äžå®ã®éå¹
ãæã€éè·¯ã®äž¡é£ã«ã¯ïŒã€ã®åçŽãªå£ãç«ã¡ã¯ã ãã
ä»äž¡å£ã«äºæ¬ã®æ¢¯åïŒé·ããx,yãšããã)ã亀差ãã圢ã§ç«ãŠãããããŠ
ãããã®ãšãããã®äº€å·®ããŠããå Žæã®éè·¯ããã®é«ããhãšãããšã
ãããããéè·¯ã®å¹
wãç®åºãããã®ãšããã(梯åã¯éã®äž¡ç«¯ããããããå察åŽã®å£ã«æããããŠãããšããã)
1âŠ<x<yâŠ200ã§ããx,yãšhãå
šãп޿°ã§ããæãéå¹
ïœãæŽæ°ã§æ±ºå®ã§ããæŽæ°
(x,y,h)ã®çµåããæ¢ãåºããŠã»ããã
äžäŸ
(x,y,h)=(70,119,30)ã®æw=56ã§æ±ãŸãã
æŽã«
1âŠx<yâŠ1000ã®æ¡ä»¶x,yã®æŽæ°ã§
ãããŠhã®å€ãæŽæ°ã§ããæãéå¹
wãæŽæ°ãšãªããç°ãªãwã®å€ã¯äœéãå¯èœãïŒ
No.2341GAI2024幎11æ25æ¥ 10:05
ããã°ã©ã ãæ£ãããã°
1âŠxïŒyâŠ200ã§ã¯
(x,y,h,w)=(70,119,30,56),(74,182,21,70),(87,105,35,63),(100,116,35,80),(119,175,40,105)
ã®5çµ (wã5éã)
1âŠxïŒyâŠ1000ã§ã¯ çµåãã¯77éããwã¯53éã
ã€ãã§ã«
1âŠxïŒyâŠ10000ã§ã¯ çµåãã¯1440éããwã¯632éã
1âŠxïŒyâŠ100000ã§ã¯ çµåãã¯18612éããwã¯6423éã
(远èš)
ã¡ãªã¿ã«åœ¢ãèããŠhãšwã®æ¯ã«æ³šç®ããŠã¿ããš
100000ãŸã§ã§h/wãæå€§ã§ãããã®ã¯
(57739,87989,34713,6061) (h/wâ5.73)
100000ãŸã§ã§w/hãæå€§ã§ãããã®ã¯
(10817,23999,206,10815) (w/h=52.5)
åŸè
ã¯æ¢¯åã10.817mãšããŠéå¹
ãšã®å·®ã2mmãªã®ã§
å®éã«ã¯ç¡çããã§ããã
ãŸã
100000ãŸã§ã§y/xãæå€§ã§ãããã®ã¯
(169,7081,118,119) (y/xâ41.9)
æå°ã§ãããã®ã¯
(83259,83358,2378,83160) (y/xâ1.0012)
ãšãªã£ãŠããŸããã
No.2342ãããã2024幎11æ25æ¥ 14:56
èªåãªãã«èª¿æ»ããŠãæ£è§£ã¯ããããªïŒ
ã®ç¶æ
ã§åºé¡ããŠãã®ã§ãããããããããã®è§£çãšåããã®ã§ãã£ãšã»ã£ãšããŸãã
5/5=1
53/77=0.68831168831
632/1440=0.43888888888
6423/18612=0.34509993552
ã§å²åããæžå°ããŠãããã ãªã
No.2343GAI2024幎11æ25æ¥ 18:28
è§£ãçºãããšãæå°è§£ã®å®æ°åã®ãã®ãå€ãæ¬è³ªçã«ç°ãªãè§£ã§ã¯ãªãã®ã§
gcd(x,y,h,w)=1ã®è§£ã«éããš
200ãŸã§: çµåã5éããéå¹
5éã
1000ãŸã§: çµåã28éããéå¹
23éã
10000ãŸã§: çµåã263éããéå¹
221éã
100000ãŸã§: çµåã1613éããéå¹
1283éã
ã®ããã«ãªã£ãŠããŸããã
1000ãŸã§ã®çµåãã¯ä»¥äžã®éãã§ãã
(x,y,h,w)=(87,105,35,63),(100,116,35,80),(70,119,30,56),(119,175,40,105),(74,182,21,70),
(182,210,45,168),(156,219,44,144),(113,238,14,112),(175,273,90,105),(104,296,35,96),
(175,364,80,140),(58,401,38,40),(273,420,80,252),(187,429,72,165),(425,442,70,408),
(375,500,144,300),(195,533,120,117),(286,561,90,264),(533,650,90,520),(87,663,55,63),
(663,689,168,585),(365,715,176,275),(625,750,126,600),(275,814,70,264),(583,825,210,495),
(845,870,306,600),(429,915,275,165),(697,986,126,680)
No.2344ãããã2024幎11æ25æ¥ 18:50
確ãã«æå°è§£ã®å®æ°åã®ãã®ãã«ãŠã³ããããŠããŸã£ãŠããŸããã
gp > 23/28.
%210 = 0.82142857142857142857142857142857142857142857142857
gp > 221/263.
%211 = 0.84030418250950570342205323193916349809885931558935
gp > 1283/1613.
