æè¿ã¯ãæŽæ°å±¥æŽãã§ã
ã倧åŠå
¥è©Šå顿¢èšªããé£ç¶ããŠããŸããã
èªåã®å
¥è©Šçµéšãããæ°åŠã®å
¥è©Šåé¡ã£ãŠ
ãã®å€§åŠã®ã¬ãã«ãšãã§ã¯ãªãã
ãããã
èªåãšåé¡ãšã®çžæ§
é£ãããŠãèªåã«åã£ãŠããã
(éã¿ãããªãã®)
èªåãšåºé¡è
ãšã®çžæ§
ã®æ¹ã倧äºã®ãããªæ°ãããŸãã
ãããšç¹ã«æ°åŠã¯ãæèšã®ç§ç®ãšéã£ãŠ
ãæ¬çªããåè² ãšããæããããŸãã
詊éšãçµãã£ãŠããªãã§ãã®åé¡ãè§£ããªãã£ããã ãã
ãšã»ã»ã»ã»ã»
ãã¯ãç·åŒµã¯ãæµãã§ããã
æ¥åžžããèªå販売æ©ãªããã®ãå©çšããŠããã
å®¢ã¯æ±ºãŸã£ãéçš®ãå
¥ããèš³ã§ã¯ãªããããŸããŸæã£ãŠãã
硬貚ãå©çšããŠããã
ããã§èªå販売æ©ãåãä»ããŠãã10å,50å,100å,500å硬貚ã§
1000åã®åç©ã販売æ©ã§è³Œå
¥ãããšããå Žåã販売æ©ã¯å
šéšã§
äœéãã®ç¡¬è²šã®çµåããåãä»ããããšã«ãªãã®ãïŒ
ãŸã5åçã販売æ©ãåãä»ããããã«ãããšããã°ããã®ç¡¬è²šã®
çµåãã¯ã©ãã»ã©ã«ãªããã®ãïŒ
æ³åããã®ãæãããã1åçãåãä»ãããªãã©ããªã£ãŠããŸãïŒ
ãã ã販売æ©ã¯ç¡¬è²šã¯äœåã§ãåãä»ãããã®ãšããã
ã²ãã£ãšããŠ
10åçãŸã§ã§
158éãã§ããããïŒ
((x^50)^2+(x^50)+1)*((x^10)^10+(x^10)^9+(x^10)^8+(x^10)^7+(x^10)^6+(x^10)^5+(x^10)^4+(x^10)^3+(x^10)^2+(x^10)^1+1)*((x^5)^20+(x^5)^19+(x^5)^18+(x^5)^17+(x^5)^16+(x^5)^15+(x^5)^14+(x^5)^13+(x^5)^12+(x^5)^11+(x^5)^10+(x^5)^9+(x^5)^8+(x^5)^7+(x^5)^6+(x^5)^5+(x^5)^4+(x^5)^3+(x^5)^2+(x^5)^1+1)*((x)^100+(x)^95+(x)^90+(x)^85+(x)^80+(x)^75+(x)^70+(x)^65+(x)^60+(x)^55+(x)^50+(x)^45+(x)^40+(x)^35+(x)^30+(x)^25+(x)^20+(x)^15+(x)^10+(x)^5+1)
ãå±éããŠx^100 ã®é
ã®ä¿æ°ãã¿ãŸããã
æ¬åœã¯æ¬¡ã®åŒãå±éãããã£ãã®ã§ããããªã³ã©ã€ã³å±éãµãŒãã¹ãåãä»ããŠãããŸããã§ããã
((A*x^50)^2+(A*x^50)+1)*((B*x^10)^10+(B*x^10)^9+(B*x^10)^8+(B*x^10)^7+(B*x^10)^6+(B*x^10)^5+(B*x^10)^4+(B*x^10)^3+(B*x^10)^2+(B*x^10)^1+1)*((C*x^5)^20+(C*x^5)^19+(C*x^5)^18+(C*x^5)^17+(C*x^5)^16+(C*x^5)^15+(C*x^5)^14+(C*x^5)^13+(C*x^5)^12+(C*x^5)^11+(C*x^5)^10+(C*x^5)^9+(C*x^5)^8+(C*x^5)^7+(C*x^5)^6+(C*x^5)^5+(C*x^5)^4+(C*x^5)^3+(C*x^5)^2+(C*x^5)^1+1)*((D*x)^100+(D*x)^95+(D*x)^90+(D*x)^85+(D*x)^80+(D*x)^75+(D*x)^70+(D*x)^65+(D*x)^60+(D*x)^55+(D*x)^50+(D*x)^45+(D*x)^40+(D*x)^35+(D*x)^30+(D*x)^25+(D*x)^20+(D*x)^15+(D*x)^10+(D*x)^5+1)
10åïŒ1ã®ã«ããšããŠ
100ã®ã«ãã®ååã
1ã®ã«ãã5ã®ã«ãã10ã®ã«ãã50ã®ã«ãã®ç¡¬è²šã§æ¯æããããšèããŸãã
ãã®ãšãã1ã®ã«ãç¡¬è²šã®ææ°ã¯æããã«5ã®åæ°ãªã®ã§ããããçžããã€ããŸãã
(D*x) ã¯1ã®ã«ã硬貚ã®ã·ã³ãã«ã§ãããã®é
ã®è©ã«ã®ã£ããææ°ã¯ã1ã®ã«ãç¡¬è²šã§æ¯æãäŸ¡æ Œã衚ããŸããäžã®åŒã§ã¯0ã®ã«ããã100ã®ã«ããŸã§5ã®ã«ãåäœã®å
šãŠã®å¯èœæ§ãåæããŠããŸãã
(C*x^5)ã¯ïŒã®ã«ã硬貚ã®ã·ã³ãã«ã§ãã0æãã20æãŸã§ãè©ã®ææ°ã§ãã£ãŠïŒæã¥ã€ã®å»ã¿ã§åæããŸãã
åæ§ã«(B*x^10)åã³ã«(A*x^50)ã¯ãããããã10ã®ã«ã硬貚ã50ã®ã«ã硬貚ã®ã·ã³ãã«ã§ããåŒã§ã®æå³ã¯ãããŸã§ã®æ±ãã«æºæ ããŸãã
ããã»ã©ã®åŒã¯ãããããã®ç¡¬è²šã®ææ°ã®äžéããã³ã«å»ã¿ã«å¶éãä»äžããäžã§ãæ¯æããéé¡ã®å
šãŠã®ãã¿ãŒã³ãèªåçã«(å±éãããŠããããµã€ããå©çšããŠã§ãã)æ±ãããã®ã§ãã
xã®ææ°ã100ã®ãã®ã®å
šãŠã®ããªãšãŒã·ã§ã³ãæ±ãããã®ãªã®ã§ãããã
ãŸããã«å±éã§ããã°ã100ã®ã«ãã®æ¯æãæ¹ãåä¿æ°ãã¿ãããšã§ãããã¯ãã§ãã
å±éããŠããããµã€ããã¿ã€ãããªãã£ãã®ã§ãAããDãŸã§ã«1ã代å
¥ããŠãããªãšãŒã·ã§ã³ã®çµã¿åããã®æ°ã®ã¿æ±ããããšãšããŸããã
äžã€ç®
10å硬貚ã§10nåãè¡šãæ¹æ³ã¯1éã
ãâ 50nåãè¡šãæ¹æ³ã1éã
10å硬貚ãš50å硬貚ã§50nåãè¡šãæ¹æ³ã¯ãΣ[k=0ïœn]1=n+1éã
ãâ 100nåãè¡šãæ¹æ³ã¯2n+1éã
10å硬貚ãš50å硬貚ãš100å硬貚ã§100nåãè¡šãæ¹æ³ã¯ãΣ[k=0ïœn]2k+1=(n+1)^2éã
ãâ 500nåãè¡šãæ¹æ³ã¯(5n+1)^2éã
10å硬貚ãš50å硬貚ãš100å硬貚ãš500å硬貚ã§500nåãè¡šãæ¹æ³ã¯ã
