äºééæ¹é£ãšãã£ãŠãåæ Œã®æ°ã®çžŠã»æšªã»å¯Ÿè§ç·ã®åãå®åã«ãªãã ãã§ãªããåæ Œã®æ°ã®çžŠã»æšªã»å¯Ÿè§ç·ã®äºä¹åãå®åã«ãªãéæ¹é£ããããŸãã
9次ã®äºééæ¹é£ã®äœãæ¹ã§ã0ïœ8ã®èªç¶é
åãããªã3Ã3è¡åAãšã0ïœ8ãããªã瞊ã»æšªã»å¯Ÿè§ç·ã®åãå®å12ã®3次ã®éæ¹é£ãšãªãè¡åBããããšããŸãã
A=
[0 1 2]
[3 4 5]
[6 7 8]
B=
[7 2 3]
[0 4 8]
[5 6 1]
ãã®ãããª3Ã3è¡åA,Bãšã
S=
[0 1 0]
[0 0 1]
[1 0 0]
ãšãã3Ã3è¡åSãçšããŠãè¡åA,Bã®è¡ãåãå
¥ãæ¿ããè¡åãã次ã®ããã«9Ã9è¡åα,βãã€ãããš9α+β+E(Eã¯å
šèŠçŽ ã1ã®è¡å)ã¯9次ã®äºééæ¹é£ãšãªããŸãã
α=
[S^2*A*S^2, A*S^2, S*A*S^2]
[ S^2*A, A, S*A]
[ S^2*A*S, A*S, S*A*S]
β=
[ S*B*S, B*S, S^2*B*S]
[ S*B, B, S^2*B]
[S*B*S^2, B*S^2, S^2*B*S^2]
9α+β+E=
[72 73 59 13 26 3 38 51 34]
[11 24 7 45 46 32 67 80 57]
[40 53 30 65 78 61 18 19 5]
[55 68 81 8 12 22 33 43 47]
[ 6 16 20 28 41 54 62 66 76]
[35 39 49 60 70 74 1 14 27]
[77 63 64 21 4 17 52 29 42]
[25 2 15 50 36 37 75 58 71]
[48 31 44 79 56 69 23 9 10]
åæ§ã«ã次ã®ãããª0ïœ24ã®èªç¶é
åãããªã5Ã5è¡åAãšã0ïœ24ãããªã瞊ã»æšªã»å¯Ÿè§ç·ã®åãå®å60ã®5次ã®éæ¹é£ãšãªãè¡åBãšã5Ã5è¡åSãçšããŠãè¡åA,Bã®è¡ãåãå
¥ãæ¿ããè¡åãã次ã®ããã«25Ã25è¡åα,βãã€ãããš25α+β+E(Eã¯å
šèŠçŽ ã1ã®è¡å)ã¯25次ã®äºééæ¹é£ãšãªããŸãã
A=
[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]
[20 21 22 23 24]
B=
[16 22 3 9 10]
[23 4 5 11 17]
[ 0 6 12 18 24]
[ 7 13 19 20 1]
[14 15 21 2 8]
S=
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]
[1 0 0 0 0]
α=
[S^3*A*S^3, S^4*A*S^3, A*S^3, S*A*S^3, S^2*A*S^3]
[S^3*A*S^4, S^4*A*S^4, A*S^4, S*A*S^4, S^2*A*S^4]
[ S^3*A, S^4*A, A, S*A, S^2*A]
[ S^3*A*S, S^4*A*S, A*S, S*A*S, S^2*A*S]
[S^3*A*S^2, S^4*A*S^2, A*S^2, S*A*S^2, S^2*A*S^2]
β=
[S^2*B*S^2, S*B*S^2, B*S^2, S^4*B*S^2, S^3*B*S^2]
[ S^2*B*S, S*B*S, B*S, S^4*B*S, S^3*B*S]
[ S^2*B, S*B, B, S^4*B, S^3*B]
[S^2*B*S^4, S*B*S^4, B*S^4, S^4*B*S^4, S^3*B*S^4]
[S^2*B*S^3, S*B*S^3, B*S^3, S^4*B*S^3, S^3*B*S^3]
25次ã®äºééæ¹é£ã«ã€ããŠã¯
http://kuiperbelt.la.coocan.jp/magicsquare/bimagic/bimagic-25.html
ãåç
§ã
åæ§ã«ã次ã®ãããª0ïœ48ã®èªç¶é
åãããªã7Ã7è¡åAãšã0ïœ48ãããªã瞊ã»æšªã»å¯Ÿè§ç·ã®åãå®å168ã®7次ã®éæ¹é£ãšãªãè¡åBãšã7Ã7è¡åSãçšããŠãè¡åA,Bã®è¡ãåãå
¥ãæ¿ããè¡åãã次ã®ããã«49Ã49è¡åα,βãã€ãããš49α+β+E(Eã¯å
šèŠçŽ ã1ã®è¡å)ã¯49次ã®äºééæ¹é£ãšãªããŸãã
A=
[ 0 1 2 3 4 5 6]
[ 7 8 9 0 11 12 13]
[14 15 16 17 18 19 20]
[21 22 23 24 25 26 27]
[28 29 30 31 32 33 34]
[35 36 37 38 39 40 41]
[42 43 44 45 46 47 48]
B=
[29 37 45 4 12 20 21]
[38 46 5 13 14 22 30]
[47 6 7 15 23 31 39]
[ 0 8 16 24 32 40 48]
[ 9 17 25 33 41 42 1]
[18 26 34 35 43 2 10]
[27 28 36 44 3 11 19]
S=
