次ã®èªç¶æ°nã¯2ã€ã®ç¡çæ°ãçµåãããšæ®ãã©äžèŽããå€ã«è¿ã¥ããã
nâ ç¡çæ°ã§ã®è¡šç€ºã ââ2æ°ã®èª€å·®ã®çµ¶å¯Ÿå€
3â 5*sqrt(3)-4*sqrt(2) ââ0.0033997883520062724304768106905695204447
8â 9*sqrt(5)-7*sqrt(3) ââ0.00025614451596621299043862804037955033911
12â 19*sqrt(10)-34*sqrt(2) ââ1.4422513975648721560721091917469468432 E-5
14â 5*sqrt(2)+4*sqrt(3) ââ0.00072895785901558188177101292802013936790
16â 33*sqrt(17)-31*sqrt(15) ââ1.9129528747035492978538901538940856089 E-6
18â 11*sqrt(6)-4*sqrt(5) ââ0.00011526061580029453343014683970036989732
20â 51*sqrt(26)-98*sqrt(6) ââ4.0048057270810559023898452505417707900 E-7
24â 73*sqrt(37)-71*sqrt(35) ââ1.1169729827469664119887608509554651446 E-7
28â 495*sqrt(2)-388*sqrt(3) ââ3.7957659268186737979522070518583296012 E-8
32â 129*sqrt(65)-381*sqrt(7) ââ1.4903890174177504572628253724468858932 E-8
36â 163*sqrt(82)-644*sqrt(5) ââ6.5343456440228885554609297031481511666 E-9
40â 201*sqrt(101)-597*sqrt(11)ââ3.1252343924574036722748632756462662144 E-9
51â 15*sqrt(7)+8*sqrt(2) ââ2.1835046380752062253901733508985792273 E-5
57â 21*sqrt(11)-4*sqrt(10) ââ9.9567898795034180132923535462276858634 E-6
124â 29*sqrt(14)+4*sqrt(15) ââ2.3987260322773542251636904718057150093 E-6
132â 105*sqrt(2)-4*sqrt(17) ââ1.5467043379248916766181219901488696439 E-6
245â 47*sqrt(23)+8*sqrt(6) ââ4.6203675675934213838670625462524820104 E-7
255â 159*sqrt(3)-4*sqrt(26) ââ3.4908035035075107186334257838554981487 E-7
426â 69*sqrt(34)+4*sqrt(35) ââ1.2327580333941413828310829952623491724 E-7
438â 75*sqrt(38)-4*sqrt(37) ââ1.0148035501276569162826004864350052660 E-7
679â 95*sqrt(47)+16*sqrt(3) ââ4.0798771434653070872845390882949520266 E-8
693â 101*sqrt(51)-20*sqrt(2) ââ3.5365948821905606463899831583875575438 E-8
1016â 125*sqrt(62)+4*sqrt(63) ââ1.5748535453351304854827891931151138080 E-8
1032â 131*sqrt(66)-4*sqrt(65) ââ1.4116608610778294521636201128152863637 E-8
1449â 159*sqrt(79)+16*sqrt(5) ââ6.8247376929139949103118573138778558128 E-9
1467â 165*sqrt(83)-4*sqrt(82) ââ6.2596490147330746056941507128262552391 E-9
1990â 1379*sqrt(2)+12*sqrt(11) ââ3.2371295130920564747781094499907966819 E-9
ãªã2024â64778373-1536210*sqrt(1778)(â2024.0000000077188666499249599539865432)
1825346970â1881803*sqrt(940902)-4*sqrt(940901)(â1825346970.0000000000000000000000386764)
ãªãç¡çæ°ã§ããªãè¿ã¥ãã(äžã®æ°ã¯0ïœ9ã®æ°åãäžåºŠé¡ãåºãã¿ã€ãã®æ°)
ããããã°ã©ã ãPARI/GPã§èµ°ãããŠãããšãããã©ãããŠãããã°ã©ã ãç¹å®ã®å€ã§ã¯
çµæããããåŸ
ã£ãŠãçµäºããããã®åå ãäžã€ãã€æœ°ããŠãããšãããªããšæã£ãŠãããªã
次ã®ãããªèšç®ãè¡ãããŠããããšã倿ããŸããã
ãã®æ§ãªããšã«ãªã£ãŠããŸãã®ã¯ãç§ã䜿ã£ãŠãããœããã«éãã®ã§ããããïŒ
çããã䜿ãããŠãããœããã§ã¯åŠäœãªãçµæãè¿ããŠããããæããŠæ¬²ããã
gp > for(n=1,20,print(n";"floor(log(10^n)/log(10))))
1;1
2;2
3;2
4;4
5;5
6;5
7;7
8;8
9;9
10;10
11;10
12;11
13;12
14;14
15;14
16;16
17;16
18;18
19;19
20;20
3,6,11,12,13,15,17ã§ãã¡ãã®ææãè£åãããŠããŸããŸããã
æå
ã§ã¯åæ§ã§ããã
PARI ã¯ãã²ãšãã³å°æ°ãæ±ãããšã«ãªããšïŒé²æ°ã§å
éšè¡šçŸããã®ããªïŒããšæããŸãããããã£ãšã¿ãããã ãã§ã¯ããŸã説æã§ããªããããªïŒ
? for(n=1,20,print(n";"floor(log(10^n)/log(10))))
1;1
2;2
3;2
4;4
5;5
6;5
7;7
8;8
9;9
10;10
11;10
12;11
13;12
14;14
15;14
16;16
17;16
18;18
19;19
20;20
JavaScript ã§ã¯ä»¥äžã®éãã§ãã
for (let n = 1; n <= 20; n++) {
console.log(n + ";" + Math.floor(Math.log(Math.pow(10, n)) / Math.log(10)));
}
äžã RUN ãããš
"1;1"
"2;2"
"3;2"
"4;4"
"5;5"
"6;5"
"7;7"
"8;8"
"9;8"
"10;10"
"11;11"
"12;11"
"13;12"
"14;14"
"15;14"
"16;16"
"17;17"
"18;17"
"19;19"
"20;20"
ãšãªããŸãã
JavaScript ã§ã¯ãã¶ãå°æ°ç¹ä»¥äžã¯ãæå¯ãã®ïŒé²æ°ã§æããŠããã®ã§âŠâŠ
ä»ã®èšç®ãœããã§ã調æ»ããŠã¿ãã
ïŒsageMathã®ãœãã
sage: for i in range(21) :print(i,floor(ln(10^i)/ln(10)));
(0, 0)
(1, 1)
(2, 2)
(3, 3)
(4, 4)
(5, 5)
(6, 6)
(7, 7)
(8, 8)
(9, 9)
(10, 10)
(11, 11)
(12, 12)
(13, 13)
(14, 14)
(15, 15)
(16, 16)
(17, 17)
(18, 18)
(19, 19)
(20, 20)
å
šéšäžæãèµ°ã
ïŒRubyã®ãœãã
irb(main):001:0> include Math
=> Object
irb(main):012:0> 0.upto(20){|i| print i,";",log(10**i)/log(10),"\n"}
0;0.0
1;1.0
2;2.0
3;2.9999999999999996
4;4.0
5;5.0
6;5.999999999999999
7;7.0
8;8.0
9;8.999999999999998
10;10.0
11;11.0
12;11.999999999999998
13;12.999999999999998
14;14.0
15;14.999999999999998
16;16.0
17;17.0
18;17.999999999999996
19;19.0
20;20.0
3,6,9,12,13,15,18ã§äžæããããªããªãã
ïŒMaximaã®ãœãã
(%i13) for i :1 thru 20 do
print(float(log(10^i)/log(10)));
1.0" "
2.0" "
3.0" "
4.0" "
5.0" "
6.0" "
7.0" "
8.0" "
8.999999999999998" "
9.999999999999998" "
11.0" "
12.0" "
13.0" "
14.0" "
15.0" "
16.0" "
17.0" "
18.0" "
19.0" "
20.0" "
9,10ã§é£ç¹
PARI ã§ãåºé¢æ°ã䜿ãåã«åŸ®éãªäžé§ãã¯ãããŸããã 258,259ã§ç Žç¶»ã
for(n=257,260,print(n";"floor(10^(-36)+log(10^n)/log(10))))
257;257
258;257
259;258
260;260
PARI ã«ãŠã
n = 308 ãŸã§ã®ç¯å²ã§åŸ®å°éãè¶³ããã¹ããããŸããã
(javascriptã ãš10^308ãè¶
ãããšéäžèšç®çµæã«ç¡é倧ãçŸããæ±ãã«ãªã£ãã®ã§âŠâŠPARIã§ã¯ã©ããªã®ãããããããšããããã§ã)
埮å°éãšããŠã¯ã2 ^{-119}ãš2 ^{- 120} ãšã®ããã ã«å氎嶺ããããŸãã以äžã
? i = -120; for(n = 1, 308, if(n == floor(2^i + log(10^n)/log(10)), next, print(n, ";", floor(2^i + log(10^n)/log(10))) ) ); print("END")
ã
äžãèµ°ããããš
258;257
259;258
265;264
266;265
271;270
272;271
277;276
278;277
283;282
284;283
290;289
291;290
296;295
297;296
302;301
303;302
308;307
END
ã
ãšãªã
? i = -119; for(n = 1, 308, if(n == floor(2^i + log(10^n)/log(10)), next, print(n, ";", floor(2^i + log(10^n)/log(10))) ) ); print("END")
äžãèµ°ããããš
ã
END
ãšãªããŸãã
ããããããã®ãä»äºã§
ããã ãã®çŽ æ°ã«å¯Ÿããåžžçšå¯Ÿæ°å€ãå
±é忝ã§
log2 = 360565/1197771 = 0.3010299966 (çå€ 0.3010299957)
log3 = 571482/1197771 = 0.4771212527 (çå€ 0.4771212547)
log5 = 837206/1197771 = 0.6989700034 (çå€ 0.6989700043)
log7 = 1012234/1197771 = 0.8450981031 (çå€ 0.8450980400)
log11 = 1247350/1197771 = 1.0413927203 (çå€ 1.0413926852)
log13 = 1334249/1197771 = 1.1139433164 (çå€ 1.1139433523)
log17 = 1473796/1197771 = 1.2304488922 (çå€ 1.2304489214)
log19 = 1531654/1197771 = 1.2787536182 (çå€ 1.2787536010)
log23 = 1631038/1197771 = 1.3617277426 (çå€ 1.3617278360)
log29 = 1751618/1197771 = 1.4623980711 (çå€ 1.4623979979)
忝ã®1197771ã¯10000000ãŸã§ã§æã誀差ãå°ãªããªãå€ã§ãã
ã®æ§ã«æ§æå¯èœã§ããããšã«é©ããŸãããããµãšåæ¯ãæããªããšã
忝ã¯ãã®ã«ãã£ãŠå€åãããŠããããªãã©ããªãã®ãæ°ã«ãªã£ãŠèª¿ã¹ãŠã¿ãŸããã
3æ¡ã»ã©ã®åæ°ã§ã®è¿äŒŒã¯ã忝ãæããããšã«æããªããªã
gp > abs(146/485-log(2)/log(10))
%469 = 9.3217107035117801368259509460209827810 E-7
gp > abs(73/153-log(3)/log(10))
%470 = 2.9282868735104173903973984794620415878 E-6
gp > abs(339/485-log(5)/log(10))
%471 = 9.3217107035117801368259509460209517576 E-7
gp > abs(431/510-log(7)/log(10))
%472 = 7.9857055620241233702400874249978544429 E-10
gp > abs(478/459-log(11)/log(10))
%473 = 1.6503537575300559002466218995055742675 E-6
gp > abs(743/667-log(13)/log(10))
%474 = 3.2382107964776722479812223847580763836 E-7
gp > abs(299/243-log(17)/log(10))
%475 = 3.7535188454130236161139021156448952272 E-6
gp > abs(656/513-log(19)/log(10))
%476 = 1.1643056554722575810391097558286690920 E-6
gp > abs(1103/810-log(23)/log(10))
%477 = 5.5904413551619395128281053884536869710 E-7
gp > abs(525/359-log(29)/log(10))
%478 = 2.4547234686221517882671475279717504814 E-6
ã®æ§ãªåæ°ã§ããªãã®ç²ŸåºŠãäžããããã§ãã
è¿äŒŒåæ°ã«é¢ããŠã¯ä»¥åå°ãç ç©¶ããããšããããŸãã
ïŒåæ°ã®æé ã§ç²ŸåºŠé ã«åæ°ãåæããæ¹æ³ãèããŸãã(äœåæ¡ã§ãOK)ãïŒ
æžãããŠããåæ°ã¯ããã¹ãŠé£åæ°ãæã¡åã£ãŠåŸãããåæ°ã§ããã
ãããããã¯ã3æ¡ä»¥äžã§æãè¯ããåæ°ãåŸããããšã¯éããŸããã
äŸãã°log17ã¯299/243ãã881/716ã®æ¹ãè¯ãè¿äŒŒã«ãªããŸãã
åæ§ã«log29ã525/359ãã914/625ã®æ¹ãå°ãã ãè¯ãè¿äŒŒã«ãªããŸãã
log23ã¯3æ¡ä»¥äžã§é£åæ°æã¡åãã§åŸãããåæ°ã§ã¯64/47ãæå€§ã§
粟床ãåºãªãããã«åå4æ¡ã蚱容ãããã®ãšæããŸããã
975/716ã§ãããããã®ç²ŸåºŠã¯åºãŸãã
倧åã®å€ã¯ãå°æ°ç¹ä»¥äžã®ç²ŸåºŠã(åæ¯ã®æ¡æ°Ã2)æ¡çšåºŠã«ãªããŸããã
ããŸããŸé£åæ°æã¡åãçŽåŸã®å€ã倧ããå Žåã¯ç²ŸåºŠãè¯ããªããŸããã
log7ã¯[0;1,5,2,5,6,1,4813,1,1,âŠ]ã§4813ã®åã§æã¡åã£ãŠãããã
ããã ãç¹å¥ã«ç²ŸåºŠãè¯ããªã£ãŠããŸãã
ååšçã®355/113ãåæ§ã§ããã
åã« 1 ã€ã®å¯Ÿæ°å€ãæ©æ¢°èšç®ãèš±ããŠèªç±ã«æçæ°è¿äŒŒããã ãã§ãããã
æ°åŠæåç§è©± > 环ä¹ã®äž 4 æ¡
ä»ããã®ãµã€ãã®äœã¶æãã§åãè°è«ãç¹°ãè¿ãè¡ãããŠããŸããã
29ãŸã§ã®çŽ æ°ã§ãåžžçšå¯Ÿæ°ã®é£åæ°å±éãæ±ããŠã¿ãŸããããlog_{10}(7)ã®ãšãã®4813ã®ãããªå€§ããªæ°ã¯çŸããŸããã§ããããªããlog_{10}(5)=1-log_{10}(2)ãªã®ã§çç¥ããŠããŸãã
log_{10}(2)=[0;3,3,9,2,2,4,6,2,1,1,3,1,18,...]
