èªç¶æ°nã®åå²ã§äŸãã°n=6ãªã
n=6
=5+1
=4+2
=4+1+1
=3+3
=3+2+1
=3+1+1+1
=2+2+2
=2+2+1+1
=2+1+1+1+1
=1+1+1+1+1+1
ãš11éããèããããã
ããã§ããã«æ¡ä»¶ãå ããŠåãæ§æããæ°ã
âåããã®ãå«ãŸããé£ãåãæ°ãå«ãŸãªãââ
ãã®ã«éå®ããããš
n=6
=5+1
=4+2
ã®3éãã§ããã
åããn=8ãªã
n=8
=7+1
=6+2
=5+3
ã®4éããšãªãã
ãŸãn=12ã§ã¯
n=12
=11+1
=10+2
=9+3
=8+4
=7+5
=8+3+1
=7+4+1
=6+4+2
ã®9éãããã
äžèŠå
šãç¡é¢ä¿ã«èŠããæ¡ä»¶ãä»åºŠã¯
âäœåºŠãåãæ°ãç¹°ãè¿ããŠãããã䜿ããæ°ãmod 5ã§ã¯1ã4ã§ãããã®ã§ããããšââ¡
ãžå€æŽãããš
n=6
=4+1+1
=1+1+1+1
ã®3éã
n=8(ããã¯ã«ãŠã³ãã«ã¯å
¥ããªããªãã)
=4+4
=6+1+1
=4+1+1+1+1
=1+1+1+1+1+1+1+1
ã®4éã
n=12(ãããã«ãŠã³ãã«ã¯å
¥ããªãã)
=11+1
=6+6
=4+4+4
=9+1+1+1
=6+4+1+1
=4+4+1+1+1+1
=6+1+1+1+1+1+1
=4+1+1+1+1+1+1+1+1
=1+1+1+1+1+1+1+1+1+1+1+1
ã®9éã
ãã£ã3ã€ã®äŸã ãã§ãããŸããŸåãå¯èœæ§ãçºçããããã«æããããŸãã
ä»ã®ã©ã®æ§ãªèªç¶æ°nã«é¢ããŠãâ ãšâ¡ã®æ¡ä»¶ã¯æ·±ãé¢ä¿æ§ãæœãã§ããŠïŒäžèŠå
šãé¢ä¿ã¯ç¡ãããã«èŠããã)
ããã°ã©ã ã§ç¢ºèªããéãåããã¿ãŒã³æ°ã ãçºçããŠããŸãã
ãã®é¢ä¿ã
ããžã£ãŒãº=ã©ãããžã£ã³æçåŒã®ç¬¬äžåŒ
ãšåŒã°ããåŒãšããŠäžã«ç¥ãããããšããã
æ°åŠã«è©³ããæ¹ã¯æ¢ã«ãåç¥ã®æ¹ãå€ããšã¯æããŸãããããŸããŸèŠãããåŒã§ç¢ºèªããŠã¿ããš
è¯ãããããªé¢ä¿åŒãèŠã€ãåºã芳å¯çŒãæãŠããã®ã ãšæåãããã®ã§ããã
èå³ãæ¹§ããæ¹ã¯ç¬¬äºåŒãååšããŠããããã§ãã®ã§ã確ãããã ããã
åããŸããŠãinazumaãšç³ããŸã
è¶£å³ã§çŽ å æ°åè§£æ³ãèãæ¥œããã§ããæ°åŠã®çŽ äººã§ãã
ãã®äžã§ãããæ°Pãäžèšâ ã®æ§è³ªãæã€ãšã
Pã®ã¿ããaãšbãæ±ããæ¹æ³ãæãä»ããŸããã
â PïŒa^2+b^2
â»ãã ãaã¯3以äžã®å¥æ°ãbã¯(2Ã(aã®æ¡æ°)ïŒ1)æ¡ä»¥äžã®å¶æ°
ãäŸãã°aã10æ¡ãªãbã¯21æ¡ä»¥äž
èªåã§èšç®ããŠããåã«ã¯ããŸãç®åºåºæ¥ãŠããã®ã§ãã
ïŒäººã§èããŠããçºããªã«ãåéãããããããããäžå®ããããŸãã
ã€ããŸããŠã¯ãã©ãªãã詊ãã«åé¡ãåºããŠé ããŸããã§ãããã
ããŸãããã°ç¿æ¥ãŸã§ã«ã¯è§£çåºæ¥ããšæããŸã
(èªå®
ã®å®ãããŒãPCã§èšç®ããŠããçºãè§£çåºæ¥ãªãã£ãããŽã¡ã³ããµã€)
Pã¯ãšãããã1000æ¡ä»¥äžã§ãã©ããå®ãããé¡ãããããŸãã
äŸ
äžèšã®Pãäºå¹³æ¹åã§è¡šãïŒâ ã®æ§è³ªãæã€ãã®ãšããïŒ
P=
79300000037195311469172088857218716366006504413694
67498094008133486079015170644844470927388048966664
71364084114224459809838073427764684299991893020117
87456020152022982982334498187590674933322035197451
04138548852323106359705380406209799321075786700748
97251075824794270095130531665785303520499625246843
70719102407952977609918264565309676875315113912408
70267500957407099187560193071952151611248261841935
69337549765652585924269731770243974032307256739067
91188751144938670681822892207721337339864143140179
90528196878053630706148037821924972860860994861603
49098958042925035090429124946155124465500090226636
49467540005250471043364183315967627035324264859599
67141415803012592347134057555165265478404500762265
44199380968805924457560332031071504504197590397342
71810321003237239447831652868964102212153370316814
06796846409047670450150851793080134210157112772689
58519839847317362637053099816619843793064691538365
63139531004179897193286960125022553379570957235139
114494973770246343671593770077506746282454373742765
è§£ç
P=a^2ïŒb^2ãšããŠ
a=971850087035976191464617231403297972574042219987
37604269099307011774498957130732413787709812587433
59436158490894589690601193310837963651081208892631
60509147749602073918962661325153912810181096212403
04342638679979807519201662423980308668745308379247
49
b=281602556872616679494401001682286851751858783815
69338551112252743400193260172387120135518294422427
78838310590521946063454706138104382199264928161756
74092487130258413580634521135685378302594171044661
48079337014481304132621133013307367835289583866914
10360524815089534203712403396836912245502098199475
20868911981852164328164894139907121661474629654027
63051608555640043109432063403957953650490954108565
20533856524433967448235687012774426104809360200738
20583425159772741360209507101982427257315634250395
458
Dengan kesaktian Indukmuãã
ãè¿ä¿¡ããããšãããããŸãã
>P ã 4 ã§å²ã£ããšãã®äœãã 3 ã®ãšãã¯å€§äžå€«ã§ããïŒ
PãïŒã§å²ã£ãäœããïŒã§ãªããšãä»ã®ãšããèšç®åºæ¥ãŸããã
ãã£ãã¿ãŸããã
åéãããŠèªæãªè³ªåãããŠããŸã£ãŠããããåé€ãããšãããªã®ã§ããã
ãè©«ã³ããããŸãã
Dengan kesaktian Indukmuãã
äºè§£ããããŸãã
ãŸããã質åçããã°ãåŸ
ã¡ããŠãããŸãã^v^
ã詊ãã§ããã
æ¡ä»¶ãâ»ãã ãaã¯3以äžã®å¥æ°ãbã¯(2Ã(aã®æ¡æ°)ïŒ1)æ¡ä»¥äžã®å¶æ°ãã§ã®ãæ¡æ°ã®çžãã«ã€ããŠã¯ç¢ºãããŠãããŸããããã©ãã奿°^2 +å¶æ°^2 ã§ããããšãå人çã«ã¯ç¢ºãããæ°æã¡ã«ãªã£ãŠãã以äžã®Pããé¡ãããŸããäžèšã®Pã«ã€ããŠã¯çŽ å æ°åè§£ã®çµæãç¥ã£ãŠãããŸãã
P = 10^110 +1
æ¡æ°ã®ãªãŒããŒãçããŠãã¿ãŸããã
Dengan kesaktian Indukmuãã
>P = 10^110 +1
P=(10^55)^2+1^2
= 89 Ã 101 Ã 661 Ã 3541 Ã 18041 Ã 27961 Ã 148721 Ã 1052788969 Ã 1056689261 Ã 1121407321 Ã 1395900370 916327245555441901 Ã 36380545029953205956377406702261
ã§ãããïŒçŽ å æ°åè§£ã¯ä»åã§è¡ããŸããwïŒ
aãnæ¡ãbã2n+1æ¡ä»¥äžãªãã°
10^(n-1)âŠaïŒ10^n, bâ§10^(2n)
ãšãªã
(b+1)^2-(b^2+a^2)=2b+1-a^2ïŒ2ã»10^(2n)+1-10^(2n)=10^(2n)+1ïŒ0
ãã
(b+1)^2ïŒa^2+b^2ïŒb^2
ãªã®ã§
b=[âP]ãïŒ[ã]ã¯ã¬ãŠã¹èšå·ïŒ
ã§bãæ±ãŸããŸããã
äžèšã¯a,bã®å¶å¥ãšé¢ä¿ãããŸããã®ã§ã
