4ÃïŒã®ãã³ãã¬ãäœããŸããã宿åã§ããã
ïŒïŒïŒïŒïŒïŒïŒ
1ïŒïŒïŒïŒïŒïŒ
ïŒïŒïŒïŒïŒïŒïŒ
ïŒïŒïŒïŒïŒïŒïŒ
No.2876ks2025幎12æ2æ¥ 13:16
æ¬å®¶ã®9Ã9ã®å Žå
空æ¬ïŒïŒã§ããåé¡ãäœããããã§ããã
ãããã³ãã¬ã®å Žåã空æ¬ãã
æå€§ããã€ããåé¡ãäœããã§ããããïŒ
ïŒã€ã®ç©ºæ¬å Žåã¯ã§ããŸããã
No.2878ks2025幎12æ3æ¥ 11:46
æå€§12åã§ããã
â âââ
ââââ¢
ââââ
ââ¢ââ¡
No.2879ãããã2025幎12æ3æ¥ 13:03
äžèšã®è§£ã¯ååšããªãïŒ
No.2880管çè
2025幎12æ3æ¥ 22:49 ååšããŸãã
ãããããŠæããèããŠããŸããïŒ
æåã«æžãããäŸãããæãã¯é¢ä¿ãªããšå€æããŸããã
ïŒéæ³é£ã§ã¯ãªãã®ã§ïŒ
ã¡ãªã¿ã«æããèæ
®ããå Žåã¯æå€§13åã«ãªããŸãã
ââââ
ââââ¡
ââââ
âââ£â¢
No.2881ãããã2025幎12æ3æ¥ 23:54
â âââ
ââââ¢
ââââ
ââ¢ââ¡
ã«ãããŠãâã«ã¯â¢ã¯å
¥ããªãã®ã§ãççŸïŒ
äœãèãéãããŠãããã§ãããïŒ
No.2882管çè
2025幎12æ4æ¥ 06:42 ããããã£ãŠåçŽã«4Ã4ã ãšæã£ãŠãŸããã
ãããããªããŠ(2Ã2)ã2Ã2ã ã£ããã§ããã
ç§ãåéãããŠããŸãããç³ãèš³ãããŸããã
(远èš)
2Ã2ã®å°ãããã¯ãèæ
®ã«å
¥ããŠèª¿ã¹çŽããŸããã
æå€§12åã¯å€ãããŸããã§ããã
ââ¡â¢â
ââââ
ââââ
â£âââ
No.2883ãããã2025幎12æ4æ¥ 09:23
ãããããããææ©ãããããããšãããããŸãã
ââ¡â¢â
ââââ
ââââ
â£âââ
ã«ã€ããŠã¯ã
ïŒâ¡â¢ïŒ
ïŒïŒïŒïŒ
ïŒïŒïŒïŒ
â£ïŒïŒâ
ãšãå¯äžè§£ããããŸããã
No.2884管çè
2025幎12æ4æ¥ 11:54 ãããããããããããšãããããŸãã
ãã³ãã¬ãã«ãŒã«
ååãåè¡ãåãããã¯ã«ãç°ãªãæ°ãå
¥ãïŒïŒïœNã®äžåãã€å
šãŠïŒ
1ïœN^2ãã®æ°ã䜿ã£ãŠã倧ããªãã³ãã¬ãã§ãããã§ããã
ïŒïœ16ã§ãïŒïŒÃïŒïŒã®ãã³ãã¬ãã€ãããŸããã
No.2885ks2025幎12æ4æ¥ 17:41
ãããã³ãã¬ãè²ã
3ïŒ2ïŒ4ïŒ1
4ïŒ1ïŒ3ïŒ2ã察è§ç·ãã1ïœïŒ
1ïŒ4ïŒ2ïŒ3
2ïŒ3ïŒ1ïŒ4
4ïŒ3ïŒ2ïŒ1
1ïŒ2ïŒ3ïŒ4ããããã¯åå
2ïŒ1ïŒ4ïŒ3
3ïŒ4ïŒ1ïŒ2
1ïŒ4ïŒ3ïŒ2
3ïŒ2ïŒ1ïŒ4ãäžå¿ã«ãç¹å¯Ÿç§°
4ïŒ1ïŒ2ïŒ3
2ïŒ3ïŒ4ïŒ1
åæ°ãå°ãªãã®ã§ãæããã§ãã
No.2886ïœïœ2025幎12æ5æ¥ 10:14
PS
9Ã9ãã³ãã¬ã§ãåæèšå®ãããè€æ°è§£ã«åºäŒã£ãããšããããŸããã
æ®ãæ°ãïŒïŒå以äžã§ã¯å¯äžè§£ã®ãã®ã¯ã€ãããªãããšãã蚌æãããŠããã¿ããã§ãããè€æ°è§£ãããããšãå
šãŠç©ºæ¬ãããããšã«ãªããŸãã®ã§ã
ïŒïŒåã®ç©ºæ¬ã§ãè€æ°è§£ã®ãã®ããèŠã€ãããŸããã
ïŒãïŒãïŒãïŒ
ïŒãïŒãïŒãïŒ
ïŒãïŒãïŒãïŒ
ïŒãïŒãïŒãïŒ
è€æ°è§£ã«ãªããŸããã
ç°ãªãïŒïŒïŒåæèšå®ãããåäžã®çµæãåŸãããšãå¯èœã¿ããã
åäžããç°ãªããã¯ã察称æ§ãç°ãªããšããããåäžãšã¿ãªããã
ïŒÃïŒã®å Žåã¯ããããŸãããã
No.2919ks2025幎12æ27æ¥ 11:29
> "ïœïœ"ãããæžãããŸãã:
> ãããã³ãã¬ãè²ã
> 3ïŒ2ïŒ4ïŒ1
> 4ïŒ1ïŒ3ïŒ2ã察è§ç·ãã1ïœïŒ
> 1ïŒ4ïŒ2ïŒ3
> 2ïŒ3ïŒ1ïŒ4
> 4ïŒ3ïŒ2ïŒ1
> 1ïŒ2ïŒ3ïŒ4ããããã¯åå
> 2ïŒ1ïŒ4ïŒ3
> 3ïŒ4ïŒ1ïŒ2
> 1ïŒ4ïŒ3ïŒ2
> 3ïŒ2ïŒ1ïŒ4ãäžå¿ã«ãç¹å¯Ÿç§°
> 4ïŒ1ïŒ2ïŒ3
> 2ïŒ3ïŒ4ïŒ1
> åæ°ãå°ãªãã®ã§ãæããã§ãã
ãããã¯ååãšäžå¿ã«ãç¹å¯Ÿç§°ãçµåããš
ãããã¯ååãåäœãäžå¿ã«ãç¹å¯Ÿç§°ãäžäœãšããŠçšããŠ
41, 34, 23, 12
13, 22, 31, 44
24, 11, 42, 33
32, 43, 14, 21
ãåºæ¥ãã®ã§
åäœ1,2,3,4ãâŠ,â£,â¥,â
äžäœ1,2,3,4ãA,J,Q,K
ã«å¯Ÿå¿ããããš
ãã©ã³ãã«ãŒãã§
â A, â¥K, â£Q, âŠJ
âŠQ, â£J, â¥A, â K
â£K, âŠA, â J, â¥Q
â¥J, â Q, âŠK, â£A
ã®äºéæ¹é£ãäœããŸããã
ããã察è§ç·ãŸã§æ¡åŒµã§ããŸããããïŒ
No.2920GAI2025幎12æ28æ¥ 09:16
æãä»ããŸãŸäœã£ãŠã¿ãŸããã
ãã以å€ã®ãã¿ãŒã³ãäœãããããç¥ããäžããã
â¥A â£J â Q âŠK
â K âŠQ â¥J â£A
âŠJ â A â£K â¥Q
â£Q â¥K âŠA â J
â¥A âŠJ â Q â£K
â K â£Q â¥J âŠA
â£J â A âŠK â¥Q
âŠQ â¥K â£A â J
âŠA â£J â¥K â Q
â K â¥Q â£A âŠJ
â£Q âŠK â J â¥A
â¥J â A âŠQ â£K
âŠA â£Q â¥K â J
â K â¥J â£A âŠQ
â£J âŠK â Q â¥A
â¥Q â A âŠJ â£K
No.2921GAI2025幎12æ29æ¥ 08:53
äžã€ç®ãšäºã€ç®ã¯ã¯ã©ããšãã€ã€ãå
¥ãæ¿ããã ãã«èŠããŸããã
ãã®ãããªããŒã¯ã®å
¥ãæ¿ããå¥ç©ãšã¿ãªããªãä»ã«ãããããäœããŸããã
äžã€ç®ãšåã€ç®ãJãšQã®å
¥ãæ¿ãã«ãªã£ãŠããã®ãåæ§ã§ãã
äžäºã€ãšäžäºã€ã¯ãããšèŠã§æ¬è³ªçã«ç°ãªãããã«ãèŠããŸããã
äžã€ç®ã90°å³å転ããŠJâA,QâJ,KâQ,AâKã®ããã«å
¥ãæ¿ããã°
äžã€ç®ãšäžèŽããŸãã®ã§ããã¯ãæ¬è³ªçã«ã¯åãã§ãã
(远èš)
ãå転ã»å転ã»ããŒã¯ãæ°åã®å
¥ãæ¿ããåäžèŠãããšãæ¬è³ªçã«äžéããããªãã