[0;3,3,9,2,2,4,6,2,1,1,3,1]=97879/325147
=0.301029995663499893894146339963
log_{10}(3)=[0,2,10,2,2,1,13,1,7,18,...]
[0,2,10,2,2,1,13,1,7]=34367/33001
=0.477121254550546065527863343601
log_{10}(11)=[1;24,6,3,2,1,1,3,1,1,1,9,...]
[1;24,6,3,2,1,1,3,1,1,1]=22014/21139
=1.04139268507014938941244204721
log_{10}(13)=[1;1,8,1,3,2,7,1,6,16,...]
[1;1,8,1,3,2,7,1,6]=5113/4590
=1.11394335511982570806100217865
log_{10}(17)=[1,4,2,1,17,1,13,1,1,3,3,26,...]
[1;4,2,1,17,1,13,1,1,3,3]=99797/81106
=1.23045150790323773826843883313
log_{10}(19)=[1;3,1,1,2,2,1,3,2,2,1,4,1,1,1,6,1,3,1,3,1,47,...]
[1;3,1,1,2,2,1,3,2,2,1,4,1,1,1,6,1,3,1,3,1]=6497723/5081294
=1.27875360095282815755199364571
log_{10}(23)=[1;2,1,3,4,17,2,1,2,66,...]
[1;2,1,3,4,17,2,1,2]=9016/6621
=1.36172783567436943059960731007
log_{10}(29)=[[1;2,6,6,1,2,1,2,2,2,1,1,1,1,1,5,1,2,3,37,...]
[1;2,6,6,1,2,1,2,2,2,1,1,1,1,1,5,1,2,3]=5243915/3585833
=1.46239799789895402267757589380
log[10]7ã§é£åæ°ã®8çªç®ã®å€ã4813ã§ããã
log[10]2ã¯137çªç®ã5393
log[10]3ã¯562çªç®ã2788
log[10]11ã¯2179çªç®ã3864
log[10]13ã¯133çªç®ã1378
log[10]17ã¯710çªç®ã3301
log[10]19ã¯1341çªç®ã2249
log[10]23ã¯921çªç®ã2695
log[10]29ã¯352çªç®ã1901
ã®ããã«ãã£ãšå
ãŸã§èŠãã°å€§ããªæ°ã¯ãããåºãŠããŸãã
log[10]7ã¯å¥è·¡çã«åã®æ¹ã«ãã£ããšããããšã§ããã
â ABC=ΞãšããŠã
AH=x=6tanΞ=4tan(3Ï/4-Ξ)
tanΞ=x/6ãtan(3Ï/4-Ξ)=x/4ãªã®ã§ã
tan(3Ï/4-Ξ)=(tan(3Ï/4)-tanΞ)/(1+tan(3Ï/4)tanΞ)ããã
x/4=(-1-(x/6))/(1-x/6)
ã§ãããããããã
x/4-x^2/24=-1-x/6
x^2-10x-24=0ãããªãã¡ãã
(x+2)(x-12)=0
ãã£ãŠãx=-2,12
x>0ãªã®ã§AH=x=12
åãåé¡ã«ã€ããŠãªã®ã§ãéåãããŸãã
å¹³é¢å¹Ÿäœçè§£æ³ã§ãã
ãã®äžè§åœ¢ã®å€å¿ã O ãšãããšãâ³OBC 㯠OB = OC ã§ããçŽè§äºç蟺äžè§åœ¢ãªã®ã§ã
ããšã¯ OH ã察è§ç·ãšããé·æ¹åœ¢ãæžããŠãªãããããããã°
AH = 5 + â{ (5â2)^2 - 1 } = 12
ãšæ±ãŸããŸããã
å
æ¥ãç§ã¯ãµãš 4374 ãš 4375 ãã©ã¡ãã 1 æ¡ã®çŽ å æ°ããæããªãããšã«æ°ã¥ããŸããã
ãããŠã224 ãš 225ã2400 ãš 2401 ãåæ§ã®æ§è³ªãæã€ãšç¥ã£ãŠããç§ã¯ã以äžã®ãããªèšç®ãåŸãŸããã
log ã¯å
šãŠåžžçšå¯Ÿæ°ã§ãã
224 â 225 ãã
5 log 2 + log 7 â 2 log 3 + 2 log 5
2400 â 2401 ãã
5 log 2 + log 3 + 2 log 5 â 4 log 7
4374 â 4375 ãã
log 2 + 7 log 3 â 4 log 5 + log 7
ãããŠã
log 2 + log 5 = 1
ããããé£ç«ã㊠4 å
1 次æ¹çšåŒãšæã£ãŠè§£ããšãå°æ°ç¬¬6äœåæšäºå
¥ã§
log 2 â 72/239 â 0.30126 ïŒçå€ 0.30103ïŒ
log 3 â 114/239 â 0.47699 ïŒçå€ 0.47712ïŒ
log 5 â 167/239 â 0.69874 ïŒçå€ 0.69897ïŒ
log 7 â 202/239 â 0.84519 ïŒçå€ 0.84510ïŒ
ããããŠæ¯èŒçç°¡åã«ããè¿äŒŒå€ãåŸãããããã§ãã
ãããèŠãŠçåãããã€ãã
(1)
忝 239 ãšããã®ã¯ã©ã®ãããã®åªç§ããªãã§ããããïŒ
ããªãã¡ã4 ã€ã®å¯Ÿæ°ã忝ãå
±éãªæçæ°ã§è¿äŒŒããå Žåã忝<1000 ãããã§äœçªç®ãããã«åªç§ãªè¿äŒŒå€ãåŸããã忝ãªãã§ããããïŒ
ïŒçµ¶å¯Ÿèª€å·®ã®åã§è©äŸ¡ãããçžå¯Ÿèª€å·®ã®åã§è©äŸ¡ãããã§ãå€ãããšæããŸããïŒ
(2)
4 æ¡ã§å·®ã 1 ã§ãããã®ãããã7æ¡ä»¥äžã§å·®ã 11 ã 13 ãããã¯ããããå«ã 2 æ¡ãããã®åææ°ã§ãããã®ãçšããæ¹ã粟床ããããªããããªæ°ãããŸãâŠâŠæ¬åœã§ããããïŒ
æ¬åœã ãšããŠãå
·äœçã«ã©ã®ããã粟床ãäžããããã§ãããïŒ
ïŒå·®ã 1 æ¡ã®çŽ å æ°ããæããªããã®ã¯ãABCäºæ³ã®èšŒæãä¿¡ãããªã 44100 ããå
ã«ã¯ååšããªãã¯ãïŒ
(3)
â ã§ã¯ãªããäžçå·ã§ã®è©äŸ¡ã¯åæ§ã®æ¹æ³ã§å¯èœã§ããããïŒ
(4)
䜿ãçŽ æ°ã« 11 ãå«ã㊠5 å
1 次ã«ããã䜿ãçŽ æ°ã« 13 ãŸã§å«ã㊠6 å
1 次ã«ããããªã©ã§ç²ŸåºŠã®åäžã¯å¯èœã§ããããïŒ
ç¹ã« (1) (2) (4) ã¯æäœæ¥ã§ã¯ç¡è¬ã«ãã»ã©ãããã®ã§ãã³ã³ãã¥ãŒã¿ç³»ã®æŽè»ããé¡ãããŸãã
ãšãããã(1)ã ã
> 忝 239 ãšããã®ã¯ã©ã®ãããã®åªç§ããªãã§ããããïŒ
忝ïŒ1000ã§ã¯(çžå¯Ÿèª€å·®ã®åèšã§)70çªç®ã«åªç§ã§ããã
239ã§çžå¯Ÿèª€å·®ã®åèšã¯0.001457âŠã§ãã
1äœã¯568ã§ãçžå¯Ÿèª€å·®ã®åèšã¯0.0001758âŠã§ãã
2äœä»¥äžã¯897,960,807,794,âŠãšç¶ããŸããã忝ã倧ãããã°çžå¯Ÿèª€å·®ãå°ããã®ã¯åœç¶ã§ã
ããããæå³ã§ã¯69çªç®ãŸã§ã«åæ¯ã239æªæºã®ãã®ã¯ãããŸããã®ã§ã239ã¯çµæ§åªç§ãšèšãããšæããŸãã
忝ã®å€§ãããèæ
®ããŠãçžå¯Ÿèª€å·®ã®åèšÃ忝ãã§ã©ã³ãã³ã°ãäœããšã
1äœã®568ã2äœã®897ã¯å€ãããŸãããã3äœã329ããããŠ4äœã239ãšãªããŸãã
çžå¯Ÿèª€å·®ã®åèšÃ忝ã®å
·äœå€(5äœãŸã§)ã¯
568 0.099882607730
897 0.222871229356
329 0.285662258393
239 0.348293385746
103 0.383956736568
ã®ããã«ãªã£ãŠããŠããããèŠãŠã568ã ãçªåºããŠããæãã§ãã
ã¡ãªã¿ã«åæ¯ã568ã®å Žåã®å¯Ÿæ°ã®è¿äŒŒå€ã¯
log2 â 171/568 â 0.30106
log3 â 271/568 â 0.47711
log5 â 397/568 â 0.69894
log7 â 480/568 â 0.84507
ãªã®ã§ããªãè¯ãè¿äŒŒã«ãªã£ãŠããŸããã
忝ã568ã«ãªããããªçµåããé©åœã«æ¢ããŠã¿ããšã
(2400,2401),(4374,4375),(250000,250047)
ããåŒãç«ãŠãã°äžèšã®å€ã«ãªãããã§ãã
(æ€ç®ããŠããŸããã)
ãããŒã568 åªç§ã§ããã
ããã 250047 ã¯äººåããæµç³ã«ã¡ãã£ãšåºãŠããªãâŠâŠã
ãã£ã±ãæ¡æ°ãå€ããš 2 æ°ã®å·®ãå°ããã£ãŠãæ°ã«ãªããªããªã£ãŠããã®ã§ç²ŸåºŠäžããã£ãœãã§ããã
(3)ã«ã€ããŠ
5log2 + log7 â 2log3 + 2log5
5log2 + log3 + 2log5 â 4log7
log2 + 7log3 â 4log5 + log7
ã
5log2 + log7 + a = 2log3 + 2log5
5log2 + log3 + 2log5 + b = 4log7
log2 + 7log3 + c = 4log5 + log7
ïŒa,b,cïŒ0ïŒ
ãšããŠèšç®ãããš
log2 = (72 - 27a - 5b - 7c) / 239
log3 = (114 + 17a + 12b - 31c) / 239
log5 = (167 + 27a + 5b + 7c) / 239
log7 = (202 - 16a + 59b - 13c) / 239
ãšãªããŸãããã®åŒãã
log2 ïŒ 72/239
log5 ïŒ 167/239
ã¯ãã ã¡ã«ããããŸãããlog3 ãš 114/239 ã®å€§å°é¢ä¿ã¯
17a + 12b - 31c ã®ç¬Šå·ã調ã¹ãªããšããããŸããã
ããã 17a + 12b - 31c ã®ç¬Šå·ã調ã¹ãããã«èšç®ãããš
17a + 12b - 31c = 239log3 - 114log10
ãšãªã£ãŠ 3^239 ãš 10^114 ã®å€§å°é¢ä¿ã調ã¹ãããšã«ãªããæ¬æ«è»¢åã§ãã
ãã£ãŠåæ§ã®æ¹æ³ã§äžçåŒã§äžäžããããããããã«ã¯
è¿äŒŒåŒã倿°çšæããŠããŸããŸå€§å°é¢ä¿ããããããšã«æåŸ
ããããããã
æãã€ããŸãããã远å ã®è¿äŒŒåŒãçšæããããšãããšæ¡æ°ãå¢ããŠ
æèšç®ã«äžåãã«ãªã£ãŠããŸãã®ã§ããšãããã
ããã®æ¹æ³ã§ã®äžçå·ã§ã®è©äŸ¡ã¯é£ããã
ãšèšã£ãŠããããšæããŸãã
> 17a + 12b - 31c ã®ç¬Šå·ã調ã¹ãªããšããããŸããã
ãªãã»ã©ãå·®åã宿°åããŠããŸãã°ããã£ãã®ã§ããã
é£ç«æ¹çšåŒãè§£ãæéã¯ãã£ããå¢ããŠããŸããŸãããã©ãã
æã§ãããªãéè¡åçšæããŠè§£ãã®ãäžçªæ©ãããªïŒ
{1/n - 1/(2*n^2)} log e < log{1+(1/n)} < {1/n} log e
ã䜿ãã°ãlog e ã¯æ¬ãåºããŠæŸçœ®ã§ããã®ã§ãa, b, c ã®ç·åçµåã®æ£è² è©äŸ¡ã¯ãªããšããªãã±ãŒã¹ãå€ããã«æããŸãã
(224, 225), (2400, 2401), (4374, 4375) ã®ã±ãŒã¹ã¯å®éããã§ãªããšããªãã¿ããã§ãã
é·æã§ãã
(2)ã«ã€ããŠ
çŽ æ°2,3,5,7ã10æ¡ä»¥äžã§(2400,2401)ãã誀差çãå°ãããã®ã¯
以äžã®6åãããããŸããã§ããã巊端ã¯èª€å·®ç(倧ããæ¹ã®å€Ã·å°ããæ¹ã®å€ïŒ1)ã§ãã
0.000040616 78121827 78125000
0.000066758 645657712 645700815
0.000107377 3954653486 3955078125
0.000188000 250000 250047
0.000228624 4374 4375
0.000295397 184473632 184528125
0.000416667 2400 2401
78121827 = 3^13 * 7^2, 78125000 = 2^3 * 5^10, å·® = 3173 = 19 * 167
645657712 = 2^4 * 7^9, 645700815 = 3^17 * 5, å·® = 43103 (çŽ æ°)
3954653486 = 2 * 7^11, 3955078125 = 3^4 * 5^11, å·® = 424639 (çŽ æ°)
ããã䜿ã£ãŠ
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
4log2 + 9log7 = 17log3 + log5 (645657712, 645700815)
log2 + 11log7 = 4log3 + 11log5 (3954653486, 3955078125)
log2 + log5 = 1
ãè§£ããšäžæ¬¡åŸå±ã§è§£ããŸããã§ããã
ãããããŠ
78121827 = 3^13 * 7^2, 78125000 = 2^3 * 5^10, å·® = 3173 = 19 * 167
645657712 = 2^4 * 7^9, 645700815 = 3^17 * 5, å·® = 43103 (çŽ æ°)
250000 = 2^4 * 5^6, 250047 = 3^6 * 7^3, å·® = 47 (çŽ æ°)
ããã䜿ã£ãŠ
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
4log2 + 9log7 = 17log3 + log5 (645657712, 645700815)
4log2 + 6log5 = 6log3 + 3log7 (250000, 250047)
log2 + log5 = 1
ãè§£ããš
log2 = 171/568, log3 = 271/568, log5 = 397/568, log7 = 480/568
ããã¯èŠèŠãããããŸããã
ããããã®å€ã¯(2400,2401),(4374,4375),(250000,250047)
ãããåŸãããã®ã§ã¯ãªãããšæã£ãŠäžã§ãæ€ç®ããŠããŸããããšæžããã®ã
ãããããŠæ€ç®ããŠã¿ããšããªããš
5log2 + log3 + 2log5 = 4log7 (2400, 2401)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
4log2 + 6log5 = 6log3 + 3log7 (250000, 250047)
log2 + log5 = 1
ã¯äžæ¬¡åŸå±ã§è§£ããŸããã§ãããçµæ§è§£ããªãå ŽåãåºãŠããã®ã§ããã
ããã§ã¯ããããçµåããå€ããŠè©Šãããšã«ããŸãã
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