ãbã(2Ã(aã®æ¡æ°)+1)æ¡ä»¥äžããšããæ¡ä»¶ããããã°ã
a,bã®å¶å¥ã«ãããããæ±ãããããšæããŸãã
ãããããã
ãè¿ä¿¡ããããšãããããŸã
ããããã§ãïŒ
ïŒæµç³ããããããã®ç¥wïŒ
ç§ã®å Žåaããæ±ããæ¹æ³ã詊ããŠããã®ã§
ãææã«ã¯ç®ããé±ã§ã
ããããšãããããŸãã
[2114] ã§ç§ãäŸæ ããã®ã¯ä»¥äžã®å®çãªã®ã§ããã
åææ°ãé«ã
äºåã®å¹³æ¹æ°ã®åã§è¡šãããããã®å¿
èŠå忡件ã¯ã4ãæ³ãšããŠ3ã«ååãªçŽ å æ°ãå
šãŠå¹³æ¹ïŒåªææ°ãå¶æ°ïŒã«ãªã£ãŠããããšã§ããã
çŽ å æ°åè§£ããŠäžã確èªã§ãã倧ããªæ°ãæ¢ããã®ã§ãã
ãããããèªæãªãã®ã«ãªã£ãŠããŸã£ãŠããŸãããç³ãèš³ãªãããšã§ãã
Dengan kesaktian Indukmuãã
äºè§£ããããŸããã
ããããããã®æ¹æ³ãå¿çšããŠ
æ¡æ°å·®ãæžããäºã¯å¯èœã§ãããã
äŸãã°
ãbã(2Ã(aã®æ¡æ°))æ¡ä»¥äžã
ãbã(2Ã(aã®æ¡æ°)-1)æ¡ä»¥äžã
ça,bã®æ¡æ°å·®ãæžããäºã¯å¯èœã§ããããã
ãªãå鲿°ã§æ¡æ°ãïŒ
ãšåèŠã§æããŸããã
ç§ãæåŸ
ããŠããŸãã
äžã«æžããæ¹æ³ã¯èŠã¯(b+1)^2-(b^2+a^2)=2b+1-a^2ïŒ0ã§ããã°è¯ãã®ã§
a^2ïŒ2b+1ããªãã¡a^2âŠ2bã§ããã°b=[âP]ãæãç«ã¡ãŸãã
bã2næ¡ã§ãè¯ãããã«ããããã«ã¯ãäŸãã°b+1ãb+5ã«å€ãããš
(b+5)^2-(b^2+a^2)=10b+25-a^2ïŒ0ããªãã¡a^2ïŒ10b+25
âbïŒâPïŒb+5ããªãã¡[âP]-5ïŒbâŠ[âP]
ã€ãŸãbã¯[âP],[âP]-1,[âP]-2,[âP]-3,[âP]-4ã®ã©ãããªã®ã§
ãã®5åã§èšç®ããŠã¿ãã°bã2næ¡ã®å Žåã察å¿ã§ããããã«ãªããŸãã
åæ§ã«[âP]ïœ[âP]-49ã®50åã§èšç®ããã°bã2n-1æ¡ã§ãOKã
[âP]ïœ[âP]-499ã®500åã§èšç®ããã°bã2n-2æ¡ã§ãOKã®ããã«ãªããŸããã
巚倧æ°ã§bã(宿°)æ¡çž®ãããšããã§ããŸãæå³ã¯ãªããããªæ°ãããŸãã
ãããããã
詳ãã解説æé£ãããããŸã
ãã¯ãé£ããäºãå確èªããããŸãã
èªåãªãã«ãŸãèããŠã¿ãããšæããŸã
ããããšãããããŸããã
Aæ°ã¯æ¯æ¥ä»äºçµããã«é
å Žã«ç«ã¡å¯ã
ããŒã«ã®éæX,Y,Z,Wã®äœããäžã€ãéžãã§é£²ãããšã«æ±ºããŠããã
åéæã®ä»£éã¯100,200,300,400(å)ã§ãããšããã
Aæ°ã®ãå°é£ãã¯1500(å)ãšãããšã
ãå°é£ãã䜿ãåã£ããšããå°ãªããšãå
šéšã®éæã飲ã¿çµããããã«ã¯
Aæ°ã®ãéã®äœ¿ãæ¹ã¯äœéãèãããããïŒ(æ¥ã«ãã£ãŠæ¯æãéé¡ãç°ãªãã°éãæ¹æ³ãšã«ãŠã³ãããŠäžããã)
2544éãã§ããïŒ
æ£è§£ã§ãã
X,Y,Z,Wã®éæã1åãã€é£²ããš100+200+300+400=1000åã§ãæ®ãã®500åãåé
ããæ¹æ³ã¯ã
XW,YZ,XXZ,XYY,XXXY,XXXXXã®6ã€ã®å Žåãããã
XYZWãšXWã®å Žåã6!/(2!*1!*1!*2!)=180éã
XYZWãšYZã®å Žåã6!/(1!*2!*2!*1!)=180éã
XYZWãšXXZã®å Žåã7!/(3!*1!*2!*1!)=420éã
XYZWãšXYYã®å Žåã7!/(2!*3!*1!*1!)=420éã
XYZWãšXXXYã®å Žåã8!/(4!*2!*1!*1!)=840éã
XYZWãšXXXXXã®å Žåã9!/(6!*1!*1!*1!)=504éã
ãããåèš180+180+420+420+840+504=2544éã
ãããäžè¬åããŠ
n(å)ã®è³éããã£ãŠ
æ¯æ¥å䟡ã1,2,3,,k (å) ãã ãk<n
ã®åããŒã«ã®éæãã©ããäžã€ãã€æ¯æ¥é£²ãã§ãã
è³éã䜿ãæããããšããå°ãªããšãå
šéæã®ããŒã«ã¯é£²ãã ããšãèµ·ãã
ãéã®äœ¿ãæ¹ã®æ¹æ³ã¯ç·èšã©ãã ãïŒ
ãããæç€ºåŒã§ç€ºãããïŒ
ãŸãã¯ãããèªã¿åããæ¯é¢æ°ã¯äœããã®ãïŒ
ã¡ãªã¿ã«
k=2ã®ãšã
gf=1+1/(1-x-x^2)-1/(1-x)-1/(1-x^2)
k=3ã®ãšã
gf= x^6/(1-x-x^2-x^3)*(1/((1-x)*(1-x-x^2))+1/((1-x^2)*(1-x-x^2))+1/((1-x)*(1-x-x^3))+1/((1-x^3)*(1-x-x^3))+1/((1-x^2)*(1-x^2-x^3))+1/((1-x^3)*(1-x^2-x^3)))
k=4ã®ãšãã®æ¯é¢æ°ã¯åŠäœã«ïŒ
ã©ãªãããã³ãã
>n(å)ã®è³éããã£ãŠ
>æ¯æ¥å䟡ã1,2,3,,k (å) ãã ãk<n
>ã®åããŒã«ã®éæãã©ããäžã€ãã€æ¯æ¥é£²ãã§ãã
>è³éã䜿ãæããããšããå°ãªããšãå
šéæã®ããŒã«ã¯é£²ãã ããšãèµ·ãã
>ãéã®äœ¿ãæ¹ã®æ¹æ³ã¯ç·èšã©ãã ãïŒ
>ãããæç€ºåŒã§ç€ºãããïŒ
ãéã®äœ¿ãæ¹ã®ç·æ°ãa(n)ãšãããšãa(n)ã¯æ¬¡ã®åŒã§èšç®ã§ããŸãã
a(n)=[x^n](â«_[z=0,â]exp(-z)*Î [j=1ïœk](exp(x^j*z)-1)dz)ïŒ
äŸãã°k=4ã®å ŽåïŒ
exp(-z)*Î [j=1ïœ4](exp(x^j*z)-1)ãå±éãããšã次ã®ããã«ãªããŸãã
exp(-z)*Î [j=1ïœ4](exp(x^j*z)-1)
=exp(-z)*(exp(x*z)-1)*(exp(x^2*z)-1)*(exp(x^3*z)-1)*(exp(x^4*z)-1)
=exp((-1+x+x^2+x^3+x^4)*z)
-exp((-1+x+x^2+x^3)*z)-exp(-1+x+x^2+x^4)-exp(-1+x+x^3+x^4)-exp(-1x^2+x^3+x^4)
+exp((-1+x+x^2)*z)+exp((-1+x+x^3)*z)+exp((-1+x+x^4)*z)+exp((-1+x^2+x^3)*z)+exp((-1+x^2+x^4)*z)+exp((-1+x^3+x^4)*z)
-exp((-1+x)*z)-exp((-1+x^2)*z)-exp((-1+x^3)*z)-exp((-1+4)*z)
+exp((-1)*z).
ãã®å±éåŒãz=0ïœâã®ç¯å²ã§ç©åããã°xã®æç颿°ãåŸãããŸãã
ãã®æç颿°ããã¯ããŒãªã³å±éãããšãã®x^nã®ä¿æ°ãa(n)ã§ãã
a(n)
=[x^n](-1/(-1+x+x^2+x^3+x^4)
+1/(-1+x+x^2+x^3)+1/(-1+x+x^2+x^4)+1/(-1+x+x^3+x^4)+1/(-1+x^2+x^3+x^4)
-1/(-1+x+x^2)-1/(-1+x+x^3)-1/(-1+x+x^4)-1/(-1+x^2+x^3)-1/(-1+x^2+x^4)-1/(-1+x^3+x^4)
+1/(-1+x)+1/(-1+x^2)+1/(-1+x^3)+1/(-1+x^4)
-1/(-1)).
atããåãã§ãã
仿¹ãªãn=10ãã20ãŸã§ã®æ°å€ãã²ãšã€ãã€ç®åºããŠïŒåŸ¡èã§çµæçã«ïŒãµæèšç®ãã¹ãèµ·ãããŠããããšãçºèŠ)
k=3ã§ã®æ¯é¢æ°ãç䌌ããŠè²ã
詊ããŠãããã§ãããã®ãã¹ãŠã匟ãããŠããŸããéæ¹ã«æ®ããŠããŸããã
æåã®é
ã ããäžèŽããŠãããåŸã¯ç¡é§ãªåªåã§ããã
ç©åã®åã§è§£æ±ºããããšã¯æã£ãŠããªãéçã§ããã
æçµåã¯éåã®èŠçŽ ã®åæ°ãæ±ããåŒã«é¡äŒŒããŠããŸãããïŒçµæ§èŠãæã)
ãšããããšã¯k=3ã§ã®æ¯é¢æ°gfã¯ããã¹ãããªãã
1/(1-x-x^2-x^3)-1/(1-x-x^2)-1/(1-x-x^3)-1/(1-x^2-x^3)+1/(1-x)+1/(1-x^2)+1/(1-x^3)-1
ã§ãå¯èœãšããããã§ããã
äžã®äžã«ã¯ç©äºã®æ¬è³ªãèŠäºã«æŽãã§ããŸã人ãããããšã«ææ¿ã§ãã
ç®ããé±ã§ãããªäžè¬åŒãŸã§åãã£ãŠããŸãããšãé©ç°ã§ããããã§ãã
倧å€ããããšãããããŸããã
æ¯é¢æ°ã®åœ¢ã«ããªããŠãã³ã³ãã¥ãŒã¿ã§æ°å€ã ãæ±ããããªãçŽæ¥ç©ååãã
gp > F(k)=intnum(z=0,[oo,1],exp(-z)*prod(j=1,k,exp(x^j*z)-1))
ã§å®çŸ©ããŠããã°k=9ã§ã®å€ã¯
gp > for(n=45,60,print(n";"round(polcoeff(F(9),n))))
45;362880
46;1814400
47;8467200
48;31752000
49;110255040
50;352416960
51;1073580480
52;3125969280
53;8808347520
54;24105906720
55;64431521280
56;168662148480
57;433730626560
58;1097903933280
59;2740858737120