ãšããããšã確èªã§ããŸããã
å転ã»å転ã»ããŒã¯ãæ°åã®å
¥ãæ¿ãããã¹ãŠåºå¥ããå Žåã¯ã
ãŸãåºæ¬ãã¿ãŒã³ãšããŠ
a b c d
d c b a â»1è¡ç®ãš2è¡ç®ãå·Šå³å転ã3è¡ç®ãš4è¡ç®ãå·Šå³å転
b a d c
c d a b
ãšããã90°å転ãã圢ã§ãã
a b c d
c d a b â»1åç®ãš2åç®ãäžäžå転ã3åç®ãš4åç®ãäžäžå転
d c b a
b a d c
ã®2éãããããã©ã¡ãããããŒã¯ãã©ã¡ãããæ°åã«äœ¿ãå¿
èŠããããŸãã
ãããŠããŒã¯ãšæ°åã®åœãŠã¯ãæ¹ã¯ãããã4!éããªã®ã§ã
ãã¹ãŠåºå¥ããå Žåã¯2Ã4!Ã4!=1152éããšãªããŸãã
No.2922ãããã2025幎12æ29æ¥ 09:55
* * 1 2 ã * * * 1
* * 3 4 ã * * * 2
* * * * ã * * * 3
* * * * ã * * * 4
ã®ããã«ãåã€ã®æ°åãããå§ãããš
è€æ°è§£ãïŒïŒéã衚ãããŸããã
åèŠã§ãäžå¯èœãªå Žåãå¯äžè§£ãè€æ°è§£
ããç°¡æã«ãå€å¥ããæ¹æ³ãããªããã©ããã
ã§ãããäžèšã®å ŽåãïŒã€ã®äžå¯èœãªå Žåã
ãããŸããã
No.2958ks1æ27æ¥ 09:40
4ã¶æãããåããŠã宿åããïŒéããïŒéãã®ãã®ããããŸãã
ïŒãïŒãïŒãïŒ
ïŒãïŒãïŒãïŒ
ïŒãïŒãïŒãïŒ
ïŒãïŒãïŒãïŒ
ïŒãïŒãïŒãïŒ
ïŒãïŒãïŒãïŒ
ïŒãïŒãïŒãïŒ
ïŒãïŒãïŒãïŒ
宿åããïŒéãã®ãã®ãããã§ããããïŒ
No.2980ks2æ4æ¥ 19:52
GAIããããã¿åããèµ·ããããããªã®ã§ãåæã«ç¶ç·šãã
åºé¢ã1蟺1ã®æ£äžè§åœ¢ãé«ããâ2ã§ããäžè§æ±ABC-DEFããããŸãã
ç¹Pãç·åAEäžããç¹Qãç·åBFäžããç¹Rãç·åCDäžãåããšããäžè§åœ¢PQRã®éå¿Gãåãé åã®äœç©ã¯ïŒ
No.2974DD++2æ1æ¥ 19:01
xyz座æšã§
A(0,0,0),B(1,0,0),C(1/2,sqrt(3)/2,0)
D(0,0,sqrt(2)),E(1,0,sqrt(2)),F(1/2,sqrt(3)/2,sqrt(2))
ã«é
眮ããã°
s,t,uããããã0以äž1以äžã®å®æ°ãšããŠ
P(s,0,sqrt(2)*s),
Q(1-t/2,sqrt(3)/2*t,sqrt(2)+t),
R(u/2,sqrt(3)*u,(1-u)*sqrt(2))
ã«ãšã
åŸã£ãŠP,Q,Rã§ã®éå¿GãG(Fx(a,t,u),Fy(s,t,u),Fz(s,t,u))
a=sqrt(3);b=sqrt(2)ãšçœ®ããš
Fx(s,t,u)=1/6*(2*s-t+u+2)
Fy(s,t,u)=a/6*(t+u)
Fz(s,t,u)=b/3*(s+t-u+1)
ã§
ãã©ã¡ãŒã¿(s,t,u)ã«å¯ŸããŠ
(0,0,0)=> G1(1/3,0,1/3*b)
(0,0,1)=> G2(1/2,1/6*a,0)
(0,1,0)=> G3(1/6,1/6*a,2/3*b)
(0,1,1)=> G4(1/3,1/3*a,1/3*b)
(1,0,0)=> G5(2/3,0,2/3*b)
(1,0,1)=> G6(5/6,1/6*a,1/3*b)
(1,1,0)=> G7(1/2,1/6*a,b)
(1,1,1)=> G8(2/3,1/3*a,2/3*b)
ãšåç¹ã«ç§»ãã
ãããã3Dçšã¢ãã¡ãŒã·ã§ã³ãœããã§çºãããšG1,G2,G3,G4ã¯â G1G2G4=60°ã§ãã
ç蟺平è¡å蟺圢(å蟺ã¯1/sqrt(3))ãšãªã
G5,G6,G7,G8ã¯ãã®å¹³è¡å蟺圢ã«å¹³è¡ãšãªãåãååã®ç蟺平è¡å蟺圢
ãšãªã£ãŠããã
å
šäœãšããŠDã¯å¹³è¡6é¢äœããªãã
ãŸãG1,G2,G4ãéãå¹³é¢ãæ±ãããš
4*x+sqrt(2)*z=2ãšãªãã®ã§
ããã«ç¹G5ããäžããåç·ã®é·ãã¯
|4*2/3+sqrt(2)*2/3*sqrt(2)-2|/sqrt(4^2+2)=sqrt(2)/3
åŸã£ãŠæ±ãããé åDã®äœç©ã¯
(1/sqrt(3))^2*sin(60°)*sqrt(2)/3=sqrt(6)/18
No.2975GAI2æ2æ¥ 15:35
ãèŠäºãæ£è§£ã§ãã
äžèŸº1/â3ã®æ£åé¢äœã®6åã®äœç©ã«ãªããŸãã
No.2976DD++2æ2æ¥ 20:01
åã£ãŠããŠè¯ãã£ãã
ã³ã¡ã³ãã®
äžèŸº1/â3ã®æ£åé¢äœã®6åã®äœç©ã«ãªããŸãã
ãšã¯äœãªã®ãã確ãããŠã¿ãŸããã
a=sqrt(3);
b=sqrt(2);
G1=[1/3,0,1/3*b];
G2=[1/2,1/6*a,0];
G3=[1/6,1/6*a,2/3*b];
G4=[1/3,1/3*a,1/3*b];
G5=[2/3,0,2/3*b];
G6=[5/6,1/6*a,1/3*b];
G7=[1/2,1/6*a,b];
G8=[2/3,1/3*a,2/3*b];
K(P,Q)=norml2(P-Q)
å2ç¹éã®è·é¢ã調ã¹ãŠã¿ãŸããã
gp > K(G1,G2)
%83 = 0.33333333333333333333333333333333333333
gp > K(G1,G3)
%84 = 0.33333333333333333333333333333333333334
gp > K(G1,G4)
%85 = 0.33333333333333333333333333333333333333
gp > K(G1,G5)
%61 = 0.33333333333333333333333333333333333334
gp > K(G1,G6)
%62 = 0.33333333333333333333333333333333333333
gp > K(G1,G7)
%63 = 1.0000000000000000000000000000000000000
gp > K(G1,G8)
%64 = 0.66666666666666666666666666666666666667
gp > K(G2,G3)
%86 = 1.0000000000000000000000000000000000000
gp > K(G2,G4)
%87 = 0.33333333333333333333333333333333333333
gp > K(G2,G5)
%65 = 1.0000000000000000000000000000000000000
gp > K(G2,G6)
%66 = 0.33333333333333333333333333333333333333