log2 + 11log7 = 4log3 + 11log5 (3954653486, 3955078125)
4log2 + 6log5 = 6log3 + 3log7 (250000, 250047)
log2 + log5 = 1
â log2 = 171/568, log3 = 271/568, log5 = 397/568, log7 = 480/568
4log2 + 9log7 = 17log3 + log5 (645657712, 645700815)
log2 + 11log7 = 4log3 + 11log5 (3954653486, 3955078125)
4log2 + 6log5 = 6log3 + 3log7 (250000, 250047)
log2 + log5 = 1
â log2 = 171/568, log3 = 271/568, log5 = 397/568, log7 = 480/568
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
4log2 + 9log7 = 17log3 + log5 (645657712, 645700815)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
log2 + log5 = 1
â log2 = 171/568, log3 = 271/568, log5 = 397/568, log7 = 480/568
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
log2 + 11log7 = 4log3 + 11log5 (3954653486, 3955078125)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
log2 + log5 = 1
â log2 = 171/568, log3 = 271/568, log5 = 397/568, log7 = 480/568
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
4log2 + 6log5 = 6log3 + 3log7 (250000, 250047)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
log2 + log5 = 1
â äžæ¬¡åŸå±
4log2 + 9log7 = 17log3 + log5 (645657712, 645700815)
4log2 + 6log5 = 6log3 + 3log7 (250000, 250047)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
log2 + log5 = 1
â log2 = 171/568, log3 = 271/568, log5 = 397/568, log7 = 480/568
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
5log2 + log3 + 2log5 = 4log7 (2400, 2401)
log2 + log5 = 1
â äžæ¬¡åŸå±
è§£ãåŸãããŠãåããã®ã°ããã§ãããã¡ãã£ãšç²ŸåºŠãè¯ããããã ãš
ããŸãå€ãããªãããã§ãã
ã§ã¯ããã«ç²ŸåºŠãè¯ããã®ãèŠã€ããŠè©ŠããŸãã
ãããã10æ¡ä»¥äžãã11æ¡ä»¥äžã12æ¡ä»¥äžãã»ã»ã»ãšå¢ãããŠããªããªãèŠã€ãããŸããã
ã15æ¡ä»¥äžããŸã§å¢ãããŠããã£ãš
0.000026141 205885750000000 205891132094649
0.000033563 281474976710656 281484423828125
ã®äºã€ãèŠã€ãããŸããã®ã§ããããš(78121827, 78125000)ã§è©ŠããŸãã
205885750000000 = 2^7 * 5^9 * 7^7, 205891132094649 = 3^30,
å·® = 5382094649 = 3673 * 1465313
281474976710656 = 2^48, 281484423828125 = 5^11 * 7^8,
å·® = 9447117469 (çŽ æ°)
7log2 + 9log5 + 7log7 = 30log3 (205885750000000, 205891132094649)
48log2 = 11log5 + 8log7 (281474976710656, 281484423828125)
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
log2 + log5 = 1
â
log2 = 3125/10381 = 0.30103073 (çå€ 0.30103000)
log3 = 4953/10381 = 0.47712166 (çå€ 0.47712125)
log5 = 7256/10381 = 0.69896927 (çå€ 0.69897000)
log7 = 8773/10381 = 0.84510163 (çå€ 0.84509804)
ããããå°ã粟床ãäžãããŸããã
ã¡ãªã¿ã«ããäžæ¡äžã®
0.000007053 2251783932057135 2251799813685248
2251783932057135 = 3^13 * 5 * 7^10, 2251799813685248 = 2^51,
å·® = 15881628113 = 13 * 71 * 17206531
ã䜿ã£ãŠ
13log3 + log5 + 10log7 = 51log2 (2251783932057135, 2251799813685248)
7log2 + 9log5 + 7log7 = 30log3 (205885750000000, 205891132094649)
48log2 = 11log5 + 8log7 (281474976710656, 281484423828125)
log2 + log5 = 1
ãšããŠãäžãšåã忝10381ã®å€ã«ãªããŸããã
ãšããããã§ã
äœ¿ãæ°åã®æ¡æ°ãããªãå¢ãããŠãçµæã®ç²ŸåºŠãããŸãäžãããªãããã
ãšããããšãããããŸããã
äœ¿ãæ¡æ°ãäžãã£ãŠãã2, 3, 5, 7 ã§äœããåææ°ã®å²åãæžãããšã§æã¡æ¶ãããŠããŸãã誀差çããªããªãå°ãããªããªããã§ããã
ãããªããšã11ã13ã®äœ¿çšãæ€èšããæ¹ã粟床äžãã«ã¯éèŠãªã®ããªïŒ
ãŸãé·æã§ããããã§åœåã®èª²é¡ã¯ãšããããå®çµã
(4)
ã11ã远å ããå Žåã
(1äžãŸã§)
0.000102041 9800 9801
0.000228624 4374 4375
0.000330688 3024 3025
0.000416667 2400 2401
0.001244444 5625 5632
9800 = 2^3 * 5^2 * 7^2, 9801 = 3^4 * 11^2
4374 = 2 * 3^7, 4375 = 5^4 * 7
3024 = 2^4 * 3^3 * 7, 3025 = 5^2 * 11^2
2400 = 2^5 * 3 * 5^2, 2401 = 7^4
3log2 + 2log5 + 2log7 = 4log3 + 2log11 (9800, 9801)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
4log2 + 3log3 + log7 = 2log5 + 2log11 (3024, 3025)
5log2 + log3 + 2log5 = 4log7 (2400, 2401)
log2 + log5 = 1
â äžæ¬¡åŸå±
5625 = 3^2 * 5^4, 5632 = 2^9 * 11, å·® = 7
3log2 + 2log5 + 2log7 = 4log3 + 2log11 (9800, 9801)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
5log2 + log3 + 2log5 = 4log7 (2400, 2401)
2log3 + 4log5 = 9log2 + log11 (5625, 5632)
log2 + log5 = 1
â
log2 = 270/897 = 0.301003 (çå€ 0.301030)
log3 = 428/897 = 0.477146 (çå€ 0.477121)
log5 = 627/897 = 0.698997 (çå€ 0.698970)
log7 = 758/897 = 0.845039 (çå€ 0.845098)
log11 = 934/897 = 1.041249 (çå€ 1.041393)
897ã¯äžã®æ¹ã§568ã«æ¬¡ãã§ç²ŸåºŠã®è¯ã忝ã§ãã
(1åãŸã§)
0.000016089 3294172 3294225
0.000022158 67108864 67110351
0.000040616 78121827 78125000
0.000050668 14348180 14348907
3294172 = 2^2 * 7^7, 3294225 = 3^2 * 5^2 * 11^4, å·® = 53 (çŽ æ°)
67108864 = 2^26, 67110351 = 3 * 7^5 * 11^3, å·® = 1487 (çŽ æ°)
78121827 = 3^13 * 7^2, 78125000 = 2^3 * 5^10, å·® = 3173 = 19 * 167
14348180 = 2^2 * 5 * 7^2 * 11^4, 14348907 = 3^15, å·® = 727 (çŽ æ°)
2log2 + 7log7 = 2log3 + 2log5 + 4log11 (3294172, 3294225)
26log2 = log3 + 5log7 + 3log11 (67108864, 67110351)
13log3 + 2log7 = 3log2 + 10log5 (78121827, 78125000)
2log2 + log5 + 2log7 + 4log11 = 15log3 (14348180, 14348907)
log2 + log5 = 1
â
log2 = 6421/21330 = 0.3010314 (çå€ 0.3010300)
log3 = 10177/21330 = 0.4771214 (çå€ 0.4771213)
log5 = 14909/21330 = 0.6989686 (çå€ 0.6989700)
log7 = 18026/21330 = 0.8451008 (çå€ 0.8450980)
log11 = 22213/21330 = 1,0413971 (çå€ 1.0413927)
çµæ§ç²ŸåºŠãäžãããŸããã
ã13ã远å ããå Žåã
(1äžãŸã§)
0.000102041 9800 9801
0.000150263 6655 6656
0.000228624 4374 4375
0.000236742 4224 4225
0.000244200 4095 4096
0.000330688 3024 3025
0.000416667 2400 2401
9800 = 2^3 * 5^2 * 7^2, 9801 = 3^4 * 11^2
6655 = 5 * 11^3, 6656 = 2^9 * 13
4374 = 2 * 3^7, 4375 = 5^4 * 7
4224 = 2^7 * 3 * 11, 4225 = 5^2 * 13^2
4095 = 3^2 * 5 * 7 * 13, 4096 = 2^12
3024 = 2^4 * 3^3 * 7, 3025 = 5^2 * 11^2
2400 = 2^5 * 3 * 5^2, 2401 = 7^4
3log2 + 2log5 + 2log7 = 4log3 + 2log11 (9800, 9801)
log5 + 3log11 = 9log2 + log13 (6655, 6656)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
7log2 + log3 + log11 = 2log5 + 2log13 (4224, 4225)
2log3 + log5 + log7 + log13 = 12log2 (4095, 4096)
log2 + log5 = 1
â äžæ¬¡åŸå±
3log2 + 2log5 + 2log7 = 4log3 + 2log11 (9800, 9801)
log5 + 3log11 = 9log2 + log13 (6655, 6656)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
7log2 + log3 + log11 = 2log5 + 2log13 (4224, 4225)
2log3 + log5 + log7 + log13 = 12log2 (4095, 4096)
4log2 + 3log3 + log7 = 2log5 + 2log11 (3024, 3025)
log2 + log5 = 1
â äžæ¬¡åŸå± (åŒãäžã€å€ããŠããªãäžæ¬¡åŸå±ãªã®ã§ä»ã®åŒãå¿
èŠ)
3log2 + 2log5 + 2log7 = 4log3 + 2log11 (9800, 9801)
log5 + 3log11 = 9log2 + log13 (6655, 6656)
log2 + 7log3 = 4log5 + log7 (4374, 4375)
7log2 + log3 + log11 = 2log5 + 2log13 (4224, 4225)
5log2 + log3 + 2log5 = 4log7 (2400, 2401)
log2 + log5 = 1
â
log2 = 270/897 = 0.301003 (çå€ 0.301030)
log3 = 428/897 = 0.477146 (çå€ 0.477121)
log5 = 627/897 = 0.698997 (çå€ 0.698970)
log7 = 758/897 = 0.845039 (çå€ 0.845098)
log11 = 934/897 = 1.041249 (çå€ 1.041393)
log13 = 999/897 = 1.113712 (çå€ 1.113943)
11ã ã远å ãããšããšåã粟床ã§ãã
(1åãŸã§)
0.000007456 5767125 5767168
0.000008117 123200 123201
0.000013783 72772425 72773428
0.000015573 1990625 1990656
0.000016089 3294172 3294225
0.000018861 19140264 19140625
0.000022158 67108864 67110351
5767125 = 3 * 5^3 * 7 * 13^3, 5767168 = 2^19 * 11, å·® = 43 (çŽ æ°)
123200 = 2^6 * 5^2 * 7 * 11, 123201 = 3^6 * 13^2
72772425 = 3^7 * 5^2 * 11^3, 72773428 = 2^2 * 7^2 * 13^5, å·® = 1003 = 17 * 59
1990625 = 5^5 * 7^2 * 13, 1990656 = 2^13 * 3^5, å·® = 31 (çŽ æ°)