60;6757827995520
çã§äžçºã§æ±ãŸã£ãŠããã®ã§ãããïŒãã®ããã©ãããäœæ¥ã倢ã®ããã§ãã)
æ¯æ¥å䟡ã1åã2åã®åããŒã«ã®éæãã©ããäžã€ãã€æ¯æ¥é£²ããšãã®å Žåã®æ°ã®çæé¢æ°ã«ã€ããŠã¯ã
1+(x+x^2)+(x+x^2)^2+âŠ=1/(1-x-x^2)
ã§è¡šãããå°ãªããšãäž¡éæã®ããŒã«ã飲ãã ãšãã®å Žåã®æ°ã®çæé¢æ°ã«ã€ããŠã¯ã
(1+(x+x^2)+(x+x^2)^2+âŠ)-(1+x+x^2+âŠ)-(1+x^2+x^4+âŠ)+1
=1/(1-x-x^2)-1/(1-x)-1/(1-x^2)+1
ã§è¡šãããŸãã
(x+x^2)^m=C(m,0)x^m+C(m,1)x^(m+1)+...+C(m,j)x^(m+j)+...+C(m,m)x^(2m)
ãªã®ã§ãn(å)ã®è³éããã£ãŠæ¯æ¥å䟡ã1åã2åã®åããŒã«ã®éæãã©ããäžã€ãã€æ¯æ¥é£²ãã§ãã
è³éã䜿ãæããããšãã®ãéã®äœ¿ãæ¹ã®æ¹æ³ã®æ°ã¯ã
Σ_{k=0ïœfloor(n/2)}C(n-k,k)
ã§è¡šãããå°ãªããšãäž¡éæã®ããŒã«ã飲ãã ãšãã®å Žåã®æ°ã«ã€ããŠã¯ã
n=2q+1ã®ãšã
Σ_{k=0ïœfloor(n/2)}C(n-k,k) - C(n,0)
n=2qã®ãšã
Σ_{k=0ïœfloor(n/2)}C(n-k,k) - C(n,0) -C(q,q)
ãšãªããŸããF(n)=Σ_{k=0ïœfloor(n/2)}C(n-k,k)ãšãããšã
F(1)=1,F(2)=2,F(n)=F(n-1)+F(n-2)
ãšãªã£ãŠãF(n)ã¯ãã£ããããæ°åãšãªããŸããå°ãªããšãäž¡éæã®ããŒã«ã飲ãã ãšãã®å Žåã®æ°ã«ã€ããŠã¯ã
n=2q+1ã®ãšãF(n)-1ãn=2qã®ãšãF(n)-2ãšãªããŸãã
æ¯æ¥å䟡ã1å,2å,3åã®åããŒã«ã®éæãã©ããäžã€ãã€æ¯æ¥é£²ããšãã®å Žåã®æ°ã®çæé¢æ°ã«ã€ããŠã¯ã
1+(x+x^2+x^3)+(x+x^2+x^3)^2+âŠ=1/(1-x-x^2-x^3)
ã§è¡šãããå°ãªããšãå
šéæã®ããŒã«ã飲ãã ãšãã®å Žåã®æ°ã®çæé¢æ°ã«ã€ããŠã¯ã
(1+(x+x^2+x^3)+(x+x^2+x^3)^2+âŠ)
-(1+(x+x^2)+(x+x^2)^2+âŠ)-(1+(x+x^3)+(x+x^3)^2+âŠ)-(1+(x^2+x^3)+(x^2+x^3)^2+âŠ)
+(1+x+x^2+âŠ)+(1+x^2+x^4+âŠ)+(1+x^3+x^6+âŠ)-1
=1/(1-x-x^2-x^3)-1/(1-x-x^2)-1/(1-x-x^3)-1/(1-x^2-x^3)+1/(1-x)+1/(1-x^2)+1/(1-x^3)-1
ã§è¡šãããŸãã
2é
ä¿æ°C(n,k)ã«å£ã£ãŠ3é
ä¿æ°C(n,k1,k2)=n!/(k1!k2!(n-k1-k2)!)ãçšãããšã
(x+x^2+x^3)^m=Σ_{k1â§0,k2â§0,k1+k2âŠm}C(m,k1,k2)[x^(m-k1-k2)*x^(2*k1)*x^(3*k2)]
ãªã®ã§ãn(å)ã®è³éããã£ãŠæ¯æ¥å䟡ã1å,2å,3åã®åããŒã«ã®éæãã©ããäžã€ãã€æ¯æ¥é£²ãã§ãã
è³éã䜿ãæããããšãã®ãéã®äœ¿ãæ¹ã®æ¹æ³ã®æ°ã¯ã
T(n)=Σ_{i=0ïœfloor(n/2),j=0ïœfloor(n/3),i+jâŠn}C(n-i-j,i,j)
ã§è¡šãããT(1)=1,T(2)=2,T(3)=4,T(n)=T(n-1)+T(n-2)+T(n-3)ãšããããªããããæ°åãšãªããŸãã
n(å)ã®è³éããã£ãŠæ¯æ¥å䟡ã1åã3åã®åããŒã«ã®éæãã©ããäžã€ãã€æ¯æ¥é£²ãã§ãã
è³éã䜿ãæããããšãã®ãéã®äœ¿ãæ¹ã®æ¹æ³ã®æ°ã«ã€ããŠã¯ã
(x+x^3)^m=C(m,0)x^m+C(m,1)x^(m+2)+...+C(m,j)x^(m+2*j)+...+C(m,m)x^(3m)
ããã
n=1ã®ãšãC(1,0)
n=2ã®ãšãC(2,0)
n=3ã®ãšãC(3,0)+C(1,1)
n=4ã®ãšãC(4,0)+C(2,1)
n=5ã®ãšãC(5,0)+C(3,1)
n=6ã®ãšãC(6,0)+C(4,1)+C(2,2)
n=7ã®ãšãC(7,0)+C(5,1)+C(3,2)
n=8ã®ãšãC(8,0)+C(6,1)+C(4,2)
ãšãªã£ãŠãäžè¬ã«ã¯ã
Σ_{k=0ïœfloor(n/3)}C(n-2*k,k)
ã§è¡šãããΣ_{k=0ïœfloor(n/3)}C(n-2*k,k)=G(n+1)ãšãããšã
G(1)=1,G(2)=1,G(3)=2,G(n)=G(n-1)+G(n-3)ãšãªã£ãŠãããã¯ãã©ã€ãæ°å(Narayana sequence)ãšãããŸãã
n(å)ã®è³éããã£ãŠæ¯æ¥å䟡ã2åã3åã®åããŒã«ã®éæãã©ããäžã€ãã€æ¯æ¥é£²ãã§ãã
è³éã䜿ãæããããšãã®ãéã®äœ¿ãæ¹ã®æ¹æ³ã®æ°ã«ã€ããŠã¯ã
(x^2+x^3)^m=C(m,0)x^2m+C(m,1)x^(2m+1)+...+C(m,j)x^(1m+j)+...+C(m,m)x^(3m)
ããã
n=2ã®ãšãC(1,0)
n=3ã®ãšãC(1,1)
n=4ã®ãšãC(2,0)
n=5ã®ãšãC(2,1)
n=6ã®ãšãC(3,0)+C(2,2)
n=7ã®ãšãC(3,1)
n=8ã®ãšãC(4,0)+C(3,2)
n=9ã®ãšãC(4,1)+C(3,3)
n=10ã®ãšãC(5,0)+C(4,2)
n=11ã®ãšãC(5,1)+C(4,3)
n=12ã®ãšãC(6,0)+C(5,2)+C(4,4)
ãšãªã£ãŠãäžè¬ã«ã¯ã
Σ_{ceil(n/3)âŠkâŠfloor(n/2)}C(k,n-2*k)
ã§è¡šããããããH(n)ãšãããšãH(2)=1,H(3)=1,H(4)=1,H(n)=H(n-2)+H(n-3)
ãšãªã£ãŠãããã¯ãããŽã¡ã³æ°å(Padovan sequence)ãšãããŸãã
n(å)ã®è³éããã£ãŠæ¯æ¥å䟡ã1å,2å,3åã®åããŒã«ã®éæãã©ããäžã€ãã€æ¯æ¥é£²ãã§ãã
è³éã䜿ãæããããšããå°ãªããšãå
šéæã®ããŒã«ã飲ãã ãšãã®ãéã®äœ¿ãæ¹ã®æ¹æ³ã®æ°ã«ã€ããŠã¯ã
T(n)-F(n)-G(n)-H(n)+r(n)
r(n)=3(n mod 6=0),1(n mod 6=1,5),2(n mod 6=2,3,4)
ãšãªããŸããn=1ïœ10ã§ã
T(n) 1,2,4,7,13,24,44,81,149,274
F(n) 1,2,3,5, 8,13,21,34, 55, 89
G(n) 1,1,2,3, 4, 6, 9,13, 19, 28
H(n) 0,1,1,1, 2, 2, 3, 4, 5, 7
ãšãªããŸãããT(n)-F(n)-G(n)-H(n)+r(n)ã¯ãn=1ïœ10ã§ã
0,0,0,0,0,6,12,32,72,152ãšãªããŸãã
æ¯æ¥å䟡ã1å,2å,3å,4åã®åããŒã«ã®éæãã©ããäžã€ãã€æ¯æ¥é£²ããšãã®å Žåã®æ°ã®çæé¢æ°ã«ã€ããŠã¯ã
1+(x+x^2+x^3+x^4)+(x+x^2+x^3+x^4)^2+âŠ=1/(1-x-x^2-x^3-x^4)
ã§è¡šãããå°ãªããšãå
šéæã®ããŒã«ã飲ãã ãšãã®å Žåã®æ°ã®çæé¢æ°ã«ã€ããŠã¯ã
(1+(x+x^2+x^3+x^4)+(x+x^2+x^3+x^4)^2+âŠ)
-(1+(x+x^2+x^3)+(x+x^2+x^3)^2+âŠ)-(1+(x+x^2+x^4)+(x+x^2+x^4)^2+âŠ)
-(1+(x+x^3+x^4)+(x+x^3+x^4)^2+âŠ)-(1+(x^2+x^3+x^4)+(x^2+x^3+x^4)^2+âŠ)
+(1+(x+x^2)+(x+x^2)^2+âŠ)+(1+(x+x^3)+(x+x^3)^2+âŠ)+(1+(x^2+x^3)+(x^2+x^3)^2+âŠ)
+(1+(x+x^4)+(x+x^4)^2+âŠ)+(1+(x^2+x^4)+(x^2+x^4)^2+âŠ)+(1+(x^3+x^4)+(x^3+x^4)^2+âŠ)
-(1+x+x^2+âŠ)-(1+x^2+x^4+âŠ)-(1+x^3+x^6+âŠ)-(1+x^4+x^8+âŠ)+1
=1/(1-x-x^2-x^3-x^4)
-1/(1-x-x^2-x^3)-1/(1-x-x^2-x^4)-1/(1-x-x^3-x^4)-1/(1-x^2-x^3-x^4)
+1/(1-x-x^2)+1/(1-x-x^3)+1/(1-x^2-x^3)+1/(1-x-x^4)+1/(1-x^2-x^4)+1/(1-x^3-x^4)
-1/(1-x)-1/(1-x^2)-1/(1-x^3)-1/(1-x^4)
+1
ã§è¡šãããŸãã
Σ_{k=1ïœn}k=n(n+1)/2=C(n+1,2)
Σ_{k=1ïœn}k(k+1)=n(n+1)(n+2)/3=2C(n+2,3)
Σ_{k=1ïœn}k(k+1)(k+2)=(1/4)Σ_{k=1ïœn}k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)
=n(n+1)(n+2)(n+3)/4=3!C(n+3,4)
Σ_{k=1ïœn}k(k+1)(k+2)(k+3)(k+4)
=(1/5)Σ_{k=1ïœn}k(k+1)(k+2)(k+3)(k+4)-(k-1)k(k+1)(k+2)(k+3)
=n(n+1)(n+2)(n+3)(n+4)/5=4!C(n+4,5)
...
