NHKã®å°åŠç3幎çããïŒå¹Žçã»äžåŠã»é«æ ¡åãã®ããã°ã©ãã³ã°çæèã®çªçµã§ãã
10ã®çªçµããªã³ã¯ïŒç·è²ã®ããããã¯ã¡ã¹ããã¯ãªãã¯ããŠãã ããïŒã«ãããŸãã
ããªãé¢çœãã§ãããå
šç»é¢è¡šç€ºã®ã»ããããã§ãã
ãªããèãããšãã¯æ¢ãããšããã§ããã
16åã®ãããã®å
0000100110101111
ãããã°ããããç¹°ãè¿ã䞊ã¹ããš
00001001101011110000100110101111ãšãªã
ãããåããé£ç¶ããŠ4åãã€æšªã«ããããªããåºåã£ãŠãããš
0000
0001
0010
0100
1001
0011
0110
1101
1010
0101
1011
0111
1111
1110
1100
1000
ãšå
šãŠç°ãªã16ïŒ2^4)çš®é¡ã®ãã®ãæ§æãããŠããã
以äžåæ§ã«å
ã«æ»ããã®ãäœãããŠããã
0000
0001
.....
ããã§ä»åºŠã¯é£ç¶ãã4åã§ã¯ãªããå
ã«ãã¯ã0,1ã®ãã®ãããªããã16åã®ãããå
ããã£ããšãïŒãã®16é£ã®é
åã¯ä»¥éåããã®ãç¹°ãè¿ã䞊ã¹ãããŠãããã®ãšãããïŒ
èŠããå Žæããã®é
åã®1,2,4,8çªç®ã®ã¿ãèŠãã穎ããæ¿ã«èŠãããŠãããã®ãšããã
ãã®æ¿ãäžã³ããã€ãããããŠãã£ãæèŠãã4åã®æ°ååããã¯ãå
šãŠç°ãªã16åã®çš®é¡
ãç¹°ãè¿ãåºçŸããããããªå
ã®16ãããé
åã¯äœããæ±ããŠæ¬²ããã
äžã®é
åã§ã¯
0001
0011
0000
0101
1010
0011ïŒããã§éè€ãèµ·ãã)
0101

ãèŠããŠããæ°ãšãªãã
64æã®ãã©ã³ãïŒåçš®ããŒã¯ã®14,15,16ãäœã远å ããŠãèš64æã«ããããã¯)
ãããèŠåã§é
åããããã®ãæºåããã
(1)芳客ã«å¥œããªåæ°ã ããã®ããã¯ãã«ãã(ä»»æã®å Žæã§äžäžã®ãã±ãããå
¥ãæ¿ããã)
ãããã
(2)ãã®åŸäžãã6æã®ã«ãŒãã衚åãã«ããŒãã«ã«äžŠã¹ãããã
ã(ãã®ææŒè
ã¯äžŠã¹ãŠããã«ãŒãã¯èŠãªãããšã«ããã)
(3)䞊ã³çµãããããã®ã«ãŒãã®è²ãèµ€ãé»ãã®ç¶æ
ã䞊ã¹ãé çªã§èšã£ãŠãããã
(4)ãããèããŠæŒè
ã¯äžŠãã 6æã®ã«ãŒãã®åå(ããŒã¯ãšæ°å)ãå
šéšèšãåœãŠãã
[åç]
è²ã®æ
å ±ãã0,1ãããªã6ãããã®å(abcdef)ãåŸãããã
abã®é
åããæåã«äžŠã¹ãã«ãŒãã®ããŒã¯(4çš®é¡å¯Ÿå¿ã§ãã)
cdefã®é
åãããã®ã«ãŒãã®æ°å(2鲿°è¡šç€ºãšã¿ãŠ16éãã®éããäœãã)
ãšãããããåãã«äžŠã¹ãã«ãŒããšãªãããã«å¯Ÿå¿ãããŠããã
次ã«2çªç®ã«äžŠã¹ãã«ãŒãã¯
ä»äžŠãã§ãã1çªç®ã®ã«ãŒããåãå»ãããã¯ã®ããã ãžçŽããã
次ã«åºãã«ãŒãã®è²ã§6åã®ãããåãäœã£ãå Žåã
ããã2çªç®ã®ã«ãŒããšå¯Ÿå¿ããããã«ã以äžé
åç¶æ
ã
次ã
ãšèµ·ãããé çªã«ã«ãŒããçµã¿åããããã°ãã«ãŒãã®é
åç¶æ
ãã
6æã®ã«ãŒãã®ãã¹ãŠã®ååãåœãŠãããšãå¯èœã«ãªãã
åŸã£ãŠåãã«äžŠã¹ã6åã®ãããç¶æ
ãããæ¬¡ã«åºãã«ãŒãã®è²ãã©ã決å®
ãããã®ã«ãŒã«ãèŠã€ãåºãããšããã§ããŠããã°èªåçã«ã«ãŒãã®æ°åã
決ããããããšã«ãªããç®çã®çŸè±¡ãå¯èœãšãªã64æã®ãã©ã³ãã®é
åã
èŠã€ããããšã«ãªãã
ãããå
ã«ãã®é
åã®ã«ãŒã«ãæ±ããŠã³ã³ãã¥ãŒã¿ã§è©Šè¡é¯èª€ãç¹°ãè¿ã
å®éšããŠããŠå¶ç¶ãéãªããã®é
åãäžå¿èŠã€ããŸããã
äœãã«ãããããç¶æ
ãèŠã€ããããã¯ã®åæã®é
åç¶æ
ã«æ»ã£ãŠããŸã£ã
ãã®ãšãããã ã«ãã£ãã«ãŒããã«ããã®çµæãããã«ãã2ã€ã®å Žåã§ã¯
åºæ¥ãªããªããŸããïŒãã®ç¶æ
ãèµ·ããããšã¯ãŸããªããšã¯æããŸãã)