[0 1 0 0 0 0 0]
[0 0 1 0 0 0 0]
[0 0 0 1 0 0 0]
[0 0 0 0 1 0 0]
[0 0 0 0 0 1 0]
[0 0 0 0 0 0 1]
[1 0 0 0 0 0 0]
α=
[S^4*A*S^4, S^5*A*S^4, S^6*A*S^4, A*S^4, S*A*S^4, S^2*A*S^4, S^3*A*S^4]
[S^4*A*S^5, S^5*A*S^5, S^6*A*S^5, A*S^5, S*A*S^5, S^2*A*S^5, S^3*A*S^5]
[S^4*A*S^6, S^5*A*S^6, S^6*A*S^6, A*S^6, S*A*S^6, S^2*A*S^6, S^3*A*S^6]
[ S^4*A, S^5*A, S^6*A, A, S*A, S^2*A, S^3*A]
[ S^4*A*S, S^5*A*S, S^6*A*S, A*S, S*A*S, S^2*A*S, S^3*A*S]
[S^4*A*S^2, S^5*A*S^2, S^6*A*S^2, A*S^2, S*A*S^2, S^2*A*S^2, S^3*A*S^2]
[S^4*A*S^3, S^5*A*S^3, S^6*A*S^3, A*S^3, S*A*S^3, S^2*A*S^3, S^3*A*S^3]
β=
[S^3*B*S^3, S^2*B*S^3, S*B*S^3, B*S^3, S^6*B*S^3, S^5*B*S^3, S^4*B*S^3]
[S^3*B*S^2, S^2*B*S^2, S*B*S^2, B*S^2, S^6*B*S^2, S^5*B*S^2, S^4*B*S^2]
[ S^3*B*S, S^2*B*S, S*B*S, B*S, S^6*B*S, S^5*B*S, S^4*B*S]
[ S^3*B, S^2*B, S*B, B, S^6*B, S^5*B, S^4*B]
[S^3*B*S^6, S^2*B*S^6, S*B*S^6, B*S^6, S^6*B*S^6, S^5*B*S^6, S^4*B*S^6]
[S^3*B*S^5, S^2*B*S^5, S*B*S^5, B*S^5, S^6*B*S^5, S^5*B*S^5, S^4*B*S^5]
[S^3*B*S^4, S^2*B*S^4, S*B*S^4, B*S^4, S^6*B*S^4, S^5*B*S^4, S^4*B*S^4]
49次ã®äºééæ¹é£ã«ã€ããŠã¯
http://kuiperbelt.la.coocan.jp/magicsquare/bimagic/bimagic-49.html
ãåç
§ã
çŽ æ°ããïŒïœïŒïŒã®ãšãã¯ãäºã€ã®å¹³æ¹ã®åã§è¡šãã
ãçŽ æ°ããïŒïœïŒïŒïŒã®åœ¢ã®çŽ æ°äºã€ã®ç©ã¯ãäžã€ã®å¹³æ¹åã§è¡šãããããã§ã
äŸïŒïŒÃïŒïŒïŒïŒïŒïŒïŒãªã©
åäŸããæãã§ããããïŒ
ç§ãæãã«åäŸã¯ãªããšæããŸãã
4n+3 ã®ã¿ã€ãã®å¥æ°ã®ç©ã¯ mod 8 㧠7 ã«ã¯ãªããŸããã
äžã確èªããã®ã¡ã«ã«ãžã£ã³ãã«ã®äžå¹³æ¹åã®å®çã«åœãŠã¯ããã°ãããšæããŸãã
â n ã 0 ãã 19 ãŸã§ã®æŽæ°ãšããŸããæŽæ°ã®éå A ={a,b,c,d,e,f} ã®éšåéåã®ãã¡ãèŠçŽ æ°ã 3 ã®éšåéå㯠20 åãããŸãããããã®éšåéåã X_n ãšããŸããX_n ã®èŠçŽ ã®ç·åã S_n ãšããŸããS_n = n ãšãªããã㪠A ãæ±ããŠãã ããã
â¡ n ã 1 ãã 20 ãŸã§ã®æŽæ°ãšããŸããæŽæ°ã®éå A ={a,b,c,d,e,f} ã®éšåéåã®ãã¡ãèŠçŽ æ°ã 3 ã®éšåéå㯠20 åãããŸãããããã®éšåéåã X_n ãšããŸããX_n ã®èŠçŽ ã®ç·åã S_n ãšããŸããS_n = n ãšãªããã㪠A ãæ±ããŠãã ããã
=== 8< === 8< === 8< === ãã§ããã³
çæ§ã«ãæ瀺ãé æŽãããããã
â¡ã«è§£ããªãããšãã¹ããŒãã«èšŒæã§ãããã®ãªã®ã§ããããïŒ
ç§ã®ç解ãæ£ãããã°ãmod3ã§èšŒæã§ããŸãã
nã1ïœ20ã®ãšããΣS_n=Σn=210ããa+b+c+d+e+f=21
(a,b,c,d,e,fããããã10åãã€ç»å Žããã®ã§210÷10=21)
以äžéåAã®èŠçŽ ãšåã¯mod3ã§è¡šããŸãã
3ã€ã®åã0ã«ãªããã®ãn=3,6,9,12,15,18ã®6éã
3ã€ã®åã1ã«ãªããã®ãn=1,4,7,10,13,16,19ã®7éã
3ã€ã®åã2ã«ãªããã®ãn=2,5,8,11,14,17,20ã®7éã
A={x,x,x,x,y,z} (x,y,zã¯ãããã0ã1ã2) ã®å Žå
2x+yã6éãã2x+zã6éãã3xã4éããx+y+zã4éã
ãã®ãšã0,1,2ãå¶æ°åãã€ã«ãããªããªãã®ã§äžé©
ãã£ãŠmod3ãäžèŽãããã®ã¯3å以äž
Aã®èŠçŽ ã§0ã3åã®ãšããç·åã0(21â¡0)ãªã®ã§
(0,0,0,1,1,1)ã(0,0,0,2,2,2)ã®ããããã