Σ_{k=1ïœn}k(k+1)(k+2)(k+3)(k+4)...(k+m-1)=(m-1)!C(n+m-1,m)
ãšã
C(n,k)=C(n-1,k)+C(n-1,k-1)
C(n-1,k-1)=C(n,k)-C(n-1,k)
C(n,k)=C(n+1,k+1)-C(n,k+1)
=C(n+2,k+2)-2C(n+1,k+2)+C(n,k+2)
=C(n+3,k+3)-3C(n+2,k+3)+3C(n+1,k+3)-C(n,k+3)
=Σ_{j=0ïœm}(-1)^j*C(m,j)*C(n+m-j,k+m)
ããã
Σ_{k=1ïœn}k^2=Σ_{k=1ïœn}k(k+1)-Σ_{k=1ïœn}k
=2C(n+2,3)-C(n+1,2)=2C(n+2,3)-(C(n+2,3)-C(n+1,3))=C(n+2,3)+C(n+1,3)
Σ_{k=1ïœn}k^3=Σ_{k=1ïœn}k(k+1)(k+2)-3Σ_{k=1ïœn}k(k+1)+Σ_{k=1ïœn}k
=3!C(n+3,4)-3*2C(n+2,3)+C(n+1,2)
=6C(n+3,4)-6C(n+2,3)+C(n+1,2)
=6C(n+3,4)-6(C(n+3,4)-C(n+2,4))+C(n+3,4)-2C(n+2,4)+C(n+1,4)
=C(n+3,4)+4C(n+2,4)+C(n+1,4)
Σ_{k=1ïœn}k^4
=Σ_{k=1ïœn}k(k+1)(k+2)(k+3)-6Σ_{k=1ïœn}k(k+1)(k+2)
+7Σ_{k=1ïœn}k(k+1)-Σ_{k=1ïœn}k
=4!C(n+4,5)-6*3!C(n+3,4)+7*2C(n+2,3)-C(n+1,2)
=24C(n+4,5)-36C(n+3,4)+14C(n+2,3)-C(n+1,2)
=24C(n+4,5)-36(C(n+4,5)-C(n+3,5))+14(C(n+4,5)-2C(n+3,5)+C(n+2,5))-(C(n+4,5)-3C(n+3,5)+3C(n+2,5)-C(n+1,5))
=C(n+4,5)+11C(n+3,5)+11C(n+2,5)+C(n+1,5)
Σ_{k=1ïœn}k^5
=Σ_{k=1ïœn}k(k+1)(k+2)(k+3)(k+4)-10Σ_{k=1ïœn}k(k+1)(k+2)(k+3)
+25Σ_{k=1ïœn}k(k+1)(k+2)-15Σ_{k=1ïœn}k(k+1)+Σ_{k=1ïœn}k
=5!C(n+5,6)-10*4!C(n+4,5)+25*3!C(n+3,4)-15*2C(n+2,3)+C(n+1,2)
=120C(n+5,6)-240C(n+4,5)+150C(n+3,4)-30C(n+2,3)+C(n+1,2)
=120C(n+5,6)-240(C(n+5,6)-C(n+4,6))+150(C(n+5,6)-2C(n+4,6)+C(n+3,6))
-30(C(n+5,6)-3C(n+4,6)+3C(n+3,6)-C(n+2,6))+(C(n+5,6)-4C(n+4,6)+6C(n+3,6)-4C(n+2,6)+C(n+1,6))
=C(n+5,6)+26C(n+4,6)+66C(n+3,6)+26C(n+2,6)+C(n+1,6)
Σ_{k=1ïœn}k^6
=Σ_{k=1ïœn}k(k+1)(k+2)(k+3)(k+4)(k+5)-15Σ_{k=1ïœn}k(k+1)(k+2)(k+3)(k+4)
+65Σ_{k=1ïœn}k(k+1)(k+2)(k+3)-90*Σ_{k=1ïœn}k(k+1)(k+2)
+31*Σ_{k=1ïœn}k(k+1)-Σ_{k=1ïœn}k
=6!C(n+6,7)-15*5!C(n+5,6)+65*4!C(n+4,5)-90*3!C(n+3,4)+31*2C(n+2,3)-C(n+1,2)
=720C(n+6,7)-1800C(n+5,6)+1560C(n+4,5)-540C(n+3,4)+62C(n+2,3)-C(n+1,2)
=C(n+6,7)+57C(n+5,7)+302C(n+4,7)+302C(n+3,7)+57C(n+2,7)+C(n+1,7)
æ¯ã¹ãŠã¿ãããšãŠãè峿·±ãã£ãã§ããâââ
https://www.chart.co.jp/subject/sugaku/suken_tsushin/108/108-7.pdf
n ã®å®å
šãªåå²ãšã¯ãç¹°ãè¿ãããéšåãåºå¥ã§ããªããšèŠãªããããšãã«ã
n ããå°ãããã¹ãŠã®æ°ã®åå²ã 1 ã€ã ãå«ãŸããåå²ã§ãã
ãããã£ãŠã1^n ã¯ãã¹ãŠã® n ã«å¯ŸããŠå®å
šãªåå²ã§ãã
äŸãã°n=5ã®å Žå
å岿¹æ³ã¯
1;[5]
2;[1, 4]
3;[2, 3]
4;[1, 1, 3]
5;[1, 2, 2]
6;[1, 1, 1, 2]
7;[1, 1, 1, 1, 1]
ãèããããã
[1, 1, 3]
ã§ã¯
1=1
2=1+1
3=3
4=3+1
5=3+1+1
ãš1ïœ5ããã®ææã§ãã äžéããã€ã§æ§æã§ããã
åãã
[1, 2, 2]ã
1=1
2=2
3=2+1
4=2+2
5=2+2+1
ã§1ïœ5ããã®ææã§ãã äžéããã€ã§æ§æã§ããã
ãŸãæããã«
[1, 1, 1, 1, 1]
ããããå¯èœ
ãã®3éããå®å
šãªåå²ãšåŒãŒãã
äžæ¹n=5ã®æ¬¡ã®æ°6ã§ã¯ããããç©ã§è¡šãæ¹æ³ã
6, 2*3, 3*2 (å Žæãéãã°ç°ãªããã®ãšã«ãŠã³ãããã)
ã®3éããšn=5ã§ã®å®å
šãªå岿°ãšåãæ°ã察å¿ããŠããã
ãŸããn=7ã®å Žåã¯
1;[7]
2;[1, 6]
3;[2, 5]
4;[3, 4]
5;[1, 1, 5](1,2,5,6,7)ããäœããªãã
6;[1, 2, 4](1,2,3,4,5,6,7)ãOK!
7;[1, 3, 3](1,3,4,6,7)ããäœããªãã
8;[2, 2, 3]
9;[1, 1, 1, 4](1,2,3,4,5,6,7) OK!
10;[1, 1, 2, 3](1,2,3,4,5,6,7)ããã2=1+1,3=1+2,4=1+1+2=1+3ãšéè€ã§ååš
11;[1, 2, 2, 2](1,2,3,4,5,6,7) OK!
12;[1, 1, 1, 1, 3](1,2,3,4,5,6,7)ããã4=1+1+1+1=1+3ãš2ã€ååš
13;[1, 1, 1, 2, 2](1,2,3,4,5,6,7)ããã4=1+1+2=2+2ãš2ã€ååš
14;[1, 1, 1, 1, 1, 2]ããã2=1+1,3=1+2=1+1+1ãšéè€ã§ååš
15;[1, 1, 1, 1, 1, 1, 1](1,2,3,4,5,6,7) OK!
ããå®å
šãªåå²ã¯
[1, 2, 4], [1, 1, 1, 4], [1, 2, 2, 2], [1, 1, 1, 1, 1, 1, 1]
ã®4éãååšããã
äžæ¹8ã§ã®ç©ã®åå²ã§ã¯
8, 2*4, 4*2, 2*2*2
ã®å
šéšã§4éãååšã§ããã
æ¬åœã«ãã®é¢ä¿ã¯åžžã«æç«ãããã®ã
n=11ã§ã®åã®å®å
šãªåå²ãš12ã§ã®ç©ã®åå²
n=23ã§ã®åã®å®å
šãªåå²ãš24ã§ã®ç©ã®åå²
ãå
·äœçã«ç€ºããŠã¿ãŠäžããã
11ã§ã®åã®å®å
šãªåå²ã¯ã
1,1,1,1,1,1,1,1,1,1,1
1,1,1,1,1,6
1,1,1,4,4
1,1,3,3,3
1,1,3,6
1,2,2,2,2,2
1,2,2,6
1,2,4,4
ã®8éãã§ã12ã§ã®ç©ã®åå²ãã
12,2*6,6*2,3*4,4*3,2*2*3,2*3*2,3*2*2
ã®8éãã
23ã§ã®åã®å®å
šãªåå²ã¯ã
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1,1,12
1,1,1,1,1,1,1,8,8
1,1,1,1,1,6,6,6
1,1,1,1,1,6,12
1,1,1,4,4,4,4,4
1,1,1,4,4,12
1,1,1,4,8,8
1,1,3,3,3,3,3,3,3
1,1,3,3,3,12
1,1,3,6,6,6
1,1,3,6,12
1,2,2,2,2,2,2,2,2,2,2,2,2
1,2,2,2,2,2,12
1,2,2,2,8,8
1,2,2,6,6,6
1,2,2,6,12
1,2,4,4,4,4,4
1,2,4,4,12
1,2,4,8,8
ã®20éãã§ã24ã§ã®ç©ã®åå²ãã
24,2*12,12*2,3*8,8*3,4*6,6*4,
2*2*6,2*6*2,6*2*2,
2*3*4,2*4*3,3*2*4,3*4*2,3*4*2,4*3*2
2*2*2*3,2*2*3*2,2*3*2*2,3*2*2*2
ã®20éãã
1+x+x^2+âŠ+x^11ãä¿æ°ãéè² æŽæ°ãšãªãããã«å æ°åè§£ãããšã
1+x+x^2+âŠ+x^11
=(1+x+x^2+x^3+x^4+x^5)(1+x^6)
=(1+x+x^2+x^3)(1+x^4+x^8)
=(1+x+x^2)(1+x^3+x^6+x^9)
=(1+x+x^2)(1+x^3)(1+x^6)
=(1+x)(1+x^2+x^4+x^6+x^8+x^10)
=(1+x)(1+x^2+x^4)(1+x^6)
=(1+x)(1+x^2)(1+x^4+x^8)
ã®8éãã®åœ¢ã§è¡šãããšãã§ããŸããããã®ããšãšé¢ä¿ããã®ã§ããããã
