ãã©ã³ã52æãååã«ã·ã£ããã«ããåŸ4æãã€13çµã«åããã
åçµãã1æã ããããã©ã³ããæãåºããŠ13æã®ãã©ã³ãã§
1ãã13ãŸã§ã®æ°å(ããŒã¯ã¯ç¡èŠ)ãæããããã®ãïŒ
ããäžå¯èœã§ããã°ãã®çµåããã®å®äŸã瀺ããŠã»ããã
åçµãã 1 æãã€åãåºããŠå
šãŠã®æ°åãæããããšã
ããã«åçµæ®ãã® 3 æãã 1 æãã€åãåºããŠåã³å
šãŠã®æ°åãæãã
ããã«ããã«åçµæ®ãã® 2 æãã 1 æãã€åãåºããŠäžåºŠå
šãŠã®æ°åãæãã
æåŸã«æ®ã£ã 1 æãã€ããŸãå
šãŠã®æ°åã®çµã«ãªãâŠâŠ
âŠâŠãŸã§ã§ããããªæ°ãããŸãã
ãã ã蚌æã¯é£ãããã§ããã
ãã䌌ãïŒåé¡ã§ãã
ãã©ã³ã 52 æãååã«ã·ã£ããã«ããåŸã«
ããŒãã«äžã« 4 è¡ 13 åã«äžŠã¹ãŠåæé
眮ãšããŸãã
åãæ°ã®ã«ãŒã㯠1 察 1 ã§äºãã«äœçœ®ã亀æã§ããŸãããããã亀æã¯å¥œããªã ãè¡ããŸãã
ãŽãŒã«ã¯ãå
šãŠã®åã«ã¹ããŒãããŒããã€ã€ã¯ããŒããŒãæããããšã§ãã
ä»»æã®åæé
眮ã«ã€ããŠãå¿
ããŽãŒã«ããããšãã§ããã®ã§ããããã
ããäžå¯èœã§ããã°ãã®çµåããã®å®äŸããããŠãã ããã
â»åãæ°ã®ã«ãŒããšã¯ãããšãã°ãjack ã©ãããå«ã¿ãŸãã
â»ç§ã¯ãã®åé¡ã«ã€ããŠãŸã ããç解ããŠããŸãããå¿
ããŽãŒã«ã§ããæ°ãããããŸãã蚌æãšãããŸãããé©åãªã¢ã«ãŽãªãºã ãäžæã§ãã
éåžžã®ãã©ã³ãã§DD++ãããèšãããçŸè±¡ãèµ·ããããã®ãçŽæ¥ãããã¯ãã
ç¡ãã£ãã®ã§èŠæš¡ãçž®å°ã
{1,2,3,4}ã®æ°åãå3æãã€ããèš12æã®ã«ãŒãã
3æãã€ã§4çµãæ§æããŠãç°ãªãçµåãããå
·äœçã«
ã©ã®æ§ã«ãªãã®ãã調ã¹ãŠã¿ãŸããã
ç§ã®ããã°ã©ã ã®ä»æ¹ãªã®ã§åãæéãããã£ãŠããŸãã
12æéã»ã©ã®æéãèŠããŠæ¬¡ã®93éããäœããŸããã
å
šéšãã§ãã¯åºæ¥ãããã§ã¯ãããŸããããã©ã³ãã ã«
10éãã»ã©ã®å¥ãæ¹ã§1ïœ4ã®æ°åã3ååãåºããã
å®éšãããå
šãŠå¯èœãšãªããŸããã
åŸã£ãŠ1ïœ13ã®æ°åãå4åãã€ãã52æã§ã®éåžžã®ãã©ã³ãã§
åçµã4æãã€ã®13çµãäœã£ããšããŠãã
åçµããäžæãã€åãåºããš1ïœ13ã®ã»ãããæãåºãããšã
4åèµ·ãããããšã¯åå確ããããèµ·ããããšæãããŸããã
ãã ãã¹ãŠã®çµåããã䞊ã¹ãããããšèšãã°ãç§ã®ããã°ã©ã å
ã§ã¯ã©ãã«ããªããŸããã(å
šéšã§äœéããèšç®ã§æ±ãããããã®ãªã®ã§ããããïŒ)
ãŸãã
è«ççã«èšŒæãšèšãããŠãæã足ãåºãŸããã
1;[[1, 1, 1], [2, 2, 2], [3, 3, 3], [4, 4, 4]]
2;[[1, 1, 1], [2, 2, 2], [3, 3, 4], [3, 4, 4]]
3;[[1, 1, 1], [2, 2, 3], [2, 3, 3], [4, 4, 4]]
4;[[1, 1, 1], [2, 2, 3], [2, 3, 4], [3, 4, 4]]
5;[[1, 1, 1], [2, 2, 3], [2, 4, 4], [3, 3, 4]]
6;[[1, 1, 1], [2, 2, 4], [2, 3, 3], [3, 4, 4]]
7;[[1, 1, 1], [2, 2, 4], [2, 3, 4], [3, 3, 4]]
8;[[1, 1, 1], [2, 2, 4], [2, 4, 4], [3, 3, 3]]
9;[[1, 1, 1], [2, 3, 3], [2, 3, 4], [2, 4, 4]]
10;[[1, 1, 1], [2, 3, 4], [2, 3, 4], [2, 3, 4]]
11;[[1, 1, 2], [1, 2, 2], [3, 3, 3], [4, 4, 4]]