ãããã©ã¡ãã®å Žåã0ã«ãªããã®ã
2éã((0,0,0)ãš(1,1,1)ãŸãã¯(2,2,2))ãããªãäžé©ã
# ãããã®å Žåã1ã«ãªããã®ãš2ã«ãªããã®ããããã9éããã€ã§ãã
Aã®èŠçŽ ã§0ã2åã®ãšããç·åã0ãªã®ã§(0,0,1,1,2,2)
ãã®ãšã0ã«ãªããã®ã(0,1,2)ã®çµåã2Ã2Ã2=8éããšãªãäžé©ã
# 1ã«ãªããã®ã¯(0,0,1)ã2éãã(0,2,2)ã2éãã(1,1,2)ã2éãã®èš6éã
# 2ã«ãªããã®ã¯(0,0,2)ã2éãã(0,1,1)ã2éãã(1,2,2)ã2éãã®èš6éã
Aã®èŠçŽ ã§0ã1åã®ãšããç·åã0ã«ãªããã®ã¯
(0,1,1,1,1,2)ã(0,1,2,2,2,2)ãããªãã
åããã®ã4å以äžã«ãªãã®ã§äžé©ã
Aã®èŠçŽ ã§0ã0åã®ãšããç·åã0ã§åããã®ã3å以äžãªã®ã§(1,1,1,2,2,2)
ãã®ãšã0ã«ãªããã®ã(1,1,1)ãš(2,2,2)ã®2éããšãªãäžé©ã
åŸã£ãŠè§£ã¯ååšããŸããã
ã¡ãªã¿ã«n=0ïœ19ã®å Žåã¯ãäžèšãšå
šãåãæé ã§èãããš
(0,0,0,1,1,2), (0,0,1,2,2,2), (0,1,1,1,2,2)
ã®3éããæ¡ä»¶ãæºãããŸãã
# æ¡ä»¶ã¯ç·åã190÷10=19â¡1ã3ã€ã®åã0,1,2ã«ãªããã®ãé ã«7,7,6éã
# 解ã®ååšèšŒæã§ã¯ãããŸãã
ããããããããŸããšã«æé£ãããããŸãã
ãªãã»ã© mod 3 ã§ïŒïŒããŠãã³ãç®ãããããããšã
ãä»èšïŒã
â ã®è§£ãšããŠ
a=â5,âb=2,âc=3,âd=4,âe=6,âf=9
ããããŸãã
ããããã¯ããã²ãšã€ã ããšåããŸãã
ãä»èšïŒã
â¡ããããããŠããŠ
äžèšãŸã§ã§æ«æããŸããããç¬ããã ããã
a+b+c = 1
d+e+f = 20
a †b †c †d †e †f
å®ã¯
a < b < c < d < e < f
ã§ããããªããšãªãã°ãããšãã°é¡æãã
a+b+c < a+b+d
ãšãªããã°ãªãããä»ã®çµã¿åããã©ããã§ãåæ§ã ããã§ããã
âè£é¡ïŒ
d †5
蚌æ
6 †d ãšä»®å®ããã
ãããš d < e < f ãã
7 †e
8 †f
ããã«
21 †d+e+f
ãåŸãã
ãã㯠d+e+f = 20 ãšççŸããã
èçæ³ã«ããè£é¡ïŒ
d †5 ã蚌æãããã
âè£é¡ïŒ
c †4
b †3
蚌æ
b < c < d †5
ããæãã
âè£é¡ïŒ
-6 †a
蚌æ
c †4 ,b †3 ãã
b+c †7
a+b+c = 1 ã§ãããã
1 -a = b+c †7
-6 †a
âè£é¡ïŒ
d = c +1
蚌æ
ïŒã€ã®ç·åãæ倧ã®ãã®ã¯
d + e +f
ïŒçªç®ã«å€§ãããã®ã¯
c +e +f
åè
㯠20 ,åŸè
㯠19
ããã«
d = c +1
ããããå
šæ°ããããããã°ã©ã ã§ãäœããããšæã£ãŠããã®ã§ãâŠâŠãšã»ã»
ç¶ããæäœæ¥ã§èšŒæããŠã¿ãŸããã
a+b+c=1ããcâ§2 (âµcâŠ1ãªãã°a+b+cïŒ1)
ãã£ãŠc=2,3,4
3çªç®ã«å€§ãããã®ã¯
b+e+f ãŸã㯠c+d+f
3çªç®ã«å€§ãããã®ãb+e+fã§ããå Žå
b+1=c,c+1=d,1-b-c=aãªã®ã§
(a,b,c,d)=(-2,1,2,3),(-4,2,3,4),(-6,3,4,5)
(a,b,c,d)=(-2,1,2,3)ã®å Žå
1+2+3=6ãªã®ã§1ïœ5ã«-2ã䜿ãããã
-2,1,2,3ã§4ã¯äœããªãããã4-(-2)-2=4ãŸãã¯4-(-2)-1=5ã®ãããããå¿
èŠã
fâ§8ãªã®ã§4ã5ã«ãªãã®ã¯eã
e=4ã®ãšã(-2)+1+4=(-2)+2+3=3ãšãªãäžé©ã
e=5ã®ãšã(-2)+3+5=1+2+3=6ãšãªãäžé©ã
ãã£ãŠ(a,b,c,d)=(-2,1,2,3)ã¯äžé©ã
(a,b,c,d)=(-4,2,3,4)ã®å Žå
2+3+4=9ãªã®ã§1ïœ8ã«-4ã䜿ãããã
-4,2,3,4ã§4ã¯äœããªãããã4-(-4)-3=5ãŸãã¯4-(-4)-2=6ã®ãããããå¿
èŠã
fâ§8ãªã®ã§5ã6ã«ãªãã®ã¯eã
e=5ã®ãšã(-4)+2+5=(-4)+3+4=3ãšãªãäžé©ã
e=6ã®ãšãd+e+f=20ãªã®ã§f=10ãšãªãã(-4)+3+10=2+3+4=9ãšãªãäžé©ã
ãã£ãŠ(a,b,c,d)=(-4,2,3,4)ã¯äžé©ã
(a,b,c,d)=(-6,3,4,5)ã®å Žå
3+4+5=12ãªã®ã§1ïœ11ãäœãã®ã«-6ã䜿ããªããã°ãªããªããã
-6ã䜿ããã®ã¯ã¡ããã©10åãªã®ã§äžé©ã
ãã£ãŠ(a,b,c,d)=(-6,3,4,5)ãäžé©ãªã®ã§