ãããå·ãšèšãã°ä»ã®ãšããå·ã§ãã
éåžžã®52æã®ãã©ã³ãã§ããã詊ã¿ãŠããã®ã§ãããããã64æã§ã®æ¹ã
ããæãæããã®ã§æ¢ããŠãã®ç¹æ®ãã©ã³ãã§ææŠããŸããã
èå³ãåºãæ¹ã¯ãã®é
åç¶æ
ãèŠã€ãåºããŠäžããã
ãã£ãšå¹çããæ¹æ³ããç¥ãã®æ¹ã¯æããŠäžããã
ãã°ãã°è©±é¡ã«äžãã de Bruijn æ°åã® B(2,6) ã§ããïŒ
ãã¶ãçµæçã«åãé¢ä¿ããŠãããšæããŸãã
ããè¶ã®æéãïŒãã²ãŒã ã®é人ãã®äžã§äœåã話é¡ã«ãªã£ãŠãããã®ã®ä»²éã§ããã
64æã§æ®ã£ããã±ããã®ããããåœãŠããã®ã
ãïŒïŒïŒããå¿çšã
ã«ãããŸãã
ãŸãã52æïŒãã ã1ææãåã1æä»ãè¶³ãïŒã®å Žåã
ãïŒïŒïŒïŒïŒæã§ã®ææŠã
ã«ãããæ£èŠã®52æã®å Žåã
ãïŒïŒïŒïŒåã®èµ€é»è³ªåã§ïŒïŒæã®ãã©ã³ãåœãŠã
ã«ãããŸãã
ä»åã®64æã®å Žåã¯åºæ¬çã«
ãïŒïŒïŒïŒåã®èµ€é»è³ªåã§ïŒïŒæã®ãã©ã³ãåœãŠã
ãšåãããã«ã§ããŠã次ã®ã«ãŒãã®æ±ºãæ¹ã¯åãã«ãŒã«ã§ãããŸãã
ãïŒæç®ã®ã«ãŒãã§äœ¿ã£ãïŒæ¡ã®æ°åã®æåãšæåŸã®çµåãããã
ã(0,0)â0ãã(0,1)â1ãã(1,0)â1ãã(1,1)â0
ã®æ°åãæ°ããçã¿åºãããããå
é ã«æ¿å
¥ããæ«å°Ÿã«ããæ°åã¯é€å»ãããã
ãã ããäŸå€åŠçãæ¬¡ã®ããã«å€æŽã«ãªããŸãã
000001 ããæ§æãããã®ã¯ãæ³åéããªã 100000 ã ãã000000 ãšããã
000000 ããæ§æãããã®ã¯ãæ³åéããªã 000000 ã ãã100000 ãšããã
ãã®ã«ãŒã«ã§6ãããåã®é
åãäœã£ããããšã¯ã«ãŒãããã®éãã«å²ãåœãŠãã°OKã§ãã
ãã ãããã®ã«ãŒã«ã ãšå
é 4æ¡ãæ°ã»æ«å°Ÿ2æ¡ãããŒã¯ã«å¯Ÿå¿ããŠããŸãã®ã§ã
å
é 2æ¡ãããŒã¯ã»æ«å°Ÿ4æ¡ãæ°ã«å¯Ÿå¿ããã®ãªãã°ã次ã®ããã«ãªããŸãã
ãïŒæç®ã®ã«ãŒãã§äœ¿ã£ãïŒæ¡ã®æ°åã®æåãšæåŸã®çµåãããã
ã(0,0)â0ãã(0,1)â1ãã(1,0)â1ãã(1,1)â0
ã®æ°åãæ°ããçã¿åºããããã"æ«å°Ÿ"ã«æ¿å
¥ãã"å
é "ã«ããæ°åã¯é€å»ããã
äŸå€åŠçã¯ä»¥äžã®éãã
100000 ããæ§æãããã®ã¯ãæ³åéããªã 000001 ã ãã000000 ãšããã
000000 ããæ§æãããã®ã¯ãæ³åéããªã 000000 ã ãã000001 ãšãããã
éå»è²ã
ãªãã®ãäœã£ãŠããŠããã®ã§ããã£ããèšæ¶ããæãèœã¡ãŠããŸããã
ãïŒæç®ã®ã«ãŒãã§äœ¿ã£ãïŒæ¡ã®æ°åã®æåãšæåŸã®çµåãããã
ã(0,0)â0ãã(0,1)â1ãã(1,0)â1ãã(1,1)â0
ã®æ°åãæ°ããçã¿åºããããã"æ«å°Ÿ"ã«æ¿å
¥ãã"å
é "ã«ããæ°åã¯é€å»ããã
äŸå€åŠçã¯ä»¥äžã®éãã
100000 ããæ§æãããã®ã¯ãæ³åéããªã 000001 ã ãã000000 ãšããã
000000 ããæ§æãããã®ã¯ãæ³åéããªã 000000 ã ãã000001 ãšãããã
ãªãããšãç°¡åã«æ¬¡ã®é
åãæ§æã§ããŸããã
èµ€ãè²ã®ã«ãŒãã1ã«å¯Ÿå¿ããããš
C|16;[0, 0, 0, 0, 0, 0]
C|1;[0, 0, 0, 0, 0, 1]
C|3;[0, 0, 0, 0, 1, 1]
C|7;[0, 0, 0, 1, 1, 1]
C|15;[0, 0, 1, 1, 1, 1]
S|15;[0, 1, 1, 1, 1, 1]
H|15;[1, 1, 1, 1, 1, 1]
H|14;[1, 1, 1, 1, 1, 0]
H|13;[1, 1, 1, 1, 0, 1]
H|10;[1, 1, 1, 0, 1, 0]
H|5;[1, 1, 0, 1, 0, 1]
D|10;[1, 0, 1, 0, 1, 0]
S|5;[0, 1, 0, 1, 0, 1]
D|11;[1, 0, 1, 0, 1, 1]
