
=lim[nââ]{logn-Σ[k=2ïœn](1/n)}
=-lim[nââ]{Σ[k=2ïœn](1/n)-logn}
=1-lim[nââ]{Σ[k=1ïœn](1/n)-logn}
=1-γ
ãšãªããŸããã
No.1599ãããã2023幎12æ12æ¥ 17:25
â«[x=1ââ](1/floor(x)-1/x)dx=γ
ãšãªãããã§ããã
No.1601GAI2023幎12æ13æ¥ 08:15
Euler's constant (or the Euler-Mascheroni constant), gamma.
ãšèšãããγã«ã€ããŠãWikipediaã§ã®èšäºãèªãã§ã¿ãã
γãšååšçÏãšã®é¢ä¿ãåãã£ãŠããªããšããèšè¿°ãèŠãããã
äŸãã°Ïãšèªç¶å¯Ÿæ°ã®åºeãšã¯ãããã€ãªãé¢ä¿åŒã¯ãã°ãã°èŠãããšã¯ãããã
ããããã°Î³ãšÏã¯ããŸãèŠãããšã¯ãªãã£ãã
ããã§ãªãããªãã®ããšæ¢ãåã£ãã
Îé¢æ°ã§
Î(1/2)=âÏ
Î'(1)=-γ
ãšã¬ã³ãé¢æ°ã§è¡šçŸã§ã
ãŸãããŸããŸ
γ^2+Ï^2/6=Î''(1)=â«[x=0ââ]e^(-x)*(log(x))^2dx
ãæç«ããããšãçºèŠããã(A081855åç
§)
ããã¯ïŒã€ãçµã³ã€ãã倧ããªé¢ä¿ã§ã¯ãªããããïŒ
äœæ¹ãä»ã«äœãïŒã€ãçµã¶é¢ä¿åŒããåç¥ã®æ¹ã¯ãæãäžããã
No.1602GAI2023幎12æ13æ¥ 21:51
æ¬æ¥ã¿ãããã®ã§ãã
â«[x=0ââ] ((sin(x)*log(x))/x)dx = -γ*Ï/2
ãªã®ã ããã§ãã
ã埡åèã
https://mathlog.info/articles/FB8gF9bmpb3LJ5CDZBzo
No.1608Dengan kesaktian Indukmu2023幎12æ22æ¥ 12:59
èšç®æ©ã§ç¢ºèªããããã¿ãªåãæ°å€ã確èªããŸããã
sinãšlogã®çµåãïŒ
æ°åŠã£ãŠäžæè°ã§é¢çœãã
No.1610GAI2023幎12æ23æ¥ 07:44
ä»»æã®äžè§åœ¢ã¯ããã®é ç¹ããåäžååšäžã«ãåããããšãã§ããã
éè§ãªè§ãæã€å¹³è¡å蟺圢ã¯ãåäžååšäžã«ãåããããšãã§ããªãã
ä»»æã®åžäºè§åœ¢ã¯ããã®é ç¹ããåäžã®ååšäžã«ãåããããšãã§ããã
(ãã®ãŸãŸã§ã¯ç¡çå¹³è¡å蟺圢ãå«ããããæ¡ä»¶ãç·©ããŠãè§A,B,C,D,
Eãšåã䞊ã³ã®äºè§åœ¢ãååã§ã¯ãªã)ã¯å¯èœã§ããããïŒ
ãWATTAãADVENTUREãã®ããã«ãäžå¯èœããå¯èœã«ïŒ
No.1597ks2023幎12æ12æ¥ 10:37
åžäºè§åœ¢ABCDEã«å¯ŸããŠãâ AïŒaãâ BïŒb,â C=c,â D=d,â E=e
眮ããŸãã
a=Ξ1ïŒÎ2ïŒÎ3 +0 + 0
b=ïŒïŒÎ2ïŒÎ3ïŒÎ4+0
c=ïŒïŒïŒïŒÎ3ïŒÎ4ïŒÎ5 ïŒAïŒÎïŒïŒÎïŒïŒÎïŒïŒÎïŒïŒÎïŒïŒ
d=Î1ïŒïŒïŒïŒïŒÎ4ïŒÎ5ãããåãã¯ãã«
e=Î1ïŒÎ2ïŒïŒïŒïŒïŒÎ5
å·¡åè¡åAã¯ãæ£åã§ãéè¡åãæã¡ã
äžããããïŒa,b,c,d,e)ã«å¯ŸããŠãïŒÎïŒïŒÎïŒïŒÎïŒïŒÎïŒïŒÎïŒïŒ
ã決ãŸããŸããäœå³ãã§ãããå¿é
ã§ãããïŒè§åºŠãåãåãã§ããã°ãïŒ
ååšäžã«ãäžç¹AïŒä»®ïŒãé©åœã«ãšããå·ŠãããÎ1ïŒâ BAC,ÎïŒïŒâ CAD,
ÎïŒïŒâ DAEãšããŠãç¹B,C,D,Eãå®ãããÎïŒïŒâ ECA,ÎïŒïŒâ ADBã«ãªãããã«ãæ¹ããŠç¹AãBEã®éã«å®ããã°ãã§ãããããããŸããããèªä¿¡ããããŸããã
No.1603ks2023幎12æ14æ¥ 16:25
æ£æ¹åœ¢BCDEãšæ£äžè§åœ¢ABCãšãäœå³ããŸãã