ã3çªç®ã«å€§ãããã®ãb+e+fãã¯äžé©ã
3çªç®ã«å€§ãããã®ãc+d+fã§ããå Žå
c+1=d,d+1=e,20-d-e=fãªã®ã§
(c,d,e,f)=(2,3,4,13),(3,4,5,11),(4,5,6,9)
(c,d,e,f)=(2,3,4,13)ã®å Žå
2+3+4=9ãªã®ã§10ïœ20ãäœãã®ã«13ã䜿ããªããã°ãªããªããã
13ã䜿ããã®ã¯ã¡ããã©10åãªã®ã§äžé©ã
(c,d,e,f)=(3,4,5,11)ã®å Žå
3+4+5=12ãªã®ã§13ïœ20ã«11ã䜿ãããã
3,4,5,11ã§17ã¯äœããªãããã17-11-5=1ãŸãã¯17-11-4=2ã®ãããããå¿
èŠã
aïŒ0ãªã®ã§1ã2ã«ãªãã®ã¯bïŒâµaâ§0ã®ãšãa+b+câ§3ïŒã
b=1ã®ãšããa+b+c=1ãªã®ã§a=-3ãšãªãã-3+4+11=3+4+5=12ãšãªãäžé©ã
b=2ã®ãšãã2+5+11=3+4+11=18ãšãªãäžé©ã
ãã£ãŠ(c,d,e,f)=(3,4,5,11)ã¯äžé©ã
(c,d,e,f)=(4,5,6,9)ã®å Žå
4+5+6=15ãªã®ã§16ïœ20ã«9ã䜿ãããã
4,5,6,9ã§17ã¯äœããªãããã17-9-6=2ãŸãã¯17-9-5=3ã®ãããããå¿
èŠã
äžãšåæ§ã«2ã3ã«ãªãã®ã¯bã
b=2ã®ãšã2+4+9=4+5+6=15ãšãªãäžé©ã
b=3ã®ãšã3+6+9=4+5+9=18ãšãªãäžé©ã
ãã£ãŠ(c,d,e,f)=(4,5,6,9)ãäžé©ãªã®ã§ã
ã3çªç®ã«å€§ãããã®ãc+d+fãã¯äžé©ã
以äžã«ããã解ãªãã
ããããçŽ æŽãããã§ãïŒ
n=0ïœ19ã«åã蚌ææ¹æ³ãé©çšããã°å
šè§£ãåŸãããã¯ããªã®ã§
ãã£ãŠã¿ãããªããŸããã
ããã°ã©ã ã«ããç·åœããã§è§£ã¯(-5,2,3,4,6,9)ã®äžã€ãšããã£ãŠããŸãã®ã§ã
çµæãåãã°å
容ã確èªããŠããã ãå¿
èŠã¯ãããŸããã
ãã ã®èœæžããšããŠã¹ã«ãŒããŠäžããã
n=0ïœ19ã®ãšãaïŒbïŒcïŒdïŒeïŒfãšããŠ
a+b+c=0
d+e+f=19
d=c+1
-7âŠaâŠ-1
-1âŠbâŠ3
1âŠcâŠ4
2âŠdâŠ5
3âŠeâŠ8
8âŠfâŠ14
(ãããŸã§èšŒæçç¥)
c=1ã®ãšã(a,b,c,d)=(-1,0,1,2)ãšãªããã
ãã®ãšãa+d+e=b+c+eãšãªãäžé©ã
ãã£ãŠ2âŠcâŠ4, 3âŠdâŠ5, 4âŠeâŠ8, 8âŠfâŠ12ã
3çªç®ã«å€§ãããã®ã¯b+e+fãŸãã¯c+d+f
3çªç®ã«å€§ãããã®ãb+e+fã§ããå Žå
b+1=c, c+1=d, a+b+c=0ãªã®ã§
(a,b,c,d)=(-3,1,2,3),(-5,2,3,4),(-7,3,4,5)
(a,b,c,d)=(-3,1,2,3)ã®å Žå
1+2+3=6ãªã®ã§0ïœ5ã«-3ã䜿ãããã
-3,1,2,3ã§3ã¯äœããªãããã3-(-3)-2=4ãŸãã¯3-(-3)-1=5ã®ãããããå¿
èŠã
fâ§8ãªã®ã§4ã5ã«ãªãã®ã¯eã
e=4ã®ãšã(-3)+1+4=(-3)+2+3=2ãšãªãäžé©ã
e=5ã®ãšãf=19-5-3=11ãšãªãã(-3)+1+11=1+3+5=9ãšãªãäžé©ã
ãã£ãŠ(a,b,c,d)=(-3,1,2,3)ã¯äžé©ã
(a,b,c,d)=(-5,2,3,4)ã®å Žå
2+3+4=9ãªã®ã§0ïœ8ã«-5ã䜿ãããã
-5,2,3,4ã§3ã¯äœããªãããã3-(-5)-3=5ãŸãã¯3-(-5)-2=6ãå¿
èŠã
fâ§8ãªã®ã§5ã6ã«ãªãã®ã¯eã
e=5ã®ãšã(-5)+2+5=(-5)+3+4=2ãšãªãäžé©ã
e=6ã®ãšãf=19-6-4=9ãšãªããã(a,b,c,d,e,f)=(-5,2,3,4,6,9)ã¯
(-5)+2+3=0, (-5)+2+4=1, (-5)+3+4=2, (-5)+2+6=3, (-5)+3+6=4, (-5)+4+6=5,
(-5)+2+9=6, (-5)+3+9=7, (-5)+4+9=8, 2+3+4=9, (-5)+6+9=10, 2+3+6=11, 2+4+6=12,
3+4+6=13, 2+3+9=14, 2+4+9=15, 3+4+9=16, 2+6+9=17, 3+6+9=18, 4+6+9=19 ãšãªãé©ã
ãã£ãŠ(a,b,c,d)=(-5,2,3,4)ã®ãšãã®è§£ã¯(a,b,c,d,e,f)=(-5,2,3,4,6,9)
(a,b,c,d)=(-7,3,4,5)ã®å Žå
3+4+5=12ãªã®ã§0ïœ11ã«-7ã䜿ãããããšã«ãªããã-7ã䜿ãããã®ã¯10åãªã®ã§äžé©ã
åŸã£ãŠã3çªç®ã«å€§ãããã®ãb+e+fãã®ãšãã«è§£ãäžã€åŸãããã
3çªç®ã«å€§ãããã®ãc+d+fã§ããå Žå