S|6;[0, 1, 0, 1, 1, 0]
D|12;[1, 0, 1, 1, 0, 0]
S|9;[0, 1, 1, 0, 0, 1]
H|3;[1, 1, 0, 0, 1, 1]
D|6;[1, 0, 0, 1, 1, 0]
C|13;[0, 0, 1, 1, 0, 1]
S|11;[0, 1, 1, 0, 1, 1]
H|7;[1, 1, 0, 1, 1, 1]
D|14;[1, 0, 1, 1, 1, 0]
S|13;[0, 1, 1, 1, 0, 1]
H|11;[1, 1, 1, 0, 1, 1]
H|6;[1, 1, 0, 1, 1, 0]
D|13;[1, 0, 1, 1, 0, 1]
S|10;[0, 1, 1, 0, 1, 0]
H|4;[1, 1, 0, 1, 0, 0]
D|9;[1, 0, 1, 0, 0, 1]
S|2;[0, 1, 0, 0, 1, 0]
D|4;[1, 0, 0, 1, 0, 0]
C|9;[0, 0, 1, 0, 0, 1]
S|3;[0, 1, 0, 0, 1, 1]
D|7;[1, 0, 0, 1, 1, 1]
C|14;[0, 0, 1, 1, 1, 0]
S|12;[0, 1, 1, 1, 0, 0]
H|8;[1, 1, 1, 0, 0, 0]
H|1;[1, 1, 0, 0, 0, 1]
D|2;[1, 0, 0, 0, 1, 0]
C|5;[0, 0, 0, 1, 0, 1]
C|11;[0, 0, 1, 0, 1, 1]
S|7;[0, 1, 0, 1, 1, 1]
D|15;[1, 0, 1, 1, 1, 1]
S|14;[0, 1, 1, 1, 1, 0]
H|12;[1, 1, 1, 1, 0, 0]
H|9;[1, 1, 1, 0, 0, 1]
H|2;[1, 1, 0, 0, 1, 0]
D|5;[1, 0, 0, 1, 0, 1]
C|10;[0, 0, 1, 0, 1, 0]
S|4;[0, 1, 0, 1, 0, 0]
D|8;[1, 0, 1, 0, 0, 0]
S|1;[0, 1, 0, 0, 0, 1]
D|3;[1, 0, 0, 0, 1, 1]
C|6;[0, 0, 0, 1, 1, 0]
C|12;[0, 0, 1, 1, 0, 0]
S|8;[0, 1, 1, 0, 0, 0]
H|16;[1, 1, 0, 0, 0, 0]
D|1;[1, 0, 0, 0, 0, 1]
C|2;[0, 0, 0, 0, 1, 0]
C|4;[0, 0, 0, 1, 0, 0]
C|8;[0, 0, 1, 0, 0, 0]
S|16;[0, 1, 0, 0, 0, 0]
D|16;[1, 0, 0, 0, 0, 0]
ã®é
åã«ãªããŸããã
ããããã£ãã倱念ããŠããã®ã§
ãããªæ§é ãæãŠã次ã®ã«ãŒãã®è²ãäœã«ããŠããã®ããæ±ºããã®ã«ã³ã³ãã¥ãŒã¿ã§
æ¡ä»¶ãæ§ã
æ¢ã£ãŠããäžã§
ãïŒæç®ã®ã«ãŒãã§äœ¿ã£ãïŒæã®ã«ãŒãã®è²ã®é
åããã
Check=(1çªç®+2çªç®+4çªç®+5çªç®)%2 (ããã«èµ€ã«ãŒããããã°1ãšãåã2ã§å²ã£ãäœããèšç®ã)
ãããã®å€ã1çªç®ãšäžèŽïŒé»ã«ãŒã=Check(0)ãŸãã¯èµ€ã«ãŒã=check(1))ãªã
1çªç®ãåãå»ã1çªç®ã®ã«ãŒããšåãè²ãæåŸå°Ÿã«è£å
ããã
ãŸãå
é ã®ã«ãŒãã®è²â Checkãªã
1çªç®ãåãå»ãCheckã®æ°ãšåãè²ãæåŸå°Ÿã«è£å
ãããã
ã®ã«ãŒã«ã§äžæãè¡ãããšå¶ç¶ã«ãæ°ä»ããã
ãã®ã«ãŒã«ãã
C|16;[0, 0, 0, 0, 0, 0]
C|1;[0, 0, 0, 0, 0, 1]
C|2;[0, 0, 0, 0, 1, 0]
C|5;[0, 0, 0, 1, 0, 1]
C|11;[0, 0, 1, 0, 1, 1]
S|7;[0, 1, 0, 1, 1, 1]
D|15;[1, 0, 1, 1, 1, 1]
S|15;[0, 1, 1, 1, 1, 1]
H|15;[1, 1, 1, 1, 1, 1]
H|14;[1, 1, 1, 1, 1, 0]
H|12;[1, 1, 1, 1, 0, 0]
H|9;[1, 1, 1, 0, 0, 1]
H|2;[1, 1, 0, 0, 1, 0]
D|5;[1, 0, 0, 1, 0, 1]
C|10;[0, 0, 1, 0, 1, 0]
S|5;[0, 1, 0, 1, 0, 1]
D|10;[1, 0, 1, 0, 1, 0]
S|4;[0, 1, 0, 1, 0, 0]
D|8;[1, 0, 1, 0, 0, 0]