ãΣ[k=0ïœn](5k+1)^2=(n+1)(50n^2+55n+6)/6éã
ãã£ãŠ1000åãè¡šãæ¹æ³ã¯n=2ã代å
¥ããŠ3Ã316÷6=158éã
äºã€ç®
5å硬貚ã§5nåãè¡šãæ¹æ³ã¯1éã
ãâ 10nåãè¡šãæ¹æ³ã1éã
5å硬貚ãš10å硬貚ã§10nåãè¡šãæ¹æ³ã¯ãΣ[k=0ïœn]1=n+1éã
ãâ 50nåãè¡šãæ¹æ³ã¯5n+1éã
5å硬貚ãš10å硬貚ãš50å硬貚ã§50nåãè¡šãæ¹æ³ã¯ã
ãΣ[k=0ïœn]5k+1=(n+1)(5n+2)/2éã
ãâ 100nåãè¡šãæ¹æ³ã¯(2n+1){5(2n)+2}/2=(2n+1)(5n+1)éã
5å硬貚ãš10å硬貚ãš50å硬貚ãš100å硬貚ã§100nåãè¡šãæ¹æ³ã¯ã
ãΣ[k=0ïœn](2k+1)(5k+1)=(n+1)(20n^2+31n+6)/6éã
ãâ 500nåãè¡šãæ¹æ³ã¯(5n+1){20(5n)^2+31(5n)+6}/6=(5n+1)(500n^2+155n+6)/6éã
5å硬貚ãš10å硬貚ãš50å硬貚ãš100å硬貚ãš500å硬貚ã§500nåãè¡šãæ¹æ³ã¯
ãΣ[k=0ïœn](5k+1)(500k^2+155k+6)/6=(n+1)(625n^3+1050n^2+305n+6)/6éã
ãã£ãŠ1000åãè¡šãæ¹æ³ã¯n=2ã代å
¥ããŠ3Ã9816÷6=4908éã
äžã€ç®
1å硬貚ã§nåãè¡šãæ¹æ³ã¯1éã
ãâ 5nåãè¡šãæ¹æ³ã1éã
1å硬貚ãš5å硬貚ã§5nåãè¡šãæ¹æ³ã¯ãΣ[k=0ïœn]1=n+1éã
ãâ 10nåãè¡šãæ¹æ³ã¯2n+1éã
1å硬貚ãš5å硬貚ãš10å硬貚ã§10nåãè¡šãæ¹æ³ã¯ãΣ[k=0ïœn]2k+1=(n+1)^2éã
ãâ 50nåãè¡šãæ¹æ³ã¯(5n+1)^2éã
1å硬貚ãš5å硬貚ãš10å硬貚ãš50å硬貚ã§50nåãè¡šãæ¹æ³ã¯ã
ãΣ[k=0ïœn](5k+1)^2=(n+1)(50n^2+55n+6)/6éã
ãâ 100nåãè¡šãæ¹æ³ã¯(2n+1){50(2n)^2+55(2n)+6}/6=(2n+1)(100n^2+55n+3)/3éã
1å硬貚ãš5å硬貚ãš10å硬貚ãš50å硬貚ãš100å硬貚ã§100nåãè¡šãæ¹æ³ã¯ã
ãΣ[k=0ïœn](2k+1)(100k^2+55k+3)/3=(n+1)(100n^3+240n^2+131n+6)/6éã
ãâ 500nåãè¡šãæ¹æ³ã¯(5n+1){100(5n)^3+240(5n)^2+131(5n)+6}/6
ããã= (5n+1)(12500n^3+6000n^2+655n+6)/6éã
1å硬貚ãš5å硬貚ãš10å硬貚ãš50å硬貚ãš100å硬貚ãš500å硬貚ã§500nåãè¡šãæ¹æ³ã¯
ãΣ[k=0ïœn](5k+1)(12500k^3+6000k^2+655k+6)/6
ãã= (n+1)(12500n^4+29375n^3+15800n^2-195n+6)/6éã
ãã£ãŠ1000åãè¡šãæ¹æ³ã¯n=2ã代å
¥ããŠ3Ã497816÷6=248908éã
æã®æ°åŠæžã«ã¯ã
颿°ã¯ããåœæ°ã
æ¥ç·ã¯ããåç·ããèŠãããŸããã
挢å衚èšã§æãåºããŸããã
倧ããªæ°ã§ã®åäœã§
åãå
ã京ãåãã®æ¬¡ã®åäœïŒããïŒã®æŒ¢åããªããªãåºãŠããªããç»é²
ãããŠããªãããããªãããšæãããããå§¿ãèŠã€ãããªãã®ã§ããã
çããã®ãæå
ã§ã¯ã©ããªã£ãŠããŸãã§ããããïŒ
ãð¥±ãã§ãããã
ä»ã®åäœãããã€ãæã£ãŠæ€çŽ¢ãããããã®æŒ¢åã䜿ã£ãŠãããµã€ãããããŸããã
挢å倿ã«å°ããã€ã§ããã
以äžãåèã«ãªããŸããããïŒ
https://tom2rd.sakura.ne.jp/wp/2022/04/11/post-12585/
ã¹ãã(Android) ä»å±ã®æ¥æ¬èªå ¥åãœããGboardã§ææžãå ¥åã詊ããŸããããåºãŸããããð¥±ã
ð¥±
iPhoneã ãšæ®éã«åºãŸããã
ãããããšèªãæ®éã®æŒ¢åãšããããã§å§ãŸãäºæž¬å€æã®å
ãªã®ã§ãæ¢ãã®ãå°ãæéã§ã¯ãããŸããã
1ãã7ãŸã§ã®æ°åãäžåºŠã ã䜿ãããšãæ¡ä»¶ã«
(1)4æ¡ã®æŽæ°abcdãš3æ¡ã®æŽæ°efgãè¶³ããšçŽ æ°ãã§ãããšãã
çµåã(a,b,c,d,e,f,g)ã¯äœéãã§ãã®åºæ¥ãçŽ æ°ã®çš®é¡ã¯äœéããããïŒ
(2)aÃbÃcÃd + eÃfÃg ãçŽ æ°ãã§ãããšã
ãã®çµåã(a,b,c,d,e,f,g)ã¯äœéãã§ãã®åºæ¥ãçŽ æ°ã®çš®é¡ã¯äœéããããïŒ
(2)ã¯æç®ã§æ±ãŸããŸãããã€ãã§ãªã®ã§ããã°ã©ã ã§ãæ°ããŸããã
(3)以éã¯ããŸãã§ãã
(1)abcd+efg â çµåã1000éããçŽ æ°91éã
(2)aÃbÃcÃd+eÃfÃg â çµåã144éããçŽ æ°1éã(179ã®ã¿)
(3)abcd+eÃfÃg â çµåã954éããçŽ æ°144éã
(4)aÃbÃcÃd+efg â çµåã744éããçŽ æ°27éã
(5)abcd-efg â çµåã727éããçŽ æ°371éã
(6)aÃbÃcÃd-eÃfÃg â çµåã288éããçŽ æ°2éã(2ãš109ã®ã¿)
(7)abcd-eÃfÃg â çµåã1176éããçŽ æ°175éã
(8)aÃbÃcÃd-efg â çµåã264éããçŽ æ°11éã
â»å€æ°ã®é£ç¶ã¯ä¹ç®ã§ã¯ãªãæ¡ã®é£çµ
â»çµæã®æ£åœæ§ã¯ã»ãŒç¢ºèªããŠããŸããã®ã§ãæ£ãããªãããç¥ããŸããã
(1)ãã¡ããã©1000åããã®ãé¢çœã
(2)ãæç®ã§æ±ããããã®ããã®å¯Ÿæ¯ã§é¢çœãæããã®ã§åºé¡ããŠããŸããã
ãšããããšã§
ã¯ãŠïŒïœ9ã®æ°åãäžåºŠãã€äœ¿ãããšã§
aÃbÃcÃdÃeÃf+gÃhÃi
ãçŽ æ°ãšãªãçµåãã¯æãããç¡ãã?