c+1=d, d+1=e, d+e+f=19ãªã®ã§
(c,d,e,f)=(2,3,4,12),(3,4,5,10),(4,5,6,8)
(c,d,e,f)=(2,3,4,12)ã®å Žå
2+3+4=9ãªã®ã§10ïœ19ã«12ã䜿ãããã
2,3,4,12ã§16ã¯äœããªãããã16-12-4=0ãŸãã¯16-12-3=1ã®ãããããå¿
èŠã
aâŠ-1ãªã®ã§0ã1ã«ãªãã®ã¯bã
b=0ã®ãšãa=0-0-2=-2ãšãªãã(-2)+3+4=0+2+3=5ãšãªãäžé©ã
b=1ã®ãšã1+4+12=2+3+12=17ãšãªãäžé©ã
ãã£ãŠ(c,d,e,f)=(2,3,4,12)ã¯äžé©ã
(c,d,e,f)=(3,4,5,10)ã®å Žå
3+4+5=12ãªã®ã§13ïœ19ã«10ã䜿ãããã
3,4,5,10ã§16ã¯äœããªãããã16-10-5=1ãŸãã¯16-10-4=2ã®ãããããå¿
èŠã
aâŠ-1ãªã®ã§1ã2ã«ãªãã®ã¯bã
b=1ã®ãšãa=0-1-3=-4ãšãªãã(-4)+3+10=1+3+5=9ãšãªãäžé©ã
b=2ã®ãšã2+5+10=3+4+10=17ãšãªãäžé©ã
ãã£ãŠ(c,d,e,f)=(3,4,5,10)ã¯äžé©ã
(c,d,e,f)=(4,5,6,8)ã®å Žå
4+5+6=15ãªã®ã§16ïœ19ã«8ã䜿ãããã
4,5,6,8ã§16ã¯äœããªãããã16-8-6=2ãŸãã¯16-8-5=3ã®ãããããå¿
èŠã
aâŠ-1ãªã®ã§2ã3ã«ãªãã®ã¯bã
b=2ã®ãšã2+5+8=4+5+6=15ãšãªãäžé©ã
b=3ã®ãšã3+6+8=4+5+8=17ãšãªãäžé©ã
ãã£ãŠ(c,d,e,f)=(4,5,6,8)ã¯äžé©ãªã®ã§ã
ã3çªç®ã«å€§ãããã®ãc+d+fãã¯äžé©ã
åŸã£ãŠæ¡ä»¶ãæºãã解ã¯(a,b,c,d,e,f)=(-5,2,3,4,6,9)ã®ã¿ã
ããã« n=2ïœ21 ã n=3ïœ22 ãªã©ã®ããã«ç¯å²ãå€ãããšã©ããªããã
èããã®ã§ããã0ïœ19ãš1ïœ20ã®å Žåãããã¹ãŠå°ããŸããã
ãŸãa,b,c,d,e,fãã¹ãŠã«1ã足ãã°3ã€ã®åã¯3倧ãããªããŸãã®ã§
n=0ïœ19ã§è§£ãããããšããn=3ïœ22, 6ïœ25, 9ïœ28, âŠã§ã
+1,+2,+3,âŠããå¯äžè§£ãååšããããšãããããŸãã
åæ§ã«ãn=1ïœ20ã§è§£ããªãããšããn=4ïœ23, 7ïœ26, 10ïœ29, âŠã§ã
解ããªãããšãããããŸãã
ãããŠn=2ïœ21ã®å Žåã¯
n=0ïœ19ã®ãšãã®a,b,c,d,e,fãå
šéš7ããåŒããŠ
7-f,7-e,7-d,7-c,7-b,7-aããããããŠa,b,c,d,e,fãšãããš
3æ°ã®åã¯21ããåŒãããã®ã«ãªã2ïœ21ãäœããŸãã
ãã£ãŠn=2ïœ21ã®ãšãã®å¯äžè§£ã¯
(a,b,c,d,e,f)=(7-9,7-6,7-4,7-3,7-2,7-(-5))=(-2,1,3,4,5,12)
ãšããããäžãšåæ§ã«n=5ïœ24, 8ïœ27, 11ïœ30, âŠã§ã¯
ããããã«+1,+2,+3âŠãã解ãååšããŸãã
åŸã£ãŠn=tïœt+19ã®ãšãã®äžè¬è§£ã¯
t=3kã®ãšã (a,b,c,d,e,f)=(-5+k, 2+k, 3+k, 4+k, 6+k, 9+k)
t=3k+1ã®ãšã 解ãªã
t=3k+2ã®ãšã (a,b,c,d,e,f)=(-2+k, 1+k, 3+k, 4+k, 5+k, 12+k)
(kã¯è² ã§ãOK)
ãšããããŸããã
ããããããããããããšå匷ã«ãªããŸãïŒ
ãn=0ïœ19ã®ãšãã®a,b,c,d,e,fãå
šéš7ããåŒããŠãâå£ããããããšãããŸããïŒïŒïŒ
1ã20ã§è§£ããªãããšã®è¶
ã¹ãããªãã蚌æãã§ããŸããã
Σ (S_n)^2 = 10*(a^2+b^2+âŠâŠf^2) + 8*(ab+ac+âŠâŠ+ef)
ããªãã¡
2870 = (a+b+c+d+e+f)^2 + 9*(a^2+b^2+âŠâŠf^2) + 6*(ab+ac+âŠâŠ+ef)
巊蟺ã3ã§å²ã£ãäœãã¯2ãå³èŸºã3ã§å²ã£ãäœãã¯0ã1ãªã®ã§ãæ¡ä»¶ãæºããæ°ã¯ååšããªãã
DD++ ããã«ããé®®ãããªç蚌æãæèŠããŠææ¿ããŠãããŸãã
2870 = (a+b+c+d+e+f)^2 + 9*(a^2+b^2+âŠâŠf^2) + 6*(ab+ac+âŠâŠ+ef)
ã®ãšãã㧠a+b+c+d+e+f = 21 ã代å
¥ããŠããããããããŸããã
ãããããã«ã¯ a+b+c+d+e+f = 21 ã®èšŒæãæžã足ããªããšãããªãã®ã§âŠâŠ
ãã£ãªãã»ã©ãããã¯ãŠãã«ãªããŠãããŸããã倱瀌ããããŸããã
ããã«ããŠãå¹³æ¹ã§è©äŸ¡ãããªããŠé©ããŸããã
èªç¶æ°ã3ã§å²ã£ãå°äœã§åãããš
3ïœãããâã3ã§å²ã