%212 = 0.79541227526348419094854308741475511469311841289523
ã§éã«åãwã«å¯Ÿãã2éãã®ãã¿ãŒã³æ°ã®æ¯çã¯äœãå€ãããªãã®ããã
1000ãŸã§ã®ç¯å²ã§ã¯
w=63ã«ã¯(x,y,h)=(87,105,35),(87,663,55)
w=105ã«ã¯(x,y,h)=(119,175,40),(175,273,90)
w=165ã«ã¯(x,y,h)=(187,429,72),(429,915,275)
w=264ã«ã¯(x,y,h)=(275,814,70),(286,561,90)
w=600ã«ã¯(x,y,h)=(625,750,126),(845,870,306)
ããããã2éãã®ãã¿ãŒã³ãèµ·ãããã§ããã
w=63ã®2ãã¿ãŒã³ã¯87ãå
±éã§è峿·±ãã§ãã
No.2345GAI2024幎11æ25æ¥ 20:11
éåé£ãšãã£ãŠãåå¿åãšçŽåŸãåãæ°ã ãæžããŠããã®äº€ç¹2n^2+1åã«æ°åã眮ããã®ããããŸãããçŽåŸäžã®2n+1åã®æ°åã®åïŒåŸåïŒãšãååšäžã®2nåã®æ°ãšäžå¿æ°ã®2n+1åã®æ°ã®å(åšå)ãå
šãŠçãããããã®ã§ããæ¥èŒç®æ³ãã«ã¯ãäžå¿ã®æ°ã9ãšããŠã4ã€ã®åå¿åäžã«{7,22,10,24,25,18,2,30},{19,13,23,3,11,26,29,14},{31,1,16,15,5,17,32,21},{12,33,20,27,28,8,6,4}ãé
ãã4æ¬ã®çŽåŸäžã«{12,31,19,7,9,25,11,5,28},{33,1,13,22,9,18,26,17,8},{20,16,23,10,9,2,29,32,6},{27,15,3,24,9,30,14,21,4}ãšãããæ
ä¹å³ããšããå³ãèŒã£ãŠããŸã(ãæ
ä¹ãã¯9ã«éãŸããšããæå³ã)ã
ãããå¿çšããŠãå³ã®ããã«å極ãšå極ã§äº€å·®ãã3ã€ã®å€§åãšãèµ€éãåç·¯45床ãåç·¯45床ã®3ã€ã®ç·¯ç·ã®åã®äº€ç¹ãšãªã20åã®ç¹ã«ã1ïœ20ã®æ°åãããã3ã€ã®å€§åäžã®æ°ã®åãšã3ã€ã®ç·¯ç·ã®åäžã®æ°ãšäž¡æ¥µã®æ°ã®åãå³ã®ããã«çãããããéçé£ããèããŠã¿ãŸããã1ïœ20ã®æ°åã®é
眮ã§ãå³ã®äž¡æ¥µã4ãš8ã®å Žåã®ä»ã«ãäž¡æ¥µã®æ°åãã©ã®ãããªãã®ãããã§ããããã
![]()
No.2334kuiperbelt2024幎11æ23æ¥ 22:22
äž¡æ¥µã«æ¬¡ã®2ã€ã®æ°åãé
眮ããŠããã°ãä»ã®6çµã®åã=>ã§ã®å€ïŒèªç¶æ°)ã«ããæ®ãã®æ°åãã¡ããã©2床ãã€åºçŸãããããª
6çµã®6åãã€ã®æ°åã®çµåãã¯å±±ã»ã©æ§æå¯èœãšãªããšæããŸãã
1;1,2=>69
2;1,5=>68
3;1,8=>67
4;1,11=>66
5;1,14=>65
6;1,17=>64
7;1,20=>63
8;2,4=>68
9;2,7=>67
10;2,10=>66
11;2,13=>65
12;2,16=>64
13;2,19=>63
14;3,6=>67
15;3,9=>66
16;3,12=>65
17;3,15=>64
18;3,18=>63
19;4,5=>67
20;4,8=>66 (äŸã®å³ã®ãã¿ãŒã³)
21;4,11=>65
22;4,14=>64
23;4,17=>63
24;4,20=>62
25;5,7=>66
26;5,10=>65
27;5,13=>64
28;5,16=>63
29;5,19=>62
30;6,9=>65
31;6,12=>64
32;6,15=>63
33;6,18=>62
34;7,8=>65
35;7,11=>64
36;7,14=>63
37;7,17=>62
38;7,20=>61
39;8,10=>64
40;8,13=>63
41;8,16=>62
42;8,19=>61
43;9,12=>63
44;9,15=>62
45;9,18=>61
46;10,11=>63
47;10,14=>62
48;10,17=>61
49;10,20=>60
50;11,13=>62
51;11,16=>61
52;11,19=>60
53;12,15=>61
54;12,18=>60
55;13,14=>61
56;13,17=>60
57;13,20=>59
58;14,16=>60
59;14,19=>59
60;15,18=>59
61;16,17=>59
62;16,20=>58
63;17,19=>58
64;19,20=>57
No.2340GAI2024幎11æ25æ¥ 05:30
16åã®ã¢ã«ãã¡ããã
E,F,G,H,I,L,N,O,R,S,T,U,V,W,X,Z
ãæããŠããã°0ïœ12ã®è±åèª
ZERO
ONE
TWO
THREE
FOUR