S|1;[0, 1, 0, 0, 0, 1]
D|3;[1, 0, 0, 0, 1, 1]
C|6;[0, 0, 0, 1, 1, 0]
C|12;[0, 0, 1, 1, 0, 0]
S|9;[0, 1, 1, 0, 0, 1]
H|3;[1, 1, 0, 0, 1, 1]
D|7;[1, 0, 0, 1, 1, 1]
C|15;[0, 0, 1, 1, 1, 1]
S|14;[0, 1, 1, 1, 1, 0]
H|13;[1, 1, 1, 1, 0, 1]
H|11;[1, 1, 1, 0, 1, 1]
H|7;[1, 1, 0, 1, 1, 1]
D|14;[1, 0, 1, 1, 1, 0]
S|13;[0, 1, 1, 1, 0, 1]
H|10;[1, 1, 1, 0, 1, 0]
H|5;[1, 1, 0, 1, 0, 1]
D|11;[1, 0, 1, 0, 1, 1]
S|6;[0, 1, 0, 1, 1, 0]
D|13;[1, 0, 1, 1, 0, 1]
S|10;[0, 1, 1, 0, 1, 0]
H|4;[1, 1, 0, 1, 0, 0]
D|9;[1, 0, 1, 0, 0, 1]
S|3;[0, 1, 0, 0, 1, 1]
D|6;[1, 0, 0, 1, 1, 0]
C|13;[0, 0, 1, 1, 0, 1]
S|11;[0, 1, 1, 0, 1, 1]
H|6;[1, 1, 0, 1, 1, 0]
D|12;[1, 0, 1, 1, 0, 0]
S|8;[0, 1, 1, 0, 0, 0]
H|1;[1, 1, 0, 0, 0, 1]
D|2;[1, 0, 0, 0, 1, 0]
C|4;[0, 0, 0, 1, 0, 0]
C|9;[0, 0, 1, 0, 0, 1]
S|2;[0, 1, 0, 0, 1, 0]
D|4;[1, 0, 0, 1, 0, 0]
C|8;[0, 0, 1, 0, 0, 0]
S|16;[0, 1, 0, 0, 0, 0]
D|1;[1, 0, 0, 0, 0, 1]
C|3;[0, 0, 0, 0, 1, 1]
C|7;[0, 0, 0, 1, 1, 1]
C|14;[0, 0, 1, 1, 1, 0]
S|12;[0, 1, 1, 1, 0, 0]
H|8;[1, 1, 1, 0, 0, 0]
H|16;[1, 1, 0, 0, 0, 0]
D|16;[1, 0, 0, 0, 0, 0]
ã®é
åãèŠã€ãã£ãã
ãããã«ãŒã«ãè€éã«èŠããŸãããæ
£ãããšçµæ§ã¹ã ãŒãºã«äœæ¥å¯èœã§ãã
次ã®9åã®ã°ã©ããåæã«æããŠã¿ããã
C1:x^2+y^2=9^2
C2:(x-15)^2+y^2=6^2
C3:(x-6)^2+y^2=15^2
C4:(x-189/19)^2+(y-180/19)^2=(90/19)^2
C5:(x-81/31)^2+(y-360/31)^2=(90/31)^2
C6:(x+33/17)^2+(y-180/17)^2=(30/17)^2
C7:(x+351/79)^2+(y-720/79)^2=(90/79)^2
C8:(x+135/23)^2+(y-180/23)^2=(18/23)^2
C9:(x+357/53)^2+(y-360/53)^2=(30/53)^2
ãªã
ããã«ç¶ã3åã®åã®æ¹çšåŒã¯ïŒ
äžè¬åŒã¯
(x+9(4n^2-25)/(4n^2+15))^2+(y-180n/(4n^2+15))^2=(90/(4n^2+15))^2
ãªã®ã§ãç¶ãã¯
(x+1539/211)^2+(y-1260/211)^2=(90/211)^2
(x+2079/271)^2+(y-1440/271)^2=(90/271)^2
(x+897/113)^2+(y-540/113)^2=(90/339)^2
(x+675/83)^2+(y-360/83)^2=(90/415)^2
(x+4131/499)^2+(y-1980/499)^2=(90/499)^2
(x+1653/197)^2+(y-720/197)^2=(90/591)^2
(x+5859/691)^2+(y-2340/691)^2=(90/691)^2
(x+6831/799)^2+(y-2520/799)^2=(90/799)^2
(x+525/61)^2+(y-180/61)^2=(90/915)^2
(x+8991/1039)^2+(y-2880/1039)^2=(90/1039)^2
(x+10179/1171)^2+(y-3060/1171)^2=(90/1171)^2
(x+3813/437)^2+(y-1080/437)^2=(90/1311)^2
ã»ã»ã»
ã®ããã«ãªããŸããã