3ïœïŒïŒãâã2åããŠã1ã足ã
3ïœïŒïŒãâãïŒåããŠã1ãåŒã
æçµçã«ãå
šãŠïŒã«ãªãã
2ïŒ3ã®æäœãéã«ããã ãã§é£åºŠãå¢ãã®ãäžæè°ã§ãã
mod3ã®ã³ã©ããæ¬ãã§ããã
https://www.lab2.toho-u.ac.jp/sci/is/shirayanagi/lab/dl/2014/yamanaka.pdf
ã«
3n â 3ã§å²ã
3n+1 â 4åããŠ2ã足ã
3n+2 â 4åããŠ1ã足ã
ãšããã³ã©ããæ¬ããèå¯ãããã®ããããŸãããäžèšã®ã³ã©ããæ¬ãã¯ã
1â6â2â9â3â1
7â30â10â42â14â57â19â78â26â105â35â141â47â189â63â21â7
ãšãã2çš®é¡ã®ã«ãŒãã®ããããã«å°éããŸããã
1ïœ1000ã§
1ãå«ãã«ãŒãã«å°éããã®ã79åã§7.9%
7ãå«ãã«ãŒãã«å°éããã®ã921åã§92.1%
1ïœ10000ã§
1ãå«ãã«ãŒãã«å°éããã®ã4.2%
7ãå«ãã«ãŒãã«å°éããã®ã95.8%
ã§ããã
4åã ãš1ãããã¯7ã«å°éããã®ãæ©ãã®ã§ã
3n â 3ã§å²ã
3n+1 â 5åããŠ1ã足ã
3n+2 â 5åããŠ2ã足ã
ãšããŠã¿ããšãäžèšã®ã³ã©ããæ¬ãã¯ã1000000ãŸã§ã§
4â21â7â36â12â4
8â42â14â72â24â8
ãšãã2çš®é¡ã®ã«ãŒãã®ããããã«å°éããŸãããã4ãããã¯8ã«å°éãããŸã§ã«ãäŸãã°åæå€10ã®å Žåã¯4ã«å°éãããŸã§ã«43åã®æäœãå¿
èŠã§éäžã§æ倧å€3186ã«éããåæå€38ã®å Žåã¯8ã«å°éãããŸã§ã«386åã®æäœãå¿
èŠã§éäžã§æ倧å€12317562ã«éããŸããã100000ãŸã§ã§æ倧å€ãæŽæ°ããåæå€ãšããã®å°éå
ãããã«èŠããåæ°ãéäžã§éããæ倧å€ã¯ä»¥äžã®ããã«ãªããŸããã
10 4 43 3186
38 8 386 12317562
253 8 755 60008787
325 4 204 61921287
443 8 509 2792211912
550 4 2832 366801780869709687
1973 4 5101 68833498238053197854493312
13301 4 2815 99325854394514885320584021
16955 8 7959 724763997101386821051531936
20776 4 4265 2933570318473933999921361031139062
59113 4 7510 1470455996222092703757506943141135411
85925 4 13246 340816539304436064398165865804406618021466224558460882751162
4ãå«ãã«ãŒããš8ãå«ãã«ãŒãã«å°éããåæå€ã®åæ°ã¯ã
1ïœ1000ã§
4ãå«ãã«ãŒãã«å°éããã®ã688å
8ãå«ãã«ãŒãã«å°éããã®ã312å
1ïœ10000ã§
4ãå«ãã«ãŒãã«å°éããã®ã6417å
8ãå«ãã«ãŒãã«å°éããã®ã3583å
1ïœ100000ã§
4ãå«ãã«ãŒãã«å°éããã®ã62273å
8ãå«ãã«ãŒãã«å°éããã®ã37727å
1ïœ1000000ã§
4ãå«ãã«ãŒãã«å°éããã®ã615220å
8ãå«ãã«ãŒãã«å°éããã®ã384780å
ã§ããã
äžèšã®ã³ã©ããæ¬ããåæå€ãè² æ°ã®å Žåã«æ¡åŒµãããš-1ââ-3ãšããã«ãŒããçŸããã®ã§ã
3n â 3ã§å²ã
3n+1 â 5åããŠ2ãåŒã
3n+2 â 5åããŠ1ãåŒã
ãšããŠã¿ããšãäžèšã®ã³ã©ããæ¬ãã¯ã1000000ãŸã§ã§å
šãŠ1ââ3ãšããã«ãŒãã«å°éããŸãããäžèšã®ã³ã©ããæ¬ãã§ã¯ãäŸãã°åæå€10ã®å Žåã¯1ã«å°éãããŸã§ã«88åã®æäœãå¿
èŠã§éäžã§æ倧å€3564ã«éããŸããã100000ãŸã§ã§æ倧å€ãæŽæ°ããåæå€ãšãããã«èŠããåæ°ãéäžã§éããæ倧å€ã¯ä»¥äžã®ããã«ãªããŸããã
10 88 3564
25 116 10314
70 191 431604
82 201 124755588
140 707 18169045713
502 3077 3550975356647313
619 12254 570087155057912340205131104638425588
54847 12687 10089667480019633619334988145153010515029612088
ããã«ãksããã®ã³ã©ããæ¬ãã§ã¯ã
3n â 3ã§å²ã
3n+1 â 2åããŠ1ã足ã
3n+2 â 2åããŠ1ãåŒã
ã ã£ãã®ã§ã
3n â 3ã§å²ã
3n+1 â 5åããŠ1ã足ã
3n+2 â 5åããŠ1ãåŒã