gp > K(G2,G7)
%67 = 2.0000000000000000000000000000000000000
gp > K(G2,G8)
%68 = 1.0000000000000000000000000000000000000
gp > K(G3,G4)
%88 = 0.33333333333333333333333333333333333334
gp > K(G3,G5)
%69 = 0.33333333333333333333333333333333333333
gp > K(G3,G6)
%70 = 0.66666666666666666666666666666666666667
gp > K(G3,G7)
%71 = 0.33333333333333333333333333333333333333
gp > K(G3,G8)
%72 = 0.33333333333333333333333333333333333333
gp > K(G4,G5)
%73 = 0.66666666666666666666666666666666666667
gp > K(G4,G6)
%74 = 0.33333333333333333333333333333333333333
gp > K(G4,G7)
%75 = 1.0000000000000000000000000000000000000
gp > K(G4,G8)
%76 = 0.33333333333333333333333333333333333333
gp > K(G5,G6)
%77 = 0.33333333333333333333333333333333333334
gp > K(G5,G7)
%78 = 0.33333333333333333333333333333333333334
gp > K(G5,G8)
%79 = 0.33333333333333333333333333333333333333
gp > K(G6,G7)
%80 = 1.0000000000000000000000000000000000000
gp > K(G6,G8)
%81 = 0.33333333333333333333333333333333333334
gp > K(G7,G8)
%82 = 0.33333333333333333333333333333333333334
ãããã
(G1,G2,G4,G6)
(G3,G5,G7,G8)
(G1,G2,G3,G4)
(G1,G3,G5,G7)
(G2,G4,G6,G8)
(G5,G6,G7,G8)
ã®6çµã§ã®æ£4é¢äœã¯äžèŸºã1/sqrt(3)ã®ååãªç«äœã«ãªã
åé ç¹ã¯3åãã€ç»å ŽããŠããŸãã
ãããèšç®ã®è£ã¥ãç¡ãã«èªèããããšã¯ãšãŠãç§ã«ã¯ç¡çã§ãã
No.2977GAI2æ3æ¥ 09:25
å¹³è¡å
é¢äœãäœã3ã€ã®ãã¯ãã«ã¯ãåç¹ãåãAEãBFãCDã®1/3ã«ãªã£ãŠããŸãã
ãã®AEãBFãCDã¯ãã©ã®2ã€ããšã£ãŠããå§ç¹ããããããšæ£äžè§åœ¢ãäœããŸãã
ãã®ããšãããå¹³è¡å
é¢äœã®äœç©ã¯æ£åé¢äœã®2åïŒåºé¢ãæ£äžè§åœ¢ããè±åœ¢ã«ããïŒã®3åïŒéäœã®1/3ãæ¶ãïŒã§ããããšããããã®ã§ãã
No.2978DD++2æ4æ¥ 02:01
æ£äžè§åœ¢ããè±åœ¢ãžã®2ãš
éäœããå¹³è¡å
é¢äœãžã®3
ããïŒãçãŸããã®ã§ããïŒ
ãã§ïœ
ãããªããšãèŠéããŠå³åé¡ãæãä»ãDD++ãããŠäœè
ïŒ
No.2979GAI2æ4æ¥ 10:04
æ²ç·y=logx (1âŠxâŠe)ã®äžã«ä»»æã«2ç¹P,Qããšããšãã
ç·åPQã®äžç¹ãRãåãé åãDãšããã
ãã ãPãšQãäžèŽãããšãRãPãšQãšåãç¹ã衚ããã®ãšããã
Dã®é¢ç©ã¯ïŒ
No.2971GAI1æ31æ¥ 07:30
(1) y=log(x)(1âŠxâŠe)ã®æ²ç·
(2) (1,0)äžå¿ã«(1)ã1/2åããæ²ç·ããªãã¡y=log(2x-1)/2(1âŠxâŠ(1+e)/2)
(3) (e,1)äžå¿ã«(1)ã1/2åããæ²ç·ããªãã¡y=(log(2x-e)+1)/2((1+e)/2âŠxâŠe)
ã®3ã€ã§å²ãŸããé åã§ãã
(1)ãšx軞ãšx=eã§å²ãŸããéšåã®é¢ç©ã¯â«[1ïœe]logxdx=1
(2)ãšx軞ãšx=(1+e)/2ã§å²ãŸããéšåã®é¢ç©ã¯1/2åã«çž®å°ããã®ã§1/4
(3)ãšy=1/2ãšx=eã§å²ãŸããéšåã®é¢ç©ãåãã1/4
x=(1+e)/2ãšx=eãšx軞ãšy=1/2ã§å²ãŸããéšåã®é¢ç©ã¯(e-1)/4
ãªã®ã§ãæ±ããé¢ç©ã¯1-1/4-1/4-(e-1)/4=(3-e)/4
No.2972ãããã1æ31æ¥ 09:40
ã©ããæ¢ããŠããã¡ã©ããã«è·³ãè¿ãããŠããŸãã
ãããæçã®ã³ãŒã¹ã§ãŽãŒã«ã«åãã£ãŠããã
身è¿ã«ããŒããç¡ããªã£ãŠããŸã£ãã®ã§ãã°ãããæãé ããŸãã
No.2973GAI1æ31æ¥ 16:33
åç¹ãOãšãã座æšå¹³é¢äžã«ãç¹A(2,0)ãäžå¿ãšããååŸ1ã®åC1ãš
ç¹B(-4,0)ãäžå¿ãšããååŸ2ã®åC2ãããã
ç¹Pã¯C1äžã,ç¹Qã¯C2äžãããããç¬ç«ã«ãèªç±ã«åãåããšããã
ãã®æãã¯ãã«
OR =( OP + OQ )/2 ãšããç¹RãåãåŸãé åãDãšãããšã
Dã®é¢ç©ã¯ïŒ
No.2968GAI1æ30æ¥ 14:33
ãC1(C2)äžãåãåããç¯å²ã¯C1(C2)ã®ååšäžãšå€æããŠ
(2,0)ãš(-4,0)ã®äžç¹ã¯(-1,0)ãªã®ã§
ååŸ1/2ã®åã®äžå¿ã(-1,0)ãäžå¿ãšããååŸ1ã®åã®åšäžãåã
ããŒããåã«ãªããã€ãŸãååŸ3/2ã®åã®é¢ç©ããååŸ1/2ã®åã®é¢ç©ã
åŒãã°ããã®ã§ãÏ((3/2)^2-(1/2)^2)=2Ïã
ããC1(C2)äžãå
éšãå«ããªãäžã®ç©Žããªããªãã®ã§Ï(3/2)^2=9Ï/4ã
No.2969ãããã1æ30æ¥ 15:17
ããŒããåã«ãªã
ãã®ããšã¯èšç®ããŠããããããããšãªã®ãã
ãããšãèšç®ããåããäœãšãªãæããããã®ãªã®ã§ããïŒ
é ã®äžã§ç¹ãåãããŠãããšäžç¹ããã¡ãã¡åãåãæ åããŒããŠããŸã
çµå±äœãäœã ãããããªããªã£ãŠãããŸãã
æŽã«æ
ã«ã§ãŸãã
No.2970GAI1æ31æ¥ 07:28
ååŸrã®å®åäžãç¹P,Q,Rãèªç±ã«åãåãæ
ãã¯ãã«PQãšãã¯ãã«PRã®å