ãªãã»ã©
ãã®å®å
šåå²ã¯ãã®å±éåŒãšç¹ããããã§ããã
ã§ããã2ã€ãšãèªç¶æ°nã®çŽ å æ°å解圢ã®ã¿ã€ãããã£ãŠäžã€éãã®èªç¶æ°ã§
åã®å®å
šåå²ãšç©ã®å岿¹æ³ãåãæ°å€ãåã£ãŠãããã
<n(å)>; <ç©ã®å岿¹æ³>;<åã®å®å
šå岿¹æ³>;
1 ; 1; 1;
2(p) ; 1; 1;
3(p) ; 1; 2;
4(p^2) ; 2; 1;
5(p) ; 1; 3;
6(p*q) ; 3; 1;
7(p) ; 1; 4;
8(p^3) ; 4; 2;
9(p^2) ; 2; 3;
10(p*q); 3; 1;
11(p) ; 1; 8;
12(p^2*q); 8; 1;
13(p) ; 1; 3;
14(p*q); 3; 3;
15(p*q); 3; 8;
16(p^4); 8; 1;
17(p) ; 1; 8;
18(p^2*q); 8; 1;
19(p) ; 1; 8;
20(p^2*q); 8; 3;
21(p*q); 3; 3;
22(p*q); 3; 1;
23(p) ; 1; 20;
24(p^3*q); 20; 2;

以äžçŽ å æ°åè§£åãš<ç©ã®å岿¹æ³>ãšã¯äžå¯Ÿäžã®å¯Ÿå¿ãä»ãããã ã
äžã®äŸã«ãããæ§ã«
p^2*qåãšp^4åã¯åãå€ã®8ãåã£ãŠããŸãã
ä»ã«ã
p^6*qåãšp^9åã¯åãå€256ãšãªã£ãŠããŸãã
ããã§ä»åºŠã¯
ãã®ãããªåè§£åãç°ãªã£ãŠãåãå€ãåã£ãŠããŸã2çµããã以å€ã«
æ¢ããŠã»ããã
p^nã®ç©ã®åå²ã®æ°ã¯ãnåã®pã䞊ã¹ããšãã«ã(n-1)åã®ééã«åºåããé
眮ãã
æ¹æ³ã®æ°ãšçãããªãã®ã§ã
1+C(n-1,1)+C(n-1,2)+...+C(n-1,n-1)=2^(n-1)
ããã2^(n-1)éãã
p^n*qã®ç©ã®åå²ã®æ°ã¯ãnåã®pã䞊ã¹ããšãã«ã(n-1)åã®ééã«åºåããé
眮ãã
ããã«ãkåã®åºåããé
眮ããŠãnåã®pã(k+1)åã®ã°ã«ãŒãã«åå²ãããšãã«ã
qã䞡端ãã(k+1)åã®ã°ã«ãŒãå
ããkåã®åºåãäžã«é
眮ããæ¹æ³ã®æ°ãšçãã
ãªãã®ã§ã
3+5*C(n-1,1)+7*C(n-1,2)+...+(2*n+1)*C(n-1,n-1)
=3*(1+C(n-1,1)+C(n-1,2)+...+C(n-1,n-1))
+2*(C(n-1,1)+2*C(n-1,2)+...+(n-1)*C(n-1,n-1))
=3*2^(n-1)+(n-1)*2^(n-1)=(n+2)*2^(n-1)
ããã(n+2)*2^(n-1)éãã
p^mã®ç©ã®åå²ã®æ°2^(m-1)ãšp^n*qã®ç©ã®åå²ã®æ°(n+2)*2^(n-1)ãçãããªãã®ã¯ã
(n+2)*2^(n-1)=2^(m-1)
n+2=2^(m-n)
ãããn=2^k-2(kâ§2)ã®ãšãã§ããã®ãšããm=n+k=2^k+k-2
k=2ã®ãšã(m,n)=(4,2)ãk=3ã®ãšã(m,n)=(9,6)ã§ããã以äžã
k=4ã®ãšã(m,n)=(18,14)ãk=5ã®ãšã(m,n)=(35,30)ãâŠãšãªãã
p^n*q^2ã®ç©ã®åå²ã®æ°ã¯ãnåã®pã䞊ã¹ããšãã«ã(n-1)åã®ééã«åºåããé
眮ãã
ããã«ãkåã®åºåããé
眮ããŠãnåã®pã(k+1)åã®ã°ã«ãŒãã«åå²ãããšãã«ã
2åã®qã䞡端ãã(k+1)åã®ã°ã«ãŒãå
ããkåã®åºåãäžã«é
眮ããæ¹æ³ã®æ°ãšçãã
ãªããããã«ã䞡端ãšåºåãäžã«2åé
眮ããå Žåã¯ã2åã®qãåå²ããŠé
眮ããå Žåãš
åå²ããã«é
眮ããå Žåãããã®ã§ã®ã§ãæ¹æ³ã®æ°ã¯ã
(C(4,2)+2)+(C(5,2)+3)*C(n-1,1)+(C(6,2)+4)*C(n-1,2)
+...+(C(n+3,2)+n+1)*C(n-1,n-1)
=8*(1+C(n-1,1)+C(n-1,2)+...+C(n-1,n-1))
+(9/2)*(C(n-1,1)+2*C(n-1,2)+...+(n-1)*C(n-1,n-1))
+(1/2)*(C(n-1,1)+2^2*C(n-1,2)+...+(n-1)^2*C(n-1,n-1))
=8*2^(n-1)+(9/2)*(n-1)*2^(n-2)+(1/2)*n(n-1)*2^(n-3)
=(n^2+17*n+46)*2^(n-4)
ããã(n^2+17*n+46)*2^(n-4)éãã
p^n*q*rã®ç©ã®åå²ã®æ°ã¯ãnåã®pã䞊ã¹ããšãã«ã(n-1)åã®ééã«åºåããé
眮ãã
ããã«ãkåã®åºåããé
眮ããŠãnåã®pã(k+1)åã®ã°ã«ãŒãã«åå²ãããšãã«ã
q,rã䞡端ãã(k+1)åã®ã°ã«ãŒãå
ããkåã®åºåãäžã«é
眮ããæ¹æ³ã®æ°ãšçãã
ãªããããã«ã䞡端ãšåºåãäžã«q,rãé
眮ããå Žåã¯ãq*rãšããŠé
眮ããå Žåãšã
r*qãšããŠé
眮ããå Žåãšãåå²ããã«é
眮ããå Žåãããã®ã§ãæ¹æ³ã®æ°ã¯ã
(3^2+2*2)+(5^2+2*3)*C(n-1,1)+(7^2+2*4)*C(n-1,2)
+...+((2*n+1)^2+2*(n+1))*C(n-1,n-1)
=13*(1+C(n-1,1)+C(n-1,2)+...+C(n-1,n-1))
+14*(C(n-1,1)+2*C(n-1,2)+...+(n-1)*C(n-1,n-1))
+4*(C(n-1,1)+2^2*C(n-1,2)+...+(n-1)^2*C(n-1,n-1))
=13*2^(n-1)+7*(n-1)*2^(n-1)+n(n-1)*2^(n-1)
=(n^2+6*n+6)*2^(n-1)
ããã(n^2+6*n+6)*2^(n-1)éãã
p^n*q^2ãp^n*q*rã®å Žåã調ã¹ãŠã¿ãŸããããp^nãp^n*qã®å ŽåãšçãããªãäŸã¯
ã¿ã€ãããŸããã§ãããp^n*q^2ãšp^n*q*rã®çžäºéã§ãã¿ã€ãããŸããã§ããã
ãèå¯ããããšãããããŸãã
ãã®æ§ã«åŒã§è©äŸ¡ããŠããããããªãã§ããã
èªåã¯ã²ãããå¯èœãªéãã§p^a;p^b*q (p=2,q=3ã§åŠçïŒã§åãæ°å€ãçŸããéšåã
æŸãéããŠ
(a,b)=(4,2),(9,6),(18,14),(35,30),(68,62)
ãŸã§äœãšããã€ããŠã¿ãŸããã
èŠãŠãããš{a}ãš{ïœïœã¯2,3,4,5,6ã®å·®ã§çµã°ããŠããã
4=2^2,9=2^3+1,18=2^4+2,35=2^5+3,68=2^6+4
ãèŠããŠããã®ã§n=1,2,3,
a(n)=2^(n+1)+n-1
b(n)=2^(n+1)-2
ãããå
ã«å
ãæŸããš
(a,b)=(133,126),(262,254),(519,510),(1032,1022),(2057,2046),
ãšç¡éã«éãªãéšåã¯ååšããŠããããšã«ãªãã
åœåã®ç®çã¯èªç¶æ°nãçŽ å æ°åè§£ããæã«çŽ æ°ã«ã¯åœ±é¿ããããã®çŽ å æ°ã¿ã€ãïŒææ°éšåã§ã®åé¡)
ãããæ°å€ãšäžå¯Ÿäžã«åœãŠã¯ãããã®ã§ããããåã
åã®èª¿æ»ã§ã®
<ç©ã®å岿¹æ³>;<åã®å®å
šå岿¹æ³>
ã®ã©ã¡ãã䜿ã£ãŠããäžèšã®éè€ãèµ·ãã£ãŠããŸãã
A034776;Gozinta numbersïŒA074206ã§çŸããæ°åããœãŒãããŠäžŠã¹ããã®)
ããã«å¯ŸãIndukmuãããæç€ºãã
0~ïœ^2-1ã®æ°åããã äžéãã ãnåã®èŠçŽ ãæã€ïŒã€ã®éåã®åã§ã§ããå¯èœæ§ãäžãã
A273013ã§ã®æ°å€ã䜿ãã°
p^4â35
p^2*qâ42ã;A034776ã§ã¯ã©ã¡ãã8ã®å€ããšãã
p^9â24310
p^6*qâ28644ãã;A034776ã§ã¯ã©ã¡ãã256ã®å€ããšãã
p^18â4537567650
p14*qâ5094808200 ;A034776ã§ã¯ã©ã¡ãã131072ã®å€ããšãã
p^35â 56093138908331422716
p^30*qâ60433201179644187664 ;A034776ã§ã¯ã©ã¡ãã17179869184ã®å€ããšãã

以äžäžã®åŒãå©çšããŠå€ãå®ãŸã£ãŠããã
ïŒãããã®èšç®ã§ã¯ã©ããªçŽ æ°p,qã§ã
p^aâbinomial(2*a,a)/2
p^b*qâ(b^2+4*b+2)*binomial(2*b.b)/2
ã䜿ããã
A273013åç
§
ãšéãªãå€ã¯åãããŠè¡ãããã¹ãŠã®çŽ å æ°åè§£ã§ã®ã¿ã€ãã¯
ãã®æ°å€ã§äžå¯Ÿäžã®å¯Ÿå¿ãåºæ¥ãããšã«ãªãããšæãããŸãã
ãªã
n=2ïœ1000ãŸã§ã®æ°åãåé¡ãããã®ã
nã®ä»£è¡š ;çŽ å æ°ã®ã¿ã€ã ;ææšã®å€(A277013ã§æ±ºãŸãå€)ãã