ãšããŠã¿ããšãäžèšã®ã³ã©ããæ¬ãã¯ã1000000ãŸã§ã§
1â6â2â9â3â1
4â21â7â36â12â4
ãšãã2çš®é¡ã®ã«ãŒãã®ããããã«å°éããŸãããã1ãããã¯4ã«å°éãããŸã§ã«ãäžèšã®ã³ã©ããæ¬ãã§ã¯ãäŸãã°åæå€5ã®å Žåã¯1ã«å°éãããŸã§ã«95åã®æäœãå¿
èŠã§éäžã§æ倧å€20934ã«éããŸããã100000ãŸã§ã§æ倧å€ãæŽæ°ããåæå€ãšããã®å°éå
ãããã«èŠããåæ°ãéäžã§éããæ倧å€ã¯ä»¥äžã®ããã«ãªããŸããã
5 1 95 20934
44 1 70 40986
86 1 810 3419283861
235 1 488 46196151066
820 1 1167 3841972080939
1310 4 1080 8170346115441
1315 1 7145 157854812287762612809
1790 1 3337 978623937310722214986
8645 1 4953 209921511803443804073439891
8770 1 6819 64901218184254749066376852519465177611
68455 1 5931 533522890015686639949625171648394237684
1ãå«ãã«ãŒããš4ãå«ãã«ãŒãã«å°éããåæå€ã®åæ°ã¯ã
1ïœ1000ã§
1ãå«ãã«ãŒãã«å°éããã®ã901å
4ãå«ãã«ãŒãã«å°éããã®ã99å
1ïœ10000ã§
1ãå«ãã«ãŒãã«å°éããã®ã8774å
4ãå«ãã«ãŒãã«å°éããã®ã1226å
1ïœ100000ã§
1ãå«ãã«ãŒãã«å°éããã®ã87410å
4ãå«ãã«ãŒãã«å°éããã®ã12590å
1ïœ1000000ã§
1ãå«ãã«ãŒãã«å°éããã®ã874580å
4ãå«ãã«ãŒãã«å°éããã®ã125420å
ã§ããã
2025=a^2+b^2+c^2
ãæºããèªç¶æ°a,b,cãæ±ãããšããã€ããã§ããããïŒ
aâŠbâŠcãšããŠ11çµã§ãã
(4,28,35)
(5,8,44)
(5,20,40)
(6,15,42)
(6,30,33)
(8,19,40)
(13,16,40)
(15,30,30)
(16,20,37)
(20,20,35)
(20,28,29)
aâŠbâŠcã®æ¡ä»¶ãå€ããšã9Ã6+2Ã3=60éããšãªããŸãã
ç«æ¹äœããå¹³é¢ã§äžåã ãåæãããšããåæé¢ãçŽè§äžè§åœ¢ã«ã¯ããªããŸããã
ã©ã®ãããªç«äœããã©ã®ããã«åãã°ãäžåã®åæã§ãåæé¢ãåŸãããšãã§ããã§ããããïŒäœããçŽè§äžè§æ±ä»¥å€ã§ãé¡ãããŸãã
çŽè§äžè§æ±ã ãé€ããªããäŸãã°åºé¢ãçŽè§äžè§åœ¢ã®äžè§éã§ããã°
åºé¢ãšå¹³è¡ã®é¢ã§åãã ãã§æé¢ãçŽè§äžè§åœ¢ã«ãªããŸããã
é£æ¥é¢ãçŽè§ã«äº€ããç®æããªãç«äœã®å Žåã¯ã
ã»ããé ç¹ã«éãŸãé¢ã3é¢
ã»ãã®3é¢ã®ãã¡ãããããããã®é ç¹ã®è§åºŠãéè§
ã§ããã°æé¢ãçŽè§äžè§åœ¢ã«ãªãããã«åããŸããã
äŸãã°ãæ£äžè§éã§åºé¢ã®1蟺ã®é·ãã5ãä»ã®3蟺ã®é·ãã3ã®ããã«å¹³ããäžè§éãªã
åŽé¢ãéè§äºç蟺äžè§åœ¢ãªã®ã§äžèšã®æ¡ä»¶ãæºãããçŽè§äžè§åœ¢ã®æé¢ãäœããŸãã
éã«ãã¹ãŠã®é£æ¥é¢ãéè§ã§äº€ãã£ãŠããå Žåã¯ãçŽè§äžè§åœ¢ã¯äœããªããšæããŸãã
ãŸããé£æ¥é¢ãçŽè§ã§äº€ããç®æãããéè§ã§äº€ããç®æããªãå Žåã¯ã
çŽè§äžè§åœ¢ãäœããæ¡ä»¶ã¯ããã»ã©ç°¡åã§ã¯ãªããšæããŸãã
æ£äºè§æ±ä»¥äžã®æ£å€è§æ±ã§ãæé¢ãçŽè§äžè§åœ¢ã«ãªãããã«åããŸããã
æ£åé¢äœã§ããããŸãåæããã°ãã§ããããã§ãããå
·äœçã«
ã©ãåæããã°ãããã§ããããïŒ
æ£åé¢äœã§ã¯ç¡çãšæã蟌ãã§ããŸããããããèããŠã¿ããšäœããŸããã
æ£åé¢äœOABCã§OCã3ïŒ1ã«å
åããç¹ãDãACã5ïŒ1ã«å
åããç¹ãEãšãããš
â³BDEã¯â BDEãçŽè§ã®çŽè§äžè§åœ¢ã«ãªããŸãã
座æšã§è¡šããšãäŸãã°
O(0,0,8â6), A(0,8â3,0), B(-12,-4â3,0), C(12,-4â3,0), D(9,-3â3,2â6), E(10,-2â3,0)
æ£äžè§æ±ã§æ¯ç·æ¹åã«çŽäº€ããæé¢ã®æ£äžè§åœ¢ãâ³ABCãšããŠãäžèŸºã®é·ããaãšãããšããBãã蟺ã«æ²¿ã£ãŠa/â2ã®ç¹ãDãšããŠãCãã蟺ã«æ²¿ã£ãŠDãšã¯å察æ¹åã«a/â2ã®ç¹ãEãšãããšãAD=AE=â(3/2)a,DE=â3aã§ãAD:AE:DE=1:1:â2ãšãªãã®ã§ãâ³ADEã¯çŽè§äºç蟺äžè§åœ¢ã«ãªããŸããã