FIVE
SIX
SEVEN
EIGHT
NINE
TEN
ELEVEN
TWELVE
ãæ§æã§ããã
ããã§ãã®16åã®ã¢ã«ãã¡ãããã«é©åœã«ããæŽæ°ãå²ãåœãŠãŠãããš
Z+E+R+O=0
O+N+E=1
T+W+O=2
T+H+R+E+E=3

E+L+E+V+E+N=11
T+W+E+L+V+E=12
ãšããçåŒãæç«ããããã«ããã«ã¯
E,F,G,H,I,L,N,O,R,S,T,U,V,W,X,Zã«ã©ããªæŽæ°ãå²ãåœãŠãã°è¯ãã§ããããïŒ
#ä»ãŸã§æ°å€ãåºé¡ããŠããŠããã®ã§ããããããŠéå»ã«åºé¡ããŠããããç¥ããŸãããæªããããã
ã¢ããåŸæ¢ãããåºé¡ããŠãããŸããã
äžå®æ¹çšåŒãšãªãã®ã§è§£ã¯ç¡æ°ã«ããäºã«ãªã£ãŠããŸãã®ã§
åæŽæ°ã
-11ïœ11ã®ç¯å²ã§çŽãŸãéšåã§ã®çµåãã§æ¢ãã ããŠãããŠäžããã
No.2325GAI2024幎11æ20æ¥ 06:38
æŽçãããš
e+o+r+z=0
e+n+o=1
o+t+w=2
2e+h+r+t=3
f+o+r+u=4
e+f+i+v=5
i+s+x=6
2e+n+s+v=7
e+g+h+i+t=8
e+i+2n=9
e+n+t=10
3e+l+n+v=11
2e+l+t+v+w=12
ããããã®æåãå«ãŸããæ¹çšåŒã®æ°ãæ°ããŠåæ°ã®æé ã«ãããš
1å: g,u,x,z
2å: f,h,l,s,w
3å: r
4å: i,o,v
5å: n,t
10å: e
g,u,x,zã¯äžåºŠããç»å Žããªãã®ã§
e+o+r+z=0
f+o+r+u=4
i+s+x=6
e+g+h+i+t=8
ã®4ã€ã¯åŸåãã§æ®ãã¯
e+n+o=1
o+t+w=2
2e+h+r+t=3
e+f+i+v=5
2e+n+s+v=7
e+i+2n=9
e+n+t=10
3e+l+n+v=11
2e+l+t+v+w=12
æ®ã£ãæ¹çšåŒã§ååºŠåæ°ãæ°ãããš
1å: f,h,r,s
2å: i,l,o,w
4å: t,v
5å: n
8å: e
f,h,r,sã¯äžåºŠããç»å Žããªãã®ã§
2e+h+r+t=3
e+f+i+v=5
2e+n+s+v=7
ã®3ã€ã¯åŸåãã§æ®ãã¯
e+n+o=1
o+t+w=2
e+i+2n=9
e+n+t=10
3e+l+n+v=11
2e+l+t+v+w=12
æ®ã£ãæ¹çšåŒã§ååºŠåæ°ãæ°ãããš
1å: i
2å: l,o,v,w
3å: t
4å: n
5å: e
iã¯äžåºŠããç»å Žããªãã®ã§
e+i+2n=9
ã¯åŸåãã§æ®ãã¯
e+n+o=1
o+t+w=2
e+n+t=10
3e+l+n+v=11
2e+l+t+v+w=12
æ®ã£ãæ¹çšåŒã§ååºŠåæ°ãæ°ãããš
2å: l,o,v,w
3å: n,t
4å: e
2ã®åŒãã1ã®åŒãåŒããŠoãæ¶å»
t+w-e-n=1
12ã®åŒãããã®åŒãåŒããŠwãæ¶å»
3e+l+n+v=11
ããã¯11ã®åŒãšåããªã®ã§æ®ã£ãåŒã¯
e+n+t=10
3e+l+n+v=11
nãštãåºå®ããŠ
e=10-n-t
11ã®åŒã«ä»£å
¥ããŠeãæ¶å»
l+v=2n+3t-19
åŸåãã«ããåŒã«vã¯ç»å Žãlã¯ç»å Žããªãã®ã§vãåºå®ããŠ
l=2n+3t-v-19
12ã®åŒã®eã«e=10-n-tãšl=2n+3t-v-19ã代å
¥ããŠwãç®åºãããš
w=11-2t
2ã®åŒã«w=11-2tã代å
¥ããŠoãç®åºãããš
o=t-9
9ã®åŒãã
i=t-n-1
7ã®åŒãã
s=2n+2t-n-v-13
5ã®åŒãã
f=2n-v-4
3ã®åŒã«æªç¥æ°h,rãåæã«ç»å Žããã®ã§ç»å Žåæ°ã®å€ãrãåºå®ããŠ
h=2n-r+t-17
åŸã¯æåã«åŸåãã«ãã4åŒãã
z=n-r-1
u=v-2n-r-t+17
x=v-3t+20
g=r-2t+16
以äžãã
n,r,t,vã¯åºå®
e=10-n-t
f=2n-v-4
g=r-2t+16
h=2n-r+t-17
i=t-n-1
l=2n+3t-v-19
o=t-9
s=n+2t-v-13
u=v-2n-r-t+17
w=11-2t
x=v-3t+20
z=n-r-1
å
ã®åŒã«ä»£å
¥ãããš0ïœ12ãåºãŠãã¹ãŠæ£ããã®ã§ãåŸã¯
æ¡ä»¶(-11ïœ11)ãæºããããã«n,r,t,vãå®ããã°ããã®ã ãã
è§£ã¯å€æ°ãããããªã®ã§é©åœãªè§£äžã€ã ãã«ããã
絶察å€ãæå°ã«ãªãããã«é©åœã«å€ã決ãããš
(e,f,g,h,i,l,n,o,r,s,t,u,v,w,x,z)=
(1,4,5,-3,0,4,4,-4,-1,1,5,5,0,1,5,4)
â»o+t=9ãªã®ã§çµ¶å¯Ÿå€ã4以äžã«ããã®ã¯äžå¯èœ