3294172 = 2^2 * 7^7, 3294225 = 3^2 * 5^2 * 11^4, å·® = 53 (çŽ æ°)
19140264 = 2^3 * 3^2 * 11^2 * 13^3, 19140625 = 5^8 * 7^2, å·® = 361 = 19^2
67108864 = 2^26, 67110351 = 3 * 7^5 * 11^3, å·® = 1487 (çŽ æ°)
log3 + 3log5 + log7 + 3log13 = 19log2 + log11 (5767125, 5767168)
6log2 + 2log5 + log7 + log11 = 6log3 + 2log13 (123200, 123201)
7log3 + 2log5 + 3log11 = 2log2 + 2log7 + 5log13 (72772425, 72773428)
5log5 + 2log7 + log13 = 13log2 + 5log3 (1990625, 1990656)
2log2 + 7log7 = 2log3 + 2log5 + 4log11 (3294172, 3294225)
log2 + log5 = 1
â äžæ¬¡åŸå±
log3 + 3log5 + log7 + 3log13 = 19log2 + log11 (5767125, 5767168)
6log2 + 2log5 + log7 + log11 = 6log3 + 2log13 (123200, 123201)
7log3 + 2log5 + 3log11 = 2log2 + 2log7 + 5log13 (72772425, 72773428)
2log2 + 7log7 = 2log3 + 2log5 + 4log11 (3294172, 3294225)
3log2 + 2log3 + 2log11 + 3log13 = 8log5 + 2log7 (19140264, 19140625)
log2 + log5 = 1
â
log2 = 6079/20194 = 0.3010300089 (çå€ 0.3010299957)
log3 = 9635/20194 = 0.4771219174 (çå€ 0.4771212547)
log5 = 14115/20194 = 0.6989699911 (çå€ 0.6989700043)
log7 = 17066/20194 = 0.8451025057 (çå€ 0.8450980400)
log11 = 21030/20194 = 1.0413984352 (çå€ 1.0413926852)
log13 = 22495/20194 = 1.1139447361 (çå€ 1.1139433523)
粟床ã¯11ã ã远å ã®ãšããšåçšåºŠã§ãã
ïŒlog2ãšlog5ã¯ç²ŸåºŠãããã§ãããä»ã¯ãããŸã§è¯ããããŸããïŒ
ã29ãŸã§è¿œå ããå ŽåïŒçŽ æ°10åïŒã
(1åãŸã§)
0.000000010 96059600 96059601
0.000000055 18085704 18085705
0.000000075 26578123 26578125
0.000000084 11859210 11859211
0.000000095 10556000 10556001
0.000000121 8268799 8268800
0.000000155 12901779 12901781
0.000000169 5909760 5909761
0.000000194 5142500 5142501
0.000000244 4096575 4096576
0.000000244 4090624 4090625
0.000000250 4004000 4004001
0.000000315 22194425 22194432
0.000000365 13697019 13697024
0.000000365 90312467 90312500
0.000000371 2697695 2697696
0.000000485 8254125 8254129
0.000000489 88012332 88012375
0.000000494 2023424 2023425
0.000000520 90312453 90312500
0.000000540 1852200 1852201
0.000000560 67874587 67874625
0.000000569 75557027 75557070
0.000000587 46000759 46000786
96059600 = 2^4 * 5^2 * 7^2 * 13^2 * 29, 96059601 = 3^8 * 11^4
18085704 = 2^3 * 3 * 7^3 * 13^3, 18085705 = 5 * 11 * 17 * 23 * 29^2
26578123 = 11 * 13^2 * 17 * 29^2, 26578125 = 3^5 * 5^6 * 7
11859210 = 2 * 3^4 * 5 * 11^4, 11859211 = 7 * 13 * 19^4
10556000 = 2^5 * 5^3 * 7 * 13 * 29, 10556001 = 3^4 * 19^4
8268799 = 7^2 * 11 * 23^2 * 29, 8268800 = 2^10 * 5^2 * 17 * 19
12901779 = 3^2 * 11 * 19^4, 12901781 = 23^2 * 29^3
5909760 = 2^8 * 3^5 * 5 * 19, 5909761 = 11^2 * 13^2 * 17^2
5142500 = 2^2 * 5^4 * 11^2 * 17, 5142501 = 3^3 * 7^2 * 13^2 * 23
4096575 = 3^4 * 5^2 * 7 * 17^2, 4096576 = 2^6 * 11^2 * 23^2
4090624 = 2^8 * 19 * 29^2, 4090625 = 5^5 * 7 * 11 * 17
4004000 = 2^5 * 5^3 * 7 * 11 * 13, 4004001 = 3^2 * 23^2 * 29^2
22194425 = 5^2 * 11^3 * 23 * 29, 22194432 = 2^8 * 3^3 * 13^2 * 19
13697019 = 3^4 * 7^3 * 17 * 29, 13697024 = 2^16 * 11 * 19
90312467 = 7 * 23^2 * 29^3, 90312500 = 2^2 * 5^7 * 17^2
2697695 = 5 * 7^3 * 11^2 * 13, 2697696 = 2^5 * 3^2 * 17 * 19 * 29
8254125 = 3^2 * 5^3 * 11 * 23 * 29, 8254129 = 13^4 * 17^2
88012332 = 2^2 * 3^4 * 17 * 19 * 29^2, 88012375 = 5^3 * 11^3 * 23^2
2023424 = 2^13 * 13 * 19, 2023425 = 3^2 * 5^2 * 17 * 23^2
90312453 = 3^2 * 7 * 11 * 19^4, 90312500 = 2^2 * 5^7 * 17^2
1852200 = 2^3 * 3^3 * 5^2 * 7^3, 1852201 = 13 * 17^3 * 29
67874587 = 11^2 * 23 * 29^3, 67874625 = 3^3 * 5^3 * 7 * 13^2 * 17
75557027 = 7 * 13^3 * 17^3, 75557070 = 2 * 3^3 * 5 * 23^4
46000759 = 7^6 * 17 * 23, 46000786 = 2 * 13^3 * 19^2 * 29
4log2 + 2log5 + 2log7 + 2log13 + log29 = 8log3 + 4log11 (96059600, 96059601)
3log2 + log3 + 3log7 + 3log13 = log5 + log11 + log17 + log23 + 2log29 (18085704, 18085705)
log11 + 2log13 + log17 + 2log29 = 5log3 + 6log5 + log7 (26578123, 26578125)
log2 + 4log3 + log5 + 4log11 = log7 + log13 + 4log19 (11859210, 11859211)
2log7 + log11 + 2log23 + log29 = 10log2 + 2log5 + log17 + log19 (8268799, 8268800)
2log3 + log11 + 4log19 = 2log23 + 3log29 (12901779, 12901781)
8log2 + 5log3 + log5 + log19 = 2log11 + 2log13 + 2log17 (5909760, 5909761)
4log3 + 2log5 + log7 + 2log17 = 6log2 + 2log11 + 2log23 (4096575, 4096576)
6log7 + log17 + log23 = log2 + 3log13 + 2log19 + log29 (46000759, 46000786)
log2 + log5 = 1
â
log2 = 360565/1197771 = 0.3010299966 (çå€ 0.3010299957)
log3 = 571482/1197771 = 0.4771212527 (çå€ 0.4771212547)
log5 = 837206/1197771 = 0.6989700034 (çå€ 0.6989700043)
log7 = 1012234/1197771 = 0.8450981031 (çå€ 0.8450980400)
log11 = 1247350/1197771 = 1.0413927203 (çå€ 1.0413926852)
log13 = 1334249/1197771 = 1.1139433164 (çå€ 1.1139433523)
log17 = 1473796/1197771 = 1.2304488922 (çå€ 1.2304489214)
log19 = 1531654/1197771 = 1.2787536182 (çå€ 1.2787536010)
log23 = 1631038/1197771 = 1.3617277426 (çå€ 1.3617278360)
log29 = 1751618/1197771 = 1.4623980711 (çå€ 1.4623979979)
忝ã®1197771ã¯10000000ãŸã§ã§æã誀差ãå°ãªããªãå€ã§ãã
# 誀差ã®å°ãªãé ã«9å+(log2+log5=1)ã ãšäžæ¬¡åŸå±ã«ãªããŸãã
# ãããã1åãã€è¿œå ããŠãã£ãŠããã°ããäžæ¬¡åŸå±ã®ãŸãŸã§ã
# 24åç®ã®(46000759,46000786)ã®åŒã远å ããŠããããäžæ¬¡ç¬ç«ã«ãªããŸãã
# ãããŠããããéé ã«æ¶ããè¡ãæ¶ããŠãã£ãŠ10è¡ã«æžãããã®ã
# äžã«æžããåŒã§ãã
çµè«ãšããŠãçŽ æ°ã2,3,5,7ã«éå®ããŠããŸããšå·šå€§ãªæ°ã«ããŠã
ããŸã粟床ãåäžããŸããããçŽ æ°ã®åæ°ãå¢ãããŠããã°
çŸå®çãªå€ïŒãšãã£ãŠãæèšç®ã¯ç¡çïŒã§ç²ŸåºŠãäžããããããšã
ããããŸããã
éåžžã«æ·±ã調æ»ããŠãã ãããããããšãããããŸããã
ã ãã ããšæ¹çšåŒãäžæåŸå±ã«ãªã£ãŠããŸãåé¡ã匷æµã«ãªã£ãŠããã®ã¯æãããããŸããã§ããã
æèšç®ã§ãã倧å€ããšåŸããããã®ã®ãã©ã³ã¹çã«ã¯ãæåã®ãã€ãæã£ã以äžã«åªç§ã ã£ããã§ãããâŠâŠã
ã¯ãœæãå€äŒã¿ã«è±èªã®è£ç¿ãåè¬ãã«ç»æ ¡ããŠããããšãæãåºããŸããã
ããŸã«ã¯è±æã§ã
There are eight gold coins, one of which is a forgery containing radioactive material. The task is to identify this forgery using a series of measurements conducted by technicians with Geiger counters. The problem is structured as follows:
1. Coins: There are 8 gold coins, numbered 1 through 8. Exactly one coin is a forgery.
2. Forgery Characteristics: The forged coin contains radioactive material, detectable by a Geiger counter.
3. Technicians: There are 10 technicians available to perform measurements.
4. Measurement Process:
Each technician selects a subset of the 8 coins for measurement.
The technician uses a Geiger counter to test the selected coins simultaneously.
The Geiger counter reacts if and only if the forgery is among the selected coins.
Only the technician operating the device knows the result of the measurement.
5. Measurement Constraints:
Each technician performs exactly one measurement.
A total of 10 measurements are conducted.
6. Reporting:
After each measurement, the technician reports either "positive" (radioactivity detected) or "negative" (no radioactivity detected).
7. Reliability Issue: Up to two technicians may provide unreliable reports, either due to intentional deception or unintentional error.
8. Objective: Identify the forged coin with certainty, despite the possibility of up to two unreliable reports.
Challenge
The challenge is to design a measurement strategy and analysis algorithm that can definitively identify the forged coin, given these constraints and potential inaccuracies in the technicians' reports.