äžè¬ã®å Žåã«ã€ããŠèããŠã¿ãŸããã
ãŸãä»åã®èšå®ã¯æåã®2åãå³ã«9ç§»åããŠ
äžå¿(15,0)ååŸ15ã®å((x-15)^2+y^2=15^2 â x^2-30x+y^2=0) ãš
äžå¿(9,0)ååŸ9ã®å((x-9)^2+y^2=9^2 â x^2-18x+y^2=0) ã«ãããšãäžè¬åŒã¯
((4n^2+15)x-360)^2+((4n^2+15)y-180n)^2=90^2
ãšãã綺éºãªåœ¢ã«ãªããŸãã
ãããŠããã«ååŸãäžè¬åãããš
åç¹ã§æ¥ãã2å
äžå¿(a,0)ååŸaã®å(x^2-2ax+y^2=0)
äžå¿(b,0)ååŸbã®å(x^2-2bx+y^2=0)
ã«æãŸããåã¯
((((a-b)n)^2+ab)x-ab(a+b))^2+((((a-b)n)^2+ab)y-2ab(a-b)n)^2=(ab(a-b))^2
n=0ãæå€§åãn=±1ãæå€§åã®é£ãn=±2ããã®é£ãã»ã»ã»
ã®ããã«ãªããŸããã
aãšbã®å€§å°é¢ä¿ã¯ã©ã¡ãã§ãOKã§ãããè² ã§ãOKã§ãã
aãbãè² ãªãã°xïŒ0ã®ç¯å²ã§åãããšãèµ·ããã
aãšbã®ç¬Šå·ãç°ãªãå Žå(æåã®2åãåç¹ã§å€æ¥ããå Žå)ã¯å€æ¥åã§åæ§ã®ããšãèµ·ãããŸãã
ïŒã€ãŸãn=0ã®ãšã2åãå
ãåãn=±1ã®ãšããã®åãšå
ã®2åã«æ¥ãã倿¥åãã»ã»ã»ïŒ
äžè¬åãããåŒã§æ©éå®éšããŠã¿ãŸããã
a=-9,b=6
ã§ïŒåãæã
n=0ã§å€§åã
n=1ã§ïŒã€ã®åã«æ¥ããåãäœããŠããã®ã§ãã
n=2,3,4,ã§ã¯äžæ¹ã«åãã£ãŠåãé£ãªã£ãŠããè¡ãã®ã§ãã
ãããa=-9ã®åãšå€§åã«æ¥ããæ§ã«å·Šã«é²è¡ãããããªãã®ïŒçµµæçã«ãã¡ãããã£ãããã®ã§ïœ¥ïœ¥ïœ¥)
ã«ããã®ã¯ã©ããããããã®ã§ããããïŒ
a=15,b=9ãšãããšãã®å³ãå·Šã«18ç§»åãããã®ã§ãããã
((((a-b)n)^2+ab)x-ab(a+b))^2+((((a-b)n)^2+ab)y-2ab(a-b)n)^2=(ab(a-b))^2
ã®xã(x+18)ã«ããŠ
a=15,b=9ãšããã°ããã§ããã
ãŸãxã(x-12)ã«ããŠa=-15,b=-6ã«ããã°å察åŽã®åãæããŸãã
äžè¬åœ¢ã®åŒããããšãããªå³ãç°¡åã«æããŸããããªãã£ãã倧å€ã§ããã
ãŸãxã(x-12)ã«ããŠa=-15,b=-6ã«ããã°å察åŽã®åãæããŸãã
ãããŒïŒ
ãã®ã¢ã€ãã¢ã¯æã£ãŠãããŸããã§ããã
äžè¬åããããšã§å¿çšã®éãåºãããŸããïœ
t=â2
ã§ããæ
(1)P=1/(t^2+3*t+1)
(2)Q=1/(t^3+3*t+1)
ãªãåŒãæçåããããã
ããŠããããã©ã®æ§ãªåŒã«ã§ãããïŒ
(1) (t^2+3*t+1)*(8*t^2ïŒtïŒ5)ïŒ41ããªã®ã§ãïŒ(8*t^2ïŒtïŒ5)/41
(2) t^3+3*t+1=3*t+3ããªã®ã§ã (3*t+3)*(t^2ïŒtïŒ1)ïŒ9ããããQ=(t^2ïŒtïŒ1)/9ãã§ããïŒ
ãã£ããªã解決ããã¡ãããŸããã
(1)x^2+y^2+sin(7*x)+sin(7*y)-1=0
(2)x^2+y^2+sin(7*x)+cos(7*y)-1=0
(3)x^2+y^2+cos(7*x)+cos(7*y)-1=0
(4)|x|+|y|+sin(|7*x|)+sin(|7*y|)-1=0
(5)|x|+|y|+sin(|7*x|)+cos(|7*y|)-1=0
(6)|x|*|y|+sin(|7*x|)*cos(|7*y|)-1=0
ã®ã°ã©ããåçã«å€åããæ§åããæ¥œãã¿ãã ããã
Grapesã§æç»ããŸããããã®ã°ã©ãã¯ææ¥ä»ã§ã¢ããäºå®ã§ãã
ïŒÃïŒã®ãã¹ç®ãäœã
客ã«ïŒã€ã®æ ã«å¥œããªäžæ¡ã®æ°åãåæã«åããŠãããã
0ãå«ãã§ãè¯ãããæ°åãéãªã£ãŠããŠãæ§ããªãã
次ã«åããè¡åã®åè¡ã®3ã€ããæ°åããããããåæã«ãããã
1åãã€éžãã§ããïŒæ¡ã®æŽæ°(第1è¡ãçŸäœã第2è¡ãåäœã第3è¡ãäžäœ)
ãäœã£ãŠãããã
åãããã«ïŒã€ç®ã®ïŒæ¡ã®æŽæ°ãåè¡ã§äžã§éžãã æ°ã¯é€ãæ®ã2ã€ããéžã¶ããšã§