12;[[1, 1, 2], [1, 2, 2], [3, 3, 4], [3, 4, 4]]
13;[[1, 1, 2], [1, 2, 3], [2, 3, 3], [4, 4, 4]]
14;[[1, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 4]]
15;[[1, 1, 2], [1, 2, 3], [2, 4, 4], [3, 3, 4]]
16;[[1, 1, 2], [1, 2, 4], [2, 3, 3], [3, 4, 4]]
17;[[1, 1, 2], [1, 2, 4], [2, 3, 4], [3, 3, 4]]
18;[[1, 1, 2], [1, 2, 4], [2, 4, 4], [3, 3, 3]]
19;[[1, 1, 2], [1, 3, 3], [2, 2, 3], [4, 4, 4]]
20;[[1, 1, 2], [1, 3, 3], [2, 2, 4], [3, 4, 4]]
21;[[1, 1, 2], [1, 3, 3], [2, 3, 4], [2, 4, 4]]
22;[[1, 1, 2], [1, 3, 4], [2, 2, 3], [3, 4, 4]]
23;[[1, 1, 2], [1, 3, 4], [2, 2, 4], [3, 3, 4]]
24;[[1, 1, 2], [1, 3, 4], [2, 3, 3], [2, 4, 4]]
25;[[1, 1, 2], [1, 3, 4], [2, 3, 4], [2, 3, 4]]
26;[[1, 1, 2], [1, 4, 4], [2, 2, 3], [3, 3, 4]]
27;[[1, 1, 2], [1, 4, 4], [2, 2, 4], [3, 3, 3]]
28;[[1, 1, 2], [1, 4, 4], [2, 3, 3], [2, 3, 4]]
29;[[1, 1, 3], [1, 2, 2], [2, 3, 3], [4, 4, 4]]
30;[[1, 1, 3], [1, 2, 2], [2, 3, 4], [3, 4, 4]]
31;[[1, 1, 3], [1, 2, 2], [2, 4, 4], [3, 3, 4]]
32;[[1, 1, 3], [1, 2, 3], [2, 2, 3], [4, 4, 4]]
33;[[1, 1, 3], [1, 2, 3], [2, 2, 4], [3, 4, 4]]
34;[[1, 1, 3], [1, 2, 3], [2, 3, 4], [2, 4, 4]]
35;[[1, 1, 3], [1, 2, 4], [2, 2, 3], [3, 4, 4]]
36;[[1, 1, 3], [1, 2, 4], [2, 2, 4], [3, 3, 4]]
37;[[1, 1, 3], [1, 2, 4], [2, 3, 3], [2, 4, 4]]
38;[[1, 1, 3], [1, 2, 4], [2, 3, 4], [2, 3, 4]]
39;[[1, 1, 3], [1, 3, 3], [2, 2, 2], [4, 4, 4]]
40;[[1, 1, 3], [1, 3, 3], [2, 2, 4], [2, 4, 4]]
41;[[1, 1, 3], [1, 3, 4], [2, 2, 2], [3, 4, 4]]
42;[[1, 1, 3], [1, 3, 4], [2, 2, 3], [2, 4, 4]]
43;[[1, 1, 3], [1, 3, 4], [2, 2, 4], [2, 3, 4]]
44;[[1, 1, 3], [1, 4, 4], [2, 2, 2], [3, 3, 4]]
45;[[1, 1, 3], [1, 4, 4], [2, 2, 3], [2, 3, 4]]
46;[[1, 1, 3], [1, 4, 4], [2, 2, 4], [2, 3, 3]]
47;[[1, 1, 4], [1, 2, 2], [2, 3, 3], [3, 4, 4]]
48;[[1, 1, 4], [1, 2, 2], [2, 3, 4], [3, 3, 4]]
49;[[1, 1, 4], [1, 2, 2], [2, 4, 4], [3, 3, 3]]
50;[[1, 1, 4], [1, 2, 3], [2, 2, 3], [3, 4, 4]]
51;[[1, 1, 4], [1, 2, 3], [2, 2, 4], [3, 3, 4]]
52;[[1, 1, 4], [1, 2, 3], [2, 3, 3], [2, 4, 4]]
53;[[1, 1, 4], [1, 2, 3], [2, 3, 4], [2, 3, 4]]