10人ãããç°¡åã ãšããŠã9人解ãã§ãããã§ã§ããªãâŠâŠ
å¿
èŠãªæå°äººæ°ã£ãŠäœäººãªãã§ããããïŒ
DD++ããã«ãšã£ãŠã¯ 10人ã¯ç°¡åâŠâŠãããã
9äººè§£ã®æ¢çŽ¢ãããããšæãããã¡ãå¹³é¢ã¯äœ¿ããªãããšæãã€ããŸããŠã
"000 000 000 ", 0,0,0,
"110 011 101 ", 6,3,5,
"111 110 001 ", 7,6,1,
"010 100 110 ", 2,4,6,
"011 001 010 ", 3,1,2,
"100 111 011 ", 4,7,3,
"001 101 100 ", 1,5,4,
"101 010 111 ", 5,2,7
ããã䜿ããŸããããããã«ãªã«ã1ãããã远å ããŠãã©ãã«ããªããªãã®ã§ããã
ããšãã°
"010 100 110 ", 2,4,6,
"011 001 010 ", 3,1,2,
"001 101 100 ", 1,5,4,
ã®éšåã ãã§ãã1ããããå¢ããããããã§ã¯ã2人ã®åã€ãã確å®ã§ããŸããã
ã¯ãã10人ãªãç°¡åã§ãã
9人ã®å Žåãåã€ããã確å®2人ããªãå¯èœãªãã§ããã©ããâŠâŠ
ã確å®ïŒäººããšãããèšèã«é©ããŸããã
æ¢ããã®ã§ãããèŠã€ããããã§ãã
å¯ç£ç©ãšããŠã以äžã®éãã®å€ãªãã®ãèŠã€ããŸããã
3 ãããã® 7 ã€ã®æ°ãæ°ç ã€ãªãã«ããŸãã
" 100 111 010 110 001 011 101 "
æ°ç ã§ãã®ã§ãæåŸå°Ÿã® 101 ã®æ¬¡ã«ã¯ å
é ã® 100 ã«ã€ãªããããšãšããŸãã
ãã®æ°ç ã®ãäžé£ç¶ããæ°ã®çµã¿ã¯ãäžéãããããã§ãããããããã®çµã®ãªãã®3ã€ã®æ°ã XOR æŒç®ãããšã被ããã« 001 ãã 111 ãŸã§ãæŒããªã墿ãããŸãã(äžèšã«äžèЧããŸã)
onst codes = [
"100 111 010 ", // XORçµæ 001
"111 010 110 ", // XORçµæ 011
"010 110 001 ", // XORçµæ 101
"110 001 011 ", // XORçµæ 100
"001 011 101 ", // XORçµæ 111
"011 101 100 ", // XORçµæ 010
"101 100 111 ", // XORçµæ 110
];
ãã®çµæã¯ãããããããŸããããããããéåé£ã®ããªãšãŒã·ã§ã³ã§ããã
ããŠãäžã®äžèЧãããæŸå°èœæ€æ»ã®ããã«9人ããããã«å²ãåœãŠãé貚ã®äžèЧ(äœãã0ãã¬ã€ã¬ãŒã«ãŠã³ã¿ãŒã§ã¯ããå°ãšããäžèЧã«ã¯ãªããå
šå¡ãã¯ããé貚ãïŒæãã)ããšèŠç«ãŠããšâŠâŠ
ã»ããšã«æãããã§ãã
æ®ãã®ã²ãšãã®10çªç®ã®æè¡è
ãæ€æ»ããã°åœé é貚ã¯èŠã€ããã®ã§ãããã©ã
ããŒãæ®å¿µãããšã²ãšããã©ãããŠãçååãããã®ã§ããã
9人ã§åã€ãã確å®2人ã®å Žåã®æé ã¯ã以äžã§ãã
ãŸãã
1人ç®ãš2人ç®ïŒ1,2,3,4
3人ç®ãš4人ç®ïŒ1,2,5,6
5人ç®ãš6人ç®ïŒ1,3,5,7
ãšæž¬å®ããŸãã
ãã¡1åã§ã2人ããäžäžèŽãªå ±åãããå Žåã¯ã7人ç®ãš8人ç®ã«ããïŒã®ãã¡ã®1ã€ïŒãšåãæž¬å®ããŠããããŸãã
äžäžèŽãªå ±åãäžåºŠã§ããã£ããªãã2人ãäžèŽããå ±åã¯å
šãŠä¿¡é Œã§ããã®ã§ãããã§
ã»äžèš3ãã¿ãŒã³ã®ä¿¡é Œã§ããçµæãåºæã£ãŠãã
ã»äžèš3ãã¿ãŒã³ã®ãã¡2ãã¿ãŒã³ã®ä¿¡é Œã§ããçµæãããã9人ç®ãæ£çŽè
確å®
ã®ããããã«ãªã£ãŠããŸãã
åè
ã¯ãã§ã«åœç©ç¢ºå®ãåŸè
ã¯çµæãåŸãããŠããªããã®ã9人ç®ã«é Œãã°ããã§ãã
3çµå
šãŠã§äžèŽããçµæãå ±åãããå ŽåãäŸãã°å
šãŠæŸå°ç·æ€åºããããšå ±åãããå Žåã¯ä»¥äžã®4ã€ã®å¯èœæ§ããããŸããïŒä»ã®ãã¿ãŒã³ãçªå·ãå€ããã ãã§è«çã¯åãå®è³ªåãïŒ
ã»1ãåœç©ã§ãæ®ã3人ã«ã確å®ã§2人ãåã€ãããã
ã»2ãåœç©ã§ãæ®ã3人ã«åã€ãã¯ããªã
ã»3ãåœç©ã§ãæ®ã3人ã«åã€ãã¯ããªã
ã»5ãåœç©ã§ãæ®ã3人ã«åã€ãã¯ããªã
ãã®å Žåãæ®ã3人ã«ã2ãš3ãš5ãããããåäœã§èª¿ã¹ãŠããããŸãã
1人ã ããæŸå°ç·æ€åºãå ±åããå Žåããã®äººã®èª¿ã¹ãã³ã€ã³ãåœç©ã§ããïŒâ»ïŒ
2äººãæŸå°ç·æ€åºãå ±åããå Žåããã®2人ãåã€ãã§ã1ãåœç©ã§ãã
åã€ãããæå€§ã§2人ãã®å Žåãâ»ã®ãšããã§1ãåœç©ã§åã€ãã1人ããããªãã£ãå¯èœæ§ãæ¶ãåããŸããã
DD++ ããã
ãããã§ããïŒïŒïŒ
ãŠã£ããããªãã£ããããäœããã®çç±ã§äžèŠã«ãªã£ãŠããŸã£ã 9 ãããã®ç¬Šå·ãªã®ããšäºæ³ããŠãããŸãããå
šç¬Šå·ã®ã笊å·å
šäœã®ããªãã£ãåäžãªãã°ããã® 1 ãããã¯äžèŠãšãªããŸãã®ã§ãããã§çšŒãã ã®ããšâŠâŠ
ãŸããã®ãé ã®åºãç§ã«ã¯ç¡çãªçºæ³ã§ãã
ãæç€ºãããããšãããããŸãã
æ°ç ã€ãªãã®ä»¶ãäžéå端ãªèšè¿°ã§ããã®ã§
粟ãã£ã±ããã¡ããšæçš¿ãããŠããã ããã
æãç·ŽããŸããã以äžã§ãã
3 ãããã®ãããåã 7 ã€ãããããããã a, b, c, d, e, f, g ãšåä»ããŸãããã®ä»ã«ã3ãããã®ãããåã 1 ã€ãããããã z ãšããŸãã
z = 000
ãšããŸãããŸãã
a = 100
b = 111
c = 010
d = 110
e = 001
f = 011
g = 101
ãšããŸãã
ãã®ãšã以äžã®æ§è³ªããããŸãã(ããã§ã¯âãæä»çè«çåãšããŸãã)
e = aâbâc
f = bâcâd
g = câdâe
a = dâeâf
b = eâfâg
c = fâgâa
d = gâaâb
ãâ»ãµã€ã¯ãªãã¯ãšãªã£ãŠããŸããã
3ãããã®ãããå x ã®ããªãã£ãããã§ã¯ p(x) ãšæžãããšãšããŸãã
ãããåã®çµåãâ¥ã§è¡šããŸããããšãã°
x = 011, y = 101 ã®ãšã
xâ¥y = 011101 ãšãªããŸãã
e, f, g, a, b, c, d, z ããšã³ã³ãŒãã㊠10 ãããã«ãããã®ããããããE, F, G, A, B, C, D, Z ãšåä»ããŸãã
ããã»ã©ã®ãµã€ã¯ãªãã¯ãªè¡šãã¿ãªããã
E = aâ¥bâ¥câ¥p(c)
F = bâ¥câ¥dâ¥p(d)
G = câ¥dâ¥eâ¥p(e)
A = dâ¥eâ¥fâ¥p(f)
B = eâ¥fâ¥gâ¥p(g)
C = fâ¥gâ¥aâ¥p(a)
D = gâ¥aâ¥bâ¥p(b)
Z = zâ¥zâ¥zâ¥p(z)
ãšããŸãã
å
·äœçã«ã¯
E=100â¥111â¥010â¥1 âe=001
F=111â¥010â¥110â¥0 âf=011
G=010â¥110â¥001â¥1 âg=101
A=110â¥001â¥011â¥0 âa=100
B=001â¥011â¥101â¥0 âb=111
C=011â¥101â¥100â¥1 âc=010
D=101â¥100â¥111â¥1 âd=110
Z=000â¥000â¥000â¥0 âz=000
ãšãªããŸãã
ãã®ããã«ãµã€ã¯ãªãã¯ã«äœæãã笊å·ã¯ã
æå°ããã³ã°è·é¢ã 5 ãšãªã£ãŠããŸãã
ããã§ãäžæ£ç¢ºãªã¬ã€ã¬ãŒã«ãŠã³ã¿ãŒå ±åã®æ°ã 0 ãã 2 ãŸã§ã®éãªãã°ããã®èª€ãããããèšæ£å¯èœã§ãã
ä»ã«ãè²ã
ãªäœãæ¹ãããŠã¯ã¿ãã®ã§ãããäžçªäžæè°ãªèžããèžã£ãŠããã®ãäžèšã®ãã®ã§ãããªãããŸãããã®ãããããªãã®ã§ãã¿ãã¿ããªã®ããïŒããããŸããã
ä»ã®äœãæ¹ã®ãã®ããè¿ã
ãã玹ä»ãããŠãã ããã
æ
å ±ãããã3ãããã§ã³ãŒãé·ã10ãããã®ã³ãŒãã§ãæå°ããã³ã°è·é¢ã5ã®ã³ãŒãã§ããã°ã2ããããŸã§ã®èª€ããæ€åºããŠèšæ£ããããšãã§ããŸããããã®ãããªã³ãŒããšããŠã
0,0,0,0,0,0,0,0,0,0
1,0,0,1,1,0,0,1,1,1
0,1,0,1,0,1,0,1,1,0
1,1,0,0,1,1,0,0,0,1
0,0,1,1,0,0,1,1,0,1
1,0,1,0,1,0,1,0,1,0
0,1,1,0,0,1,1,0,1,1
1,1,1,1,1,1,1,1,0,0
ãšããã³ãŒããèããããŸãã10äººã®æè¡è
ãAïœJãšããŠã
æè¡è
AãšEã¯ã1,3,5,7çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
BãšFã¯ã2,3,6,7çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
CãšGã¯ã4,5,6,7çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
DãšHã¯ã1,2,4,7çªã®éè²šãæ€åºããŠæž¬å®ã
æè¡è
Iã¯1,2,5,6çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Jã¯1,3,4,6çªã®é貚ãéžæããŠæž¬å®ããããšã«ããŠã
åæè¡è
ã®éœæ§ã®å ±åãã1ããé°æ§ã®å ±åãã0ãã§è¡šããšã
ãã¹ãŠã®å ±åãæ£ããã£ããšãããšã以äžã®8éãã®çµã¿åãã
ããã£ãŠãããããã1ïœ8çªã®ãããããåœé åã§ããå Žå
ãšå¯Ÿå¿ããŸãã
-|A,B,C,D,E,F,G,H,I,J
0|0,0,0,0,0,0,0,0,0,0 â8çªãåœé å
1|1,0,0,1,1,0,0,1,1,1 â1çªãåœé å
2|0,1,0,1,0,1,0,1,1,0 â2çªãåœé å
3|1,1,0,0,1,1,0,0,0,1 â3çªãåœé å
4|0,0,1,1,0,0,1,1,0,1 â4çªãåœé å
5|1,0,1,0,1,0,1,0,1,0 â5çªãåœé å
6|0,1,1,0,0,1,1,0,1,1 â6çªãåœé å
7|1,1,1,1,1,1,1,1,0,0 â7çªãåœé å
10äººã®æè¡è
ã®å ±åã®ãã¡2人ã®å ±åã誀ãã§ããå Žåã¯ã
10ãããã®ãã¡2ãããã誀ãã§ããå Žåã«çžåœããŸããã
äžèšã®8ç¶æ
ã¯æå°ããã³ã°è·é¢ã5ãªã®ã§ãããã5ããã
以äžã®å·®ãããã2ãããã®èª€ããããªãã¡ã2人ã®å ±åã
誀ãã§ããå ŽåãŸã§ã¯èšæ£ããããšãã§ããŸãã
æè¡è
ã 10 â 21 人ã«å¢å¡ããããšãã«ãæå€§ 5人 ãŸã§ã®ç¯å²ã§èª€ã£ãå ±åãããŠããŠãåœé貚ãçªãæ¢ããããšãã§ãããšå€æããŸããã
"100 111 010 110 001 011 101",
"111 010 110 001 011 101 100",
"010 110 001 011 101 100 111",
"110 001 011 101 100 111 010",
"001 011 101 100 111 010 110",
"011 101 100 111 010 110 001",
"101 100 111 010 110 001 011",
"000 000 000 000 000 000 000",
Minimum Hamming Distance: 12
ãªããäžèšã§ã¯ 21 äžã«ã誀ããªãæè¡è
ã1äººå ±åããã¹ãããŠã倧äžå€«ã§ãã
1人ãã¹ããã€ïŒäººèª€ãå ±åã§ãã
察称æ§ãé«ãã®ã§ã
å¥ã®èšãæ¹ãããã°