ãããºã«ã§åãããã
ã©ãªãã
æ°åã®1ãã18ãŸã§ãäžã€ãã€äœ¿ã£ãŠ
9åã®1ããå°ããæ¢çŽåæ°ãäœãããšã
åºæ¥ãçµåããäœéãåºæ¥ãã調ã¹ãŠãããŸãããïŒ
èšç®ã§æ±ãŸãã®ãïŒ
ã³ã³ãã¥ãŒã¿ã§ããã°ã©ã çã«åŠçã§ããã®ãïŒ
ã©ã¡ãã§ãæ§ããŸããã®ã§ãé¡ãããŸãã
https://oeis.org/A009679
âããã§æ£ãããã°
59616éãã ãšæããŸãã
èšç®ã§åºãã®ã¯é£ãããšæããŸãã
# n=2,4,6,âŠ,18ã«å¯Ÿããçµåãæ°ãããã°ã©ã ã§èª¿ã¹ãçµæã®æ°åãæ€çŽ¢ãããäžèŽãããã®ããããŸããã
äžçäžã§ã¯èª°ãªã£ãšèª¿ã¹äžããŠãããã®ã§ããã
ç§ã¯äžé±éããã詊è¡é¯èª€ãç¹°ãè¿ããããã°ã©ã ãè²ã
æžãçŽããã£ãšå
šéšã§58320éããæ±ãããšæã£ãŠãããã§ãã
ã©ããã«èŠèœãšããããã®ããªïœã
èªåã§ãäœåºŠãèŠçŽãããã§ãããããåãããªãã®ã§ãã
ïŒèãæ¹ïŒ
å
šéšãèŠçŽãªåæ°ã§ãããããååãšåæ¯ã¯å¥æ°ãå¶æ°ã§ã®çµåãããšãªãã®ã§
A=[2,4,6,8,10,12,14,16,18]
B=[1,3,5,7,9,11,13,15,17]
ã®2çµã«åã
AãšBãçµåãããŠã§ãã1ããå°ããæ¢çŽåæ°ã¯æ¬¡ã®69åã§
M=[1/2, 2/3, 2/5, 2/7, 2/9, 2/11, 2/13, 2/15, 2/17,
1/4, 3/4, 4/5, 4/7, 4/9, 4/11, 4/13, 4/15, 4/17,
1/6, 5/6, 6/7, 6/11, 6/13, 6/17,
1/8, 3/8, 5/8, 7/8, 8/9, 8/11, 8/13, 8/15, 8/17,
1/10, 3/10, 7/10, 9/10, 10/11, 10/13, 10/17,
1/12, 5/12, 7/12, 11/12, 12/13, 12/17,
1/14, 3/14, 5/14, 9/14, 11/14, 13/14, 14/15, 14/17,
1/16, 3/16, 5/16, 7/16, 9/16, 11/16, 13/16, 15/16, 16/17,
1/18, 5/18, 7/18, 11/18, 13/18, 17/18]
ããããçµåãããŠèª¿ã¹ãã®ã¯å¯Ÿè±¡ãå€ãããã®ã§æåãããŠããã
(1)1/2ã䜿ããšããã°æ®ãã¯1,2ã®æ°åããµããŸãªãç©ããæ§æããã®ã§
Q1=[ 3/4, 4/5, 4/7, 4/9, 4/11, 4/13, 4/15, 4/17]
Q2=[5/6, 6/7, 6/11, 6/13, 6/17]
Q3=[ 3/8, 5/8, 7/8, 8/9, 8/11, 8/13, 8/15, 8/17]
Q4=[3/10, 7/10, 9/10, 10/11, 10/13, 10/17]
Q5=[5/12, 7/12, 11/12, 12/13, 12/17]
Q6=[ 3/14, 5/14, 9/14, 11/14, 13/14, 14/15, 14/17]
Q7=[3/16, 5/16, 7/16, 9/16, 11/16, 13/16, 15/16, 16/17]
Q8=[5/18, 7/18, 11/18, 13/18, 17/18]
ã«åããŠçœ®ã
for(n1=1,8,Q1[n1])
for(n2=1,5,Q2[n2])
for(n3=1,8,Q3[n3])
for(n4=1,6,Q4[n4])
for(n5=1,5,Q5[n5])
for(n6=1,7,Q6[n6])
for(n7=1,8,Q7[n7])
for(n8=1,5,Q8[n8])
ã§ããããã®ã°ã«ãŒãããæ¢çŽåæ°ãçµåãããŠããã
ãã®çµåãããç°ãªã16åã®ç°ãªãæ°åããäœãããŠããã°ã«ãŠã³ãããŠéèšããã
ããããŠæ±ãŸã£ãéèšãs1=4788ãåŸãããã
åæ§ãªèãæ¹ã§
(2)2/3ã䜿ããšããã°æ®ãã¯2,3ãå«ãŸãªãç©ããçµã¿åãããŠããã®ã§
Q1~Q8ãããã«åãããŠéžã³çŽããæ¡ä»¶ãæºãããã®ãã«ãŠã³ãããŠãããš
s2=9144
以äžåæ§ã§
(3)2/5ã䜿ãå Žå
s3=5328
(4)2/7ã䜿ãå Žå
s4=5184
(5)2/9ã䜿ãå Žå
s5=9144
(6)2/11ã䜿ãå Žå
s6=4788
(7)2/13ã䜿ãå Žå
s7=4788
(8)2/15ã䜿ãå Žå
s8=10368
(9)2/17ã䜿ãå Žå
s9=4788
以äžããæ±ããç·æ°ã¯
4788*4+5184+5328+9144*2+10368=58320éã
ãªã®ã§ãã
ãããæ£è§£ãšæããã59616éããªã®ã§1296éãã¯äœåŠãžè¡ã£ãã®ã?