2 ;[1]~(p) ;1ã(ä»ã®çŽ æ°ããã¹ãŠ)
4 ;[2]~(p^2) ;3ã(9,25,49,ãªã©)
6 ;[1, 1]~(p*q) ;7 (10,14,15,ãªã©)
8 ;[3]~(p^3) ;10 (27,125,343,ãªã©)
16 ;[4]~(p^4) ;35
12 ;[2, 1]~(p^2*q) ;42
30 ;[1, 1, 1]~(p*q*r);115
32 ;[5]~ 以äžåæ§ ;126
24 ;[3, 1]~ ;230
36 ;[2, 2]~ ;393
64 ;[6]~ ;462
60 ;[2, 1, 1]~ ;1158
48 ;[4, 1]~ ;1190
128 ;[7]~ ;1716
72 ;[3, 2]~ ;3030
210 ;[1, 1, 1, 1]~ ;3451
96 ;[5, 1]~ ;5922
256 ;[8]~ ;6435
120 ;[3, 1, 1]~ ;9350
180 ;[2, 2, 1]~ ;16782
144 ;[4, 2]~ ;20790
192 ;[6, 1]~ ;28644
216 ;[3, 3]~ ;30670
420 ;[2, 1, 1, 1]~ ;52422
240 ;[4, 1, 1]~ ;66290
288 ;[5, 2]~ ;131796
384 ;[7, 1]~ ;135564
360 ;[3, 2, 1]~ ;180990
432 ;[4, 3]~ ;264740
900 ;[2, 2, 2]~ ;334833
480 ;[5, 1, 1]~ ;430794
840 ;[3, 1, 1, 1]~ ;583670
768 ;[8, 1]~ ;630630
576 ;[6, 2]~ ;788634
720 ;[4, 2, 1]~ ;1636740
864 ;[5, 3]~ ;2050020
960 ;[6, 1, 1]~ ;2628780
ã§åé¡ãããŠããã
p^n*qãkåã®çŽæ°ã«é åºãåºå¥ããŠåå²ããæ¹æ³ã®æ°ãb_1,b_2,b_3,âŠ,b_n,b_(n+1)ãšãããšã
äžåå²ã®å Žåã¯ãããŸã§ããªãb_1=1ã§ã
2åå²ã®å Žåã¯ãnåã®pã2ã°ã«ãŒãã«åå²ããŠqãããããã®ã°ã«ãŒãã«é
眮ããå Žåãšã
nåã®pãäžåå²ã§äž¡ç«¯ã®ããããã«qãé
眮ããå Žåãããã®ã§ã
b_2=2*C(n-1,1)+2=2*C(n,1)
3åå²ã®å Žåã¯ãnåã®pã3ã°ã«ãŒãã«åå²ããŠqãããããã®ã°ã«ãŒãã«é
眮ããå Žåãšã
nåã®pã2ã°ã«ãŒãã«åå²ããŠäž¡ç«¯ãšéã®1åã®ééã®ããããã«qãé
眮ããå Žåãããã®ã§ã
b_3=3*C(n-1,2)+3*C(n-1,1)=3*C(n,2)
âŠ
kåå²ã®å Žåã¯ãnåã®pãkã°ã«ãŒãã«åå²ããŠqãããããã®ã°ã«ãŒãã«é
眮ããå Žåãšã
nåã®pã(k-1)ã°ã«ãŒãã«åå²ããŠäž¡ç«¯ãšéã®(k-2)åã®ééã®ããããã«qãé
眮ããå Žåãããã®ã§ã
b_k=k*C(n-1,k-1)+k*C(n-1,k-2)=k*C(n,k-1)
âŠ
nåå²ã®å Žåã¯ãnåã®pãnã°ã«ãŒãã«åå²ããŠqãããããã®ã°ã«ãŒãã«é
眮ããå Žåãšã
nåã®pã(n-1)ã°ã«ãŒãã«åå²ããŠäž¡ç«¯ãšéã®(n-2)åã®ééã®ããããã«qãé
眮ããå Žåãããã®ã§ã
b_n=n*C(n-1,n-1)+n*C(n-1,n-2)=n*C(n,n-1)
(n+1)åå²ã®å Žåã¯ãnåã®pãnã°ã«ãŒãã«åå²ããŠäž¡ç«¯ãšéã®(n-1)åã®ééã®ããããã«qãé
眮ããå Žåã®ã¿ãªã®ã§ã
b_(n+1)=(n+1)*C(n-1,n-1)=(n+1)*C(n,n)
ãšãªããŸãã
p^n*qãkåã®çŽæ°ã«é åºãåºå¥ããŠåå²ããæ¹æ³ã®æ°ã¯b_1+b_2+b_3+âŠ+b_n+b_(n+1)ãªã®ã§ã
b_1+b_2+b_3+âŠ+b_n+b_(n+1)
=1+2*C(n,1)+3*C(n,2)+âŠ+k*C(n,k-1)+âŠ+n*C(n,n-1)+(n+1)*C(n,n)
=(1+C(n,1)+âŠ+C(n,n))+(C(n,1)+2*C(n,2)+âŠ+n*C(n,n))
=2^n+n*2^(n-1)=(n+2)*2^(n-1)
ãšãªããŸãã
0ïœN^2-1ã®æ°åããã äžéãã ãNåã®èŠçŽ ãæã€2ã€ã®éåã®åã§ã§ããå¯èœæ§ãäžããA273013ã§ã®æ°å€ã¯ã
b_1^2+b_2^2+âŠ+b_n^2+b_(n+1)^2+b_1*b_2+b_2*b_3+âŠ+b_(n-1)*b_n+b_n*b_(n+1)ãªã®ã§ã
N=p^n*qã®å Žåã
b_1^2+b_2^2+âŠ+b_n^2+b_(n+1)^2+b_1*b_2+b_2*b_3+âŠ+b_(n-1)*b_n+b_n*b_(n+1)
=(1/2)*[b_1^2+(b_1+b_2)^2+(b_2+b_3)^2+âŠ+(b_n+b_(n+1))^2+b_(n+1)^2]
=(1/2)*[1^2+(2*C(n,1)+1)^2+(3*C(n,2)+2*C(n,1))^2
+âŠ+(k*C(n,k-1)+(k-1)*C(n,k-2))^2+âŠ+(n*C(n,n-1)+(n-1)*C(n,n-2))^2
+((n+1)*C(n,n)+n*C(n,n-1))^2+((n+1)*C(n,n))^2]
=(1/2)*[1^2+(2*C(n,1)+C(n,0))^2+(3*C(n,2)+2*C(n,1))^2
+âŠ+(k*C(n,k-1)+(k-1)*C(n,k-2))^2
+âŠ+(n*C(n,n-1)+(n-1)*C(n,n-2))^2
+((n+1)*C(n,n)+n*C(n,n-1))^2+((n+1)*C(n,n))^2]
ã§ããã
k*C(n,k-1)+(k-1)*C(n,k-2)
=k*n!/(n-k+1)!/(k-1)!+(k-1)*n!/(n-k+2)!/(k-2)!
=k*(n-k+2)*n!/(n-k+2)!(k-1)!+(k-1)^2*n!/(n-k+2)!/(k-1)!
=(n*k+1)*n!/(n-k+2)!/(k-1)!
=(n*k+1)/(n+1)*C(n+1,k-1)
ããã
b_1^2+b_2^2+âŠ+b_n^2+b_(n+1)^2+b_1*b_2+b_2*b_3+âŠ+b_(n-1)*b_n+b_n*b_(n+1)
=(1/2)*[1^2+((2*n+1)^2+âŠ+((n*k+1)*n!/(n-k+2)!/(k-1)!)^2+âŠ+(n^2+n+1)^2+(n+1)^2)]
=(1/2)*[(n+1)/(n+1)*C(n+1,0)^2+((n*2+1)/(n+1)*C(n+1,1))^2+âŠ+((n*k+1)/(n+1)*C(n+1,k-1))^2
+((n*(k+1)+1)/(n+1)*C(n+1,k))^2+âŠ+((n^2+n+1)/(n+1)*C(n+1,n))^2+((n^2+2n+1)/(n+1)*C(n+1,n+1))^2]
ãšãªããŸãã
(1+x)^m*(1+x)^(n-m)=(1+x)^nã®x^kã®ä¿æ°ãæ¯èŒãããšã
C(m,0)*C(n-m,k)+âŠ+C(m,k)*C(n-m,0)=C(n,k)ã§ãn=2m,k=mãšãããšã
C(m,0)*C(m,m)+âŠ+C(m,m)*C(m,0)=C(m,0)^2+âŠ+C(m,m)^2=C(2m,m)
(d/dx)[(1+x)^m]*(1+x)^(n-m)=m(1+x)^(m-1)*(1+x)^(n-m)=m*(1+x)^(n-1)ã®x^kã®ä¿æ°ãæ¯èŒãããšã
C(m,1)*C(n-m,k)+2*C(m,2)*C(n-m,k-1)+âŠ+k*C(m,k)*C(n-m,1)+(k+1)*C(m,k+1)*C(n-m,0)=m*C(n-1,k)ã§ãn=2m,k=mãšãããšã
C(m,1)*C(m,m-1)+2*C(m,2)*C(m,m-2)+âŠ+(m-1)*C(m,m-1)*C(m,1)+m*C(m,m)*C(m,0)
=C(m,1)^2+âŠ+m*C(m,m)^2=m*C(2*m-1,m-1)=m*C(2m-1,m)=m*(2m-1)!/m!/(m-1)!=(m/2)*C(2m,m)
(d^2/dx^2)[(1+x)^m]*(1+x)^(n-m)=m(m-1)(1+x)^(m-2)*(1+x)^(n-m)=m(m-1)*(1+x)^(n-2)ã®x^kã®ä¿æ°ãæ¯èŒãããšã
2*C(m,2)*C(n-m,k)+3*2*C(m,3)*C(n-m,k-1)+âŠ+(k+1)*k*C(m,k+1)*C(n-m,1)+(k+2)*(k+1)*C(m,k+2)*C(n-m,0)=m(m-1)*C(n-2,k)ã§ãn=2m,k=mãšãããšã
2*C(m,2)*C(m,m-2)+3*2*C(m,3)*C(m,m-3)+âŠ+(m-1)*(m-2)*C(m,m-1)*C(m,1)+m*(m-1)*C(m,m)*C(m,0)
2*C(m,2)^2+3*2*C(m,3)^2+âŠ+m*(m-1)*C(m,m)^2
=m(m-1)*C(2m-2,m-2)=m*(m-1)*C(2m-2,m)=m*(m-1)*(2m-2)!/m!/(m-2)!=(m-1)*(2m-2)!/(m-1)!/(m-2)!