54;[[1, 1, 4], [1, 2, 4], [2, 2, 3], [3, 3, 4]]
55;[[1, 1, 4], [1, 2, 4], [2, 2, 4], [3, 3, 3]]
56;[[1, 1, 4], [1, 2, 4], [2, 3, 3], [2, 3, 4]]
57;[[1, 1, 4], [1, 3, 3], [2, 2, 2], [3, 4, 4]]
58;[[1, 1, 4], [1, 3, 3], [2, 2, 3], [2, 4, 4]]
59;[[1, 1, 4], [1, 3, 3], [2, 2, 4], [2, 3, 4]]
60;[[1, 1, 4], [1, 3, 4], [2, 2, 2], [3, 3, 4]]
61;[[1, 1, 4], [1, 3, 4], [2, 2, 3], [2, 3, 4]]
62;[[1, 1, 4], [1, 3, 4], [2, 2, 4], [2, 3, 3]]
63;[[1, 1, 4], [1, 4, 4], [2, 2, 2], [3, 3, 3]]
64;[[1, 1, 4], [1, 4, 4], [2, 2, 3], [2, 3, 3]]
65;[[1, 2, 2], [1, 2, 3], [1, 3, 3], [4, 4, 4]]
66;[[1, 2, 2], [1, 2, 3], [1, 3, 4], [3, 4, 4]]
67;[[1, 2, 2], [1, 2, 3], [1, 4, 4], [3, 3, 4]]
68;[[1, 2, 2], [1, 2, 4], [1, 3, 3], [3, 4, 4]]
69;[[1, 2, 2], [1, 2, 4], [1, 3, 4], [3, 3, 4]]
70;[[1, 2, 2], [1, 2, 4], [1, 4, 4], [3, 3, 3]]
71;[[1, 2, 2], [1, 3, 3], [1, 3, 4], [2, 4, 4]]
72;[[1, 2, 2], [1, 3, 3], [1, 4, 4], [2, 3, 4]]
73;[[1, 2, 2], [1, 3, 4], [1, 3, 4], [2, 3, 4]]
74;[[1, 2, 2], [1, 3, 4], [1, 4, 4], [2, 3, 3]]
75;[[1, 2, 3], [1, 2, 3], [1, 2, 3], [4, 4, 4]]
76;[[1, 2, 3], [1, 2, 3], [1, 2, 4], [3, 4, 4]]
77;[[1, 2, 3], [1, 2, 3], [1, 3, 4], [2, 4, 4]]
78;[[1, 2, 3], [1, 2, 3], [1, 4, 4], [2, 3, 4]]
79;[[1, 2, 3], [1, 2, 4], [1, 2, 4], [3, 3, 4]]
80;[[1, 2, 3], [1, 2, 4], [1, 3, 3], [2, 4, 4]]
81;[[1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]
82;[[1, 2, 3], [1, 2, 4], [1, 4, 4], [2, 3, 3]]
83;[[1, 2, 3], [1, 3, 3], [1, 4, 4], [2, 2, 4]]
84;[[1, 2, 3], [1, 3, 4], [1, 3, 4], [2, 2, 4]]
85;[[1, 2, 3], [1, 3, 4], [1, 4, 4], [2, 2, 3]]
86;[[1, 2, 4], [1, 2, 4], [1, 2, 4], [3, 3, 3]]
87;[[1, 2, 4], [1, 2, 4], [1, 3, 3], [2, 3, 4]]
88;[[1, 2, 4], [1, 2, 4], [1, 3, 4], [2, 3, 3]]
89;[[1, 2, 4], [1, 3, 3], [1, 3, 4], [2, 2, 4]]
90;[[1, 2, 4], [1, 3, 3], [1, 4, 4], [2, 2, 3]]
91;[[1, 2, 4], [1, 3, 4], [1, 3, 4], [2, 2, 3]]
92;[[1, 3, 3], [1, 3, 4], [1, 4, 4], [2, 2, 2]]
93;[[1, 3, 4], [1, 3, 4], [1, 3, 4], [2, 2, 2]]
ç§ãè¿°ã¹ãå
容ãæ£ããããšã®èšŒææ¹éããæå
ã§ã¯ç«ã¡ãŸããã
ãã ããããèšèã§äŒããããã«èšè¿°ããã®ãéåžžã«é£ããâŠâŠã
> GAIãã