æè¡è
ã 10 â 20 人ã«å¢å¡ããããšãã«ãæå€§ 5人 ãŸã§ã®ç¯å²ã§èª€ã£ãå ±åãããŠããŠãåœé貚ãçªãæ¢ããããšãã§ããŸãã
Minimum Hamming Distance: 11
ãšãªããŸãã®ã§ã
å
ã®åé¡ããã¿ããšã
æè¡è
ã2åã«å¢ããŠ
蚱容ã§ãã誀ãå ±åæ°ã2.5åã§ãã
ãããªã®ãã¿ããšãã¯ã
9äººã®æè¡è
(ãã¡æå€§2åã¯åã€ã)
ã§ãã§ããã®ã§ã¯ïŒãšå€ãªäºæ³ãããŠãŠããŸããããªããŸãã
æ
å ±ãããã3ããããæå°ããã³ã°è·é¢ã7ã®ã³ãŒãã§ãæçãªã®ã¯ã³ãŒãé·ã13ãããã®ã³ãŒãã§ã以äžã®ãããªãã®ã§ããã
A,B,C,D,E,F,G,H,I,J,K,L,M
-------------------------
0,0,0,0,0,0,0,0,0,0,0,0,0
1,0,0,1,1,0,1,0,0,1,1,0,1
0,1,0,1,0,1,0,1,0,1,0,1,1
1,1,0,0,1,1,1,1,0,0,1,1,0
0,0,1,0,1,1,0,0,1,0,1,1,1
1,0,1,1,0,1,1,0,1,1,0,1,0
0,1,1,1,1,0,0,1,1,1,1,0,0
1,1,1,0,0,0,1,1,1,0,0,0,1
13äººã®æè¡è
ãAïœMãšããŠã
æè¡è
AãšGã¯ã1,3,5,7çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
BãšHã¯ã2,3,6,7çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
CãšIã¯ã4,5,6,7çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
DãšJã¯ã1,2,5,6çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
EãšKã¯ã1,3,4,6çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
FãšLã¯ã2,3,4,5çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Mã¯ã1,2,4,7çªã®éè²šãæ€åºããŠæž¬å®ããããšã«ããã°ã
æå€§ã§3人ãŸã§ã誀ãã®å ±åãããŠã8æã®é貚ãã1æã®åœé åãç¹å®ã§ããŸãã
ãŸããæ
å ±ãããã3ããããæå°ããã³ã°è·é¢ã9ã®ã³ãŒãã§ãæçãªã®ã¯ã³ãŒãé·ã17ãããã®ã³ãŒãã§ã以äžã®ãããªãã®ã§ããã
A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q
---------------------------------
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,1,0,0,1,1,1,0,1,1,1,0
0,1,0,0,1,0,0,1,0,1,1,0,1,1,1,0,1
1,1,0,1,1,0,1,1,0,0,0,1,1,0,0,1,1
0,0,1,0,0,1,0,0,1,1,0,1,1,1,0,1,1
1,0,1,1,0,1,1,0,1,0,1,0,1,0,1,0,1
0,1,1,0,1,1,0,1,1,0,1,1,0,0,1,1,0
1,1,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0
17äººã®æè¡è
ãAïœQãšããŠã
æè¡è
AãšDãšGã¯ã1,3,5,7çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
BãšEãšHã¯ã2,3,6,7çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
CãšFãšIã¯ã4,5,6,7çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
JãšNã¯ã1,2,4,7çªã®éè²šãæ€åºããŠæž¬å®ã
æè¡è
KãšOã¯ã1,2,5,6çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
LãšPã¯ã1,3,4,6çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
MãšQã¯ã2,3,4,5çªã®é貚ãéžæããŠæž¬å®ããããšã«ããã°ã
æå€§ã§4人ãŸã§ã誀ãã®å ±åãããŠã8æã®é貚ãã1æã®åœé åãç¹å®ã§ããŸãã
ãªããæ
å ±ãããã3ããããæå°ããã³ã°è·é¢ã3ã®ã³ãŒãã§ãæçãªã®ã¯ã³ãŒãé·ã6ãããã®ã³ãŒãã§ã以äžã®ãããªãã®ã§ããã
A,B,C,D,E,F
-----------
0,0,0,0,0,0
1,0,0,1,1,0
0,1,0,1,0,1
1,1,0,0,1,1
0,0,1,0,1,1
1,0,1,1,0,1
0,1,1,1,1,0
1,1,1,0,0,0
6äººã®æè¡è
ãAïœFãšããŠã
æè¡è
Aã¯ã1,3,5,7çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Bã¯ã2,3,6,7çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Cã¯ã4,5,6,7çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Dã¯ã1,2,5,6çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Eã¯ã1,3,4,6çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Fã¯ã2,3,4,5çªã®é貚ãéžæããŠæž¬å®ããããšã«ããã°ã
1人ãŸã§ã誀ãã®å ±åãããŠã8æã®é貚ãã1æã®åœé åãç¹å®ã§ããŸãã
DD++ ããããã£ããã£ãŠããã
ã10人ã§ã¯ãªã9 人ããã¡2åã¯ãå¿
ããåãã€ããå Žåã«è§£ãããããšãç§ã確èªããŸãããå¥è§£ã§ããã
9äººã®æè¡è
ãååçµ6人ãåŸåçµ3人ã«ãããŸãã
ååã§ã¯â ãšâ¡ãšâ¢ãšã®ã©ãããçºçããŸããã©ããçºçãããã¯æã
ã«ã¯ããããŸãã
åŸåã§ã¯ãâ â¡â¢ããšã«ã察åŠçããããŸãã
ã»ååéš
8æã®é貚ãïŒæã¥ã€ãã¢ã«ããŠèš4ãã¢ãšããŸãã(A,a), (B,b),(C ,c ),(D,d)ãšåä»ããŸãããããã¯(X,x)ã®ããã«ãŸãšããŠæžãããšããããŸãã
ïŒåã®æè¡è
ã«ä»¥äžã®ããã«æž¬å®ã®æç€ºãåºããŸãã1 ã®ããŒã¯ãã€ããéè²šãæž¬ããŸãã
[
"0 0 0 0 0 0" ,//(A,a)
"0 0 1 1 1 1" ,//(B,b)
"1 1 0 0 1 1" ,//(C,c)
"1 1 1 1 0 0" ,//(D,d)
]
äžã¯ããã³ã°è·é¢ã 4 ãªã®ã§
以äžã®3ã€ã®ã±ãŒã¹ãçµæãšããŠå€æããŸãã
â
éœæ§å€å®ã¯å¶æ°åã§ããã
ãããã®ãã®ãºããªã®å€å®çµæãåŸãããªãã
ããªãã¡ãåå6人çµã«ïŒäººåã€ããããã
åœç©ã®å
¥ã£ã(X,x)ã¯ãã®æç¹ã§ã¯ãŸã£ããäžæã
â¡
éœæ§å€å®ã¯å¶æ°åã§ããããã€ã
äžã®4ã±ãŒã¹ããããã®ãã¡ã©ããã²ãšã€ã
ãã®ãã®ãºããªã®çµæãšãªãã
ãã®ãšãåå6人çµã«åã€ããããªãã
åœç©ã®å
¥ã£ã(X,x)ã確å®ããã
â¢
éœæ§å€å®ã¯å¥æ°åã§ããã
ãããã®ãã®ãºããªã®å€å®çµæãåŸãããªãã
ããªãã¡ãåå6人çµã«ïŒäººã®åã€ããããã
ãã®å Žåã«ã¯åã€ããç¹å®ã§ããŠã
åœç©ã®å
¥ã£ã(X,x)ã確å®ããã
以äžãååéšã§ãã
次ã¯åŸåéšã§ã®å¯ŸåŠã
â :
åŸåéš3åã®æè¡è
ãæ£çŽè
ãªã®ã§ã
ïŒæã®é貚ããïŒæã®åœé貚ãèŠä»ããã«ã¯
äºåæšã§æçŽ¢ããã°ããã
ãç®ççµäºã
â¡
åœç©ã®å
¥ã£ã(X,x)ã確å®ããŠããã
æ®ãã®ïŒåã®æè¡è
ã®ãã¡ïŒåãåã€ãã§ããã
ïŒåã«Xãåœé ã調ã¹ãããåŸãããçµæãïŒå¯ŸïŒã§å€æ°æ±ºããšãããã®çµæã®å€å®ãå転ããããã®ãçã®æž¬å®çµæãšãªãã
ãç®ççµäºã
â¢
åœç©ã®å
¥ã£ã(X,x)ã確å®ããŠããã
æ®ãã®ïŒåã®æè¡è
ã®ãã¡ïŒåãåã€ãã§ããã
ïŒåã«Xãåœé ã調ã¹ãããåŸãããçµæãïŒå¯ŸïŒã§å€æ°æ±ºããšãããã®çµæãçã®æž¬å®çµæãšãªãã
ãç®ççµäºã
â»ä»¥äžãå¥è§£ã§ã.
åŸåéšã®å€æ°æ±ºãå¹ããŠããããã«ããåã€ãïŒåã¯å¿
ãåãã€ãããšãå¿
èŠãšãªããŸãã
=====
ãªããæã£ãŠåãã€ããšã¯éããªãå Žåã«
9åã§è¶³ããããšããã話ãã«ã€ããŠã¯ã
ç§ã¯ãããªãåŠå®çã«æããããã«ãªããŸããã
å人çã«ã¯æ¢çŽ¢ã¯ããããŸãã
æè¡è
ã1人å¢ãããŠ11人ã«ãããšãåœé å1æãå«ã16æã®é貚ãããæå€§2人ã®èª€ããå«ãå ±åãçšããŠç¹å®ããããšãã§ããŸãã
æ
å ±ãããã4ããããæå°ããã³ã°è·é¢ã5ã®ã³ãŒãã§ãæçãªã®ã¯ã³ãŒãé·ã11ãããã®ä»¥äžã®ã³ãŒãã§ããããçšãããšã
-|A,B,C,D,E,F,G,H,I,J,K
-----------------------
0|0,0,0,0,0,0,0,0,0,0,0â16çªãåœé å
1|1,0,0,0,1,1,1,0,0,1,0â1çªãåœé å
2|0,1,0,0,1,1,0,1,1,0,1â2çªãåœé å
3|1,1,0,0,0,0,1,1,1,1,1â3çªãåœé å
4|0,0,1,0,1,0,1,1,1,0,0â4çªãåœé å
5|1,0,1,0,0,1,0,1,1,1,0â5çªãåœé å
6|0,1,1,0,0,1,1,0,0,0,1â6çªãåœé å
7|1,1,1,0,1,0,0,0,0,1,1â7çªãåœé å
8|0,0,0,1,0,1,1,0,1,1,1â8çªãåœé å
9|1,0,0,1,1,0,0,0,1,0,1â9çªãåœé å
a|0,1,0,1,1,0,1,1,0,1,0â10çªãåœé å
b|1,1,0,1,0,1,0,1,0,0,0â11çªãåœé å
c|0,0,1,1,1,1,0,1,0,1,1â12çªãåœé å
d|1,0,1,1,0,0,1,1,0,0,1â13çªãåœé å
e|0,1,1,1,0,0,0,0,1,1,0â14çªãåœé å
f|1,1,1,1,1,1,1,0,1,0,0â15çªãåœé å
11äººã®æè¡è
ãAïœKãšããŠã
æè¡è
Aã¯ã1,3,5,7,9,11,13,15çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Bã¯ã2,3,6,7,10,11,14,15çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Cã¯ã4,5,6,7,12,13,14,15çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Dã¯ã8,9,10,11,12,13,14,15çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Eã¯ã1,2,4,7,9,10,12,15çªã®éè²šãæ€åºããŠæž¬å®ã
æè¡è
Fã¯ã1,2,5,6,8,11,12,15çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Gã¯ã1,3,4,6,8,10,13,15çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Hã¯ã2,3,4,5,10,11,12,13çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Iã¯ã2,3,4,5,8,9,14,15çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Jã¯ã1,3,5,7,8,10,12,14çªã®é貚ãéžæããŠæž¬å®ã