=(m-1)^2*C(2*m-2,m-1)
ããããçšãããšã
(n*(k+1)+1)^2=n^2*k^2+2*n*k+1=n^2*k(k-1)+n(3*n+2)*k+(n+1)^2
ãã
Σ_(k=0)^(n+1)[1/(n+1)^2*C(n+1,k)^2]=C(2n+2,n+1)
Σ_(k=0)^(n+1)[n(3n+2)*k/(n+1)^2*C(n+1,k)^2]=n(3n+2)/(n+1)/2*C(2n+2,n+1)
Σ_(k=0)^(n+1)[n^2*k(k-1)/(n+1)^2*C(n+1,k)^2]=n^4/(n+1)^2*C(2n,n)
ãªã®ã§ã
b_1^2+b_2^2+âŠ+b_n^2+b_(n+1)^2+b_1*b_2+b_2*b_3+âŠ+b_(n-1)*b_n+b_n*b_(n+1)
=(1/2)[C(2n+2,n+1)+n(3n+2)/(n+1)/2*C(2n+2,n+1)+n^4/(n+1)^2*C(2n,n)]
=(1/2)[((2n+2)(2n+1)+n(3n+2)(2n+1)+n^4)/(n+1)^2*C(2n,n)]
=(1/2)*(n^4+6n^3+11n^2+8n+2)/(n+1)^2*C(2n,n)
=(1/2)*(n^2+4n+2)*C(2n,n)
ãšãªããŸãã
ç§ã®è§£ãæ¹ã管ç人ãããšå
šç¶éã£ãã®ã§ããã£ãããªã®ã§æçš¿ã
AB : AC = AD : AE = â2 : 1 ã§ãâ BAD = â CAE ãªã®ã§ãâ³ABD ✠â³ACE
ãããã£ãŠãâ ACE = 45° ãšãªããé¯è§ãçããã®ã§ AB // EG
ç¹ C ã«ãããç·å EG ã®åç·ãåŒããç·å AB ãšã®äº€ç¹ã H ãšãããšãåè§åœ¢ CGFH ã¯é·æ¹åœ¢ãH 㯠AB ã®äžç¹ã«ãªããŸãã
ãã£ãŠãEG = FG = HC = HB = (1/2)AB = 6
å°åœ¢ EGBA ã®é¢ç©ã¯ (6+12)*6/2 = 54 ãªã®ã§ãâ³BDG ã®é¢ç©ã¯ 4 ã§ãã
ãããã£ãŠãFD = x ãšããã°ãFB = x ãš DG = 6-x ãã x(6-x)/2 = 4 ãã x = 2, 4
x > 6-x ãæºããæ¹ãæ¡çšããŠãFD = 4
åŠæ ¡ã«åãä»ãã®äžç¿å€©ç§€ã«ãŠã
äºãã«éããçžç°ãªãåé
ãïŒåããã°äžåã®èšæž¬ã§ãã°ã©ã åäœã§ïŒã°ã©ã ããïŒïŒã°ã©ã ãŸã§ã®é£å¡©ãããããªèšãã ãããšãã§ãããšãããŸãã
äœããäžåã®å€©ç§€èšæž¬ã«ãããåé
ãå©çšããåæ°ã¯æå€§ã§ãïŒåãšããæ¡ä»¶ããããŸãã
ãã®ïŒåã®åé
ã§ã¯äžåã®èšæž¬ã§ã¯14ã°ã©ã ã®é£å¡©ãèšããªããšæ°ãã€ãã倪éåã¯åé
ãïŒå远å ããŠãããå¯èœãšããŸããã
è±åããã¯å€ªéãããïŒå远å ããåŸã®ïŒåã®åé
ãã¿ãŠäžåã®èšæž¬ã§ã¯15ã°ã©ã ã®é£å¡©ãèšããªããšæ°ãä»ããŸãããè±åããã¯æŽã«åé
ãïŒå远å ããŠãããå¯èœãšããŸããã
ã¯ã©ã¹ã¡ãŒãã®ã¿ããªã¯
ïŒåã®åé
ãã¿ãŠãäžåã®èšæž¬ã§ã¯16ã°ã©ã ã®é£å¡©ãèšããªãã§ã¯ãªãããšæå¥ãèšããŸããã
ïŒåã®åé
ã®éãã¯ïŒ
è§£ããŠããŒã¯ã«ãªãã®ãã©ããããããããŸããããªãã¿ã€ããšæãããã®ã§ãããçããã«ãæèŠãé æŽãããããåããŸãã
â»å·Šã®ç¿ã«5ã°ã©ã ã®åé
ããå³ã®ç¿ã«ïŒã°ã©ã ã®åé
ãš3ã°ã©ã ã®é£å¡©ãããšããèšæž¬ã®ä»æ¹ã¯æå¹ãšããŸãã
â»å·Šã®ç¿ã«5ã°ã©ã ã®é£å¡©ããå³ã®ç¿ã«ïŒã°ã©ã ã®åé
ãš3ã°ã©ã ã®åé
ãããšããèšæž¬ã®ä»æ¹ã¯ãã¡ããæå¹ãšããŸãã
â»åé
ïŒåãšåãéãã®é£å¡©ãèšãã ãããšã¯æã倧äºãªåºæ¬ã§ãããä»åããã®ããšãè¯ããšããŸãã
â»æåã¯ãã£ããããæ°ã䜿ãããšæããŸãããâŠâŠ
è§£ã¯26éããããŸããã
ããããæ³å®ãããŠããªãã§ãããè§£ãäžã€æžããŸãã
æåã®4å㯠3g,5g,6g,7g
æåã«è¿œå ãã1å㯠14g
次ã«è¿œå ãã1å㯠15g
ãããããã
ããããšãããããŸãã
ãã£ãããçµã¯ç¢ºãã«ç§ã®é ããã¯æ¹§ããŠããŸããã§ããã
26éãããããšã®ããšã
ããããå人çã«ç¢ºãããŠã¿ãŸãã
ã¡ãªã¿ã«å顿ãã
ãæåã®4åã®éãã¯ãã¹ãŠç°ãªãã
ã远å ãã2åã¯ãããã以åã®åé
ãšåãéãã§ãè¯ãã
ãšããæ¡ä»¶ã§æ¢çŽ¢ããŠããŸãã®ã§ãäŸãã°
ãæåã®4åã¯3,5,6,7ã§è¿œå 1åç®ã¯7ã2åç®ã¯8ã
ã®ãããªè§£ã26éãã«å«ãã§ããŸãã
ããã6åãã¹ãŠãç°ãªãéãã§ãªããã°ãªããªãããšãããã
20éãã§ãã
äžå€ã®å€©ç§€ç¿ãããïŒæ¯ç¹ããããŠéåžžã§ã¯æ£ãåŸããŠããŸããïŒ
ä»15g,14g,7g,6g,5g,3gã®6åã®åé
ãä»ããŠããã
ãã®äžå€å€©ç§€ãäžæã«äœ¿ãããªããå¡©100gãæ£ç¢ºã«èšã£ãŠäžããã
ãªã倩秀ã¯äœåºŠã§ã䜿ã£ãŠæ§ããŸããã
(1)倩秀ç¿ã®çåŽã«åé
ãå
šéšå
¥ãã(åèš50g)ã
(2)ãã®åé
ãšé£ãåãããã«å察åŽã«å¡©ãå
¥ããã
(3)åé
ãåãé€ãã代ããã«å¡©ãå
¥ããŠé£ãåãããã
ããã§(3)ã§å
¥ããå¡©ã50gãªã®ã§ã2åç¹°ãè¿ãã°100gãèšããŸãã
# ãèšããã³ã«å·Šå³ãé£ãåã£ããšãã®éãã®å·®ãç°ãªãããããªå Žåã¯
# äžèšã®æ¹æ³ã§ã¯ç¡çã§ãããããããå Žåã¯æ£ç¢ºã«èšãã®ã¯ç¡çãªæ°ãããŸãã
å€©ç§€èšæž¬ãïŒåã§ã
â 倩秀ã®å·Šã®ç¿ã«ïŒåã®åé
(èš50g)ãä¹ããŸãã
â¡å€©ç§€ã®å³åŽã®ç¿ã«å¡©ãαgä¹ããŠé£ãåãããŸãã
â¢å€©ç§€ã®å³ã®ç¿ã®å¡©å
¥Î±gã¯ãã®ãŸãŸã«å·Šã®ç¿ããåé
ãå
šãŠåãå»ããããã«å¡©ãä¹ããŠé£ãåãããŸãã(ãã®ãšãå·Šã®ç¿ã®å¡©ã¯50gãšãªããŸãã)
â£å€©ç§€ã®å³ã®ç¿ã®å¡©Î±gã¯ãã®ãŸãŸã«å·Šã®ç¿ããå¡©ãå
šãŠåãå»ã壺ã«å
¥ããŸããå·Šã®ç¿ã«ã¯ãããã«ããããªå¡©ãä¹ããŠé£ãåãããŸããé£ãåãããããã®å¡©ã壺ã«å
¥ããŸãã
壺ã®äžã«ã¯100gã®å¡©ãå
¥ã£ãŠããŸãã
â»æçš¿ããããããããããã«å
çãããŠããŸãããããã
5æ¡ã®çŽ æ°ã©ããã®ç©ã§
34061*42101=1434002161
34061*62171=2117606431
34061*91583=3119408563
ã®æ§ã«34061ã®çŽ æ°ã¯ããããä»ã®ç°ãªã3ã€ã®5æ¡ã®çŽ æ°ã®ãã£ãžãããèªåã®æ°åã«
å
šãŠåã¿èŸŒãã ç©ã®å€ãäœãåºãã
ãã®æ§ãªçŽ æ°ããã©ãã¯ããŒã«çŽ æ°ãšåŒãŒãã
ã§ã¯5æ¡ã®çŽ æ°å
šäœã§ãã®æ§ã«2ã€ã®ç©ããšããšããæãå€ãã®ä»ãçŽ æ°ãåã¿èŸŒãã§ããŸã
æåŒ·ã®ãã©ãã¯ããŒã«çŽ æ°ã¯äœãïŒ
次ã«5æ¡çŽ æ°ã©ããã®10æ¡ã®ç©ã§ã¯æ®å¿µãªãããã®ç©ã¯0ãã9ã®æ°åããã¹ãŠå«ããã®ã¯ååšã§ããªãã
ããã§ãã®ç©ã®çµæã«0ãã9ã®ãã¹ãŠã®æ°åãåºçŸã§ããããã«
5æ¡ãš6æ¡ã®çŽ æ°ãæããŠ11æ¡ã®æ°ãäœãæãäœéãã®çµåããããããïŒ
åé¡ã®è§£éãšããã°ã©ã ãæ£ãããã°
äžã€ç®
è§£éãééããŠããã®ã§èšç®ãçŽãããšãã96401(8å)ã§ãã
äºã€ç®
823199éã
ãã©ãã¯ããŒã«çŽ æ°
96401*18839=1816098439
96401*42743=4120467943
96401*48611=4686149011
96401*58511=5640518911
96401*71993=6940197193
96401*73019=7039104619
96401*87833=8467189033
96401*92801=8946109201
96401ã®8åãæåŒ·ã§ããããïŒ
ç§ãæã£ãŠããæåŒ·ãã©ãã¯ããŒã«çŽ æ°ã¯ãã®96401ã§ããã
äºã€ç®ããããããããšå€§ããéã£ãŠããã®ã§ãã
å
·äœäŸã10åã»ã©äžŠã¹ãŠè²°ããŸããïŒ
æåã®20å(5æ¡çŽ æ°ã®å°ããé ãããŠ6æ¡çŽ æ°ã®å°ããé )ã§ãããªæãã§ãã
10139*998687=10125687493
10141*999769=10138657429
10151*997793=10128596743
10151*999773=10148695723
10163*999599=10158924637
10169*998423=10152963487
10223*994769=10169523487
10243*990559=10146295837
10243*992809=10169342587
10247*993827=10183745269
10247*999959=10246579873
10253*991499=10165839247
10253*998399=10236584947
10259*990593=10162493587
10259*998681=10245468379
10267*997891=10245346897
10271*987809=10145786239
10271*996881=10238964751
10271*998411=10254679381
10273*994489=10216385497
ãŸããæåŸã®20åã¯ãããªæãã§ãã
99991*841549=84147326059
99991*851549=85147236059
99991*856553=85647591023
99991*860317=86023957147
99991*864427=86434920157
99991*871993=87191452063
99991*872609=87253046519
99991*876529=87645011239
99991*894097=89401653127
99991*928141=92805746731
99991*935537=93545280167
99991*938831=93874650521