(8)2/15ã䜿ãå Žå
ã®å€ã¯10368ã§ãªã11664ã§ãã
ãã®ä»ã¯ãã¹ãŠåã£ãŠããŸããã
2/15ã®ãã§ãã¯ãããã
Q4=[[1, 10], [3, 10], [7, 10], [9, 10], [10, 11], [10, 13], [10, 17]]
ã«å¯Ÿãã
for(n4=1,7,Q4[n4])ã§ã®ãã§ãã¯ã§ããã¹ãæã
for(n4=1,6,Q4[n4])
ãšééã£ãŠåŠçããŠããããšãåå ã§ããããšã倿ããŸããã
ééããªãæ§ã«æ
éã«é²ãã§ãã調æ»ãçµç€ã«è¿ããªã£ãé ã«ã¿ã€ããã¹
ãçºçãããŠããŸã£ãŠããã
å床for(n4=1,7,Q4[n4])ã§ã®ç¢ºèªã§ã¯s7=11664ã§äžèŽåºæ¥ãŸããã
ééããã®ã«æ°ä»ãããã«ã¯ãééã£ãããšã確èªããåŸã§ããèŠããŠããªãã®ã§åä»ã§ãã
Q1,Q2,âŠãããã°ã©ã ã§çæãããã®åæ°ãïŒããã°ã©ã ã§èªåçã«ïŒã«ãŒãã«ãŠã³ãã«ããã°ééããããšã¯ãªããªããšæããŸãã
人ãããã°ã©ã ãäœã£ãŠããã®ãåèã«ããŠããã
ãããªã«äœæ¥ãèããŠãã£ãšæã«å
¥ããæ°å€ã
gp > matpermanent(matrix(9,9,i,j,gcd(2*i,2*j-1)==1))
%192 = 59616éã
ã®äžçºã§è¡ãããšããã
åŸã£ãŠ1ïœ32ã®æ°åãããããäžåºŠãã䜿çšã§ããªã
16åã®1ããå°ããæ¢çŽåæ°ã(4Ã4è¡åãäœãã)
äœããçµåãã®ç·æ°ã¯
gp > matpermanent(matrix(16,16,i,j,gcd(2*i,2*j-1)==1))
%193 = 768372168960éã
ãããšãŠããŸãšãã«ã¯æ±ããããšãé£ãã倧ããã§ããããšãç°¡åã«ããããšããïŒïŒ
ã»ããšã«æ°åŠã®åïŒäžã«ããæ°åŠçæ§é ã®äžæè°ã)ãæããŸãã
èšç®ã§äžè¬çã«åºãã®ã¯é£ãããšããŠããä»åã®æ°å€èšå®ã«éããªããã»ã©é£ãããªãã§ããã
ãšãããã 2 ãš 3 ã§çŽåã§ããªãããã«åæ°ãäœãæ¹æ³ã¯ã
6 ã®åæ°ã䜿ã 3 çµã3 ã®åæ°ãš 2 ã®åæ°ã䜿ã 3 çµãæ®ã 3 çµã®é ã«èããŠã
6P3 * 6P3 * 3! = 86400 éã
ãã®äžã§ã
5/10 ãã§ããŠããŸãçµã
5P3 * 5P3 * 2! = 7200 éã
10/15 ãã§ããŠããŸãçµã
6P3 * 5P2 * 3! = 14400 éã
7/14 ãã§ããŠããŸãçµã
5P3 * 5P3 * 2! = 7200 éã
5/10 ãš 7/14 ããšãã«ã§ããŠããŸãçµã
4P3 * 4P3 * 1! = 576 éã
10/15 ãš 7/14 ããšãã«ã§ããŠããŸãçµã
5P3 * 4P2 * 2! = 1440 éã
ãã£ãŠãããããæ¢çŽåæ°ã«ãªãçµã¯
86400-7200-14400-7200+576+1440 = 59616 éã
ãã¿ãŸããDD++ãã
説ææãšããã瀺ãåŒãç§ã®é ã§ã¯äœãã©ãèãããæãç«ã€ã®ãå
šãèŠããŠããŸããã
äŸãã°
6 ã®åæ°ã䜿ã 3 çµã3 ã®åæ°ãš 2 ã®åæ°ã䜿ã 3 çµãæ®ã 3 çµã®é ã«èããŠã
6P3 * 6P3 * 3! = 86400 éã
ã¯ãŠïŒ
6P3ã®6ã¯äœãæãã6ãªã®ãïŒ
3!ã¯äœããã£ãŠ3!ã«ããã®ãïŒ
以äžåŸã®æ¹ã®èª¬ææãšåŒã®æå³ãå
šãèªã¿åããªãããŸãã
èšç®ãšããããå°ãããçµæã¯æ£ããã®ã ãããããããã«ã¯å°ãçç±ãæã€
æ ¹æ ãããäºã¯çè§£ã§ãããã§ãããå
šäœãéããæ§æ³ã®ãããããèŠããŠããªã
äºãªãã ãšæããŸãã
ããå°ã解説ãå
¥ããŠèª¬æé¡ããŸãããïŒ
18 ãŸã§ã®äžã«ã¯å¶æ°ã 9 åããã®ã§ã2 ã§çŽåã§ããªãããã«ã¯å
šãŠå¶æ°ãšå¥æ°ã§å¯Ÿã«ããŠåæ°ãäœãå¿
èŠããããŸãã
ãããŠã3 ã§ãçŽåã§ããªãããã«å¯Ÿã«ããã«ã¯ã
ã»6 ã®åæ°ïŒ3 ã€ããïŒã«ã¯ 3 ã§å²ãåããªã奿°ïŒ6 ã€ããïŒã®äžãã 3 ã€éžãã§å²ãåœãŠã
ã»3 ã®åæ°ã§ãã奿°ïŒ3 ã€ããïŒã«ã¯ã3 ã§å²ãåããªãå¶æ°ïŒ6 ã€ããïŒã®äžãã 3 ã€éžãã§å²ãåœãŠã
ã»æ®ã£ã 3 ã€ãã€ã¯ãé©åœã«å¶æ°ãšå¥æ°ã®ãã¢ã 3 çµäœã
ããšã«ãªããŸãã
ã ãã 6P3 * 6P3 * 3! = 86400 éããšãªããŸãã
ãã以åŸããæå®ã®åæ°ãæåã«äœã£ãŠããŸãããšã«ãããšäœåããäœåéžã¶ããå€ãããŸãããèãæ¹ã¯åãã§ãã
ããã³ã®å
¬åŒãšããŠ
Ï/4=4*atan(1/5)-atan(1/239)
ãæåã§ããã
äžè¬ã«tanã®4åè§ã®å
Œ΋
tan(Ξ)=Tã®æ
tan(4*Ξ)=(4*T-4*T^3)/(1-6*T^2+T^4)
ãªã®ã§
ä»tan(Ξ)=1/5 <=> Ξ=atan(1/5)
ãšããã°
tan(4*Ξ)=(4/5-4/5^2)/(1-6/5^2+1/5^4)=120/119
ãããã
4*Ξ=atan(120/119)
å³ã¡
4*atan(1/5)=atan(120/119)
ãŸãäžè¬ã«
-atan(Ξ)=atan(-Ξ) ãã
ããã³ã®å
Œ΋
atan(120/119)+atan(-1/239)=Ï/4
ãšè¡šèšããããšãå¯èœ
æŽã«Degan ããããæç€ºããã
atan(a/b)+atan(s/t)=atan((a*y+b*x)/(b*y-a*x))+atan((s*y-t*x)/(t*y+s*x))
ãæ¡ä»¶ãç¡èŠããŠ
H(a,b,s,t,x,y)=[(a*y+b*x)/(b*y-a*x),(s*y-t*x)/(t*y+s*x)]
ã§ã®èšç®ãx,yãåæã«éžãã§ãã£ãŠã¿ãã
gp > atan(120/119)+atan(-1/239)
%2817 = 0.78539816339744830961566084581987572105
gp > Pi/4
%2818 = 0.78539816339744830961566084581987572105
ããã§èªç±ã«x,yãéžãã§å€æããŠãããš
gp > H(120,119,-1,239,1,2)
%2819 = [359/118, -241/477]
gp > atan(359/118)+atan(-241/477)
%2823 = 0.78539816339744830961566084581987572105
gp > H(120,119,-1,239,1,3)
%2820 = [479/237, -121/358]
gp > atan(479/237)+atan(-121/358)
%2824 = 0.78539816339744830961566084581987572105
gp > H(120,119,-1,239,1,4)
%2821 = [599/356, -243/955]
gp > atan(599/356)+atan(-243/955)
%2825 = 0.78539816339744830961566084581987572105
gp > H(120,119,-1,239,11,17)