æé£ãããããŸãã
é ç¹AãBãCãåºé¢ã«ããŠãæ£åé¢äœã
OãŒABCãšãã蟺OAãOBãOCäžã«åæã®ç¹ãšããŠé·ãa,b,cããšããšãã
ïŒa,b,cïŒ=(1,2,6)ãããå¿ããŠããŠãæ¢ããŠããŸããã
x^2=a^2+b^2-ab:y^2=b^2+c^2-bc:z^2=c^2+a^2-ca
ã解ããŠäžã€ãa=âïŒãb=âïŒÂ±ïŒïŒc=3âïŒÂ±ïŒ
å¥æ°ã®åææ°ãšèšãã°
{9,15,21,25,27,33,35,39,}
ã§ãããããããã
9=7+2*1^2
15=7+2*2^2
21=3+2*3^2
25=7+2*3^2
27=19+2*2^2
33=31+2*1^2
35=17+2*3^2
39=37+2*1^2

ã®æ§ã«
å¥æ°ã®åææ°=çŽ æ° + 2*å¹³æ¹æ°
ã®æžãçŽããå¯èœã«ãªããšæãããã
æãããŠããã¯å
šãŠã«åœãŠã¯ããããã®ãïŒ
ããç Žç¶»ãããªãããã¯äœïŒ
ãããŠã§ããªããªãåå ã¯äœæ
ïŒ
5777ãš5993ã¯(çŽ æ°)+2(å¹³æ¹æ°)ã®åœ¢ã§ã¯è¡šããªãããã§ãã
https://oeis.org/A060003
âãã¡ãã¯(çŽ æ°)+2(å¹³æ¹æ°)ã®åœ¢ã§è¡šããªãå¥æ°ã®æ°åã§ããããã®äžã§åææ°ã¯5777ãš5993ã ãã§ãã
ãã ã5993ã®å
ã¯ããã£ãŠãªãã ããªã®ã§ãä»ã«ãããã©ããã¯ããããŸããã
0ãã9ã®æ°åãäžåºŠã¯åºçŸããŠãã10æ¡ã®èªç¶æ°Nãããã
ãã®æ°ã®digitsãå
端ãã
d1,d2,d3,,d10 (N=d1d2d3d4d5d6dd7d8d9d10)
ãšè¡šããæ
d8d9d10 % 2 ==0
d7d8d9 % 3 ==0
d6d7d8 % 5 ==0
d5d6d7 % 7 ==0
d4d5d6 % 11 ==0
d3d4d5 % 13 ==0
d2d3d4 % 17 ==0
d1d2d3 % 19 ==0
ã®ããã«åçŽ æ°ã§å²ãåããŠè¡ãæ¡ä»¶ããã¹ãŠæºããNã¯äœïŒ
5136497082 ãš 5136497028
ã§ããã
äºã€ã®åã®äœçœ®é¢ä¿ã§ã
亀ãã£ãŠãããšããäºäº€ç¹ãéãçŽç·
æ¥ããŠãããšããæ¥ç·ãæ ¹è»žãšåŒã°ããŠããããã§ããã
代æ°çã«ã¯äºã€ã®åã®æ¹çšåŒã®å·®ã§åãæãã®ã§ããã
å
±æç¹ããããªããšãã¯ãå³åœ¢çãªãæå³ããããããããããã§ããã
èå³ãããããæãäžããã
以åã«ããåæ§ã®ãçåããã£ããã§ããã
æ ¹è»žã¯ãæ¥æŠãããå®çŸ©ãããŠããŸãã
èŠèŠçã«ãæããããšã®ã§ãããèŠæ¹ãæããŠããã ããŸããã
ããã¯ã空éã®çã®åæé¢ãšããŠãèããäºã§ãã
å
·äœçã«ã¯ãäŸãã°ãåïŒïŒïœïŒŸïŒïŒïœïŒŸïŒïŒïŒ
ïŒïŒïŒïœïŒïŒïŒïŒŸïŒïŒïœïŒŸïŒïŒïŒãšãããšãïŒãšïŒ£ïŒã®å·®ã®
ãŒïŒïœïŒïŒïŒïŒïŒãããæ ¹è»žã¯ãïœïŒ13/8
CïŒããâïŒïŒïœïŒŸïŒïŒïœïŒŸïŒïŒïœïŒŸïŒïŒïŒãšãïŒïŒã®å¹³é¢ãšã®åæé¢ãšãã
ïŒããâïŒïŒïŒïœïŒïŒïŒïŒŸïŒïŒïœïŒŸïŒïŒïŒïœïŒïœïŒïŒŸïŒïŒïœïŒŸïŒãšå¹³é¢ïœïŒïŒãšã®åæé¢ãšããããã®ãšããâ ïœïŒŸïŒãŒïœïŒŸïŒïŒïŒãä¿ã¡ãªãããïœããã³ïœã倧ãããããšãïŒã®çãšãïŒã®çãæ¥ããããšã«ãªãã
çâïŒãšçâïŒã®å·®ã¯ãæ¥ããå¹³é¢HïŒãŒïŒïœïŒ16ãŒïŒïœïœïŒïœïŒŸïŒïŒïœïŒŸïŒãŒ1
â ãããïŒïœïŒïŒïœïœïŒïŒïŒãåŸãŠãïœïŒïŒãšãããšãæ ¹è»žãåŸãã
çå士ã®æ¥å¹³é¢ãšãå¹³é¢ïœïŒïŒãšã®äº€ç·ããæ ¹è»žãšããŠèŠèŠçãªåœ¢ãèŠãã
2025 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 7^3 + 8^3 + 9^3
ã»2025ã¯45ã®å¹³æ¹æ°ã§ãã
ã»45ã¯ã1ãã9ãŸã§ã®èªç¶æ°ã®å (1 + 2 + 3 + ... + 9) ã«çããã§ãã
ã»äžè¬ã«ã1ããnãŸã§ã®èªç¶æ°ã®ç«æ¹æ°ã®åã¯ã[(n(n+1))/2]^2ãã€ãŸããnçªç®ã®äžè§æ°ã®å¹³æ¹ã«çããã§ãã
â»å³ã¯n=4ã®ãšãã®çŽæçãªç解ãå©ãããã®ã§ãã
n=9 ã®å³ãæãããã£ãã®ã§ããéäžã§ãããŸããããšã»ã»
ä»ãããèŠãŠãã人ã¯å€åãæåã§æåŸã®å¹³æ¹æ°å¹Žã§ããããã