No.2326ãããã2024幎11æ20æ¥ 11:32
ããç°ãªãã¢ã«ãã¡ãããã«ã¯ç°ãªãæŽæ°(-11ïœ11ãå«ã)ãšããæ¡ä»¶ãå ãããš
ã©ãã»ã©ã®çµåãã®å¯èœæ§ãçºçããããã§ããïŒ
No.2327GAI2024幎11æ20æ¥ 12:02
ãã®å Žåã¯3éãã§ããã
(e,f,g,h,i,l,n,o,r,s,t,u,v,w,x,z)=
(-2,-6,0,-7,7,9,2,1,4,3,10,5,6,-9,-4,-3),
(-1,-4,5,-11,6,8,2,0,7,3,9,1,4,-7,-3,-6),
(3,9,6,1,-4,0,5,-7,-6,-1,2,8,-3,7,11,10)
-10ïœ10ãªãã°1éãã§ããã
No.2328ãããã2024幎11æ20æ¥ 14:29
16åã®å€æ°ã§13åã®æ¹çšåŒããéåžžã§ã¯å€æ°ã®äžã®3ã€ãåºå®ããŠ(宿°ãšã¿ãã)
13倿°ã®é£ç«æ¹çšåŒãšããŠè§£ãããšããŠãããããããããè¡åMãå©çšããŠ
ãããšããæ£ã«ãã®ä¿æ°ãåºãšããè¡åãmatdet(M)=0 ãšãªã£ãŠããŸãã
ãŸãmatrank(M)ã調ã¹ããšã12ãè¿ãããã®ã¯ãã®äºã ã£ãã®ã§ããã
ã§ãã©ã®2ã€ã®åŒãããæ¢åã®åŒãç£ã¿åºããã®ãããããªãã£ãã
å
šãŠã®æµãã詳ãã瀺ããŠé ãç®çã®çµåããã3ã€ãç¥ããã®ã¯ã©ãããŒã§ããã
远䌞
ãã®æããããã詊ããŠããã
[ E, F, G, H, I, L, N, O, R, S, T, U, V, W, X, Z]=
1;[3/4, 15/4, 3, -11/4, 5/4, 6, 7/2, -13/4, -3/2, 11/4, 23/4, 5, -3/4, -1/2, 2, 4]
2;[9/4, 17/4, 3, -17/4, 7/4, 5, 5/2, -15/4, -5/2, 13/4, 21/4, 6, -13/4, 1/2, 1, 4]
ãªã©ã®åæ°ã«ãã察å¿ã§ãå¯èœãªçµåããçãŸããŠããŸããã
No.2329GAI2024幎11æ20æ¥ 20:36
å
šãŠçŽ æ°ã察象ãšããŠ[p1,p2,p3],[q1,q2,q3]ã®2çµã§
p1^k+p2^k+p3^k=q1^k+q2^k+q3^k (k=1,2)
ãæãç«ã€çµåãã100ãŸã§ã®çŽ æ°ã®ç¯å²ã§æ¢ããš
çµæ§å€ãã®çµåãããååšã
1;[5, 31, 41] VS [13, 17, 47]
2;[5, 41, 71] VS [7, 37, 73]
3;[5, 43, 53] VS [11, 29, 61]
4;[5, 53, 83] VS [11, 41, 89]
5;[5, 59, 79] VS [7, 53, 83]
6;[5, 59, 89] VS [13, 43, 97]
7;[7, 19, 29] VS [11, 13, 31]
8;[7, 23, 41] VS [11, 17, 43]
9;[7, 29, 31] VS [11, 19, 37]
10;[7, 29, 43] VS [13, 19, 47]

91;[31, 67, 73] VS [41, 47, 83]
92;[37, 53, 71] VS [41, 47, 73]
93;[37, 67, 71] VS [43, 53, 79]
94;[37, 73, 79] VS [47, 53, 89]
95;[41, 71, 83] VS [47, 59, 89]
96;[41, 79, 83] VS [43, 71, 89]
97;[43, 61, 67] VS [47, 53, 71]
98;[43, 67, 79] VS [47, 59, 83]
99;[43, 83, 89] VS [47, 71, 97]
100;[53, 71, 79] VS [59, 61, 83]
101;[53, 83, 89] VS [61, 67, 97]
ãèŠã€ãã£ãã
ãªããã®äžã§åãæå°ãšããçµåããã¯
[7,19,29] VS [11,13,31]
ãåœãŠã¯ãŸãã
åãã
[p1,p2,p3,p4],[q1,q2,q3,q4]ã®2çµã§
p1^k+p2^k+p3^k+p4^k=q1^k+q2^k+q3^k+q4^k (k=1,2,3)
ã100ãŸã§ã®çŽ æ°ã®ç¯å²ã§èª¿ã¹ãã
1;[7, 31, 59, 83] VS [11, 23, 67, 79]
2;[11, 29, 47, 73] VS [17, 19, 53, 71]
3;[11, 37, 47, 73] VS [17, 23, 61, 67]
4;[11, 41, 43, 73] VS [13, 31, 53, 71]
5;[11, 43, 47, 79] VS [19, 23, 67, 71]
6;[11, 47, 53, 89] VS [17, 29, 71, 83]
7;[13, 29, 31, 47] VS [17, 19, 41, 43]