ç©(PQã»PR)ã®
æå€§å€M,æå°å€mã¯ïŒ
No.2965GAI1æ29æ¥ 06:49
(PQã»PR)=|PQ||PR|cosâ QPR
æå€§å€ã¯æããã«|PQ|=|PR|=2r,â QPR=0ïŒããªãã¡PQãçŽåŸã§Q=RïŒã®ãšãã§4r^2
ãŸãæå°å€ã¯â QPRãéè§ã®ãšã
Q,Rãåºå®ãããšããâ QPRãäžå®ã«ãªãã®ã§
|PQ||PR|cosâ QPRãæå°
â|PQ||PR|ãæå€§ïŒâµcosâ QPRãè² ã§äžå®ïŒ
âéè§äžè§åœ¢PQRã®é¢ç©ãæå€§ïŒâµâ³PQR=|PQ||PR|sinâ QPR/2ã§sinâ QPRãäžå®ïŒ
âPãå£åŒ§QRäžã§çŽç·QRããæãé ãïŒâµQRãåºèŸºãšãããšãã®é«ãæå€§ïŒ
â|PQ|=|PR|
ãã£ãŠ
P(r,0),Q(rcosΞ,rsinΞ),R(rcosΞ,-rsinΞ),Ï/4ïŒÎžïŒÏ/2
ãšãããŠæå°å€ã調ã¹ãã°ããã
|PQ||PR|cosâ QPR
=((rcosΞ-r)^2+(rsinΞ)^2)cos(Ï-Ξ)
=2r^2(cosΞ-1)cosΞ
=2r^2{(cosΞ-1/2)^2-1/4}
åŸã£ãŠcosΞ=1/2âΞ=Ï/3ââ QPR=2Ï/3ã®ãšãæå°å€-r^2/2
çµæããŸãšãããš
M=4r^2 (PQãçŽåŸã§Q=Rã®ãšã)
m=-r^2/2 (â³PQRãâ QPR=120°ãPQ=PRã®äºç蟺äžè§åœ¢ã®ãšã)
No.2966ãããã1æ29æ¥ 09:36
å®ç§ãªè§£ç
ããã«æ»ç¥ãããªããã®ãæ¢ããªããïœ
å¿ãå¿ã
No.2967GAI1æ30æ¥ 05:34
å¹³é¢äžã®ãã¯ãã«aÌ
, bÌ
ã
|aÌ
+ 3*bÌ
|=1,|3*aÌ
- bÌ
|=1
ãæºããããã«åãã
ãã®æã|5*aÌ
+ 2*bÌ
|ã®æå€§å€Rãšæå°å€rã¯ïŒ
No.2957GAI1æ26æ¥ 08:58
ïœïŒïœïŒïœã»ïœãïœïŒïœïŒïœã»ïœããšãããšãæ¡ä»¶ããã
ïœïŒŸ2ïŒïœïŒŸ2ïŒïŒ/ïŒãïœïŒŸ2ïŒïœïŒŸ2ïŒïŒ/ïŒïŒãïœïœïŒïœïœïŒïŒ/ïŒïŒ
ãšå®ãŸãã|ïŒïœïŒïŒïœ|^ïŒã¯ã宿°ïŒïŒïŒ/ïŒïŒãšãªã£ãŠããŸãã®ã§ããïŒïŒïŒã
ç§ã®èšç®ééãã§ããããïŒ
No.2959管çè
1æ28æ¥ 18:57 > ïœïŒïœïŒïœã»ïœãïœïŒïœïŒïœã»ïœããšãããšãæ¡ä»¶ããã
> ïœïŒŸ2ïŒïœïŒŸ2ïŒïŒ/ïŒãïœïŒŸ2ïŒïœïŒŸ2ïŒïŒ/ïŒïŒãïœïœïŒïœïœïŒïŒ/ïŒïŒ
iã¯èæ°åäœã®ããšã§ããïŒ
äžèšã®å€ã®å°ãæ¹ãæããŠäžããã
No.2960GAI1æ28æ¥ 20:06
ïœãèæ°åäœãšããŠãïœïŒïœïŒïœã»ïœãïœïŒïœïŒïœã»ïœããšãããšãæ¡ä»¶ããã
ïœ^ïŒïŒïœ^ïŒïŒïŒïŒïœ^ïŒïŒïœ^ïŒïŒïŒïŒïŒïœïœïŒïœïœïŒïŒïŒ
ïŒïŒïœ^ïŒïŒïœ^ïŒïŒïŒïŒïœ^ïŒïŒïœ^ïŒïŒïŒïŒïŒïœïœïŒïœïœïŒïŒïŒ
ãè§£ããŠãïœïŒŸ2ïŒïœïŒŸ2ïŒïŒ/ïŒãïœïŒŸ2ïŒïœïŒŸ2ïŒïŒ/ïŒïŒãïœïœïŒïœïœïŒïŒ/ïŒïŒ
ãšãªã£ãã®ã§ããïŒïŒïŒã
No.2961管çè
1æ28æ¥ 20:42 A=ïœ^ïŒïŒïœ^ïŒ
B=ïœ^ïŒïŒïœ^ïŒ
C=ïœïœïŒïœïœ
ãšããŠã¿ãã°
A+9B=1-6C
9A+B=1+6C
ãªã®ã§A,B,Cã¯ç¬ç«ã«æ±ºãããã
A,Bã®é£ç«ãšã¿ãŠ
A=1/20(15C+2)
B=1/20(-15C+2)
C=C
ãšããåºæ¥ãªããšæããŸããã»ã»ã»
No.2962GAI1æ28æ¥ 22:16
åºåºå€æããŠä»¥äžã§ã·ã³ãã«ã«è§£ããŸãããïŒ
a+3b = c, 3a-b = d ãšãããšã10a = c+3d, 10b = 3c-d
ãã£ãŠ 5a+2b = (11/10)c+(13/10)d
|c| = |d| = 1 ãªã®ã§ã|5a+2b|ã®æå€§å€ã¯12/5ãæå°å€ã¯1/5ã
No.2963DD++1æ28æ¥ 22:41
DD++ããæ£è§£ã§ãã
æ¹æ³ãæããã¹ããªè¿éïŒ
å§ããã®ãŸãŸã®åœ¢ããæ»ããŠããã®ã§ããªãé åãã«ãªã£ãŠããŸããŸããã
No.2964GAI1æ29æ¥ 06:46
3Ã3ã®æ Œåæ ãäœãã
ãã®ç¬¬äžè¡ã«3æ¡ã®æŽæ°nã®æ°åãäžã€ãã€æ°åãå
¥ããã
2*nã«çžåœãã3æ¡ã®æŽæ°ã第2è¡ã«åããæ°åãäžã€ãã€æ°åãå
¥ããã
åãã3*nã®æŽæ°ã®æ°åã第3è¡ã«å
¥ããã
ãã®ãšã3Ã3ã«ã¯æ°åã®1ïœ9ã®æ°åã1åãã€å
¥ã£ãŠããããšã«ãªã£ãã
ããŠç¬¬1è¡ã«å
¥ãã3æ¡ã®æ°nã¯äœã ã£ãã®ã§ããããïŒ
ïŒããã°ã©ã ãçµã¿ã³ã³ãã¥ãŒã¿ã䜿ãã°äžç¬ã§æ±ãŸããŸãã
ãããäžåæäœæ¥ã§æ±ããæ¹ãèŠã€ãããšæåãéããŸãã(ç§çææ³ã§ã)
察象ãšãã3æ¡ã®æ°ã¯åããã®ãéè€ããã0ãå«ãŸãªããã®ã§
å
šéšã§168åãããŸãããå¹çããæ¢ãã°æ ¹æ§ã§çªç Žã§ããŸãã
No.2950GAI1æ24æ¥ 06:30
ïœïŒïŒïŒïŒãšïœïŒïŒïŒïŒãèŠã€ãããŸããããã以å€ã¯ãªããããªé°å²æ°ïŒ
No.2951管çè
1æ24æ¥ 09:22 ãŸã ãããŸããã
No.2952GAI1æ24æ¥ 10:46
æäœæ¥ã§èããŠ192,219,273,327ã®4ã€ã«ãªããŸããã
267ã¯ã¡ãã£ãšæããã§ããã
ãäžã®äœã®3åã®çµåã((1,2,3)(2,4,6)ãªã©)ããçŸã®äœã®3åã®çµåãããæ®ãã
ã®é ã§èããŸããã
No.2953ãããã1æ24æ¥ 14:14
ãã®4ã€ã§æ£è§£ã§ãã
äœãå
±éæ§ãšã¯ãšèããã
åã12ãšãªããã®ã!
ãšæãã
138*2=276,138*3=414 (1,4ããã)
ãŸã
(1,2,9),(2,3,7)ã§ã®çµåãã!
ãšæãã
129*2=258 (2ããã)
237*2=474 (4,7ããã)
äœãšãæ³åãããããã§ãªãã
No.2954GAI1æ24æ¥ 16:20
å
±éæ§ã¯ã»ã»ã»
ã»27ã§å²ã£ãŠ3äœãã
ã»å¥æ°æ¡ã®åã10ã