3æãã€ã®å Žåã¯æ°åã®çš®é¡ã®æ°1,2,3,âŠã«å¯ŸããŠ
1, 2, 10, 93, 1417, 32152, 1016489, 42737945, 2307295021,âŠéã
ãšãªãããã®æ°å㯠https://oeis.org/A254243 ã«ãããŸãã
ïŒ4çªç®ã®93ãGAIãããç®åºãããå€ã§ããïŒ
4æãã€ã®å Žåã¯æ°åã®çš®é¡ã®æ°1,2,3,âŠã«å¯ŸããŠ
1, 3, 23, 465, 19834, 1532489, 193746632,âŠéã
ãšãªãããã®æ°å㯠https://oeis.org/A268668 ã«ãããŸãã
ïŒããããæ°åãµã€ãã§ã¯ã0çš®é¡ãããã§ããïŒ
ãã£ãŠA268668ã«ãããå
ã®åé¡ã®å Žåã§ã¯
1276433147589499725385063éã
ã§ããããšãããããŸãããã®ãµã€ãã«æ°åŒãæžãããŠããŸããã®ã§ã
ç°¡åãªèšç®ã§ç®åºããæ¹æ³ã¯èŠã€ãã£ãŠããªããã®ãšæããŸããã
50çš®é¡ã®æ°ããšãã§ããªã倧ããã§ããããšãããããã°ã©ã ã§ããŸã
ç®åºããæ¹æ³ãããã®ã§ããããã
ç§ã®èããèšè¿°ãããšäœãã©ãæžããŠãéåžžã«é·ãæã«ãªã£ãŠããŸããæåãå°å
¥ããäžè¬çãªèšŒæã§ã¯ããããéåžžã«ã€ã¡ãŒãžãã«ããã§ããããã®ã«ãªã£ãŠããŸããŸãã
ãã®ãããäŸç€ºã«ããèãæ¹ã ããæžãã«ãšã©ããŸãã
ããã«ããã¿ãªãããªãããèªèº«ã§äžè¬çãªãã®ã«æžãçŽãã®ã容æã ãšæããŸãã®ã§ã
GAI ããã®äžèŠ§ããé©åœã«
43;[[1, 1, 3], [1, 3, 4], [2, 2, 4], [2, 3, 4]]
ããåãããŠãå®éã«ãã£ãŠã¿ãŸãã
ãããããåçµã®äžã§é çªã䞊ã³æ¿ããŠãä»»æã® i ã«å¯Ÿãåçµã® i çªç®ãå
šãŠç°ãªãæ°ã§ããããã«ãããã®æé ã以äžã«èšè¿°ããŸãã
ãã®ãããã®æäœãã以åŸæŽåãšè¡šçŸããããšã«ããŸãã
ãŸãã2 ã¶æç©Žããã«ãªã£ãŠããç¶æ
ã®è§£æ³ãèšèŒããŸãã
ââââââââ ãããã ââââââââ
ãåé¡ã(step 1)
[[1, 1, 3], [1, 3, 4], [2, 2, 4], [2, 3, 4]] ãæŽåããã
ãŸãã æ倧æ°ã§ãã 4 ãå
¥ã£ãŠããçµã 1 ã€éžã³ãŸãã
ä»åã¯ã2 çªç®ã®çµãéžæãããã®çµã«å«ãŸãã 4 ã«ã¯ç®å°ã« # ãä»ããŠãããŸãã
[[1, 1, 3], [1, 3, 4#], [2, 2, 4], [2, 3, 4]]
éžæããçµä»¥å€ã® 4 ãšéžæããçµã® 4 以å€ã®æ°åã 1 察 1 ã§ä»»æã«å
¥ãæ¿ããŠå¥ã®åé¡ãäœããŸãã
å
¥ãæ¿ããèµ·ãããã®ã¯ç®å°ã« ? ãä»ããŠãããŸãã
ïŒã©ããšã©ããå
¥ãæ¿ããããããããã«ã? ã®åæ°ã§åºå¥ããŸãïŒ
[[1, 1, 3], [4?, 4??, 4#], [2, 2, 1?], [2, 3, 3??]]
ããããã# ä»ãã®æ°ãå«ãçµãåé€ãã? ã®ç®å°ãæ¶ãããã®ããåé¡åã« X ãä»å ããæ°ããåé¡ãšããŠå®çŸ©ããŸãã
以äžãäžæŠæ°ããåé¡ã解ãéçšã«å
¥ããŸãã
ãåé¡Xã
[[1, 1, 3], [2, 2, 1], [2, 3, 3]] ãæŽåããã
ïŒããã®è§£æ³ã¯ç©Žãããä»åã¯å¶ç¶èŠã€ãã解ãçšããŠç¶ããèšè¿°ããŸãïŒ
[[1, 1, 3], [2, 2, 1], [3, 3, 2]] ãšæŽåã§ããŸããã
解ã®äžäŸãåŸãããã®ã§ãåé¡åã®æ«å°Ÿã® X ãåãé€ããåé¡ã® step 2 ã«é²ã¿ãŸãã
ãåé¡ã(step 2)
[[1, 1, 3], [1, 3, 4], [2, 2, 4], [2, 3, 4]] ãæŽåããã
step 1 ã§ã
[[1, 1, 3], [4?, 4??, 4#], [2, 2, 1?], [2, 3, 3??]]