8;[13, 29, 67, 83] VS [17, 23, 73, 79]
9;[13, 43, 59, 89] VS [19, 29, 73, 83]
10;[17, 29, 31, 43] VS [19, 23, 37, 41]
11;[17, 43, 53, 79] VS [23, 29, 67, 73]
12;[17, 43, 61, 79] VS [19, 37, 71, 73]
13;[19, 37, 53, 71] VS [23, 29, 61, 67]
14;[19, 43, 47, 71] VS [23, 31, 59, 67]
15;[23, 41, 61, 79] VS [29, 31, 71, 73]
16;[23, 59, 61, 97] VS [31, 37, 83, 89]
17;[29, 43, 47, 61] VS [31, 37, 53, 59]
18;[31, 53, 67, 89] VS [37, 41, 79, 83]
19;[37, 59, 61, 83] VS [41, 47, 73, 79]
ãèŠã€ãã£ãã
ãªãæå°å€ã®åãæ§æããã®ã¯
[13, 29, 31, 47] VS [17, 19, 41, 43]
[17, 29, 31, 43] VS [19, 23, 37, 41]
ã®2ãã¿ãŒã³ãåœãŠã¯ãŸãã(2,3ä¹ãŸã§ãèãããšäžã®æ¹ãæé©)
ããã§æ¬¡ã¯ãšæã
p1^k+p2^k+p3^k+p4^k+p5^k=q1^k+q2^k+q3^k+q4^k+q5^k (k=1,2,3,4)
p1^k+p2^k+p3^k+p4^k+p5^k+p6^k=q1^k+q2^k+q3^k+q4^k+q5^k+q6^k (k=1,2,3,4,5)
ãæºãããçµåãã¯ã©ããªãã ããããšæ€çŽ¢ãå§ãããä»åºŠã¯äœãã«ãç¯å²ãåºããéããŠ
äžžäžæ¥ã³ã³ãã¥ãŒã¿ãèµ°ãããŠãäžã€ããããããŠããªãã
ãªãåã®æå°å€ãäžãã2çµã®ãã®ã¯
[13,59,67,131,163] VS [23,31,103,109,167]
[17,37,43,83,89,109] VS [19,29,53,73,97,107]
ã§ãããšã®æ
å ±ã¯ãããããå
¥æã§ããã
åŸã£ãŠæ€çŽ¢ç¯å²ã200ãŸã§ã®çŽ æ°ã«éå®ããŠããã以å€ã«ãçºèŠã§ããããšæãããã
åŠäœããå
šæ€çŽ¢ã®æ¹æ³ã§æ¢ãåã£ãŠããã®ã§ä»ã®ãšããäžã€ãèŠã€ããããã«ããŸãã
äœæ¹ãå¹çããæ€çŽ¢ããã°ã©ã ããä»ã®ãã¿ãŒã³ãæ¢ãåºããããæããŠäžããã
No.2319GAI2024幎11æ16æ¥ 09:46
ãã¡ãã®ãªããã·ã®ç¶ç·šã§ããïŒ
http://shochandas.xsrv.jp/mathbun/mathbun1164.html
No.2320Dengan kesaktian Indukmu2024幎11æ16æ¥ 10:14
200ãŸã§ã®çŽ æ°ã§ã®å
šè§£(äžã«ããè§£ãå«ã)
5åçµ
[13,59,67,131,163] ãš [23,31,103,109,167]
[11,59,71,149,173] ãš [23,29,101,131,179]
[19,79,101,173,191] ãš [23,61,131,149,199]
[31,67,103,149,197] ãš [37,53,127,131,199]
6åçµ
[19,29,53,73,97,107] ãš [17,37,43,83,89,109]
[19,29,83,103,157,167] ãš [13,47,59,127,139,173]
[43,47,101,109,163,167] ãš [37,59,83,127,151,173]
[29,31,103,107,179,181] ãš [19,53,71,139,157,191]
[43,53,107,127,181,191] ãš [37,71,83,151,163,197]
ã¡ãªã¿ã«200ãè¶
ããæ¬¡ã®è§£ã¯
5åçµ
[61,79,151,197,227] ãš [67,71,157,191,229]
6åçµ
[19,53,89,157,193,227] ãš [17,67,73,173,179,229]
# æäœã£ãããã°ã©ã ããŸã æ®ã£ãŠããŸããã
No.2321ãããã2024幎11æ17æ¥ 04:08
éå»ãã®è©±é¡ã«ã€ããŠã®æçš¿ããã£ãŠããŸãããã
äžè¬ã«Prouhet-Tarry-Escott problem ãšåŒã°ããããšããããç¹ã«äœ¿ãæ°ãçŽ æ°ã«éå®ãããã®ã
äœãç¹å¥ã«èŠããŠé¢çœããšæã£ãŠããŸããã
ãšèšãã®ãäžè¬ã§ã®æŽæ°ã§ã¯å
¬åŒãååšã§ããã®ã§ã幟ã€ãçµåããçºèŠã§ãããçŽ æ°ã§ã¯ããã¯ãããªããªãã
ãµãšéå»ã®ããŒããæŽçããŠãããããã®çŽ æ°ã«é¢ãã2çµã®è§£ãèŠãŠããããä»ã®è§£ã¯æããã®ãïŒ