%2822 = [3349/703, -1323/2026]
gp > atan(3349/703)+atan(-1323/2026)
%2826 = 0.78539816339744830961566084581987572105
x>yãšããŠã
gp > H(120,119,-1,239,7,3)
%2828 = [-1193/483, -838/355]
gp > atan(-1193/483)+atan(-838/355)
%2829 = -2.3561944901923449288469825374596271632
ãã®æã¯Piãè£ã
gp > Pi+%2829ãšããŠããã°
%2831 = 0.78539816339744830961566084581987572106
gp > H(120,119,-1,239,1/7,1/3)
%2833 = [1197/473, -362/835]
gp > atan(1197/473)+atan(-362/835)
%2834 = 0.78539816339744830961566084581987572105
ã§ã©ãã§ãÏ/4ãæ§æãããŸããã
(远䌞)
16次ã®arctanç³»éæ¹é£ã¯çµå±arctanã§ã®å€ã¯éæ¹é£ãã§ãããããããäžãã忢çŽåæ°ã¯
åãæ°åãå«ãã§ããŸããã®ããäœããŸããã§ãããïŒã©ãªããè§£æããŠäžããã)
åããã®ãã¿ãããŸããã®ã§ã玹ä»ããããŸãã
次ã®ããŒãžã«ã¯ã256åã®æçæ°ã
16ïœ16 ã®æ¹é£ãšããŠæäŸãããŠããŸãã
https://github.com/TokusiN/AtanMagic/blob/main/data.txt
ãã®256åã®æçæ°ã§ã¯ã1ãã512ãŸã§ã®èªç¶æ°ãå
šãŠäœ¿ãããã®ãã¡256åã®èªç¶æ°ãååã«ãæ®ãã®256åã忝ãšããŠäžå¯Ÿäžã«çµã¿åãããã§ãã256åã®åæ°ããã®ãŸãŸæ¢çŽã«ãªã£ãŠããŸããèšãæããã°çŽåæäœã¯äžåãããŠããŸããã
åè¿°ã®éãã«ã16ïœ16 ã®æ¹é£ãšããŠããŒã¿æäŸãããŠå±
ãããã§ããã
åãã¹ç®ã®æçæ°ã«arctan颿°ãäœçšãããå€ã§æ¹é£ãã€ãããšããããéæ¹é£ã«ãªã£ãŠããŠã瞊暪æãããããã®ç·åã 2Ï ã«ãªã£ãŠããŸãã
éæ¹é£ã§ããããšãåç»åãããã®ã以äžã«ãããŸãã
https://tatt61880.github.io/AtanMagic/
ããã«ããŠãã©ãããçºæ³ãªãã§ãããããâŠâŠ
æèŠããŸããã
äœè
ãã³ãã«ããŒã ïŒTakusiNããç©åãã§ããã
1ïœ512ã®ãã¹ãŠã䜿ã£ãŠ16*16=216åã®æ¢çŽåæ°ãäœãã®ãããããã©ããããarctanã§éæ¹é£ã ãªããŠãã£ããŸãïœã§ãã
ãªããšããã®äººã«é£çµ¡ããšããŠçºèŠã®çµç·¯ãèããããã®ã§ããã
ã³ã³ãã¥ãŒã¿ã§ã®è
åã§ã®è§£æ±ºãè¶£å³ã ãšæžãããŠã¯ãããäœãããã®æ³åãæ°ä»ããç¡ããã°å°åºç¡çã§ãããã
ãããŒäžã®äžåã人ãããããã ã
ã¡ãªã¿ã«ç¬¬äžè¡ã®åæ°ãéåããŠã¿ãŠããæ°ãè«å€§éããŠäœã«ããã³ããåããŸããã§ããã
èŠçŽåæ°ãšarctanå€ãããããã©ã³ã¹ããšããŠããããšã«æåããã®ã§
ã§ã¯1ïœ8ã®æ°åãäžåãã€äœ¿ã£ãŠã2è¡2åã®1ããå°ãã4ã€ã®æ¢çŽåæ°ã§
å¯èœãªéãçµåããäœã£ãŠã¿ãã
[1/2 3/4]ã
[5/6 7/8]
----------
[1/2 3/4]
[5/8 6/7]
----------

-----------
[7/8 5/6]
[3/4 1/2]
çã®å
šéšã§432éãã®è¡åãäœããŸããã
ãšããããã¹ãŠã®è¡åã§ããã®å€ã«å¯Ÿããarctanã®å€ãåã£ãè¡åã«ã¯äœã®çŸããèŠåã瀺ããã®ã¯ãããŸããã§ããã
ãã£ãŠã¯ããŸããããã¶ã3æ¬¡æ£æ¹è¡åã§1ïœ18ãçšãã9åã®æ¢çŽåæ°ã§ã®ã¿ã€ãã§ãäœã®ææãããåŸãããªããã®ãšæãããŸãã
16次ãŸã§æ¡åŒµããè¡åã§ãã®åãæ³åãçŸãåºãããšãçã
èå³ãåŒãç«ãŠãŸãã
ïŒSNS ã®X(æ§twitterïŒã§äœè
ã®TokusiNããã«ã©ããã£ãŠäœã£ãã®ãå°ããŠããã
æãä»ããã®ã¯ããã³ç³»ã®å
¬åŒããã§å
·äœçãªäœææ¹æ³ã¯ã¬ãã¬ãã®ã³ã³ãã¥ãŒãã£ã³ã°ãšã®ããšã§ããã
èããšããã«ããã°
ä»»æã®æ£ã®æŽæ° q, r ã«ã€ããŠãµãã€ã®å
¬åŒ
â : Ï/4 = arctan(q/(q +r)) +arctan(r/(2*q +r))
â¡: Ï/4 = arctan(q/(q -r)) +arctan(r/(2*q -r))
ããšãã«æãç«ã€ã®ã ããã§ã
arctan颿°ãžã®åŒæ°ã¯ãšãã«çåæ°ã§ãããšãããããœã§ããããã®atanmagic ã§ããããªã£ãŠããŸãã®ã§äœ¿ããããïŒ
Q[1]ããQ[8]ãŸã§ãR[1]ããR[8]ãŸã§ã®16åã®æŽæ°ãããããŒã«éžã¶ãš
8*(Ï/4) =
arctan(Q[1]/(Q[1] +R[1])) +arctan(R[1]/(2*Q[1] +R[1]))
+arctan(Q[2]/(Q[2] +R[2])) +arctan(R[2]/(2*Q[2] +R[2]))
+arctan(Q[3]/(Q[3] +R[3])) +arctan(R[3]/(2*Q[3] +R[3]))
+arctan(Q[4]/(Q[4] +R[4])) +arctan(R[4]/(2*Q[4] +R[4]))
+arctan(Q[5]/(Q[5] +R[5])) +arctan(R[5]/(2*Q[5] +R[5]))
+arctan(Q[6]/(Q[6] +R[6])) +arctan(R[6]/(2*Q[6] +R[6]))
+arctan(Q[7]/(Q[7] +R[7])) +arctan(R[7]/(2*Q[7] +R[7]))
+arctan(Q[8]/(Q[8] +R[8])) +arctan(R[8]/(2*Q[8] +R[8]))
ãšãªãã16åã®arctan颿°ã®å€ã®ç·åã 2*Ï
ãšãã圢ãåŸãããŸããatanmagic ã®æ§è³ªã®äžéšã«ãã䌌ãŠããŸããã¡ãã£ãšããã£ãŠããã®ãããããŸããã
äžèšã¯å
¬åŒâ ã®ã¿ã§ã€ã£ã±ã£ãŠããŸãããå®éã«ã¯å
¬åŒâ¡ãšã®æ··åšã§ãããçã§ããèªç±åºŠãèšãäžãããŸããâŠâŠ(é§ç®ïŒè¿œèšãåç
§é¡ããŸã)
ããããäœæŠã§ä»åã®éæ¹é£ãäœãããã®ãã©ãããã ãã§ã¯ãããŸãããâŠâŠæã¿èãããããŸããã
远èšã
â¡ã¯çåæ°ã®ã¿ã®åŒã«ãªã£ãŠããŸããã§ããã謹ãã§ãè©«ã³ããŸãã
â ã¯æ¬¡ã®GAIããã«ãã埡æçš¿å
ã§äœ¿ãããåŒãšå®è³ªçã«åããã®ãšæããŸãã
ç§ãæšæ¥ããã©ããã£ãŠæ§æããŠããããã ããããšããŒãšèãç¶ããŠããŸãã
ç§ãèŠã€ããããã³ã®å
¬åŒãã©ããšããŠãäžè¬ã«1ããå°ããæ¢çŽåæ°ã®s/t
ã«å¯Ÿãããã®ã§(tan(Ï/4)=1ã ããå¯äžæçæ°ãšãªããã®ã§ããã®ãã¿ãŒã³ã¯äœãæãã)