ãšããå¥ã®åé¡ãäœã£ãç¶æ
ã«ãªã£ãŠããŸããã
ããã«å¯Ÿããæ¡ä»¶ä»ãæŽåãå®è¡ããŸãã
ããªãã¡ãããã i ã«ã€ããŠãi çªç®ã«ã¯ ? ä»ãã®æ°ãååšããªãããæç«ããŠãããããªæŽåãè¡ããŸãã
ãŸãã# ä»ãã®æ°ãå«ãçµä»¥å€ãæ®éã«æŽåããŸãã
ããã¯ãåé¡åã« X ãä»å ããæ°ããåé¡ã®è§£ãäžžããšåçŸããããšã§å¯èœã§ãã
[[1, 1, 3], [4?, 4??, 4#], [2, 2, 1?], [3, 3??, 2]]
ãã®ãšãã# ä»ãã®æ°ãå«ãçµããèŠãªããã°ãããã i ã«ã€ããŠãi çªç®ã«ã¯ ? ã€ãã®æ°ãååšããªãããå¿
ãæç«ããŠããŸãã
ãªããªããå
¥ãæ¿ããè¡ãªã£ããã¢ã®æ°ã¯ãåçµã®æ°åã®åæ°ãããå¿
ãå°ããããã§ãã
ä»å㯠i = 1 ãããã«è©²åœããŠããŸãã
ãã®åŸã# ä»ãã®æ°ãå«ãçµããi = 1 çªç®ã« # ä»ãã®æ°ãæ¥ãããã«é çªãå
¥ãæ¿ããŸãã
[[1, 1, 3], [4#, 4?, 4??], [2, 2, 1?], [3, 3??, 2]]
ããã§ãi = 1 çªç®ã« ? ã€ãã®æ°ããªãæŽåãã§ããŸããã
ãã®ç¶æ
ã§å
¥ãæ¿ããæ»ããšãå
ã®åé¡ã®ããšãããã i = 1 çªç®ã«ã¯å
šãŠç°ãªãæ°ããããç¶æ
ã«ãªããŸããã
[[1, 1, 3], [4#, 1, 3], [2, 2, 4], [3, 4, 2]]
ãããããå
šãŠã®çµã® i = 1 çªç®ã®æ°ãåé€ãããã®ããåé¡åã« Y ãä»å ããæ°ããåé¡ãšå®çŸ©ããŸãã
以äžãäžæŠæ°ããåé¡ã解ãéçšã«å
¥ããŸãã
ãåé¡Yã
[[1, 3], [1, 3], [2, 4], [4, 2]] ãæŽåããã
ïŒããã®è§£æ³ã¯ç©Žãããä»åã¯å¶ç¶èŠã€ãã解ãçšããŠç¶ããèšè¿°ããŸãïŒ
[[1, 3], [3, 1], [2, 4], [4, 2]] ãšæŽåã§ããŸããã
解ã®äžäŸãåŸãããã®ã§ãåé¡åã®æ«å°Ÿã® Y ãåãé€ããåé¡ã® step 3 ã«é²ã¿ãŸãã
ãåé¡ã(step 3)
[[1, 1, 3], [1, 3, 4], [2, 2, 4], [2, 3, 4]] ãæŽåããã
step 2 ã§ã
[[1, 1, 3], [4#, 1, 3], [2, 2, 4], [3, 4, 2]]
ãšããšãããã i = 1 çªç®ã«ã¯å
šãŠç°ãªãæ°ããããç¶æ
ã«ãªã£ãŠããŸããã
ãããŠãi = 1 çªç®ä»¥å€ã®éšåã¯ãåé¡åã« Y ãä»å ããæ°ããåé¡ã®è§£ãå©çšããŠæŽåã§ããŸãã
[[1, 1, 3], [4#, 3, 1], [2, 2, 4], [3, 4, 2]]
æåŸã« # ã®ç®å°ãæ¶ãã°ã解ã®äžäŸãåŸãããŸãã
[[1, 1, 3], [4, 3, 1], [2, 2, 4], [3, 4, 2]]
ââââââââ ãããŸã§ ââââââââ
ããŠããã¡ããããã§ã¯è§£å
šäœã¯å®æããŠããŸããã
éäžã®ãåé¡Xããšãåé¡Yãã®å
·äœçãªè§£ãæ¹ã空çœã®ãŸãŸã§ããããã
ãããããåé¡Xãã¯å®ã¯æ倧ã®æ°ãããšãã 1 å°ãããªã£ãæŽååé¡ãªã®ã§ããåé¡XXããšãåé¡XYãéšåãç©Žããã®åæ§ã®è§£æ³ãçšããããšãã§ããŸãã
ãåé¡Yããåãæ°ã®åæ°ãããšãã 1 å°ãããªã£ãæŽååé¡ãªã®ã§ããåé¡YXããšãåé¡YYãéšåãç©Žããã®åæ§ã®è§£æ³ãçšããããšãã§ããŸãã
ããã«ãåé¡XXãã¯ãåé¡XXXããšãåé¡XXYãéšåãç©Žããã®åæ§ã®è§£æ³ãçšããããšãã§ããŠâŠâŠ
ãšããã®è§£æ³ã¯ååž°çã«çšããããšãå¯èœã§ãã
ãããã©ãã©ãç¹°ãè¿ããŠãããšããã®ãã¡ç©Žããéšåãèªæã«è§£ããåé¡ã«è¡ãåœãããŸãã
ããªãã¡ã
ã»åé¡åã« X ã 3 åå«ãŸããåé¡ã¯ã1 ã ãã§ã§ãã 1 çµãããªãåé¡ããªã®ã§ãèªæã«æŽåã§ããŠãã
ã»åé¡åã« Y ã 2 åå«ãŸããåé¡ã¯ãåæ°å 1 æãã€ãåçµ 1 æãã€ã«ãããŠããåé¡ããªã®ã§ãèªæã«æŽåã§ããŠãã