ã®çåãããå®éã«ããœã³ã³ã§æ¢ããŠã¿ããæã£ããã®ããå€ãã®çµåããååšããŠããããšã«é©ããã®ã§ããã
æ¬ã«ç޹ä»ãããŠããã®ã¯ãç¹ã«ãã®äžã«ããæå°æ°ã§ã®çµåããšãªã£ãŠããããšã«ãããªãã®ããšèªèã§ã
ã§ã¯æ¢ããã ãæ¢ããŠã¿ãããšææŠãå§ããŠã¿ãã®ãæçš¿ã®åæ©ã§ããã
ãªã«ãåªæ°ãé«ãŸãã°é«ãŸãã ãæ¢çŽ¢ç¯å²ãææ°é¢æ°çã«å¢å€§ããŠãããã¡ãã£ãšããã£ãšã§ã¯æéæéã§ã¯
æ¢ãåºããªããªã£ãŠå£ã«çªãåœãã£ãŠããŸã£ãç¶æ
ã«ãªã£ãŠãããŸãã
No.2322GAI2024幎11æ17æ¥ 05:56
ããããããããããšãããããŸãã
ïŒä¹ãŸã§ã®çºèŠã§ããããã°ã©ã ïŒäžåäœã§ã®èšç®æéã§ã¯çµäºããã)
ã®å»¶é·ã®æå³ã§ã®4ä¹ã§ã®æ€çŽ¢ã§ã¯3æ¥èšç®ãç¶ããŠãäžã€ãçºèŠã§ããã«ããŸããã
200ãŸã§ã®çŽ æ°ã§ã®çµæãç¥ããŸã§ã®æéã¯ã©ãã»ã©ãªãã§ããïŒ
çµæãç¹æ€ããŠããã
5ä¹ãŸã§ã®åãçãã6åçµã®æå°çµ
S1=[19,29,53,73,97,107] ãš
S2=[17,37,43,83,89,109]
ã«å¯Ÿã
M1=[-22,-17,-5,5,17,22]
M2=[-23,-13,-10,10,13,23]
ãªã察ç
§çé
åãš
q=2,r=63
ã®å®æ°ãéžã¹ã°
S1[n]=q*M1[n]+r
S2[n]=q*M2[n]+r
(n=1,2,3,4,5,6)
ã®é¢ä¿ã§çµã°ããããã§ãã
ãŸã
S1=[19,53,89,157,193,227]
S2=[17,67,73,173,179,229]
ãªã
M1=[-52,-35,-17,17,35,52]
M2=[-53,-28,-25,25,28,53]
q=2,r=123
ãšãªãããã§ãã
No.2323GAI2024幎11æ17æ¥ 06:36
æé枬ã£ãŠãªãã£ãã®ã§å床å®è¡ããŠç¢ºããããšããã
5åçµã§20ç§ã6åçµã§3ååã§ããã
No.2324ãããã2024幎11æ17æ¥ 06:48
(1)â«[x=0->1](1-x^2)^5dx
(2)â«[x=0->1](x*(1-x))^5dx
(3)â«[x=0->1](x*(1-x))^5/(1+x^2)dx
äœãæç€ºçè§£ã§ç€ºããŠäžããã
No.2303GAI2024幎11æ6æ¥ 10:17
(1) 256/693
(2)1/2772
(3)11411/2520-2*log(2)-Pi
ã ãšæããŸãã
(1),(2)
ã¯
äžè¬ã«
â«[x=0,1](x*(1-x))^ndx=â«[x=0,1](1-x^2)^ndx/4^n
=Beta(n+1,n+1)
äœã
Beta(s,t)=Î(s)*Î(t)/Î(s+t)
(ããŒã¿é¢æ°)
ã§ç¹ãã£ãŠããŠ
gp > bestappr(intnum(x=0,1,(1-x^2)^5))
%470 = 256/693
gp > bestappr(intnum(x=0,1,(1-x^2)^5)/4^5)
%471 = 1/2772
gp > bestappr(intnum(x=0,1,(x*(1-x))^5))
%472 = 1/2772
gp > Beta(s,t)=gamma(s)*gamma(t)/gamma(s+t);
gp > bestappr(Beta(6,6))
%475 = 1/2772
(3)ã¯
â«[x=0,1]x^n/(1+x^2)dx=â«[t=0,Pi/4]tan(t)^ndt
ã®çœ®æç©åã§
ããã§
gp > (x*(1-x))^5
%476 = -x^10 + 5*x^9 - 10*x^8 + 10*x^7 - 5*x^6 + x^5
=(5*x^9+10*x^7+x^5)-(x^10+10*x^8+5*x^6)
ããã§
I=â«[x=0,1](x*(1-x))^5/(1+x^2)dx
ããã§
x=tan(t) ãšçœ®ããšdx=dt/cos(t)^2=dt*(1+tan(t)^2)=dt*(1+x^2)
x=0-->t=0 ; x=1-->t=Pi/4
ãã£ãŠ
I=â«[t=0,Pi/4](5*tan(t)^9+10*tan(t)^7+tan(t)^5)dt
-â«[t=0,Pi/4](tan(x)^10+10*tan(t)^8+5*tan(t)^6)dt
=5*(1/2*log(2)-7/24)+10*(-1/2*log(2)+5/12)+(1/2*log(2)-1/4)
-(-1/4*Pi+263/315)-10*(1/4*Pi-76/105)-5*(-1/4*Pi+13/15)
=11411/2520-2*log(2)-Pi
(ãã®èšç®ã¯ã»ãšã»ãšããã©ãããã)