arctan(s/t)+arctan((t-s)/(t+s))=Ï/4ã
ã®çµåãã§å¿
ãÏ/4ãäœããã®ã§,ãããã
arctan(1/2)+arctan(1/3)=Ï/4
arctan(1/4)+arctan(3/5)=Ï/4
arctan(1/5)+arctan(2/3)=Ï/4
arctan(1/6)+arctan(5/7)=Ï/4
arctan(1/7)+arctan(3/4)=Ï/4
arctan(1/8)+arctan(7/9)=Ï/4
arctan(1/9)+arctan(4/5)=Ï/4
arctan(1/10)+arctan(9/11)=Ï/4
åŸã£ãŠããããã¹ãŠè¶³ãåãããã°
A=[1/2,1/3,2/3,1/4,3/4,1/5,3/5,4/5,1/6,1/7,5/7,1/8,1/9,7/9,1/10,9/11]
ã®16åã®æ¢çŽæåã«å¯Ÿãããã®arctanå€ã®åã¯2*Ïãäœãã
gp > vecsum(apply(i->atan(i),A))
%=6.28318530717958647692528(=2*Ï)
ããããµã€ãã«ãã16Ã16æ¬¡ã®æ£æ¹è¡åã®ç¬¬1è¡ã¯
M1=[5/168 ,259/498 ,216/337 ,129/478 ,381/436 ,266/303 ,6/127 ,78/179
,31/480 ,144/307 ,210/341 ,43/474 ,174/443 ,172/379 ,271/348 ,41/88]
ã§ããã®ã§ããã®æ¢çŽåæ°ãšã»ãããçµãã§Ï/4 ãç£ã¿åºããŠãããã®ã¯
ãããã
5/168 VS 163/173
259/498 VS 239/757
216/337 VS 121/553
129/478 VS 349/607
381/436 VS 55/817
266/303 VS 37/569
6/127 VS 121/133
78/179 VS 101/257
31/480 VS 449/511
144/307 VS 163/451
210/341 VS 131/551
43/474 VS 431/517
174/443 VS 269/617
172/379 VS 207/551
271/348 VS 77/619
41/88 VS 47/129
ã察å¿ããŠããããšãšãªãã
ãšãããå³ã«çŸãã16åã®æ¢çŽåæ°ã¯äœåŠã«ã䜿ãããŠããªããããã163ãªã©ã®æ°ã¯éè€ããŠ
åºçŸããããšãèµ·ãããããã512ããã倧ããªæ°åã䜿ãããããšã«ãªãã
ãã®æ¹éãããã§ã¹ãããããããšã«ãªã£ãã
ããã§ä»è€çŽ æ°ã§ã®åè§ã®æ§åã«åãæ¿ã
å£ã§è§£èª¬ããŠããã®ã倧å€ãªã®ã§ã仿€çŽ¢ãæããŠããããã°ã©ã ã§
èªã¿åã£ãŠäžããã
äŸãååšããŠããŠãèšå€§ãªæéãèŠããå¿
èŠããããããªãã§ãã
{t=0;}for(a1=2,512,for(a2=1,a1-1,for(a3=3,512,for(a4=2,a3-1,\
for(a5=4,512,for(a6=3,a5-1,for(a7=5,512,for(a8=4,a7-1,\
for(a9=6,512,for(a10=5,a9-1,for(a11=7,512,for(a12=6,a11-1,\
for(a13=8,512,for(a14=7,a13-1,for(a15=9,512,for(a16=8,a15-1,\
for(a17=10,512,for(a18=7,a17-1,for(a19=11,512,for(a20=10,a19-1,\
for(a21=12,512,for(a22=9,a21-1,for(a23=13,512,for(a24=12,a23-1,\
for(a25=14,512,for(a26=11,a25-1,for(a27=15,512,for(a28=14,a27-1,\
for(a29=16,512,for(a30=13,a29-1,for(a31=17,512,for(a32=16,a31-1,\
if(gcd(a1,a2)==1 && gcd(a3,a4)==1 && gcd(a5,a6)==1 && gcd(a7,a8)==1 && \
gcd(a9,a10)==1 && gcd(a11,a12)==1 && gcd(a13,a14)==1 && gcd(a15,a16)==1 &&\
gcd(a17,a18)==1 && gcd(a19,a20)==1 && gcd(a21,a22)==1 && gcd(a23,a24)==1 && \
gcd(a25,a26)==1 && gcd(a27,a28)==1 && gcd(a29,a30)==1 && gcd(a31,a32)==1 && \
imag((a1+a2*I)*(a3+a4*I)*(a5+a6*I)*(a7+a8*I)*(a9+a10*I)*(a11+a12*I)*(a13+a14*I)*(a15+a16*I)*\
(a17+a18*I)*(a19+a20*I)*(a21+a22*I)*(a23+a24*I)*(a25+a26*I)*(a27+a28*I)*(a29+a30*I)*(a31+a32*I))==0 , \
print(t++";"a2/a1","a4/a3","a6/a5","a8/a7","a10/a9","a12/a11","a14/a13","a16/a15","\
a18/a17","a20/a19","a22/a21","a24/a23","a26/a25","a28/a27","a30/a29","a32/a31)) \
))))))))))))))))))))))))))))))))
äžèšã®ããæ¹ã§ã¯ãšãŠããããªãããããæéããããŠãç¡çãšå€å®
ããã§1ïœ512ãäžåºŠãã€çšããæ¡ä»¶ãé€ãã°ã次ã®ãããª16次ã®è¡åã§ã¯arctanã§ã®åè¡ãååã2ã€ã®å¯Ÿè§ç·ã§ã®åã¯2*Ïã®
éæ¹é£ãšã¯ãªãããã§ãã
éã«èšãã°åŠäœã«1ïœ512ãäžåºŠãã€äœ¿ããšããããšãåãããšãããããŸãã
[163/173 239/757 121/553 349/607 55/817 37/569 121/133 101/257 449/511 163/451 131/551 431/517 269/617 207/551 77/619 47/129]
[299/623 107/531 199/773 191/339 353/467 159/529 93/263 315/457 139/513 5/857 19/331 183/239 357/587 235/263 91/463 323/541]
[133/379 179/627 137/571 301/593 263/431 223/327 151/247 371/641 33/901 157/347 247/255 267/529 33/277 87/773 245/337 151/807]
[269/397 133/869 203/521 297/679 143/599 191/577 173/293 141/449 161/325 197/769 91/367 461/527 107/553 287/723 311/369 173/389]
[ 79/203 361/543 59/763 245/419 279/347 91/313 401/607 359/625 77/207 287/359 47/883 49/739 355/489 199/617 143/353 91/503]
[337/361 23/449 289/373 47/259 409/503 445/561 61/187 31/983 263/457 275/459 249/347 1/829 109/823 191/683 141/367 221/419]