# ã ããäœïŒã£ãŠæãã§ãã
No.2955ãããã1æ24æ¥ 17:28
ããã3ã€ã®æ°ã®åã¯æããã«9ã®åæ°ã«ãªãããã§ãããããã¯æäžæ®µã®æ°ã®6åã§ããããŸãã
ã€ãŸããæäžæ®µã®æ°ã¯3ã®åæ°ã§ããããã£ãŠæäžæ®µã¯9ã®åæ°ã§ãã
(1) å·Šäžã«5ãããå Žå
3åã4æ¡ã«ãªãã®ã§äžé©ã
(2) äžã«5ãããå Žå
äžå€®ã1ããããããããããšå·Šäžã¯2ããããããªãã
ããããã®ãšãå·Šã5ã«ãªã£ãŠéè€ããããäžé©ã
(3) å³äžã«5ãããå Žå
å³äžã5ã«ãªãããäžé©ã
(4) å·Šã«5ãããå Žå
å·Šäžã¯2ãããããããäžã¯6以äžã
äžãšå·Šäžãããããªãåè£ã¯ã261ã264ã267ã273ã276ã279ã291ã294ã297ãã®9åã
(5) äžå€®ã«5ãããå Žå
äžã¯2ã7ãããããããå³äžã¯6以äžã
äžæ®µã329以äžãšèãããšãåè£ã¯ã126ã129ã276ã279ã327ãã®5åã
(6) å³ã«5ãããå Žå
ããã¯å¶æ°ããããããªãã®ã§ã5ã§ããããšã¯ãªãã
(7) å·Šäžã«5ãããå Žå
å·Šäžã¯1ãããããããå·Šã¯3ããããããªãã
äžæ®µã170以äž198以äžãšèãããšãåè£ã¯ã174ã186ã189ã192ã198ãã®5åã
(8) äžã«5ãããå Žå
å·Šäžãã1ãš2ã¯æããã«äžé©ã4ãš7ã¯äžã5ã«ãªãããäžé©ã
äžæ®µã¯9ã®åæ°ãªã®ã§ãäžæ®µåè£ã¯351ã657ã954ã
ã€ãŸãäžæ®µåè£ã¯ã219ãš318ã®2åã
(9) å³äžã«5ãããå Žå
å·Šäžã5ã«ãªãããäžé©ã
以äžã®ãã¡è€æ°ã®ãã¿ãŒã³ã§åè£ã«ãªã£ãŠããã®ã¯5ãè€æ°ååºãŠããããäžé©ãšèãããšãæ®ãåè£ã¯ã
126ã129ã174ã186ã189ã192ã198ã219ã261ã264ã267ã273ã291ã294ã297ã318ã327ã®17åã
17åããããªããããªã«æ ¹æ§ããããªãã®ã§ãå
šéšèª¿ã¹ãŠçããåŸãŸãã
No.2956DD++1æ26æ¥ 00:54
{1,2,3,4,5,6,7,8,9,10}
ã®åæ°åãäžéãèŸºã«æã€5çµã®é·æ¹åœ¢ãšããŠ
1Ã6,2Ã10,3Ã9,4Ã7,5Ã8
ãæºåããã°ããã®5çµã®é·æ¹åœ¢ã§
BBCCCCCCCCC
BBCCCCCCCCC
BBCCCCCCCCC
BBDDDDEEEEE
BBDDDDEEEEE
BBDDDDEEEEE
BBDDDDEEEEE
BBDDDDEEEEE
BBDDDDEEEEE
BBDDDDEEEEE
AAAAAAEEEEE
ãšé
眮ããã°11Ã11ã®æ£æ¹åœ¢ãæ§æã§ããã
ããã§
äžèšãšç°ãªã5çµã®é·æ¹åœ¢ã§ãåãããã«
11Ã11ã®æ£æ¹åœ¢ãæ§æã§ããçµåãã®5ã€ã®
é·æ¹åœ¢(å
šäœãšããŠ1ïœ10ã®èŸºãå«ã)ãèŠã€ããŠäžããã
No.2943GAI1æ19æ¥ 09:15
â¢â¢â¢â¢â¢â¢â€â€â€â€â€
â¢â¢â¢â¢â¢â¢â€â€â€â€â€
â¢â¢â¢â¢â¢â¢â€â€â€â€â€
â¡â¡â£â£â£â£â€â€â€â€â€
â¡â¡â£â£â£â£â€â€â€â€â€
â¡â¡â£â£â£â£â€â€â€â€â€
â¡â¡â£â£â£â£â€â€â€â€â€
â¡â¡â£â£â£â£â€â€â€â€â€
â¡â¡â£â£â£â£â€â€â€â€â€
â¡â¡â£â£â£â£â€â€â€â€â€
â¡â¡â â â â â â â â â
ABCDEã®æ¹ãèŠãããã£ããã
No.2944ãããã1æ19æ¥ 10:28
å¿
èŠæ¡ä»¶ãšããŠåé·æ¹åœ¢ã®é¢ç©åã¯11^2=121ã«ãªããã°ãªããªãã®ã§
ãããèæ
®ããã°æ¬¡ã®14éãã«çµããŸãã(å
šéšã§945éããããã)
ããããå®éäœå³å¯èœãªã®ã¯3;ïŒäŸã«æãããã®ïŒãš
ããããããææã®12;
ã ãã§ãããã
ä»ã®å Žåã§è©°ã蟌ãããšè©ŠããŠããŠãã©ããç¡çã£ãœãã
äœæ¹ãæåããããæ¯éç¥ãããŠäžããã
1;[1, 6] | [2, 9] | [3, 10] | [4, 8] | [5, 7]
2;[1, 6] | [2, 10] | [3, 8] | [4, 9] | [5, 7]
3;[1, 6] | [2, 10] | [3, 9] | [4, 7] | [5, 8]
4;[1, 7] | [2, 10] | [3, 6] | [4, 9] | [5, 8]
5;[1, 8] | [2, 6] | [3, 10] | [4, 9] | [5, 7]
6;[1, 8] | [2, 7] | [3, 10] | [4, 6] | [5, 9]
7;[1, 8] | [2, 9] | [3, 7] | [4, 6] | [5, 10]
8;[1, 8] | [2, 10] | [3, 5] | [4, 9] | [6, 7]
9;[1, 9] | [2, 7] | [3, 6] | [4, 10] | [5, 8]
10;[1, 9] | [2, 7] | [3, 8] | [4, 6] | [5, 10]
11;[1, 9] | [2, 7] | [3, 10] | [4, 5] | [6, 8]
12;[1, 9] | [2, 8] | [3, 6] | [4, 7] | [5, 10]
13;[1, 10] | [2, 5] | [3, 9] | [4, 8] | [6, 7]
14;[1, 10] | [2, 8] | [3, 7] | [4, 5] | [6, 9]
No.2945GAI1æ19æ¥ 13:28
ããªãå°éã§ãã3;ãš12;以å€ãäžå¯èœã§ããããšã®èšŒæã§ãã
13;
[1,10]ã眮ããšç«¯ã«å¹
1ã®ééãã§ãããããããåããæ¹æ³ããªãã®ã§äžå¯èœã
14;
13;ãšåãçç±ã§äžå¯èœã
1;
[2,9]ã眮ããšç«¯ã«å¹
2ã®ééã1ã€ãŸãã¯å¹
1ã®ééã2ã€ã§ãããã
ãããåããæ¹æ³ããªãã®ã§äžå¯èœã
7;
1;ãšåãçç±ã§äžå¯èœã
8;
[2,10]ã眮ããšç«¯ã«å¹
1ã®ééãã§ããã®ã§ã[1,8]ã¯ã壿²¿ããã«çœ®ããããªãã
ãããå¹
1ã®ééã¯äœããªãã®ã§ãè§è©°ããã§çœ®ããªããã°ãªããªãã
ãããš1ã®ç«¯ã«å¹
3ã®ééãã§ããã®ã§ãããã«ã¯[3,5]ãå
¥ãããããªãã
ãããããš[1,8][2,10][3,5]ã¯ä»¥äžã®ãããªäœçœ®é¢ä¿ã«çœ®ããããªãã