äœã£ãŠãããã
ãããŠãåè¡æ®ã£ãæ°åãã3ã€ç®ã®æŽæ°ãäœãã
ããããŠå®¢ãä»»æã«äœã£ã3ã€ã®ïŒæ¡ã®æ°ã®åèšãããŠãããã
(0ãå
é ã«æ¥ãå Žåã¯ïŒæ¡ã®ãã®ãšãªããïŒ
å¿è«ããªãã¯å®¢ãäœã£ãïŒã€ã®æ°ã¯èŠãªããã®ãšããã
ããªãã¯å®¢ãèšç®ã§æ±ããã§ãããåèšã®æ°ãäºèšãšç§°ããŠçŽã«æžãã€ããã
客ãåèšæ°ãçºè¡šããããŠããªãã¯ãã®äºèšã®çŽãèŠããã
ïŒããŠãã®ããã©ãŒãã³ã¹ãæåãããããã«ã¯ãã©ããªæ¹æ³ã䜿ãã°å¯èœã§ããããïŒ
çãã¯ç®¡ç人ãããæžããŠãããŠããšããŠã1ã€ããã³ãã©ãããã
客ã3ã€ã®æ°ãäœãåã«ãããªããšãäºèšãã«ãªããªãã®ã§ã¯ã
確ãã«9ãã¹ç®ã®æ°ã
5 1 3
3 6 9
4 2 8
ãªã客ãèšç®ã§åºãæ°ã¯
(5+1+3)*100+(3+6+9)*10+(4+2+8)
ãªã®ã§ãããã¯äžã®è¡åã90°巊å転ãã
3 9 8
1 6 2
5 3 4
ãšçºããŠããããèšç®ããšãã°ããããšã«ãªããŸãã
DD++ããã®ããã³ãããããŸãããã客ãäœãæ°ãèŠãŠããªãã®ã ããäºèšãšã¯è¡ããªããŠã
äºç¥ããã©ãŒãã³ã¹ãšã¯ãªããã§ã¯ãªãããªïŒ
A^2+B^2
ã¯å æ°åè§£ããããšã¯åºæ¥ãŸããã
A=X^2,B=2*Y^2ãšçœ®ãçŽããš
X^4+4*Y^4
=X^4+4*X^2*Y^2+4*Y^4-4*X^2*Y^2
=(X^2+2*Y^2)^2-(2*X*Y)^2
=(X^2-2*X*Y+2*Y^2)*(X^2+2*X*Y+2*Y^2)
ãšïŒã€ã®ç©ã§äœãçŽããã
åãã
A^3+B^3=(A+B)*(A^2-A*B+B^2)
ãŸã§ã¯åºæ¥ãã
A=X^2,B=3*Y^2ãšçœ®ãçŽããš
X^6+27*Y^6=(X^2+3*Y^2)*(X^4-3*X^2*Y^2+9*Y^4)
=(X^2+3*Y^2)*(X^4+6*X^2*Y^2+9*Y^4-9*X^2*Y^2)
=(X^2+3*Y^2)*((X^2+3*Y^2)^2-(3*X*Y)^2)
=(X^2+3*Y^2)*(x^2-3*X*Y+3*Y^2)*(X^2+3*X*Y+3*Y^2)
ãšïŒã€ã®ç©ã§äœãçŽããã
A^5-B^5=(A-B)*(A^4+A^3*B+A^2*B^2+A*B^3+B^4)
ã§ããã
A=5*X^2,B=Y^2ãšçœ®ãçŽããš
(5*X^2-Y^2)*(625*X^8+125*X^6*Y^2+25*X^4*Y^4+5*X^2*Y^6+Y^8)
=(5*X^2-Y^2)*(25*X^4 - 25*X^3*Y + 15*X^2*Y^2 - 5*X*Y^3 + Y^4)*(25*X^4 + 25*X^3*Y + 15*X^2*Y^2 + 5*X*Y^3 + Y^4)
ãšããïŒã€ã®ç©ã®åœ¢ã«äœãå€ããããã
ããã§
A^7+B^7=(A+B)*(A^6-A^5*B+A^4*B^2-A^3*B^3+A^2*B^4-A*B^5+B^6)
ã§ã¯ãããA,Bãé©åœã«çœ®ãçŽãããšã§
ïŒã€ã®ç©ã§äœã£ã圢ã«çŽããŠã»ããã
4ã€ã ãšç°¡åãªã®ã§ãã¡ããã©3ã€ã®å æ°ããšããããšã§ãããïŒ
ãããªãã°äŸãã°
A=X^3+1, B=Y^3-1 ãšããã°
A^7+B^7=(X^3+1)^7+(Y^3-1)^7
=(X+Y)(X^2-XY+Y^2)
{(X^18-X^15Y^3+X^12Y^6-X^9Y^9+X^6Y^12-X^3Y^15+Y^18)
+7(X^15-X^12Y^3+X^9Y^6-X^6Y^9+X^3Y^12-Y^15)
+21(X^12-X^9Y^3+X^6Y^6-X^3Y^9+Y^12)+35(X^9-X^6Y^3+X^3Y^6-Y^9)
+35(X^6-X^3Y^3+Y^6)+21(X^3-Y^3)+7}
ãªãã»ã©ïŒ
ãã®çºæ³ã§ããããã®ãã
å
šãé¢ä¿ãããŸãããäžã®ç¬¬ïŒé
ç®ãæžãçŽããš
(X^18+Y^18) - X^3*Y^3*(X^12+Y^12)+X^6*Y^6*(X^6+Y^6)-X^9*Y^9 +
7*{ (X^15-Y^15) -X^3*Y^3*(X^9-Y^9) +X^6*Y^6*(X^3-Y^3)} +