gp > intnum(x=0,1,(x*(1-x))^5/(1+x^2))
%480 = 0.00028758846491931730606697697874715425500493507898685
gp > 11411/2520-2*log(2)-Pi
%481 = 0.00028758846491931730606697697874715425500493507898685
No.2306GAI2024幎11æ8æ¥ 18:46
ç§ãããŒã¿é¢æ°ã§èããŸããã
(1)ã«ã€ããŠã¯ã
â«[x=0â1](1-x^2)^5dx=(1/2)â«[x=-1â1]((1+x)*(1-x))^5dx
=â«[t=0â1](2t*2(1-t))^5dt=2^10*Î(6,6)=2^10*Î(6)^2/Î(12)
=2^10*(5!)^2/(11!)=1024/2772=256/693
ãšãªããŸããã
(2)ã«ã€ããŠã¯ã
â«[x=0â1](x*(1-x))^5dx=â«[x=0â1](x^5*(1-x)^5)dx
=Î(6,6)=Î(6)^2/Î(12)=(5!)^2/(11!)=(5*4*3*2*1)/(11*10*9*8*7*6)
=1/(11*2*3*2*7*3)=1/2772
ãšãªãã®ã§ã¯ãªãã§ããããã
(3)ã«ã€ããŠã¯ãâ«[x=0â1](x*(1-x))^n/(1+x^2)dx (n=1,2,3,4,5)ãé æ¬¡æ±ããŠã¿ãŸããã
(x(1-x))/(1+x^2)=(x-x^2)/(1+x^2)=(x+1)/(1+x^2)-1
ãã
â«[x=0â1](x*(1-x))/(1+x^2)dx=â«[x=0â1]((x+1)/(1+x^2)-1)dx
=ln(2)/2+Ï/4-1
(x(1-x))^2/(1+x^2)=((x+1)/(1+x^2)-1)*(x(1-x))
((x+1)x(1-x))/(1+x^2)=(x-x^3)/(1+x^2)=2x/(1+x^2)-x
ãã
â«[x=0â1](x*(1-x))^2/(1+x^2)dx=â«[x=0â1](2x/(1+x^2)-x-x(1-x))dx
=ln(2)-Î(2,1)-Î(2,2)=ln(2)-Î(2)Î(1)/Î(3)-Î(2)^2/Î(4)
=ln(2)-(1!*0!)/2!-(1!)^2/(3!)=ln(2)-1/2-1/6=ln(2)-2/3
(x(1-x))^3/(1+x^2)=(2x/(1+x^2)-x-x(1-x))*(x(1-x))
(x^2(1-x))/(1+x^2)=(x^2-x^3)/(1+x^2)=(x-1)/(1+x^2)-(x-1)
ãã
â«[x=0â1](x*(1-x))^3/(1+x^2)dx
=â«[x=0â1](2(x-1)/(1+x^2)+2(1-x)-x^2(1-x)-x^2(1-x)^2)dx
=ln(2)-Ï/2+2Î(1,2)-Î(3,2)-Î(3,3)
=ln(2)-Ï/2+2Î(1)Î(2)/Î(3)-Î(3)Î(2)/Î(5)-Î(3)^2/Î(6)
=ln(2)-Ï/2+2*(0!1!)/2!-(2!1!)/4!-(2!)^2/5!
=ln(2)-Ï/2+1-1/12-1/30=ln(2)-Ï/2+53/60
(x(1-x))^4/(1+x^2)=(2(x-1)/(1+x^2)+2(1-x)-x^2(1-x)-x^2(1-x)^2)*(x(1-x))
-(x-1)^2*x/(1+x^2)=-x*(1-2x+x^2)/(1+x^2)=2x^2/(1+x^2)-x=-2/(1+x^2)+2-x
ãã
â«[x=0â1](x*(1-x))^4/(1+x^2)dx
=â«[x=0â1](-4/(1+x^2)+4-2x+2x(1-x)^2-x^3(1-x)^2-x^3(1-x)^3)dx
=-Ï+4Î(1,1)-2Î(2,1)+2Î(2,3)-Î(4,3)-Î(4,4)
=-Ï+4Î(1)^2/Î(2)-2Î(2)Î(1)/Î(3)+2Î(2)Î(3)/Î(5)-Î(4)Î(3)/Î(7)-Î(4)^2/Î(8)
=-Ï+4(0!)^2/1!-2(1!0!)/2!+2(1!2!)/4!+(3!2!)/6!-(3!)^2/7!
=-Ï+4-1+1/6-1/60-1/140=-Ï+22/7
(x(1-x))^5/(1+x^2)=(-4/(1+x^2)+4-2x+2x(1-x)^2-x^3(1-x)^2-x^3(1-x)^3)*(x(1-x))
(x(1-x))/(1+x^2)=(x-x^2)/(1+x^2)=(x+1)/(1+x^2)-1
ãã
=â«[x=0â1](-4(x+1)/(1+x^2)+4+4x(1-x)-2x^2(1-x)+2x^2(1-x)^3-x^4(1-x)^3-x^4(1-x)^4)dx
=-2*ln(2)/2-Ï+4Î(1,1)+4Î(2,2)-2Î(3,2)+2Î(3,4)-Î(5,4)-Î(5,5)
=-2*ln(2)/2-Ï+4Î(1)^2/Î(2)+4Î(2)^2/Î(4)-2Î(3)Î(2)/Î(5)+2Î(3)Î(4)/Î(7)-Î(5)Î(4)/Î(9)-Î(5)^2/Î(10)
=-2*ln(2)/2-Ï+4(0!)^2/1!+4(1!)^2/3!-2(2!1!)/4!+2(2!3!)/6!-(4!3!)/8!-(4!)^2/9!