ã® 2 çš®ã¯ãç©Žããéšåã¯èªæã«åãŸããŸãã
ãã£ãŠãæåã®ãåé¡ãã¯
ãåé¡ãstep 1
ããåé¡Xãstep 1
ãããåé¡XXãstep 1
ããããåé¡XXXãïŒèªæïŒ
ãããåé¡XXãstep 2
ããããåé¡XXYãstep 1
ãããããåé¡XXYXãïŒèªæïŒ
ããããåé¡XXYãstep 2
ãããããåé¡XXYYãïŒèªæïŒ
ããããåé¡XXYãstep 3
ãããåé¡XXãstep 3
ããåé¡Xãstep 2
ãããåé¡XYãstep 1
ããããåé¡XYXãstep 1
ãããããåé¡XYXXãïŒèªæïŒ
ããããåé¡XYXãstep 2
ãããããåé¡XYXYãïŒèªæïŒ
ããããåé¡XYXãstep 3
ãããåé¡XYãstep 2
ããããåé¡XYYãïŒèªæïŒ
ãããåé¡XYãstep 3
ããåé¡Xãstep 3
ãåé¡ãstep 2
ããåé¡Yãstep 1
ãããåé¡YXãstep 1
ããããåé¡YXXãstep 1
ãããããåé¡YXXXãïŒèªæïŒ
ããããåé¡YXXãstep 2
ãããããåé¡YXXYãïŒèªæïŒ
ããããåé¡YXXãstep 3
ãããåé¡YXãstep 2
ããããåé¡YXYãïŒèªæïŒ
ãããåé¡YXãstep 3
ããåé¡Yãstep 2
ãããåé¡YYãïŒèªæïŒ
ããåé¡Yãstep 3
ãåé¡ãstep 3
ãšããèªæãªåé¡ 10 åãšéèªæãªåé¡ 9 åãããªã 37 step ãèžãããšã§ç©Žããã®ãªãå®å
šãªè§£çã«ãªããŸãã
13 ãŸã§ã®æ°ã 4 åãã€ã®å Žåã¯ãèªæãªåé¡ 455 åãšéèªæãªåé¡ 454 åã® 1817 step å¿
èŠã«ãªãããã§ãã
ãã©ã³ãå®ç©ã 15 çµãããçšæããŠæäœæ¥ã§ããå ŽåãX ã 12 å䞊ã¶ãŸã§åŸ
ããªããŠã 10 åããã䞊ãã§ãåé¡ã¯æ°åãã§ã©ãã«ãããŠççž®ã§ãããã§ãã
ããã§ãæ°çŸ step ã¯å¿
èŠã«ãªãã§ãããããæ ¹æ°ããšãã§ããªãå¿
èŠã«ãªãã§ããããã
[1774] ã§ç§ãæåºããåé¡ã«ã€ããŠã§ãã以å€ã§ã¯äŸ¿å®ã®ãããã®åé¡ãããã³ã¬ã³ããšåŒç§°ããŸãã
ãã³ã¬ã³ã«ãããŠåæé
眮ãäžãããã«ãŒãã«ã€ããŠã®æäžã®äº€æã«ãŒã«ã«åŸã亀æãç¹°ãè¿ããŽãŒã«é
眮ã«èŸ¿ãçãããã®ãšããŸãã
ãŽãŒã«é
眮ã«ãããŠã¯13ããååã«ã¯å¿
ãã¹ããŒããïŒæã¥ã€ãããŸãããã®ã¹ããŒãã®ã«ãŒããã¡ã¯åœç¶ãªããïŒãã10,J,Q,KãŸã§ãïŒæã¥ã€å«ã¿ãŸãã
ãã®ã¹ããŒãã®ã«ãŒãã®é
眮äœçœ®ã«ããŒã¯ãã€ããŠãããŠã52æã®ã«ãŒãã®é
眮ãåã³åæé
眮ã«æ»ããŸãã
ããã»ã©ããŒã¯ãã€ããŠããã13æåã®ã«ãŒãã®é
眮äœçœ®(ããªãã¡ãŽãŒã«ã«ãããŠã¯ã¹ããŒãã«ãŒãã®ã¿ã眮ãããäœçœ®)ã«ã€ããŠèããŸããšãåæé
眮ã§ã¯ã¹ãŒãããŠããŒã¯ã«ã¯ãªã£ãŠããããã©ãã©ã§ã¯ãããŸããããããªãããã®13æåã®ã«ãŒãã®äœçœ®ã«ããã«ãŒããã¡ã¯ïŒãã10,J,Q,KãŸã§ãïŒæã¥ã€å«ã¿ãŸããæäžã®ã«ãŒãã®äº€æã«ãŒã«ãéã¿ãã°ããã¯åœç¶ã®ããšã§ããããã13æããã¹ãã¬ãŒãããšåŒã¶ããšãšããŸãã
以äžã¯ã¹ããŒãã®ã¿ã«ã€ããŠèããŸããããŽãŒã«é
眮ã«ãããããŒãããã€ã€ãã¯ããŒããŒã®3ã€ã®ã¹ãŒãã«ã€ããŠãåæã«åæ§ãªããšãèšããŸããããªãã¡ãã¹ããŒãã®ä»ã«ããŒãããã€ã€ãã¯ããŒããŒã®ã¹ãã¬ãŒããåŸãããããã§ãã
ããŠãããã§å€æãã4ã€ããã¹ãã¬ãŒãã¯ã
GAIããã®åé¡ã®è§£ã«ãªã£ãŠããããšã«ãªããŸããããªãã¡ãååããåãã¹ãã¬ãŒãã®ã¡ã³ããŒã®ã«ãŒããæŸãäžããŠããã°ããã®ã§ãã
åæé
眮ã«ãããã«ãã³ã¬ã³ã®åé¡ã«åžžã«è§£ãååšããã°ãGAIããã®åé¡ã«ãåžžã«è§£ãååšããããšãšãªããŸãã