ãã®ãšãã«åžäºè§åœ¢ABCDEã®åé ç¹ãåäžååšäžã«ã¯é
眮ã§ããªããšæãããŸãããã©ããç§ã®é¡æèªã¿éããªã®ã§ããããïŒ
No.1605Dengan kesaktian Indukmu2023幎12æ15æ¥ 22:59
åäŸãããããšãããããŸãã
ãã®å ŽåãÎïŒãããã€ãã¹ã«ãªããŸããã
æ£æ°å€ã§ããåæ¯ãïŒã®å Žåãäœå³ãé£ãããã§ããã
No.1606ks2023幎12æ18æ¥ 09:54
察è§ã®åããïŒïŒïŒÂ°ãªãã°ãåã«å
æ¥ããããšãå¯èœã
ä»»æã®äºèæïŒãã³ã¿ã°ã©ãïŒã¯ãåã«å
æ¥ãããããšãã§ããã
ïŒé·ãã¯åãã§ãªããšããè§ã®äžŠã³ããåããšããæå³ã§ïŒ
ä»»æã®å
èæããå¯èœã
No.1607ks2023幎12æ20æ¥ 13:20
ä»æ©ã¯ãã1+2+3+4+ã»ã»ã»=ãŒ1/12ãã ããã§ãã
2023幎11æ29æ¥ NHKç·åååŸ11:00ã11:30
ãèŠéããªãã
åæŸéã¯ã
äžåç®12æ 2æ¥ïŒåïŒEãã¬ååŸïŒïŒïŒïŒïœååŸ10:00
äºåç®12æ6æ¥ïŒæ°ŽïŒEãã¬ååïŒïŒïŒïŒïœåå1:25
ã ããã§ãããªã³ã¯ã貌ã£ãŠãããŸãã
æ¥é±ã¯ãBSDäºæ³ãã ããã§ãã
No.1574ããããã¯ã¡ã¹ã2023幎11æ29æ¥ 07:05 ä»æ©ã¯ããBSDäºæ³ãã ããã§ãã
2023幎12æ6æ¥ NHKç·åååŸ11:00ã11:30
ãèŠéããªãã
ã·ãŒãºã³ïŒã¯ããã§çµããã ããã§ãã
åæŸéã¯ã
äžåç®12æ 9æ¥ïŒåïŒEãã¬ååŸ9:30ïœååŸ10:00
äºåç®12æ13æ¥ïŒæ°ŽïŒEãã¬åå0:55ïœåå1:25
ã ããã§ãããªã³ã¯ã貌ã£ãŠãããŸãã
æ¥é±ã¯ãç¬ããªãæ°åŠãã®éžã®ãçŽ æ°ãã ããã§ããã€ãŸããã·ãŒãºã³ïŒã®åæŸéã§ãã
No.1591ããããã¯ã¡ã¹ã2023幎12æ6æ¥ 07:08 ä»æ©ã¯ããçŽ æ°ãã ããã§ãã
2023幎12æ13æ¥ NHKç·åååŸ11:00ã11:30
ãèŠéããªãã
åæŸéã¯ã
äžåç®12æ 16æ¥ïŒåïŒEãã¬ååŸ9:30ïœååŸ10:00
äºåç®12æ19æ¥ïŒæ°ŽïŒEãã¬åå0:55ïœåå1:25
ã ããã§ãã
æ¥é±ã®ãç¬ããªãæ°åŠãã¯çªçµè¡šã«ãããŸãããããã§ãçµãããããããŸããã
10æãã12æãŸã§ãšãªã£ãŠãããŸããã®ã§ã
No.1600ããããã¯ã¡ã¹ã2023幎12æ13æ¥ 07:13
亀ç¹ã®ãªãçµã³ç®ã®ãåŒã¯ã©ããªããŸããïŒ
ãææãã ããã
No.1579ks2023幎11æ30æ¥ 15:00
ç§ã¯ãã®æ¹é¢ã«ã€ããŠã¯ãŸã£ããç¡ç¥ã§ãããã©ãã調ã¹ãçµæããå ±åãããŠãã ããã
åºæ¥ãŸãããªãã°ããã®å ±åãããšã«ãå床æ€èšŒããé¡ãããããŸãã
â 亀ç¹ã®ãªãçµã³ç®ã®ã¢ã¬ããµã³ããŒå€é
åŒã¯
1
ãã®ãã®ã§ãã
â¡äº€ç¹ã®ãªãçµã³ç®ã
ãèªæãªçµã³ç®ããšèšãã®ã ããã§ãã
â¡èªæãªçµã³ç®ã®ã¢ã¬ããµã³ããŒå€é
åŒ
ã«ã€ããŠã®èª¬æã以äžã® PDF ã«ãããŸãã
http://www.f.waseda.jp/taniyama/mathsciknot/reports/23.pdf
以äžã§ãã
ãããããé¡ãããããŸãã
No.1580Dengan kesaktian Indukmu2023幎12æ1æ¥ 22:09
ããããšãããããŸãã
èªæãªçµã³ç®ããå€åœ¢ïŒã²ããïŒäº€ç¹ãïŒã€ã«ããŠãæ¹çšåŒãèšç®ãããšã
ïŒã«ãªããªãã®ã§ãå°ããŸãããæ±ãæ¹ããããããã§ããã
No.1592ks2023幎12æ6æ¥ 10:38
埡åèã