=-2*ln(2)/2-Ï+4+2/3-1/6+1/30-1/280-1/630=-2*ln(2)-Ï+11411/2520
No.2307kuiperbelt2024幎11æ8æ¥ 20:09
> "kuiperbelt"ãããæžãããŸãã:
> ç§ãããŒã¿é¢æ°ã§èããŸããã
(3)ãããŒã¿é¢æ°ã«ç¹ãããã§ããã
åèã«n=6,7,8,9,10
ã§ãã£ãŠã¿ãŸããã
I6=38429/13860-4*ln(2)
I7=2*Ï-4*ln(2)-421691/120120
I8=4*Ï-188684/15015
I9=8*ln(2)+4*Ï-17069771/942480
I10=16*ln(2)-1290876029/116396280
No.2308GAI2024幎11æ9æ¥ 05:20
管ç人ããã®è§£çãšæ°å€ãåããªããŠæ©ãã§ãŸãããããã£ã±ã (2) 㯠1/2772 ã§ãããïŒ
(1)ãš(2)ã¯ããŒã¿é¢æ°ãªããŠæã¡åºããªããŠãã5åéšåç©åããã°é«æ ¡çã§ãããçããããåé¡ã§ããã
(1)
â«[x=0->1] (1-x^2)^5 dx
= (1/2) â«[x=-1->1] (1+x)^5*(1-x)^5 dx
= (1/2)*(5/6) â«[x=-1->1] (1+x)^6*(1-x)^4 dx
= (1/2)*(5/6)*(4/7) â«[x=-1->1] (1+x)^7*(1-x)^3 dx
= (1/2)*(5/6)*(4/7)*(3/8) â«[x=-1->1] (1+x)^8*(1-x)^2 dx
= (1/2)*(5/6)*(4/7)*(3/8)*(2/9) â«[x=-1->1] (1+x)^9*(1-x) dx
= (1/2)*(5/6)*(4/7)*(3/8)*(2/9)*(1/10) â«[x=-1->1] (1+x)^10 dx
= (1/2)*(5/6)*(4/7)*(3/8)*(2/9)*(1/10)*(1/11)*2^11
= 256/693
(2) (1) ãšåæ§ã«ããŠ
â«[x=0->1] (x*(1-x))^5 dx
= (5/6)*(4/7)*(3/8)*(2/9)*(1/10)*(1/11)*1^11
= 1/2772
No.2309DD++2024幎11æ9æ¥ 08:38
(3)
ãŸãã
(x*(1-x))^5 = (1+x^2)Q(x) + ax + b
ãšãããx = ±i ã代å
¥ãããšã
-4 - 4i = b + ai
-4 + 4i = b - ai
ãšãªãã®ã§ãa = b = -4
ãŸãã
â«[x=0->1] 1/(1+x^2) dx = Ï/4ïŒx=tanΞã®çœ®æç©åã«ããïŒ
ãš
â«[x=0->1] 2x/(1+x^2) dx = log2
ãæãç«ã¡ãŸãã
ãã£ãŠã
â«[x=0->1] (x*(1-x))^5/(1+x^2) dx
= â«[x=0->1] {x^5*(1-x)^5+4x+4}/(1+x^2) dx - 4 â«[x=0->1] 1/(1+x^2) dx - 2 â«[x=0->1] 2x/(1+x^2) dx
= Σ[n=0->â] â«[x=0->1] {x^(2n+5)*(1-x)^5+4*x^(2n+1)+4*x^(2n)}*(-1)^n dx - Ï - 2log2
= Σ[n=0->â] {120/((2n+11)(2n+10)(2n+9)(2n+8)(2n+7)(2n+6))+4/(2n+2)+4/(2n+1)}*(-1)^n - Ï - 2log2
= Σ[n=0->â] {-1/(2n+11)+5/(2n+10)-10/(2n+9)+10/(2n+8)-5/(2n+7)+1/(2n+6)+4/(2n+2)+4/(2n+1)}*(-1)^n - Ï - 2log2
= 4/1 + 4/2 - 4/3 - 4/4 + 4/5 + 5/6 - 9/7 + 5/8 - 1/9 - Ï - 2log2
= 11411/2520 - Ï - 2log2
æåŸã®1è¡ã¯æèšç®ããå³ããâŠâŠã
No.2310DD++2024幎11æ9æ¥ 10:21
11411/2520ã®æ£äœã
4/1 + 4/2 - 4/3 - 4/4 + 4/5 + 5/6 - 9/7 + 5/8 - 1/9
ã§ããããšã«ã¯é©ããŸããã
(x*(1-x))^6,(x*(1-x))^7
ã«çŸããåæ°å€
38429/13860ã- 421691/120120
ã«ã€ããŠDD++ããã®å·§ã¿ãªæ¹æ³ãåèã«æ¢ããš
2 + 4/3 - 7/4 - 3/5 + 1/7 + 14/9 + 1/11 = 38429/13860
- 6 + 7/3 + 6/5 + 8/7 - 7/8 - 20/11 + 17/12 - 1/13 = - 421691/120120
ã«ãã£ãŠæ§æãããŠããããšã«ãªããã§ããã
ãªãkuperbeltããã®ããŒã¿é¢æ°å©çšã§ã¯
2 + 2/3 + 2/15 - 1/30 + 1/140 - 1/1260 - 1/2772 = 38429/13860
- 4 + 1/3 +2/15 + 1/35 - 1/140 + 1/630 - 1/5544 - 1/12012 = - 421691/120120
ã®æ§æã«ãªãããã§ãã
ããããããã
â«[x=0,1]1/(x^2+1)dx=â[n=0,oo]((-1)^n*â«[x=0,1]x^(2*n)dx)
â«[x=0,1]x/(x^2+1)dx=â[n=0,oo](-1)^n*â«[x=0,1](x^(2*n+1)dx)
â«[x=0,1]x^2/(x^2+1)dx=â[n=0,oo]((-1)^n*â«[x=0,1]x^(2*n+2)dx)
â«[x=0,1]x^s*(1-x)^sdx=â[n=0,oo]((-1)^n*â«[x=0,1]x^(2*n+s)*(1-x)^sdx)
ãªããŠåŒãã©ãããæãã€ãããã§ããïŒ
No.2314GAI2024幎11æ12æ¥ 07:15
åçŽã«ã
1/(1+x^2) ãããã ãªãâŠâŠ
âx ã 1-x ã ããå æ°ã«æã€ãã®ã®ç·åã§æžããããªãâŠâŠ
âåé
1 ã§å
¬æ¯ -x^2 ã®ç¡éçæ¯çŽæ°ã«å±éããã°ãããã§ãããããïŒ
ãšããã ãã§ãã
ãšããã§ãããšããæ°ãã€ãããã§ãããæ®éã« x^5*(1-x)^5 ã 1+x^2 ã§å²ã£ãåãæ®éã«ç©åããã°åãå
容ã®åæ°ã®åã«åž°çããã£ãœãã§ããã
åŒå€åœ¢é 匵ã£ãã®ããããŸãæå³ãªãã£ãçæã
No.2315DD++2024幎11æ12æ¥ 08:41