[ 97/141 105/499 131/359 1/557 121/843 201/607 323/503 127/491 199/787 331/583 401/491 261/521 391/577 377/523 37/813 295/383]
[ 31/411 421/557 341/529 249/421 61/383 273/293 237/575 295/503 439/471 31/599 139/885 31/209 163/647 119/729 251/455 377/543]
[ 49/559 213/323 329/431 11/427 113/587 209/609 53/779 199/269 213/757 59/137 311/547 61/329 421/475 239/473 277/607 469/549]
[ 89/817 199/241 175/639 359/519 185/553 203/663 181/395 89/543 73/783 333/557 215/779 139/759 343/607 473/507 275/311 239/701]
[ 97/575 177/703 415/559 237/493 163/317 43/883 353/379 185/303 133/233 49/113 143/745 241/537 113/877 331/469 261/755 255/707]
[157/443 337/413 53/429 99/923 401/507 197/557 125/467 227/553 269/569 349/651 193/805 253/503 113/789 357/589 301/451 289/587]
[ 17/563 223/253 193/199 337/411 213/641 217/419 89/613 467/471 139/653 139/797 199/251 49/457 25/967 167/367 135/181 61/631]
[159/379 283/301 227/727 119/529 61/863 327/341 137/653 201/515 191/331 403/515 187/617 423/581 337/683 25/553 31/815 289/481]
[101/141 53/467 143/691 145/497 175/447 223/517 17/667 127/755 173/189 113/221 191/193 259/281 367/427 101/497 217/557 21/311]
[317/469 49/793 251/373 439/477 283/333 137/415 263/665 29/349 79/639 189/577 351/631 71/203 293/341 145/499 83/387 163/491]
æ£æ° a,b,s,t,x,y ã«ã€ããŠ
a ïŒ b, s ïŒ t, x ïŒ y
ãèŠè«ããŠãããŠ
arctan(a/b) +arctan(s/t)
ïŒ arctan((a*y +b*x)/(b*y -a*x)) +arctan((s*y -t*x)/(t*y +s*x))
ãšã§ããŸãã
x ïŒ 0 ãªãã°å³èŸºãšå·ŠèŸºã¯çãããªãããšã¯èªæã§ãã
巊蟺ã®ïŒåã®æçæ°ãã¡ãã£ãšããããŠã¿ãããšèããã®ã§ããå³èŸºã®arctanã«å°ãããå€ãçåæ°ã«ãªãã«ãããŠèŠæŠããŠãããŸãããŸããããããããšã«çŽåãçºçãããããããŸããã
ãªããªãããŸããããªãã§ãã
æ¯èŒçäœãæã(arctanãšã¿ã€ãããæãçç¥ã§atanã§æžããŠããŸãã)
atan(1/4)+atan(3/5)(=Ï/4) (a=1,b=4,s=3,t=5ã«å¯Ÿå¿)
ããDengan kesaktian Indukmuããã®ããããã¯ããã¯ãçšããŠ
å
ã
ã®16è¡åã®ç¬¬1è¡ã®æåãäœãåºããŠãããš(第2é
ç®ã«çžåœ)
(x,y)=(479,855)->atan(163/173)+atan(5/168)ããã:ok
(x,y)=(38,2041)->atan(349/607)+atan(129/478) :noã
(x,y)=(351,653)->atan(121/133)+atan(6/127) :ok
(x,y)=(133,794)->atan(101/257)+atan(78/179) :ok
(x,y)=(1258,2493)->atan(449/511)+atan(31/480) :ok
(x,y)=(201,1967)->atan(163/451)+atan(144/307) :ok
(x,y)=(71,147)->atan(431/517)+atan(43/474) :no
(x,y)=(27,161)->atan(269/617)+atan(174/443) :no
(x,y)=(277,2411)->(atan(207/551)+atan(172/379) :no
(x,y)=(59,563)->atan(47/129)+atan(41/88) :ok
ãªãåŒã«äœãå€ããããã
ãªã
atan(259/498)
atan(216/337)
atan(381/436)
atan(266/303)
atan(210/341)
atan(271,348)
ã«ã¯(x,y)ãèŠã€ãããªãã
ãã ã忝ã512ãããããã®ã¯æ¡çšããªãããšã«ããã(:no)
第1é
ç®ã®åæ¯ã512以äžãªãæ¡çšããŠ(:ok)ããã§äœ¿ãããŠããéšåã®
å
ã®è¡åãããã®æ°ãå«ãåæ°ã¯æ¶ããŠããã
ãããä»åºŠã¯å
ã®16è¡åã®ç¬¬2è¡ã®åæ°æ¶ãæ®ã£ããã®ã«å¯ŸããŠäœã£ãŠããã
ãããç¹°ãè¿ããŠè¡ãã°èªããš1ïœ512ã ãã§äœãããŠããåæ°ãæ®ã£ãŠãããªãã ãããïŒ
ãªãéæ¹é£ã®äœãæ¹ã«ã€ããŠäœåºŠãå°ããŠã¿ããTokusiNãããã
8次ããé ã«æ€èšããçµæãçŸå®çãªæéã§äœãããšãå¯èœãªæå°æ¬¡æ°ã16ã ã£ãã®ã§ãã
ããã³ç³»ã®ååšçå
¬åŒã®çæææ³ãçè§£ãããšããã®éæ³é£ã«äœ¿ãããŠããåæ°ãã©ã®ããã«éžã°ãããããããšæããŸãã
atanéæ¹é£ãã©ããã£ãŠäœã£ããããã¡ããšãŸãšããæ¹ãè¯ãæ°ããããã©ãã詳现ãèŠããŠãªããªãã
çµæ§çްããã¹ãããã«åããŠå°ããã€èšç®ããŠãã£ãããšã¯èŠããŠããã©ãã®ã¹ãããã®åè§£ã¯ããå¿åŽã®åœŒæ¹
ã®è¿äºããããŸããã
è€çŽ æ°z=(1+i)(2+i)âŠâŠ(n+i)ãçŽèæ°ãšãªãæ£ã®æŽæ°nããã¹ãŠæ±ããŠãã ããã
n=3 ã ãïŒ
äžè¬ã«arctan(1/n)ã«ã€ããŠã®æ§è³ªã調ã¹ãŠããããæ¬¡ã®ãããªé¢ä¿åŒãæç«ããŠããããšã«æ°ä»ããŸããã
arctan(1)-arctan(1/2)=arctan(1/3)
arctan(1)-arctan(1/3)=arctan(1/3)+arctan(1/7)
arctan(1)-arctan(1/4)=arctan(1/3)+arctan(1/7)+arctan(1/13)
arctan(1)-arctan(1/5)=arctan(1/3)+arctan(1/7)+arctan(1/13)+arctan(1/21)
arctan(1)-arctan(1/6)=arctan(1/3)+arctan(1/7)+arctan(1/13)+arctan(1/21)+arctan(1/31)
arctan(1)-arctan(1/7)=arctan(1/3)+arctan(1/7)+arctan(1/13)+arctan(1/21)+arctan(1/31)+arctan(1/43)