äžæ¥èããŸãããããã³ã¬ã³ã®åé¡ã«ã€ããŠã¯åããšã«ã°ãªãŒãã£ãŒã«4ã¹ãŒããããããŠããããšãè¡ããããç¹°ãè¿ãã°ããããã¯ããŸãããããããšããææ³ãåŸãããã®ã¿ã§ããã蚌æã«ã¯ããããŸããã
ïŒãã©ã³ã52æãååã«ã·ã£ããã«ããåŸ4æãã€13çµã«åããã
ïŒåçµãã1æã ããããã©ã³ããæãåºããŠ13æã®ãã©ã³ãã§
ïŒ1ãã13ãŸã§ã®æ°å(ããŒã¯ã¯ç¡èŠ)ãæããããã®ãïŒ
å¿
ã1ãã13ãŸã§ã®æ°åãæããããšãå¯èœã§ãã
ããã¯ã°ã©ãçè«ã®ãããŒã«ã®å®çãããããããŸãã
4æãã€13çµã«åãããã®ãã
S_1, S_2, S_3, ... , S_13
ãšãããšãïŒä»»æã® A (Aâ{1,2, ... ,13}) ã«å¯ŸããŠïŒåžžã«ïŒ
|âª[jâA] S_j| ⧠|A|
ãæãç«ã£ãŠããŸãã
ãã£ãŠã{1,2, ... ,13} ãã {S_1,S_2,S_3, ... ,S_13} ãžã®
å®å
šãããã³ã°ãååšããŸãã
https://ja.wikipedia.org/wiki/%E3%83%9B%E3%83%BC%E3%83%AB%E3%81%AE%E5%AE%9A%E7%90%86
ç§ãåœå{1,1,1,2,2,2,3,3,3,4,4,4}
ã®12æã®ã«ãŒããã·ã£ããã«ã3æãã€ã®4çµã«é
åžãããšã
ãã®ç°ãªãé
åžã®çµåãã93ãã¿ãŒã³ã«ãªãããšãèŠã€ãã
ã®ã«çŽ12æéããããŠããããšãã次ã®ãããªèå¯ã§åãçµæã
ã»ãã®æ°ç§ã§æ±ãŸãããšãã§ããŸããã
ç°ãªã4åã®çŽ æ°(2,3,5,7)ãå
šãŠæããå€ã®3ä¹ã®å€
(2*3*5*7)^3=9261000
ã§ã®ãã¹ãŠã®çŽæ°ã®äžã§ã3åã®çŽ æ°ã§æ§æãããŠããçŽæ°(bigomega(çŽæ°)==3ã®ã¿ã€ã)
ã ããéã(å
šéšã§20åããã)ããã®éåã§éè€ãèš±ã4åãåãåºããæ(å
šéšã§20H3=22C3=1540éã)
ã®äžãããã®åãåºã4åã®ç©ããã¿ãª9261000ãšäžèŽã§ãããã®ãäœåããã®ã調æ»ããã
ãã®ãã§ãã¯ã«åæ Œã§ããæ°ãæ±ããå€ãšäžèŽã§ãããšããã
gp > S=select(x->bigomega(x)==3,divisors((2*3*5*7)^3));â
gp > S
%21 = [8, 12, 18, 20, 27, 28, 30, 42, 45, 50, 63, 70,
ããã75, 98, 105, 125, 147, 175, 245, 343]
gp > #S
%22 = 20
gp > {M=[];}forvec(X=[[1,#S],[1,#S],[1,#S],[1,#S]],\
M=concat(M,[vecextract(S,X)]),1);â¡
gp > #select(i->vecprod(i)==(2*3*5*7)^3,M)â¢
%24 = 93
äžã®å®è³ªâ ,â¡,â¢ãçµåãããã°æžãã
ïŒç§ãåœå{1,1,1,2,2,2,3,3,3,4,4,4}
ïŒã®12æã®ã«ãŒããã·ã£ããã«ã3æãã€ã®4çµã«é
åžãããšã
ïŒãã®ç°ãªãé
åžã®çµåãã93ãã¿ãŒã³ã«ãªãããšãèŠã€ãã
ïŒã®ã«ïŒïŒïŒ
20åã® x ã®åé
åŒ
x^111,x^1011,x^1101,x^1110,
x^21,x^12,x^201,x^102,x^210,x^120,x^2001,x^1002,
x^2010,x^1020,x^2100,x^1200,
x^3,x^30,x^300,x^3000
ã®äžãããéè€ãèš±ããŠ4åãããããã®ç©ã x^3333
ãšãªãããã«éžã³åºããããªå Žåã®æ°ãæ°ãäžããŠã
ããã§ããã
ãã®èšç®ã Risa/Asir ã§å®è¡ããçµæã以äžã§ãã
[0] F=(1+x^10111+x^20222+x^30333)*(1+x^11011+x^22022+x^33033)*(1+x^11101+x^22202+x^33303)*(1+x^11110+x^22220+x^33330)*(1+x^10021)*(1+x^10012)*(1+x^10201)*(1+x^10102)*(1+x^10210)*(1+x^10120)*(1+x^12001)*(1+x^11002)*(1+x^12010)*(1+x^11020)*(1+x^12100)*(1+x^11200)*(1+x^10003)*(1+x^10030)*(1+x^10300)*(1+x^13000)$coef(F,43333,x);