â¡â¡âââââââââ
â¡â¡âââââââââ
â¡â¡âââââââââ
â¡â¡âââââââââ
â¡â¡âââââââââ
â¡â¡âââââââââ
â¡â¡âââââââ¢â¢â¢
â¡â¡âââââââ¢â¢â¢
â¡â¡âââââââ¢â¢â¢
â¡â¡âââââââ¢â¢â¢
â â â â â â â â â¢â¢â¢
â»[2,10]ãå³ã«ç§»åãããšâ¡ã®å·ŠåŽã«ã§ããé·ã10ã®ç©ºéã(1ããŒã¹ã§)åããããªãã
ãããŠäžå³ã«[4,9]ãš[6,7]ãå
¥ããããšãããšãã©ã¡ããââã®å Žæã
å æããããšã«ãªãã®ã§äžå¯èœã
4;
8;ãšåæ§ã®èãæ¹ã§[1,7]ã¯ãè§è©°ããã§ãªããã°ãªããã端ã«ã§ãã
å¹
4ã®ééã«[4,9]ãå
¥ããªããã°ãªããªãã®ã§
â¡â¡âââââââââ
â¡â¡âââââââââ
â¡â¡ââââââ£â£â£â£
â¡â¡ââââââ£â£â£â£
â¡â¡ââââââ£â£â£â£
â¡â¡ââââââ£â£â£â£
â¡â¡ââââââ£â£â£â£
â¡â¡ââââââ£â£â£â£
â¡â¡ââââââ£â£â£â£
â¡â¡ââââââ£â£â£â£
â â â â â â â â£â£â£â£
ãããŸã§æ±ºãŸãããããšâ£ã®äžã®å¹
2ã®ééãåããæ¹æ³ããªãã®ã§äžå¯èœã
2;
4;ãšåæ§ã®èãæ¹ã§
â¡â¡âââââââââ
â¡â¡âââââââââ
â¡â¡âââââââââ
â¡â¡âââââââââ
â¡â¡âââââ€â€â€â€â€
â¡â¡âââââ€â€â€â€â€
â¡â¡âââââ€â€â€â€â€
â¡â¡âââââ€â€â€â€â€
â¡â¡âââââ€â€â€â€â€
â¡â¡âââââ€â€â€â€â€
â â â â â â â€â€â€â€â€
ãããŸã§æ±ºãŸããã[3,8]ãš[4,9]ã¯ã©ã¡ããââã®å Žæãå æããã®ã§äžå¯èœã
11;
[3,10]ã眮ããšå¹
1ã®ééãã§ããã®ã§ã[1,9]ã¯ãè§è©°ããã§ãªããã°ãªããã
ããã«ãã£ãŠã§ããå¹
2ã®ééã¯[2,7]ã§ããåããããªãã®ã§
â¢â¢â¢ââââââââ
â¢â¢â¢ââââââââ
â¢â¢â¢ââââââââ
â¢â¢â¢ââââââââ
â¢â¢â¢âââââââ¡â¡
â¢â¢â¢âââââââ¡â¡
â¢â¢â¢âââââââ¡â¡
â¢â¢â¢âââââââ¡â¡
â¢â¢â¢âââââââ¡â¡
â¢â¢â¢âââââââ¡â¡
â â â â â â â â â â¡â¡
â»8;ã®[2,10]ãšåãçç±ã§[3,10]ã¯ã壿²¿ããã§ãªããã°ãªããªãã
ãããŸã§æ±ºãŸãããããš[4,5]ã¯å³äžã®å¹
4ã®ééãåããããã«
å³äžè§ãå«ãããã«çœ®ããããªããæ®ãéšåã6Ã8ã«ãªããäžå¯èœã
5;
11;ãšåãçç±ã§[1,8]ã¯ã壿²¿ããã«çœ®ããªããã°ãªããªããã
端ã®ééã0+3,1+2ã®ã©ã¡ãã«ããŠã(3ãš1ã¯)åãããã®ããªããäžå¯èœã
6;
5;ãšåãã
9;
ä»ãŸã§ãšåãèãæ¹ã§[4,10]ãš[1,9]ãš[2,7]ã®é
眮ã¯
â£â£â£â£âââââââ
â£â£â£â£âââââââ
â£â£â£â£âââââââ
â£â£â£â£âââââââ
â£â£â£â£ââââââ¡â¡
â£â£â£â£ââââââ¡â¡
â£â£â£â£ââââââ¡â¡
â£â£â£â£ââââââ¡â¡
â£â£â£â£ââââââ¡â¡
â£â£â£â£ââââââ¡â¡
â â â â â â â â â â¡â¡
ãã®ããã«æ±ºãŸããã[5,8]ãã©ãã«çœ®ããŠãå¹
1ãŸãã¯å¹
2ã®
ééãã§ããã®ã§äžå¯èœã
10;
9;ãšåæ§ã«[5,10],[1,9],[2,7]ã®é
眮ã
â€â€â€â€â€ââââââ
â€â€â€â€â€ââââââ
â€â€â€â€â€ââââââ
â€â€â€â€â€ââââââ
â€â€â€â€â€âââââ¡â¡
â€â€â€â€â€âââââ¡â¡
â€â€â€â€â€âââââ¡â¡
â€â€â€â€â€âââââ¡â¡
â€â€â€â€â€âââââ¡â¡
â€â€â€â€â€âââââ¡â¡
â â â â â â â â â â¡â¡
ãã®ããã«æ±ºãŸããã[3,8]ã眮ããšå¿
ãå¹
1ã®ééãã§ããã®ã§äžå¯èœã
No.2946ãããã1æ20æ¥ 04:02
éã³ã§ä»åºŠã¯é¢ç©ã12^2=144ãšããçµåããèŠã€ããã
1;[1, 3] | [2, 9] | [4, 10] | [5, 7] | [6, 8]
2;[1, 3] | [2, 10] | [4, 7] | [5, 9] | [6, 8]
3;[1, 3] | [2, 10] | [4, 8] | [5, 7] | [6, 9]
4;[1, 5] | [2, 6] | [3, 8] | [4, 10] | [7, 9]
5;[1, 7] | [2, 4] | [3, 8] | [5, 9] | [6, 10]
6;[1, 7] | [2, 9] | [3, 5] | [4, 6] | [8, 10]
7;[1, 9] | [2, 5] | [3, 7] | [4, 6] | [8, 10]
8;[1, 9] | [2, 6] | [3, 5] | [4, 7] | [8, 10]
9;[1, 10] | [2, 4] | [3, 5] | [6, 8] | [7, 9]
ãååšã
ç®±ã«å
¥ããå®éšãããããã£ãš6;çªã®çµåãã§
ZZZZZZZZYYYY
ZZZZZZZZYYYY
ZZZZZZZZYYYY
ZZZZZZZZYYYY
ZZZZZZZZYYYY
ZZZZZZZZYYYY
ZZZZZZZZPPPP
ZZZZZZZZPXXX
ZZZZZZZZPXXX
ZZZZZZZZPXXX
AAAAAAAAAXXX
AAAAAAAAAXXX
ãªã(1Ã7ã®Pã®ã¿Lå仿§ã«ãªããŸããã»ã»ã»)
ãã®ããã¹ããïŒ
No.2947GAI1æ21æ¥ 11:40
144ã ãšãã®ããããããªãããã§ããã169ãªãã¡ãããšã§ããŸããïŒããã2éãïŒã
No.2948ãããã1æ21æ¥ 15:41
169ãªãã¡ãããšã§ããŸããïŒããã2éãïŒã
æ¢ããŠã¿ãŸããã
No1;
DDDDDEEEEEEEE
DDDDDEEEEEEEE
DDDDDEEEEEEEE
DDDDDEEEEEEEE
DDDDDEEEEEEEE
DDDDDEEEEEEEE
DDDDDEEEEEEEE
DDDDDEEEEEEEE
DDDDDEEEEEEEE
DDDDDAACCCCCC
BBBBBBBCCCCCC