æè¡è
Kã¯ã2,3,6,7,8,9,12,13çªã®éè²šãæ€åºããŠæž¬å®ããããšã«ããã°ã
æå€§ã§2人ãŸã§ã誀ãã®å ±åãããŠã16æã®é貚ãã1æã®åœé åãç¹å®ã§ããŸãã
kuiperbeltããã«ãã[2151]ã®ãæçš¿ãžã®ã³ã¡ã³ãã§ãã
8 çªãã 15 çªãŸã§ã¯æ¬ç©ããšããæ
å ±ããããããäžããããŠããã°
æè¡è
Dã«ããèšæž¬ã¯äžèŠãšãªããæè¡è
ã®ç·äººæ°ã¯ 10 人ã§ããããšãšãªããŸãã
ããªãã¡
0çª(=16çª)ãã7çªãŸã§ã®8æã®é貚ããæè¡è
10åã§ïŒæã®åœé é貚ãã¿ã€ããæ¹æ³ã«ããªã£ãŠããŸãã(æå€§2人ãŸã§åãã€ãããšãšããŠ)
ç§ã®[2140]ã®æçš¿ã®ç¶ãã§ãã
å¥è§£ã§ããŠãæãããåœ¢ãæ¶ãããããã®ã§ãã
æ
å ±ããã㯠3 ããããšããŸããããã w ãšèšããŸãã
w ã«ã€ããŠå
šãŠã®ããããå転ãããã®ã W ãšããŸãã
3 ãããåã®ããŒã¿ã®ããªãã£(1ããã)ãæ±ãã颿°ã p(ã»)ãšæžããŸãã
ãããå x ãšãããå y ãšãçµåããèšå·ãâ¥ãšããŸãã
w ããšã³ã³ãŒãã㊠10 ãããã®ãããåãæ¬¡ã®ããã«äœããŸãã
wâ¥wâ¥p(w)â¥w âŠâŠãã ãp(w)=0 ã®ãšãã
wâ¥wâ¥p(w)â¥W âŠâŠãã ãp(w)=1 ã®ãšãã
ãããç®çãæãããŸãã
ã¿ã€ãããšãã«ã¯ç©åãããã¯ãªããŸããã
ãªãã³ã¬ã§ããŸãããããšãããšãŽãã§ãŽãã§ã§ãã
> ãªãã³ã¬ã§ããŸãããããšãããšãŽãã§ãŽãã§ã§ãã
3ãããã® w ãïŒãããã¥ã€ã«åè§£ãããš
w=w1â¥w2â¥w3
ããã®ãšã³ã³ãŒãã¯
w1â¥w2â¥w3â¥w1â¥w2â¥w3â¥w1+w2+w3â¥w2+w3â¥w1+w3â¥w2+w3
ããªã£ãŠããŸãã
â»ãã ãå ç®èšå·ã¯ ãããæ¯ã®æä»çè«çåã«ãŠãã
ãã®ã¹ã¬ããã®è¶£æšããã¯è±ç·äžã§ãã
æ¬æ¥èãã[2154]ãžã®å人çãªæ°ã¥ãã§ãã
ãã³ã¬ãã§ããŸãè¡ãïŒããšãã芳å¯ããå®éšæ°åŠçã«ãããããã£ãŠãããŸããã
笊å·èªã®æ°ã 16 ã§æ
å ±ãããã 4 ãæ€æ»ãããã 3 ã笊å·é·ã 7 ãæå°ããã³ã°è·é¢ã 3 ããã«ãããå転誀ãã 1 ããããŸã§èšæ£å¯èœãªã(7,4,3)ããã³ã°ç¬Šå·ã¯ãããç¥ãããŠããŠäžã®äžã«å®éã«å¿çšãããŠããæ¯ããæè¡ã®ããã§ãã
ããã«å¯ŸæããŠïŒïŒ
笊å·èªã®æ°ã 16 ã§æ
å ±ãããã 4 ãæ€æ»ãããã 10 ã笊å·é·ã 14 ãæå°ããã³ã°è·é¢ã 7 ããã«ãããå転誀ãã 3 ããããŸã§èšæ£å¯èœãªããã®ãããªç¬Šå·ããã£ãä»ã¿ã€ããŸããã(è»èŒªã®åçºæããïŒ)
æ
å ±ãããããã®ãŸãŸã«ã笊å·é·ã 7 ãã 14 ãš2åã«ãªãã®ãçèŽã«ããŠã
ãããå転誀ããžã®èšæ£èœåã 1 ããããã 3 ããããžãšã 3 åã«ã§ãããšããã
éä¿¡è·¯ã®ç¶æ³ãæªããšãã«ã¯ããªãæå¹ãªã®ã§ã¯ïŒããšã
"0000 000000 0000",
"0001 001011 0111",
"0011 011110 1100",
"0010 010101 1011",
"0110 110011 0110",
"0111 111000 0001",
"0101 101101 1010",
"0100 100110 1101",
"1100 011110 0011",
"1101 010101 0100",
"1111 000000 1111",
"1110 001011 1000",
"1010 101101 0101",
"1011 100110 0010",
"1001 110011 1001",
"1000 111000 1110",
ã16ãããããžã®è¿œå ãæ«å°Ÿã«å
šäœãžã®ããªãã£ãã€ããã®ãä¹ãªãã®ã§ããã
ãšã«ããåããããæ ããããªããä»ã®ããããšçžé¢ãããããããªäœæŠãè¯ãã®ãããããŸããã
DD++ ãããæèµ·ãªãã£ã
ãæè¡è
ã 9 人ã§ã倧äžå€«ïŒããšããåã
ã«ã€ããŠäœåºŠã諊ããããšåªããã®ã§ãã
ãªããªãé ãé¢ãããããæãåã£ãŠãšããšãèããŠã¿ãããšè©Šã¿ãŸããã
çµæãšããŠããããã²ãšã€ã®ãäºæ³ããæ£ãããã°ã 9 äººã®æè¡è
(ãã¡ãåã€ã㯠0 人ãã 2 人ã®å¯èœæ§ããã)ã§ãã8æäžïŒæã®åœé貚ãçªãæ¢ããããããšèãã€ããŸããã
åœé貚ãã€ããšããæ®µéãšããŠãç¬¬äžæ®µéãšç¬¬äºæ®µéãšã«åããŸãã
ç¬¬äºæ®µéã§ã¯ç¬¬äžæ®µéãŸã§ã®äžéçµæãã¿ãŠããæž¬å®æ¹æ³ãéœåºŠèããããšã«ããŸãã
(ãªãäºæ®µéã«ãããã«äžçºã§ããããšãããªãã°æè¡è
ã¯10人å¿
èŠã ããããšã¯ã»ãŒééããªããšããæè§ŠãåŸãŠããŸãã)
ç¬¬äžæ®µéã§ã¯ãïŒäººã®æè¡è
ã䜿ã
ç¬¬äºæ®µéã§ã¯ãïŒäººã®æè¡è
ã䜿ããŸãã
ç¬¬äžæ®µéçµäºæç¹ã§æ¢ã«åœé é貚ãç¢ºå®æžã¿ãªãã°ç¬¬äºæ®µéã¯å®è¡ããŸããããã®å Žåã®çºçæ¡ä»¶ã¯ãïŒäººäžåã€ããïŒäººä»¥äžã§ããããšã§ãã(å¿
èŠå忡件)
ç¬¬äžæ®µéçµäºæç¹ã§ïŒåäžåã€ããïŒåãããšç¢ºå®ã§ããã°ããã€ã8æäžå°ãªããšã4æãæ¬ç©ã§ãããšç¢ºå®ã§ããã°ãæ®ãã®ïŒæã«ã€ããŠç¬¬äºæ®µéã§æ£çŽè
ã®ã¿ã§æ§æãããïŒåã®æè¡è
ããã¡ïŒæã®åœé貚ã確å®ã§ããããšã§ãããã
ç¬¬äžæ®µéã®ã¢ã«ãŽãªãºã ã«ãªã«ãå¿
èŠãããŸãšããªãããŸãã
以äžã®ïŒãã¿ãŒã³ã®ã©ãããå¿
ãçºçãããã®ãšããŸãã
â åã€ããã¡ããã©ïŒäººçºçããããšã®æ€ç¥ç¢ºå®ãšãåæã«äžæã®åœé貚ã®ç¢ºå®ã
[ç¬¬äºæ®µéäžèŠ]
â¡åã€ããã¡ããã©ïŒäººã§ããããšã®æ€ç¥ç¢ºå®ãšãåæã«äžæã®åœé貚ã®ç¢ºå®ã
[ç¬¬äºæ®µéäžèŠ]
â¢åã€ããã¡ããã©ïŒäººã§ããããšã®æ€ç¥ç¢ºå®ãšãåæã«ãæ¬ç©ã®é貚(å°ãªããšã)ïŒæã®ç¢ºå®ãåœéè²šã¯æ®ããã®ã®ãªãã«ãããšçµããã
[ç¬¬äºæ®µéã§ã¯ïŒäººã®æ£çŽè
ãæ®ããã®ããåœé貚ãã€ããšããããšã«ãªããŸããããã¯ååã«å¯èœã§ããããšã§ãããã]
äžã®ãããªã¢ã«ãŽãªãºã ãã¿ã€ããã°ã10人ãªãã9人ã§ãåœé貚ã確å®ã§ããããšãšãªããŸãã
â ãâ¢ãŸã§ã§ããã£ãšãé£è§£ãªã®ãâ¢ãçºçããã±ãŒã¹ã§ãã
ç§ã¯æ¬¡ã®ãããªãã®ããšããããèããŠã¿ãŸããã
(é·ããªã£ãã®ã§æ¬¡ã«æçš¿ããŸãã)
ç¬¬äžæ®µéã®èšèšã«ã€ããŠã
ïŒæã®ç¡¬è²šã«ããããŠïŒåã®æè¡è
ã以äžã®ãªã¹ãã«ããããã«æž¬å®ããŸãã
(1 )ã¯ã¬ã€ã¬ãŒã«ãŠã³ã¿ãŒã§æž¬ããŸãã
"0 0 0 0 0 0 0",
"0 0 1 0 1 1 1",
"1 0 0 1 0 1 1",
"1 1 0 0 1 0 1",
"1 1 1 0 0 1 0",
"0 1 1 1 0 0 1",
"1 0 1 1 1 0 0",
"0 1 0 1 1 1 0",
ã±ãŒã¹â
ïŒã€ã®æž¬å®çµæãåŸãããæ
éœæ§(1)ãã奿°åãåŸãããã±ãŒã¹ã§ãã
ãã®ãšããïŒåäžã«åã€ãã¯å¿
ãïŒåã§ãã
äžã®ããŒãã«ã§ã¯æå°ããã³ã°è·é¢ãïŒãªã®ã§åã€ãã確å®ãåœé貚ã確å®ããŸãã
ç¬¬äºæ®µéã¯äžèŠã§ãã
ã±ãŒã¹â¡
ïŒã€ã®æž¬å®çµæãåŸãããæã
éœæ§(1)ããå¶æ°åãåŸããããã€ã
äžã®ããŒãã«ãšäžèŽããã±ãŒã¹ã§ãã
ãã®ãšããïŒåäžã«åã€ãã¯ããŸããã
åœé貚ã確å®ããŸãã
ç¬¬äºæ®µéã¯äžèŠã§ãã
ã±ãŒã¹â¢
ïŒã€ã®æž¬å®çµæãåŸãããæã
éœæ§(1)ããå¶æ°åãåŸããããã€ã
äžã®ããŒãã«ãšãäžèŽããªããã±ãŒã¹ã§ãã
ãã®ãšããïŒåäžã®åã€ãã¯å¿
ãïŒåã§ãã
åœé貚ã¯ç¢ºå®ããŸããã
ïŒåã®æ£çŽè
ãåŸ
ã£ãŠããç¬¬äºæ®µéãå¿
èŠã§ãã
=====
ããã§å®éšçã«ããªããã蟌ãã§ã¿ãã®ã§ãã (æå)
åœæž¬å®å€ãïŒåå«ãïŒåã®ããŒã¿ãåŸããããšãã«ã
åœé貚ã®åè£ã¯ããã€ããïŒæãªã®ã§ãã
ãšããããšã¯ç¬¬äºæ®µéã§åœé貚ã確å®ã§ããããšãšãªããŸãã
以äžãç§ã®ãäºæ³ãã§ãã
åœæž¬å®å€ãïŒåå«ãïŒåã®ããŒã¿ãåŸããããšãã«ã
åœé貚ã®åè£ã¯ããã€ããïŒæã§ãã
============
äžèšã®äºæ³ã«åäŸããã£ããã蚌æãããããã§ãããªãã°ãæ¯éãšãããæç€ºããã ããã
æ°ã«ãªã£ãŠæ°ã«ãªã£ãŠä»æ¹ããããŸããã
ãœãã€ããªç§ã®ããšã§ããã
ããŒã³ãããããããã(æ¥ãããã)ã§ãããã©ãã
çæ§ãäœåãæç€ºãè³ããããå®ãããé¡ãç³ãäžããŸãã
â»èšŒæã®èŠéãããããªããã©ããããããŸãããäžèšã®ããŒãã«ã¯å·¡åçã«äœã£ãŠãããŸãã
ãªãã»ã©ãã«ãŒã¯ãã³ã®çµåãåé¡ã®è§£ãå©çšããã°ç¢ºãã«ãããŸããã
蚌æã¯ãéœæ§å ±åã®äººæ°ããšã«å Žååããããã°å®¹æããšæããŸãã
ãããã§ãããïŒ
DD++ ããã
æ©éã®ã³ã¡ã³ãããã³ãã³ããæé£ãããããŸãã
éœæ§å ±åã®äººæ°ã§å ŽååãâŠâŠã§ããâŠâŠ
ãã£ãŠã¿ãŸãã
ãææã©ããã«ãŒã¯ãã³ã§ãããâŠâŠ
èªåãšããŠã¯ãã¡ãå¹³é¢ã䜿ã£ãã€ããã§ããã(0ã®ããžã·ã§ã³)
A(3,2),B(10,1),C(11,6)ã§ããâ³ABCã®å
å¿ãIãšãããšã
ãã®åº§æšIãã³ã³ãã¥ãŒã¿ãçšããã°æ°å€çã«ã¯ãã£ãšããéã§
çããŠãããŸããããã®æ°å€ãæç€ºåŒã§è¡šãããæã«ã¯ãã®æã
䜿ããªãã
ããã§æèšç®ãé§äœ¿ããŠãææ
¢åŒ·ãã³ãã³ããšé²ããããšã§ãã®
Iã®åº§æšãæç€ºåŒã§èŠã€ããŠã¿ãŠæ¬²ããã
AI ãš BC ã®äº€ç¹ã D ãšãããšã
BD : CD = BA : AC = â50 : â80 = â5 : 2â2 = (-5+2â10) : (8-2â10)
ãã£ãŠã
D ( (38-2â10)/3, (43-10â10)/3 )
ãã
AI : ID = AB : BD = â50 : (-5+8â10)â26/3
ããšã¯ãããå
åç¹ã®å
¬åŒã«ã€ã£ããã§æŽçããã°ããã¯ãâŠâŠã§ãããæ°åã倧ãããªããããã®ã§ã®ãã¢ããã
A(a,b),B(c,d),C(e,f)ãšãããš
çŽç·AB㯠(d-b)x-(c-a)y-(ad-bc)=0
çŽç·BC㯠(f-d)x-(e-c)y-(cf-de)=0
çŽç·CA㯠(b-f)x-(a-e)y-(eb-fa)=0
çŽç·ABããké¢ããçŽç·ã¯ (d-b)x-(c-a)y-(ad-bc)-kâ{(d-b)^2+(c-a)^2}=0 ⊠(1)