21*{(X^12+Y^12) -X^3*Y^3*(X^6+Y^6) +(X^3-Y^3)+X^6*Y^6} +
35*{ (X^9-Y^9) -X^3*Y^3*(X^3-Y^3) +(X^6+Y^6)-X^3*Y^3} +
7
ãªããã¡ããçšæããŠããã®ã
A=7*X^2,B=Y^2ãšçœ®ããŠåºæ¥ã
823543*X^14+Y^14=(7*X^2+Y^2)*(117649*X^12 - 16807*Y^2*X^10 + 2401*Y^4*X^8 - 343*Y^6*X^6 + 49*Y^8*X^4 - 7*Y^10*X^2 + Y^12)
=(7*X^2+Y^2)
* (343*X^6 - 343*Y*X^5 + 147*Y^2*X^4 - 49*Y^3*X^3 + 21*Y^4*X^2 - 7*Y^5*X + Y^6)
ããããããããã* (343*X^6 + 343*Y*X^5 + 147*Y^2*X^4 + 49*Y^3*X^3 + 21*Y^4*X^2 + 7*Y^5*X + Y^6)
ãªãåŒã§ããã
ãšãªãããããã
åã³ç³ãèš³ãªãã®ã§ãã
ãã®æ£å€è§åœ¢ãã©ãã©ã倧ããããŠè¡ã£ãæãã©ããããããã®ãè¿·ã£ãŠããã®ã§
次ã®åé¡ãèããŠé ãããã
æ£1000è§åœ¢ã®å³åœ¢ããããšããã
ãã®ä»»æã®é ç¹3ãæãéžãã§äœãããäžè§åœ¢ã®å
è§ãå
šéšæŽæ°è§ãšãªã
é ç¹3ãæã®éžã³æ¹(çµåã)ã¯å
šéšã§äœéãããããæ±ããŠæ¬²ããã
äœãé ç¹ã«ã¯åºæã®çªå·ãæ¯ãåœãŠãããŠãããã®ãšããŸãã
ã§ããã
æ£2024è§åœ¢,æ£2345è§åœ¢ã§ãæ±ããŠæ¬²ããã
æ£1000è§åœ¢
1000=2^3Ã5^3ã180÷(2^2Ã5)=9ãš2Ã5^2=50ã¯äºãã«çŽ ãªã®ã§
æŽæ°è§ã«ãªãããã«ã¯é ç¹ã50nå(ååšè§9n°)åäœã§äœ¿çšããªããã°ãªããªãã
âŽ(1000÷50)C3Ã50=57000éã
æ£2024è§åœ¢
2024=2^3Ã11Ã23ã180÷2^2=45ãš2Ã11Ã23=506ã¯äºãã«çŽ ãªã®ã§
æŽæ°è§ã«ãªãããã«ã¯é ç¹ã506nå(ååšè§45n°)åäœã§äœ¿çšããªããã°ãªããªãã
âŽ(2024÷506)C3Ã506=2024éã
æ£2345è§åœ¢
2345=5Ã7Ã67ã180÷5=36ãš7Ã67=469ã¯äºãã«çŽ ãªã®ã§
æŽæ°è§ã«ãªãããã«ã¯é ç¹ã469nå(ååšè§36n°)åäœã§äœ¿çšããªããã°ãªããªãã
âŽ(2345÷469)C3Ã469=4690éã
ã€ãŸãæ£Nè§åœ¢ã®å Žåã¯
g=gcd(N,180)ãšããŠgC3Ã(N/g)éãïŒãã ãgïŒ3ã®ãšã0éãïŒ
ãšããããšã§ããã
æ£ïŒïŒïŒïŒè§åœ¢ã«ã€ããŠãïŒèŸºã«å¯Ÿããååšè§ã¯ãïŒ/ïŒïŒãªã®ã§ãïŒïŒåã®ãŸãšãŸãããšã«æŽæ°è§ãšãªãã
ãã£ãŠãèªç¶æ°ïœãïœãïœã«å¯ŸããŠãïŒïœïŒïŒïœïŒïŒïœïŒïŒïŒïŒãããããïœïŒïœïŒïœïŒïŒïŒ
å転ãããŠéãªãè§£ïŒïœïŒïœïŒïœïŒã¯åäžèŠããŠãæäœæ¥ã§è§£ãæ±ãããšãïŒïŒéã
ãã£ãŠãäžè§åœ¢ã®éžã³æ¹ã¯ãïŒïŒÃïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒéãïŒãšãªãã
ïŒããããããã®çµæãšäžèŽããŠãå®å¿ããŸããïŒ
äžè¬ã«æ£nè§åœ¢ããã
ãã®ä»»æã®çžç°ãªã3é ç¹A,B,Cãéžãã§äžè§åœ¢ABCãã€ãããšã
å
è§ã®ãã¹ãŠãæŽæ°åºŠ(1Â°ã®æŽæ°å)ãšãªããããªäžè§åœ¢ã§ãã
ããšãèµ·ãã3ç¹ã®éžã³æ¹ã¯ããããäœéããããïŒ
(1)n=14
(2)n=15
(3)n=16
(2)ã¯
æ£15è§åœ¢ã®ã©ã®3é ç¹ãéžãã§ãããã®3ç¹ã§äœãããäžè§åœ¢ã®ãã¹ãŠã®å
è§ã¯æŽæ°åºŠã«ãªããã
15C3=455éã
ãšãªããããªæ°ãããŸããã
ããç§ã®åéãã§ããããææäžããã
ïŒïŒïŒïŒïŒïŒãèšç®ããŠã¿ãŸãããïŒç¹ã®éžã³æ¹ãåé¡ãªã®ã§ãååãè£è¿ãã§éãªãäžè§åœ¢ãç°ãªããšèŠãªããŠããã