BBBBBBBCCCCCC
BBBBBBBCCCCCC
No2;
EEEEEEEEECCCC
EEEEEEEEECCCC
EEEEEEEEECCCC
EEEEEEEEECCCC
EEEEEEEEECCCC
EEEEEEEEEABBB
EEEEEEEEEABBB
LLLLLLLLLLBBB
LLLLLLLLLLBBB
LLLLLLLLLLBBB
LLLLLLLLLLBBB
LLLLLLLLLLBBB
LLLLLLLLLLBBB
No.2949GAI1æ21æ¥ 21:34
ãã©ã³ãã§é»ã2æãèµ€ã2æãè£åãã«ã©ã³ãã ã«äžŠã¹
ãããã2æãéžãã§è¡šåãã«ããã
ãã®æ
åãè²ã®ã«ãŒãã§ããçµåãã®ç¢ºçP1ãš
ç°ãªãè²ã®ã«ãŒãã§ããçµåãã®ç¢ºçP2ã¯äžèŠåããšæã£ãŠããŸãã
èšç®ããŠã¿ããšP1<P2ã§ããããšããããã(P1=1/3,P2=2/3)
ããã§èµ€è²ã®ã«ãŒãã远å ããŠãããP1ãšP2ãé転(P1>P2)ããããã«ã¯
æäœèµ€ã«ãŒãã®ææ°ãäœæã«ããŠããã°ãããïŒ
ãŸã
é»,èµ€ãé©åœãªææ°ã§èª¿æŽããŠããã°(åŒãã«ãŒãã¯ãã®å
ã®2æãšãã)
P1,P2ã®ç¢ºçãå
šãåãã«åºæ¥ããããªããããã®ææ°ã¯ãããïŒ
No.2938GAI1æ17æ¥ 12:19
èµ€ãïŒæè¿œå ããŠãé»ïŒæãèµ€ïŒæã®ãšãã1=ïŒïŒ/ïŒïŒããšãªããŸããïŒ
No.2939管çè
1æ17æ¥ 20:42 > é»,èµ€ãé©åœãªææ°ã§èª¿æŽããŠããã°(åŒãã«ãŒãã¯ãã®å
ã®2æãšãã)
> P1,P2ã®ç¢ºçãå
šãåãã«åºæ¥ããããªããããã®ææ°ã¯ãããïŒ
ä»»æã®èªç¶æ°kã«å¯ŸããŠ
äžã€ã®è²ãk(k+1)/2æãããäžã€ã®è²ã(k+1)(k+2)/2æ
ã§ããããã
No.2941ãããã1æ18æ¥ 03:06
ãäºäººãšãæ£è§£ã§ãã
ãããnæã®ãã©ã³ã(é»è²aæ;èµ€è²bæ)ãšããŠ
å
·äœçã«è¡šç€ºããŠãããš(æå€ãšäžæ¹ãå€ãã«ã»ããããŠããå¿
èŠãããã®ã§ããã)
n=>a;b
4=>1;3
9=>3;6
16=>6;10
25=>10;15
36=>15;21
49=>21;28
64=>28;36
81=>36;45
100=>45;55
121=>55;66
144=>66;78
169=>78;91

æ£ã«æ¡ä»¶ãæºããã»ããã¯é£ãåãäžè§æ°ã®éå£ã§
ããã2ã€ã®åèšã¯ãã¿ãªå¹³æ¹æ°ãšãªãã
ãããèªèããããã®å¹Ÿäœçæ§åã
1+3=4=2^2
ââãã
ââ
3+6=9=3^2
âââ
âââ
âââ
6+10=16=4^2
ââââ
ââââ
ââââ
ââââ
10+15=25=5^2
âââââ
âââââ
âââââ
âââââ
âââââ

ãã®çµæã®èšç®ããããŸã§äžè§æ°ãšå¹³æ¹æ°ã
ãããªé¢ä¿ã§ç¹ããããšã¯æ°ä»ããŸããã§ããã
ãŸããã®é¢ä¿ã¯
binomial(a,1)*binomial(b,1)=binomial(a,2)+binomial(b,2)
ã§ãããã®ã§
a*b=a*(a-1)/2+b*(b-1)/2
(a-b)^2=a+b
ã®é¢ä¿ãããããã
ããã«
binomial(a,1)*binomial(b,1)=binomial(a,2)+binomial(b,2)
ãèšè¿°ããã°
1*3=0+3
3*6=3+15
6*10=15+45
10*15=45+105
15*21=105+210
21*28=210+378
28*36=378+630
36*45=630+990
45*55=990+1485

ã§ãã
ãããäžæ°ã«æžã衚ãã°n>=2ã§
binomial(n,2)"*"binomial(n+1,2)"="binomial(binomial(n,2),2)"+"binomial(binomial(n+1,2),2)
ãšãªããã¹ãŠãäžè§æ°ãžåž°çã§ããŸããã
No.2942GAI1æ18æ¥ 08:20
仿¥ã¯1æ11æ¥ã§1ã䞊ã³ãŸãã
ããã§ä»æ¥ã«å ãåé¡ãäžã€ã
çŽè§äžè§åœ¢ã§é¢ç©ã111ãšãªã3蟺ãæçæ°ãšãªãäžè§åœ¢ã®èŸº
[a,b,c] (a<b<c)ãèŠã€ããŠäžããã(ã§ããã°2ã¿ã€ã)
ã¡ãªã¿ã«æçš¿æéã11:11ã«ããŠã¿ãŸããã
ããïœæå»ããããŠããŸã£ãŠããïŒ
No.2935GAI1æ11æ¥ 11:14
æ¢ãæ¹ãæªãã®ããäžã€ããèŠã€ããããŸããã§ããã
(a, b, c) = (444/35, 35/2, 1513/70)
No.2936ãããã1æ11æ¥ 15:32
ååæ°åé¡ãåããã§è§£ãããšããŠãæ¯ãç«ããªãã
åé¡èªèº«ã¯æããããŒããšãªã£ãŠããããã§ããã
ãã®äžè§åœ¢ã®3蟺ãå
·äœã«æ±ããæ¹æ³ã¯é·ããæªè§£æ±ºãš
ãªã£ãŠããæš¡æ§ã§ãã
ã©ããªæ°ãååæ°ãã¯çŸåšã§ãå®å
šã«ã¯è§£æ±ºãããŠããªããããã
ãããæ±ããã®ã«æ¥åæ²ç·ã倧å€åŒ·åãªéå
·ã«ãªããšå€ãã®äººã®
ç ç©¶ã«å¿è¡ã泚ãããŠããããŸããããã®ç ç©¶ã§æ¥åæ²ç·è«èªèº«ã®
çºå±ããããããã
ãããããªäººã®è§£èª¬æžãåèã«æ±ããæé ãèšããŠããã
ååæ°ãšã¯èŸºã®é·ãããã¹ãŠæçæ°ã§ããçŽè§äžè§åœ¢ã®é¢ç©ãšãªããããªèªç¶æ°ã®ããšã§ããã
åŸã£ãŠååæ°ãgãšããã°
a^2+b^2=c^2
ãã€
a*b/2=g
ãæºããæçæ°(a,b,c)ãæ±ãŸãããšã«ãªãã
ãã®æ
äžã®2ã€ã®é¢ä¿åŒãçµåãããããšã§
E;y^2=x^3-g^2*x
ãªãæ¹çšåŒã«å€æãããã(詳ããããšã¯æžç©ã«è²ãã)
Eäžã«ããçæå
PãèŠã€ããããããçºçããŠããå æ³çŸ€ã®
æ§åãèŠãã®ãäžã®ããŒã¿ã§ãã
gp > P=ellgenerators(E)
%479 = [[-36, 630]]
gp > for(n=2,4,print(n";"ellpow(E,P,n)))
2;[2289169/19600, 1077378553/2744000]
3;[-702970242579396/8968641363361, -18689563840388114124990/26859009127111258609]
4;[99471302068384505638854721/91002372442806906625600,