99991*942437=94235218067
99991*946327=94624183057
99991*946607=94652180537
99991*950953=95086741423
99991*963497=96341028527
99991*968831=96874380521
99991*971933=97184552603
99991*974591=97450328681
10139*998687=10125687493
ã¯
5æ¡ã®çŽ æ°ã®ãã£ãžãã[0,1,1,3,9]
ã
7æ¡ã®çŽ æ°7ã®ãã£ãžãã[6,7,8,8,9,9]
ãåžã蟌ããš
[0,1,1,3,6,7,8,8,9,9,9]
ã®æ°åããã§ãã11æ¡ã®æ°åãã§ããããšãªããš10125687493
ãªã®ã§ç¢ºãã«0ïœ9ã®æ°åã¯æã£ãŠããããã©ãã¯ããŒã«ççŽ æ°
ãšã¯ãªã£ãŠããªããšèããŠäžããã
ïŒãã®ãããã®èª¬æãäžè¶³ããŠããããšããè©«ã³ããŸãã)
ããã«å¯Ÿã
26849*471503=12659384047ã¯
5æ¡ã®çŽ æ°ã®ãã£ãžãã[2,4,6,8,9]ã
7æ¡ã®çŽ æ°ã®ãã£ãžãã[0,1,3,4,5,7]ãåã¿èŸŒãã§
0ïœ9ãæã£ãŠããã
ãã®ãã¿ãŒã³ã§æ¢ããŠäžããã
åŸåããã©ãã¯ããŒã«çŽ æ°ãšã¯å
šãæã£ãŠããããå顿ã ãã§å€æããŠããŸã£ãŠããŸããã
ïŒã¿ã€ãã«ããã©ãã¯ããŒã«çŽ æ°ã ããæ°ã¥ãã¹ãã ã£ãããç¥ããŸãããïŒ
ã§ããã®æ¡ä»¶ãªã79éãããšæããŸãã
# 0ïœ9ã®ãã¡ãããæ°åã0,3,6,9ã ãš3ã®åæ°ã«ãªã£ãŠNG
# ãããæ°åã1,2,4,5,7,8ãªãã°ã©ãã§ã倧äžå€«ããã§ãã
# ãªãããããæ°åãå¿
ã4ãªã®ã§äœãããã°ã©ã ã«åé¡ããããããšæã£ãŠæ©ãã§ããŸããŸããã
# ã§ããã¡ããšè«ççã«èãããš4ããããåŸãªãããšãããããã79éããã«èªä¿¡ãæãŠãŸããã
2æ¡ã3æ¡ã4æ¡ã§ãã©ãã¯ããŒã«çŽ æ°ãååšããã調ã¹ãŠã¿ãŸãããã2æ¡ã§ã¯ååšããŸããã§ããã
3æ¡ã§ã¯ã167,281,317,383,443,461,563,701,953,971ã®10åããã©ãã¯ããŒã«çŽ æ°ã§ããã
167*701=701*167=117067
281*443=443*281=124483
317*461=461*317=146137
383*971=971*383=371893
563*953=953*563=124483
åžåããã®ã1åãªã®ã§ãã€ã¯ãã»ãã©ãã¯ããŒã«ãšãã£ããšããã§ããããããŸãã167ãš701ã281ãš443ã317ãš461ã383ãš971ã563ãš953ã®5çµã¯äºãã«å¯ŸããŠãã©ãã¯ããŒã«çŽ æ°ãªã®ã§ããã©ãã¯ããŒã«é£æãšãã£ããšããã§ããããã
4æ¡ã§ã¯ã7793ãš9923ãæåŒ·ãã©ãã¯ããŒã«çŽ æ°ã§ãã©ã¡ããåžåããã®ã¯3åã§ããã
7793*4523=35247739
7793*8609=67089937
7793*9923=77329939
9923*4373=43393279
9923*5273=52323979
9923*7793=77329939
7793ãš9923ã¯äºãã«å¯ŸããŠãã©ãã¯ããŒã«çŽ æ°ãªã®ã§ããã©ãã¯ããŒã«é£æãšãã£ããšããã§ããããã
> "ãããã"ãããæžãããŸãã:
> ã§ããã®æ¡ä»¶ãªã79éãããšæããŸãã
> # 0ïœ9ã®ãã¡ãããæ°åã0,3,6,9ã ãš3ã®åæ°ã«ãªã£ãŠNG
> # ãããæ°åã1,2,4,5,7,8ãªãã°ã©ãã§ã倧äžå€«ããã§ãã
> # ãªãããããæ°åãå¿
ã4ãªã®ã§äœãããã°ã©ã ã«åé¡ããããããšæã£ãŠæ©ãã§ããŸããã
ç§ã79éãã䞊ã¹ããšãããã¹ãŠã4ãéè€ããŠãããã¿ãŒã³ãªã®ã§
ãªãã§ãããªãã®ã ããããšäžæè°ã§ãªããŸããã§ããã
ä»ã§ãè¬ã¯è§£ããŠããŸããã
> # ã§ããã¡ããšè«ççã«èãããš4ããããåŸãªãããšãããããã79éããã«èªä¿¡ãæãŠãŸããŸããã
ããã¯èšŒæåºæ¥ãããã§ããïŒ
ã¯ãã蚌æã§ããŸãã
äºã€ã®çŽ æ°ã3n+1ãš3m+1ã®å Žåãæ¡ã®æ°åã®åã¯3k+2ãšãªããŸãã
äžæ¹ãç©ã¯(3n+1)(3m+1)=3l+1ãªã®ã§æ¡ã®æ°åã®åãšåããäžé©ã§ãã
äºã€ã®çŽ æ°ã3n+1ãš3m+2ã®å Žåãæ¡ã®æ°åã®åã3ã®åæ°ãšãªããŸãã
(3n+1)(3m+2)ã¯3ã®åæ°ã«ãªããŸããã®ã§äžé©ã§ãã
åŸã£ãŠæ¡ä»¶ãæãç«ã€ããã«ã¯äºã€ã®çŽ æ°ã¯äž¡æ¹ãšã3n+2åã§ãªããã°ãªããŸããã
3n+2ã9n+2,5,8ã®3ã€ã«åããŠæ¡ã®æ°åã®åãšçŽ æ°ã®ç©ãèãããš
9n+2ãš9m+2âæ¡ã®æ°åã®åã¯9k+4ãç©ã¯9l+4ãªã®ã§äžèŽ
9n+2ãš9m+5âæ¡ã®æ°åã®åã¯9k+7ãç©ã¯9l+1ãªã®ã§äžäžèŽ
9n+2ãš9m+8âæ¡ã®æ°åã®åã¯9k+1ãç©ã¯9l+7ãªã®ã§äžäžèŽ
9n+5ãš9m+5âæ¡ã®æ°åã®åã¯9k+1ãç©ã¯9l+7ãªã®ã§äžäžèŽ
9n+5ãš9m+8âæ¡ã®æ°åã®åã¯9k+4ãç©ã¯9l+4ãªã®ã§äžèŽ
9n+8ãš9m+8âæ¡ã®æ°åã®åã¯9k+7ãç©ã¯9l+1ãªã®ã§äžäžèŽ
ã®ããã«ãªããæ¡ä»¶ãæãç«ã€ãšãæ¡ã®æ°åã®åã¯å¿
ã9k+4ã§ãããã
éè€ããæ°åã¯4ããããåŸãªãããšã«ãªããŸãã
æåãããã®ããšãããã£ãŠããã°ããã©ãã¯ããŒã«çŽ æ°ã¯å¿
ã3n+2åãªã®ã§
調ã¹ãçŽ æ°ãååã«æžãããŸããã
äžè¬ã«å¶æ°åã®é£ç¶ããèªç¶æ°ãå圢ã«äžŠã¹ããšããé£å士ã®åãå
šãŠçŽ æ°
ãæ§æã§ãã䞊ã¹ãå¯èœããèããŠã¿ãã
äŸãã°{1,2,3,4}ã§ã¯
1 2
4 3
ãšé
åããã°
'3
5 5
'7
ãªã®ã§æ¡ä»¶ãæºããã
1 3
4 2
ã®é
眮ã§ã¯
'4
5 5
'6
ãšãªãæ¡ä»¶ã¯æºãããªãã
ãŸã{2,3,4,5}ã§ã¯
ã©ã䞊ã¹ãããšäžå¯èœã§ããã
ãã®ã«ãŒã«ã§æ¬¡ã®åãã«ææŠé¡ãã
[1]
6åã®é£ç¶ããèªç¶æ°ã{n1,n2,n3,n4,n5,n6}
ãšããæ(n1<n2<<n6)
æãå€ãçŽ æ°ã®çš®é¡ãæ§æã§ãããã®ã
1âŠn1âŠ100ã®ç¯å²ã§å
·äœçé
åãïŒåèŠã€ããŠã»ããã
[2]
10åã®é£ç¶ããèªç¶æ°ã{n1,n2,n3,,n10}
ãšããæ(n1<n2<<n10)
ã©ã®æ§ã«äžŠã¹ãŠèŠãŠãããã®é
åãäžå¯èœã§ãã
n1ã®å€ã1âŠn1âŠ20ã®ç¯å²ã§æ±ºå®ããŠã»ããã
[1]
æ¡ä»¶ã®è§£éãæ£ãããã°
2 3 4 7 6 5 (çŽ æ°4çš®é¡)
â»5çš®é¡ä»¥äžåºæ¥ãªãããšã¯æãã
â»ãããæ£ãããšããã100ãŸã§ã§ããå¿
èŠã¯ãªããããªâŠ
[2]
9ãš12ãš20ã§ããããã
(远èš)
ããã10é£ç¶èªç¶æ°ã§æ¡ä»¶ãæºããã®ãäžå¯èœã§ããæå°ã®n1ã¯9ãã§æ£ãããã°
né£ç¶èªç¶æ°ã®å Žåãn=2,4,6,âŠ30ã«å¯ŸããŠæå°ã®n1ã¯
4,2,8,4,9,35,36,48,92,91,90,230,246,251,647
ã®ããã«ãªããšæããŸãã
né£ç¶èªç¶æ°ã®å Žåãn=2,4,6,âŠ30ã«å¯ŸããŠæå°ã®n1ã¯
4,2,8,4,9,35,36,48,92,91,90,230,246,251,647
ã®ããã«ãªããšæããŸãã
ãšãŠãèªåã§ã®èª¿æ»æ¹æ³ã§ã¯ãããªné£ç¶ã«å¯Ÿããç¶æ³ã¯å€¢ã®ãŸã倢ã®äžã«ãããŸãã
ãããã«OEISã«ã¯æªç»é²ã«ãããŸããã
ã§ãçŽ æ°ã®åºçŸäœçœ®ãã»ããšã«ã©ã³ãã ã§ããããšã瀺ãäžã€ã®ææšã«ããæ§ã«æãããŸãã
ãªã[1]ã¯
{2,3,4,5,6,7}â[2,3,4,7,6,5] ; æ§æçŽ æ°<5,7,11,13>
{5,6,7,8,9,10}â[5,6,7,10,9,8] ; æ§æçŽ æ°<11,13,17,19>
{50,51,52,53,54,55}â[50, 51, 52, 55, 54, 53] ; æ§æçŽ æ°<101,103,107,109>
{95,96,97,98,99,100}â[95, 96, 97, 100, 99, 98] ; æ§æçŽ æ°<191,193,197,199>
ã®4ã¿ã€ãã®ç©ãã§ããããããããåãé
åã¿ã€ãã§å¯èœãªãã§ããã
ãŸã
[1,2,3,4,7,6,5,8,9,10]ã§ã®é
åã§ã¯æ§æçŽ æ°<3,5,7,11,13,17,19>
ã®7çš®é¡ãçºçããã®ã§ããããã©ããŸã§å¢ãããã®ãçåã«æããŸããã
> [1,2,3,4,7,6,5,8,9,10]ã§ã®é
åã§ã¯æ§æçŽ æ°<3,5,7,11,13,17,19>
> ã®7çš®é¡ãçºçããã®ã§ããããã©ããŸã§å¢ãããã®ã
å¢ãããªããšæããŸãã
å
é ãnãæ«å°Ÿãn+9ãšãããš
æå°ã®åã¯2n+1ãæå€§ã®åã¯2n+17ã§ããã奿°ã¯
2n+1,2n+3,2n+5,2n+7,2n+9,2n+11,2n+13,2n+15,2n+17
ã®9åã«ãªããŸãã
ããããã®äžã«å¿
ã3ã®åæ°ã3åå
¥ã£ãŠããŸããŸãã®ã§ã
ãã®ãã¡1åã3ã§ããå Žåã7çš®é¡ã§æå€§ã§ãã
> né£ç¶èªç¶æ°ã®å Žåãn=2,4,6,âŠ30ã«å¯ŸããŠæå°ã®n1ã¯
> 4,2,8,4,9,35,36,48,92,91,90,230,246,251,647
ãã®å
ãæ°ã«ãªã£ãã®ã§ä»ãŸã§èšç®ããŠããŸããã
n=32,34,36,38,40ã«å¯ŸããŠæå°ã®n1ã¯
646,645,644,643,1062
ã§ããã
ãã¡ããšèããã°ç¡é§ãªæ¢çŽ¢ã倧å¹
ã«æžããããšãã§ããããª
æ°ã¯ããŸããããã®æ°åèªäœããã»ã©è峿·±ããã®ã§ã¯
ãªããããªã®ã§ããããŸã§ã§çµããã«ããããšæããŸãã