çŽç·BCããké¢ããçŽç·ã¯ (f-d)x-(e-c)y-(cf-de)-kâ{(f-d)^2+(e-c)^2}=0 ⊠(2)
çŽç·CAããké¢ããçŽç·ã¯ (b-f)x-(a-e)y-(eb-fa)-kâ{(b-f)^2+(a-e)^2}=0 ⊠(3)
(1)(2)ããkãæ¶å»ããŠ
{(f-d)â{(d-b)^2+(c-a)^2}-(d-b)â{(f-d)^2+(e-c)^2}}x
-{(e-c)â{(d-b)^2+(c-a)^2}-(c-a)â{(f-d)^2+(e-c)^2}}y
=(cf-de)â{(d-b)^2+(c-a)^2}-(ad-bc)â{(f-d)^2+(e-c)^2} ⊠(4)
(2)(3)ããkãæ¶å»ããŠ
{(b-f)â{(f-d)^2+(e-c)^2}-(f-d)â{(b-f)^2+(a-e)^2}}x
-{(a-e)â{(f-d)^2+(e-c)^2}-(e-c)â{(b-f)^2+(a-e)^2}}y
=(eb-fa)â{(f-d)^2+(e-c)^2}-(cf-de)â{(b-f)^2+(a-e)^2} ⊠(5)
(4)(5)ããyãæ¶å»ããŠæŽçãããš
x={aâ{(f-d)^2+(e-c)^2}+câ{(b-f)^2+(a-e)^2}+eâ{(d-b)^2+(c-a)^2}}
/{â{(f-d)^2+(e-c)^2}+â{(b-f)^2+(a-e)^2}+â{(d-b)^2+(c-a)^2}}
(4)(5)ããxãæ¶å»ããŠæŽçãããš
y={bâ{(f-d)^2+(e-c)^2}+dâ{(b-f)^2+(a-e)^2}+fâ{(d-b)^2+(c-a)^2}}
/{â{(f-d)^2+(e-c)^2}+â{(b-f)^2+(a-e)^2}+â{(d-b)^2+(c-a)^2}}}
ãã£ãŠA(a,b),B(c,d),C(e,f)ãé ç¹ãšããå
å¿ã®åº§æšã¯
(
{aâ{(f-d)^2+(e-c)^2}+câ{(b-f)^2+(a-e)^2}+eâ{(d-b)^2+(c-a)^2}}
/{â{(f-d)^2+(e-c)^2}+â{(b-f)^2+(a-e)^2}+â{(d-b)^2+(c-a)^2}}
,
{bâ{(f-d)^2+(e-c)^2}+dâ{(b-f)^2+(a-e)^2}+fâ{(d-b)^2+(c-a)^2}}
/{â{(f-d)^2+(e-c)^2}+â{(b-f)^2+(a-e)^2}+â{(d-b)^2+(c-a)^2}}}
)
èŠãããããã«
â{(f-d)^2+(e-c)^2}=BC, â{(b-f)^2+(a-e)^2}=CA, â{(d-b)^2+(c-a)^2}=AB
ãšæžãã°ãå
å¿ã®åº§æšã¯
((aBC+cCA+eAB)/(BC+CA+AB),(bBC+dCA+fAB)/(BC+CA+AB))
A(3,2),B(10,1),C(11,6)ã®å Žåã¯
BC=â{(6-1)^2+(11-10)^2}=â26
CA=â{(2-6)^2+(3-11)^2}=4â5
AB=â{(1-2)^2+(10-3)^2}=5â2
ãªã®ã§ãå
å¿ã®åº§æšã¯
((3â26+40â5+55â2)/(â26+4â5+5â2),(2â26+4â5+30â2)/(â26+4â5+5â2))
=
((124+25â10-10â13-â130)/18,(76-5â10+20â13-7â130)/18)
â»æçåã«ã¯WolframAlphaã䜿ããŸããã
D ( (38-2â10)/3, (43-10â10)/3 )
ã¯
D( (25+2â10)/3.(10â10-22)/3 )
ã«
AI : ID = AB : BD = â50 : (-5+8â10)â26/3
ã¯
AI : ID = AB : BD = â50 : (-5+2â10)â26/3
ãšãªããŸãããïŒ
> ((124+25â10-10â13-â130)/18,(76-5â10+20â13-7â130)/18)
> â»æçåã«ã¯WolframAlphaã䜿ããŸããã
æ¹æ³ã¯ç°ãªããŸããæçµçµæã¯åãã«ãªã£ãŠããŸãã
(ã³ã³ãã¥ãŒã¿ã§æ°å€ã ãæ±ãããæã¯ãã®åŒãå©çšããŠããŸããã)
æçåãã³ãã³ãé²ããŠè¡ããŸãããïŒãããé¢åã§ããã)
> D( (25+2â10)/3.(10â10-22)/3 )
> AI : ID = AB : BD = â50 : (-5+2â10)â26/3
> ãšãªããŸãããïŒ
ãããããããŸããã
å
忝ããã£ããéã«ããŠãããïŒ
ãªãã«ããããã®èšç®ã¯æç®ã§ãããããããªãã§ããâŠâŠã
æ¹çšåŒãX2ïŒïŒïŒïŒ
ã®è§£ã¯ãè€çŽ æ°ã§ã¯ãiãš-iã®äºã€ã§ãã
åå
æ°ãa+bi+cj+dk
ã§ã¯ãç¡éã«ããããã§ãã
å
·äœçã«ã©ããããã®ããããŸããïŒ
(b*i+c*j+d*k)^2=-(b^2+c^2+d^2)+(b*c-c*b)*k+(c*d-d*c)*i+(d*b-b*d)*j=-(b^2+c^2+d^2)
ãªã®ã§ãb^2+c^2+d^2=1ãšãªãb*i+c*j+d*kãx^2+1=0ã®è§£ã«ãªããŸãã
ããããšãããããŸãã
a+bi+cj+dk ã®äžã§ãa=0 ãªãã°ãä»»æã®b,c,dã«å¯ŸããŠ
ïœïŒïŒbi+cj+dkïŒ/âïŒb^2+c^2+d^2ïŒx^2=-1
aïŒïŒã§ãªãå Žåã¯ãç¡ãã¿ããã§ããã
999999999 以äžã®å
šãŠã®æ£æŽæ°ã 9 æ¡ã®å鲿°ãšããŠè¡šç€ºããŸãã
ãã® 999999999 åã®äžã«ã
9 以äžã®ä»»æã®æ£æŽæ° q ã«ã€ããŠããã®æ°ã«ã¯ q æªæºã®æ°åã q å以äžç»å Žããããšããåœé¡ãçã§ãã
ãæºãããã®ã¯ããã€ããã§ããããæ±å€ããŠãã ããã
ããæèšããããŠãã®ã9æ9åæçš¿ã«å€±æããâŠâŠã
äžå¿ãäŸç€ºã眮ããšããŸãã
äŸ1ïŒ602214076 ã¯ã1 æªæºã®æ°åã 2 åã2 æªæºã®æ°åã 3 åã3 æªæºã®æ°åã 5 åã4 æªæºã®æ°åã 5 åã5 æªæºã®æ°åã 6 åã6 æªæºã®æ°åã 6 åã7 æªæºã®æ°åã 8 åã8 æªæºã®æ°åã 9 åã9 æªæºã®æ°åã 9 åãç»å Žããã®ã§æ¡ä»¶ãæºããã
äŸ2ïŒ299792458 ã¯ã1 æªæºã®æ°åã 0 åã ã£ããã7 æªæºã®æ°åã 4 åã ã£ãããåœã«ãªãåœé¡ãååšããã®ã§æ¡ä»¶ãæºãããªãã
äŸ3ïŒ101325 ã¯ã9 æ¡è¡šç€ºã® 000101325 ã§åæ°ãã«ãŠã³ãããã®ã§ãæ¡ä»¶ãæºããã
99,999,999(å)ã§ããããïŒ
1ïœ10 ã§ã¯9(å)
1ïœ10^2 ã§ã¯80
1ïœ10^3 ã§ã¯700
1ïœ10^4 ã§ã¯6,000
1ïœ10^5 ã§ã¯50,000
1ïœ10^6 ã§ã¯400,000
1ïœ10^7 ã§ã¯3,000,000
1ïœ10^8 ã§ã¯20,000,000
1*10^8+1ïœ2*10^8ã§ã¯ 15,217,031
2*10^8+1ïœ3*10^8ã§ã¯ 13,119,879
3*18^8+1ïœ4*10^8ã§ã¯ 11,708,091
4*10^8+1ïœ5*10^8ã§ã¯ 10,546,875
5*10^8+1ïœ6*10^8ã§ã¯ 9,453,125
6*10^8+1ïœ7*10^8ã§ã¯ 8,291,909
7*10^8+1ïœ8*10^8ã§ã¯ 6,880,121
8*10^8+1ïœ9*10^8ã§ã¯ 4,782,968
9*10^8+1ïœ10^9-1ã§ã¯ 0
ãã£ãŠ
10^8+1ïœ10^9-1ã§ã¯79,999,999
以äžãã
1ïœ999,999,999ã§æ¡ä»¶ãæºãããã®ã¯20,000,000+79,999,999=99,999,999(å)
ã®æš¡æ§ã§ãã
æ£ãã9ã«çºããDD++ãããããåé¡ã§ããã
æ£è§£ã§ãããèŠäºïŒ
åé¡ãæ£è§£ãæçš¿æ¥æããã¥ãŒã ããã®åé¡ã§ããã
ãã£ãšã¹ããŒããªè§£æ³ãããã®ã§ãããããæãã€ããªãã®ã§åæã§ãã
n â§ m â§ 1 ãšããã
0, 1, ..., m ã® m+1 çš®é¡ã®æ°ãéè€ãèš±ããŠäžåã« n å䞊ã¹ããšãã
1 ⊠q ⊠m ãšãªãä»»æã®æŽæ° q ã«ã€ã㊠q æªæºã®æ°ã q å以äžå«ããããªäžŠã¹æ¹ã®æ°ã f(m,n) ãšããã
[1] m = 1 ã®ãšã
æ¡ä»¶ãæºãããªããã®ã¯äžŠã¹ãæ°ã®ãã¹ãŠã "1" ãšãªãå Žåã® 1 éããªã®ã§ã
f(1,n) = 2^n - 1
ãšãªãã
[2] m â§ 2 ã®ãšã
䞊ã¹ãæ°ã®ãªãã® "m" ã®åæ°ã k åãšã㊠k ã§å Žååãããã
k > n-m ã®å Žå㯠m æªæºã®æ°ã m åæªæºãšãªã£ãŠããŸããããæ¡ä»¶ãæºãããªãã
0 ⊠k ⊠n-m ã®å Žåãæ° "m" ã®é
çœ®æ¹æ³ã nCk éãããããã®åã
ã«å¯ŸããŠæ®ãã®æ°ã®äžŠã¹æ¹ã f(m-1,n-k) éãããã
ãã£ãŠã
f(m,n) = Σ[k=0,...,n-m] nCk * f(m-1,n-k)
ãšãªãã
[1],[2]ãçšããŠé 次èšç®ããŠãããšæ¬¡ã®ããã«ãªãã
f(1,1) = 1
f(1,2) = 3
f(1,3) = 7
f(1,4) = 15
f(1,5) = 31
f(1,6) = 63
f(1,7) = 127
f(1,8) = 255
f(1,9) = 511
f(2,2) = 3
f(2,3) = 16
f(2,4) = 61
f(2,5) = 206
f(2,6) = 659
f(2,7) = 2052
f(2,8) = 6297
f(2,9) = 19162
f(3,3) = 16
f(3,4) = 125
f(3,5) = 671
f(3,6) = 3130
f(3,7) = 13686
f(3,8) = 57867
f(3,9) = 240049
f(4,4) = 125
f(4,5) = 1296
f(4,6) = 9031
f(4,7) = 54062
f(4,8) = 301321
f(4,9) = 1616764
f(5,5) = 1296
f(5,6) = 16807
f(5,7) = 144495
f(5,8) = 1059261
f(5,9) = 7196785
f(6,6) = 16807
f(6,7) = 262144
f(6,8) = 2685817
f(6,9) = 23343742
f(7,7) = 262144
f(7,8) = 4782969
f(7,9) = 56953279
f(8,8) = 4782969
f(8,9) = 100000000
f(9,9) = 100000000
æ±ãããã®ã¯ã m = 9, n = 9 ã®å Žåã®æ°ãã䞊ã¹ãæ°ã®ãã¹ãŠã "0" ãšãªã 1 éããé€ãããã®ãªã®ã§ã
f(9,9)-1 = 99999999
éããšãªãã
èšç®çµæãèŠããšã
f(m,m) = (m+1)^(m-1)
ã«ãªãã¿ããã§ããã
ãªãã»ã©ãããããããšãã§ãããã§ããã
çµè«ã«ã¹ãããšåãèŸŒãæ¹æ³ãšããŠã¯ã
(314159265, 425260376, 536371487, âŠâŠ, 203048154)
ã®ããã«æ°åã 1 ã€ãã€ããããæ°ãããªã 10 åçµãäœããšã9 åã®åœé¡ã®ãã¡äœåæºããããããå
šãŠç°ãªãããšã蚌æããããšã§ããããã
ããããã° 999,999,999 åã®ãã¡ãŸãç®ãé€ãã 999,999,990 åäž 10 åã« 1 åãæ¡ä»¶ãæºããããšãã 99,999,999 åã§ãããšããã«ããããŸãã
ãŸããæºããããåœé¡æ°ãå
šãŠç°ãªãããšã®èšŒæãæéã«ãªãããã§ããã©ãã
ããã²ãããã®æŒžååŒãé¢çœãã£ãã®ã§ãããã§ããããéãã§ããã
OEISã§A373086ãããŸããŸãããããã
ããã«ãªã³ã¯ã§åŒµãããè«æãé¢é£ããããã«æããããã§ãããèªåã«ã¯ããããªãéšåã
å€ããŠæããããŠãããã²ããããªãããçè§£ãããã®ã§ã¯ãªãããšæããŸããã
ïŒïŒïŒïŒïŒãïŒèŠãïŒç¥ãïŒçŽåŸïŒ
ãONEãPLUSãTWELVEãïŒæåãå
¥ãæ¿ããŠïŒ
ïŒTWOãPLUSãELEVEN