-986951449961032281250161407557918511519/27452321215759546489234611411904000]
ãã®åº§æšãããã«å©çšããŠ
gp > a(g,x,y)=abs((x^2-g^2)/y);
gp > b(g,x,y)=abs(2*g*x/y);
gp > c(g,x,y)=abs((x^2+g^2)/y);
gp > F(g,x,y)=print(a(g,x,y)" ; "b(g,x,y)" ; "c(g,x,y));
ãªã倿ãããŠ3蟺ã®é·ãã倿ããŠããã
--------------------------------------------------------
gp > F(111,-36, 630)
35/2 ; 444/35 ; 1513/70
a<b<cãã
a=444/35,b=35/2,c=1513/70
(確èª)
gp > (35/2)^2+(444/35)^2
%500 = 2289169/4900
gp > (1513/70)^2
%501 = 2289169/4900
gp > 1/2*35/2*444/35
%502 = 111
--------------------------------------------------------
gp > F(111,2289169/19600, 1077378553/2744000)
712081/211820 ; 47024040/712081 ; 9973530070561/150832997420
a=712081/211820,b=47024040/712081,c=9973530070561/15083299742
(確èª)
gp > (712081/211820)^2+(47024040/712081)^2
%491 = 99471302068384505638854721/22750593110701726656400
gp > (9973530070561/150832997420)^2
%492 = 99471302068384505638854721/22750593110701726656400
gp > 1/2*712081/211820*47024040/712081
%493 = 111
--------------------------------------------------------
gp > F(111,-702970242579396/8968641363361, -18689563840388114124990/26859009127111258609)
234968389921405/26467355143878 ;
5875752841940916/234968389921405 ;
165025069140509609227269112873/6218991823635030238886908590
(確èª)
gp > (234968389921405/26467355143878)^2+(5875752841940916/234968389921405)^2
%494 = 27233273444829976935529194352071095900775442980080414314129/
38675859302439359055394105690217683330770495687015788100
gp > (165025069140509609227269112873/6218991823635030238886908590)^2
%495 = 27233273444829976935529194352071095900775442980080414314129/
38675859302439359055394105690217683330770495687015788100
gp > 1/2*234968389921405/26467355143878* 5875752841940916/234968389921405
%496 = 111
----------------------------------------------------------
gp > F(111,99471302068384505638854721/91002372442806906625600,
-986951449961032281250161407557918511519/27452321215759546489234611411904000)
98957083698401819456825279/3008674870802439461905240 ;
667925821318141560542963280/98957083698401819456825279 ;
9996575456267088141000515248201787420008791554547841/
297729691011275282356684619921534182697031134561960
(確èª)
gp > (98957083698401819456825279/3008674870802439461905240)^2+
(667925821318141560542963280/98957083698401819456825279)^2
%497 = 99931520852841541445900172102118583630747636172081443161
872245439042761782179209495351807663769957761281/
886429689096694536641140593396045963972294022746899350694112261
49266026306507876382173188441079041600
gp > (9996575456267088141000515248201787420008791554547841/
297729691011275282356684619921534182697031134561960)^2
%498 = 99931520852841541445900172102118583630747636172081443161
872245439042761782179209495351807663769957761281/
886429689096694536641140593396045963972294022746899350694112261
49266026306507876382173188441079041600
gp > 1/2*98957083698401819456825279/3008674870802439461905240*
667925821318141560542963280/98957083698401819456825279
%499 = 111
-------------------------------------------------------------
ãããªãã®ãåããã§æ±ããããã¯ãããªãã
éã«ãããªéå
·ãç·šã¿åºããå
人ã®ç¥æµã«æè¬ã§ãã
No.2937GAI1æ11æ¥ 20:42