ïŒïŒïŒãæ£ïŒïŒè§åœ¢ã®ïŒèŸºã«å¯Ÿããååšè§ã¯ãïŒïŒÂ°ã§ãããããçµã¿åãããŠäžè§åœ¢ãäœãããšã«ãªãã
ãã£ãŠãïŒïŒåã®é ç¹ããïŒã€ã®é ç¹ãéžã¶å Žåã®æ°ã¯ã153ïŒïŒïŒïŒïŒéãïŒã
ïŒåœåãèãéããããŠããããšã«æ°ã¥ããä¿®æ£ããŸããã
ïŒïŒïŒãæ£ïŒïŒè§åœ¢ã®ïŒèŸºã«å¯Ÿããååšè§ã¯ãïŒïŒïŒïŒïŒÂ°ã§ãããããçµã¿åãããŠäžè§åœ¢ãäœãã«ã¯ã
ïŒïŒïŒïŒïŒïŒïŒãïŒïŒïŒïŒïŒïŒïŒãïŒïŒïŒïŒïŒïŒïŒã®çµã¿åãã§äžè§åœ¢ãäœãããã
ããã£ãŠãæ±ããå Žåã®æ°ã¯ãïŒïŒÃïŒïŒïŒïŒïŒéãïŒ
(2)ã¯455(éã)ã®çµåãã§ããäºäººãšãæ£è§£ã§ãã
(3)ã¯ç§ã®è§£ãšç®¡ç人ãããšã¯ç°ãªã£ãŠããŸãã
ã§ããããã®48éãã¯å
·äœçã«é ç¹ã®éšåã{1,2,3,,16}
ãšãããšããã©ã®é ç¹ã®3ã€ãéžãã§ããã®ãã瀺ããŠãããŸãããã
å
šãèªä¿¡ã¯ãããŸãããïŒïŒïŒã
é ç¹ãïŒãïŒãã»ã»ã»ãïŒïŒãšããå ŽåãïŒïŒïŒïŒïŒïŒïŒã衚ãäžè§åœ¢ãšããŠ
ïŒïŒïŒãšãïŒïŒ10ãšããã»ã»ã»ã§ãâ ïŒïŒïŒïŒâ ïŒïŒïŒïŒïŒïŒÂ°ãâ ïŒïŒïŒïŒïŒïŒÂ°
ãšãªããŸãã
倿¥åãèãããšãã«ãä»»æã® 2 é ç¹éã«ã§ããäžå¿è§ãå¶æ°åºŠã«ãªãã°ãããšèããŸãã
(1)
360/14 ãæŽæ°åããŠå¶æ°ãäœãã«ã¯ 7 ã®åæ°ãæãããããªããæ£ã® 7 ã®åæ° 3 ã€åèšã§ 14 ã«ã¯ã§ããŸããã
ãã£ãŠ 0 éãã
(2)
360/15 ãæŽæ°åããŠå¶æ°ãäœãã«ã¯ä»»æã®æŽæ°ã§ãããçµå± A,B,C ãéè€ããªãããã«ä»»æã«éžã¹ã°ããã§ãã
ãã£ãŠ 15P3 = 2730 éãã
(3)
360/16 ãæŽæ°åããŠå¶æ°ãäœãã«ã¯ 4 ã®åæ°ãæãããããªããæ£ã® 4 ã®åæ° 3 ã€åèšã§ 16 ã«ãªãã®ã¯ 4,4,8 ãšããçµã¿åããã®ã¿ã
ã€ãŸãçŽè§äºç蟺äžè§åœ¢ãäœããããããŸããã
A ãçŽè§ãªãã®ã 16*2 = 32 éããB ãš C ã«ã€ããŠãåãåæ°ããã®ã§ãå
šéšã§ 32*3 = 96 éã
##ã3é ç¹ãéžãã§äžè§åœ¢ãã€ãããã®ã§ã¯ãªããã3é ç¹A,B,Cãéžãã§äžè§åœ¢ABCãã€ãããåé¡ã§ããããç¹ã®ååãå
¥ãæ¿ããã°å¥ç©ãšãã¹ãã ãšæããŸãã
(1)ã¯90°ã®è§åºŠã¯äœãããïŒ1,2,9ã®é ç¹ãªã©)ä»ã®å
è§ã¯æŽæ°ã«ãªããªããçµå±0(éã)
(2)ã¯åºé¡ã®æ3ç¹ãäœæ°ã«A,B,Cãšèšã£ãŠããŸã£ãã®ã§DD++ããã®è§£éãèµ·ãã£ãã(ãã質åãããšDD++ãããæ£ããã)
ãã¡ããæã£ãŠããã®ã¯ã15åã®é ç¹ã®3ã€ã®çµåãã幟ã€åãããïŒ
ã®ã€ããã§èããŠããã®ã§15C3=455(éã)ã§ãé¡ãããŠãããŸãã
(3)ã¯çŽè§äºç蟺äžè§åœ¢ãªããæ¡ä»¶ãæºããã®ã§ããããé ç¹1,2,3,,16
ããã®3ã€ã®é ç¹ã®éžã³æ¹ã¯åé ç¹ã«90°ã®éšåãããå Žåã®16ïŒéã)
ãšããäºå®ã§ããã
æ£nå€è§åœ¢ãšããã®é ç¹ã®ä»»æã®3ç¹ãçµãã§äœãäžè§åœ¢ã®3ã€ã®å
è§ãã©ããæŽæ°è§ãšãªããã®ã
n=5 -->åå
è§ã¯36Â°ã®æŽæ°å
n=6 -->åå
è§ã¯30Â°ã®æŽæ°å
n=9 -->åå
è§ã¯20Â°ã®æŽæ°å
n=10 -->åå
è§ã¯18Â°ã®æŽæ°å
n=12 -->åå
è§ã¯15Â°ã®æŽæ°å
n=15 -->åå
è§ã¯12Â°ã®æŽæ°å
n=18 -->åå
è§ã¯10Â°ã®æŽæ°å
n=20 -->åå
è§ã¯9Â°ã®æŽæ°å
n=30 -->åå
è§ã¯6Â°ã®æŽæ°å
n=36 -->åå
è§ã¯5Â°ã®æŽæ°å
ãèµ·ããããã§ããã
èšç®ãããŠåããŠæ°ä»ããŸããã