[1] 93
ããªã匷åŒãªå€é
åŒã®å±éã§ãããäžç¬ã§çµæã衚瀺ããŠãããŸããã
äŸã®ããæ¹ã§éåžžã®ãã©ã³ãã®æ°åã ãã«çç®ãã
{1,1,1,1,2,2,2,2,,13,13,13,13}
ã®éåã§4æãã€13çµã«åé
ããæã®ç°ãªãæ°åã®çµã®åæ°ãæ±ããããšã«
å¿çšããããšè©Šã¿ãŠãããã§ãã
åççã«ã¯13åã®ç°ãªãçŽ æ°ã®ç©(2*3*5*11*13*17*19*23*29*31*37*41)^4
ãæã€bigomega==4ã®ãã¹ãŠã®çŽæ°ãåãåºãããã®éåã§ã®éè€ãèš±ããŠ
13ååãåºããã®ã®ç©ãäžèšã®çŽ æ°ã®ç©ãæºããå Žåã®ç·æ°ã調ã¹ãã°ããããšã«ãªãã
äœããã¹ãŠã®çŽæ°ã䞊ã¹ãããšãããšå€§å€ãªã®ã§,éã«bigomega==4ã«ãªããã®ãäœãããšã
ããã°
gp > P=primes(13);
%136 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41]
gp > M1=apply(i->i^4,P)
gp > #M1=13 (pi^4å)
gp > M2={M2=[];}for(i=1,13,for(j=1,13,if(i!=j,M2=concat(M2,[P[i]^3*P[j]]))));M2
gp > #M2
%86 = 156(pi^3*pjå);13*12=156)
gp > M3={M3=[];}for(i=1,13,for(j=1,13,if(i!=j,M3=concat(M3,[P[i]^2*P[j]^2]))));M3=Set(M3)
gp > #M3
%91 = 78 (pi^2*pj^2å;binomial(13,2)=78)
gp > M4={M4=[];}forsubset([13,4],i,M4=concat(M4,[vecprod(vecextract(P,i))]));M4
gp > #M4
%139 = 715 (pi*pj*pk*plå;binomial(13,4)=715)
gp > M5={M5=[];}for(i=1,13,for(j=1,13,for(k=1,13,if(i!=j && j>k && k!=i,\
M5=concat(M5,[P[i]^2*P[j]*P[k]]))))) ;M5=Set(M5)
gp > #M5
%141 = 858 (pi^2*pj*pkå;13*binomial(12,2)=13*66=858)
ã®5ã¿ã€ãã«åããããããåäœããŠ
MïŒM1âªM2âªM3âªM4âªM5
#M=1820
åŸã£ãŠãã®1820åãããéåããéè€ãèš±ããŠ13ååãåºãããã§ããã
1820H13=1832C13=4,0291,9125,1047,1060,9784,1375,0687,2800
4æŸ291æº9125ç©°1047ãã1060å9784京1375å687äž2å8çŸ
ãšããç©åãå Žåãããããã®äžã§æ¡ä»¶ãæºããããã®ãA268668ã§ã¯
1,2764,3314,7589,4997,2538,5063
ãšããããã§ããããçŽ2æ¶5åäžã®èª¿æ»ã§1åèŠã€ãããã©ãããããã«ãããããããªãã
ããã§ã¯ãããæéããããŠãç·æ°ãæŽãããšã¯äžå¯èœã«æããã
æ¢ãäœçœ®ãçµã£ãŠãã£ãšæ¬¡ã®3ã€ã¯çºèŠã§ããŸããã
1;[16, 81, 625, 2401, 14641, 28561, 83521, 130321, 279841, 707281, 923521, 1874161, 2825761]
2;[16, 81, 625, 2401, 14641, 28561, 83521, 130321, 279841, 707281, 923521, 2076773, 2550077]
3;[16, 81, 625, 2401, 14641, 28561, 83521, 130321, 279841, 707281, 923521, 2301289, 2301289]
atããã®æ¹æ³ã¯ãŸã ç解ããŠããŸããããããããã«ææŠãããã©ããªããã®ã§ããããïŒ
Hallã®å®çã«ã¯è§£ã®ååšå®çã®ãããªå°è±¡ãåããŸããããã®ãŸãŸã§ããšæ°ãäžãã¯é£ãããããªïŒ