ã¢ã¬ããµã³ããŒå€é
åŒã»ããæåã©ããã®å€é
åŒããçµã³ç®ããšã«çŽ¹ä»ããŠãããµã€ãããããŸãã
泚:httpsã«å¯Ÿå¿ããŠãããhttpãªãµã€ãã®ããäžéšã®ãã©ãŠã¶ã§ã¯ã¢ã¯ã»ã¹ã§ããªãããšããããŸãã
http://katlas.math.toronto.edu/wiki/The_Rolfsen_Knot_Table
ããšãã°èªæãªçµã³ç®ã§ããã°ã
äžèšããŒãžã®ãKnots with 7 or fewer crossingsãã«ãªããã åçµã³ç®ã®ãã¡ãã0_1ãã®ãªã³ã¯ãèžãã°
http://katlas.math.toronto.edu/wiki/0_1
ã®ããŒãžã«é£ã³ãŸãããã®ããŒãžã¯èªæãªçµã³ç®ã®ããŒãžã§ãã
ãPolynomial invariantsãã®æ¬ã«ç®ããã
ããã«ãã
ãAlexander polynomialãããã1ã
ã§ããããšããã
èªæãªçµã³ç®ã®ã¢ã¬ããµã³ããŒå€é
åŒã¯ 1 ãšãããããã§ãã
ãŸããåæ§ã«ã㊠3_1 ã®ãªã³ã¯ãèžãã°trifoliate leaves (äžã€è)ã®çµã³ç®ã®ããŒãžã«é£ã³ãŸãã
http://katlas.math.toronto.edu/wiki/3_1
ã¢ã¬ããµã³ããŒå€é
åŒã¯
t +1/t -1
ãšãªãããã§ããã
ãã®çµã³ç®ã¯ãè£è¿ããšã¢ã¬ããµã³ããŒå€é
åŒãéã圢ã«ãªãã®ã§ã¯ãšãŒããããšèšæ¶ããŠããã®ã§ããããã¡ãã«ã€ããŠã¯ä»åãæ¡å
ããã¢ã¯ã»ã¹æ¹æ³ã§ã¯æ€çŽ¢ã§ããŸããã§ãããã容赊ãã ããã
No.1593Dengan kesaktian Indukmu2023幎12æ6æ¥ 17:45
ç¬ããªãæ°åŠã§çŽ¹ä»ãããŠããã¢ã¬ããµã³ããŒå€é
åŒã®å®çŸ©ã§ã¯
èªæãªçµã³ç®ã¯è²ã
ãªå€é
åŒãæ§æãããŠããŸãã¿ããã§ããã
-tãt^2ãt^2+t,etc
çåºæ¥ãŠããŸãã
èªæã§ãªãçµã³ç®ã§ã¯åºæã®å€é
åŒãšãªããšæãããŸãã
No.1594GAI2023幎12æ6æ¥ 19:01
âããã¯ã©ãããæ°ã§ãããïŒ
0.202030508âŠ
é»åçšåºŠã¯OKã§ãããæ€çŽ¢ãWolframAlphaãªã©ã®ã«ã³ãã³ã°ã¯çŠæ¢ã§ãã
No.1587ãããã2023幎12æ3æ¥ 16:09
10000x = 2020.30508âŠâŠ
101x = 20.4050813âŠâŠ
å·®ãåŒã
9899x = 1999.9
ãã£ãŠ
x = 19999/98990
æµç³ã«äžèªç¶ããªïŒ
No.1588DD++2023幎12æ3æ¥ 21:36
gp > Z=0.202030508;
é»åçšåºŠãªãèš±ãããŠããã®ã§
gp > for(n=1,10,print(n";"n*Z))
1;0.20203050800000000000
2;0.40406101600000000000
3;0.60609152400000000000
4;0.80812203200000000000
5;1.0101525400000000000
6;1.2121830480000000000
7;1.4142135560000000000
8;1.6162440640000000000
9;1.8182745720000000000
10;2.0203050800000000000
ãã7åãããšèŠããããªæ°ã䞊ãã ã
ã ãã
â2/7ã蟺ãããªïŒ
No.1589GAI2023幎12æ4æ¥ 06:09
â2/7ããæ£è§£ãã§ãã
â2ã2æ¡ãã€ã«åºåããš7ã®åæ°ã4ã€ãé£ç¶ããŠããããšãã7ã§å²ã£ãŠã¿ãããªãã
å²ã£ããããŸããŸãã£ãããã颚ã®æ°åãåºãŠããŸããã
No.1590ãããã2023幎12æ4æ¥ 06:46
åèš2286件 (æçš¿390, è¿ä¿¡1896)