arctan(1)-arctan(1/8)=arctan(1/3)+arctan(1/7)+arctan(1/13)+arctan(1/21)+arctan(1/31)+arctan(1/43)+arctan(1/57)
arctan(1)-arctan(1/9)=arctan(1/3)+arctan(1/7)+arctan(1/13)+arctan(1/21)+arctan(1/31)+arctan(1/43)+arctan(1/57)+arctan(1/73)
arctan(1)-arctan(1/10)=arctan(1/3)+arctan(1/7)+arctan(1/13)+arctan(1/21)+arctan(1/31)+arctan(1/43)+arctan(1/57)+arctan(1/73)+arctan(1/91)
è§£çããããšãããããŸãã
n=3ã ããªæ°ãããŸããããããã蚌æãé£ããã§ããããã
Σarctan(1/(k^2+k+1)) =Σarctan(1/k)-arctan(1/(k+1)) =arctan(1/1)-arctan(1/(n+1)) ã§ããïŒ
ããšäžæ©ãŸã§è¿«ã£ãŠããæãã§ãããçŽæçã«ã¯èªæãªæåŸã®éšåãã©ã蚌æãããã®ãâŠâŠã
ãã®è€çŽ æ°ã¯ãå®éšèéšãšãæŽæ°ã§ãã
ãã£ãŠãæºèæ°ã§ãããªãã°ãã®è€çŽ æ°ã®çµ¶å¯Ÿå€ã¯èªç¶æ°ã§ãã
ãããã£ãŠã
â2 * â5 * â10 * âŠâŠ * â(n^2+1)
ãèªç¶æ°ã«ãªãããšãããªãã¡
2 * 5 * 10 * âŠâŠ * (n^2+1)
ãå¹³æ¹æ°ã«ãªãããšããå¿
èŠæ¡ä»¶ãšãªããŸãã
ãšããã§ãk^2+1 ãããçŽ æ° p ã®åæ°ã«ãªããããªèªç¶æ° k ã¯ã1âŠkâŠp-1 ã®ç¯å²ã«é«ã
2 ã€ãããªãã2 ã€ããå Žåã¯ãã®åã p ã«ãªããŸãã
ããªãã¡ãç©
2 * 5 * 10 * âŠâŠ * (n^2+1)
ã®äžã§ k^2+1 ãçŽ æ°ã§ããå Žåããããå¹³æ¹æ°ã«ãªãã«ã¯å°ãªããšã (k^2-k+1)^2+1 ãŸã§ç©ãç¶ããŠããå¿
èŠããããŸãã
ããŠãnâ§4 ã®è§£ããããã©ãããèããŸãã
4^2+1 = 17 ã¯çŽ æ°ã§ãã
ãã£ãŠãn â§ 17-4 = 13 ã§ããå¿
èŠããããŸãã
10^2+1 = 101 ã¯çŽ æ°ã§ãã
ãã£ãŠãn â§ 101-10 = 91 ã§ããå¿
èŠããããŸãã
90^2+1 = 8101 ã¯çŽ æ°ã§ãã
ãã£ãŠãn â§ 8101-90 = 8011 ã§ããå¿
èŠããããŸãã
ãããæéã®é£éã§æ¢ãŸãããšã nâ§4 ã§ããè§£ãååšããå¿
èŠæ¡ä»¶ïŒå忡件ã§ã¯ãªãïŒã§ãã
ã€ãŸãã察å¶ãåãã°ããã®é£éãç¡éã«ç¶ãããšã瀺ãããã° nâ§4 ã«è§£ãååšããªã蚌æãšãªããŸãã
çŽæçã«ã¯èªæãªæããããŸããããã蚌æãããšãããããšãããŠã©ããããã®ãã
è§£çããããšãããããŸãã
ãªãã»ã©ïŒã€ãŸãn^2+1åçŽ æ°ãç¡éã«ååšããã°è¯ããšããããšã«ãªããŸãããããããããã¯ããã£ã³ãã¹ããŒäºæ³ãšããŠæªè§£æ±ºåé¡ã«ãªã£ãŠããããã§ãããããé£ããã
å°ãéããŸããã
n^2+1 åçŽ æ°ãç¡éã«ãã£ãŠãããã®é£éãç¡éã«ç¶ããšã¯éããŸããã
äŸãã°ïŒå®éã«ãããªããšã¯ãªããšæããŸããïŒã
ãã90^2+1 ã®æ¬¡ã«çŽ æ°ã«ãªãã®ã (10000ãè¶
ããæ°)^2+1 ã ã£ãå Žåãé£éãéåããŠãã9000ååŸã®ãšããã«è§£ãããå¯èœæ§ã¯æ®ããŸãã
ãŸããããã£ã³ãã¹ããŒã¯äžè¬çãªå€é
åŒã«ã€ããŠã®è©±ã§ããã
n^2+1ã«éã£ã話ã§ããã°ãã£ãšåçŽã«è§£æ±ºããå¯èœæ§ã¯ååã«ããã§ãããã
https://oeis.org/A101686
âãã¡ãã«ãããšããã®æ°åã§å¹³æ¹æ°ã¯1ãš100ã ããšèšŒæãããŠããããã§ãã
ãã£ãŠè§£ã¯n=3ã®ã¿ã§ããã
ããããšãããããŸãïŒãŸããã£ããèªãã§ã¿ãŸãïŒ
ããã§ã¯ããããåé¡ã§ãé¢çœããããããªãã§ãã
è€çŽ æ° z = (1^n + i)(2^n + i)(3^n + i)· · ·(k
^n + i) ãçŽèæ°ãšãªãæ£ã®æŽæ°ã®çµ (k, n) ãæ±ããŠãã ããã
(1^2+1)*(2^2+1)*(3^2+1)**(n^2+1)
ãå¹³æ¹æ°ãšãªãã®ã¯n=3ã®ã¿
ã«å¯Ÿã
(2^2-1)*(3^2-1)*(4^2-1)**(n^2-1)
ãå¹³æ¹æ°ãšãªãnã¯ïŒ
ãé¢çœãã£ãã§ãã
> (2^2-1)*(3^2-1)*(4^2-1)**(n^2-1) ãå¹³æ¹æ°ãšãªãnã¯ïŒ
n=((3+2â2)^(k+1)+(3-2â2)^(k+1)-2)/4ãïŒkã¯æ£æŽæ°ïŒ
ã§ããããã
äžè¬åŒã§äœãããã ïŒ
ãã¿ãªäžèŽããŠããŸãã
> è€çŽ æ° z = (1^n + i)(2^n + i)(3^n + i)· · ·(k
> ^n + i) ãçŽèæ°ãšãªãæ£ã®æŽæ°ã®çµ (k, n) ãæ±ããŠãã ããã
nâ§2 ã®å Žåã(2^n+i) 以éã®åè§ã®åèšã Ï/4 ã«å±ããŸããã
ãããã£ãŠç©ã®å®éšã¯åžžã«æ£ã§ãããçŽèæ°ã«ã¯ãªããŸããã
ãã£ãŠ n=1 ã®å Žåã®ã¿èããã°ãããå
ã®åé¡ã«åž°çããŸãã
2ç¹A(x1,y1),B(x2,y2)
ãéãçŽç·ã®æ¹çšåŒã
y-y1=(y2-y1)/(x2-x1)*(x-x1)
ã§äœ¿ãå
¬åŒããããããããè¡ååŒãå©çšããŠ
|x y 1|
|x1 y1 1|= 0
|x2 y2 1|
ãšãã圢åŒã«ããŠããã°
3ç¹A(x1,y1),B(x2,y2),C(x3,y3)ãéãåã®æ¹çšåŒã¯
|x^2 + y^2 x y 1|
|x1^2+y1^2 x1 y1 1|= 0
|x2^2+y2^2 x2 y2 1|
|x3^2+y3^2 x3 y3 1|
ãŸã空éã§ã
3ç¹A(x1,y1,z1),B(x2,y2,z2),C(x3,y3,z3)ãéãå¹³é¢ã®æ¹çšåŒã¯
|x y z 1|
|x1 y1 z1 1|= 0
|x2 y2 z2 1|
|x3 y3 z3 1|
åãã
4ç¹A(x1,y1,z1),B(x2,y2,z2),C(x3,y3,z3),D(x4,y4,z4)ãéãçé¢ã®æ¹çšåŒã¯
|x^2 + y^2 + z^2 x y z 1|
|x1^2+y1^2+z1^2 x1 y1 z1 1|
|x2^2+y2^2+z2^2 x2 y2 z2 1|= 0
|x3^2+y3^2+z3^2 x3 y3 z3 1|
|x4^2+y4^2+z4^2 x4 y4 z4 1|
ïŒå¿è«ååŸãæ£ã®å®æ°ã§ãšããããã«4ç¹ã¯éžã¶å¿
èŠã¯ãããŸãã
ãªã©ã§æ§æã§ããããã§ãã
ïŒå¹Ÿã€ãã§å®éšããã ãã§èšŒæããããã§ã¯ãããŸããã)
5ç¹A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),E(x5,y5)ãéãåºçŸ©ã®äºæ¬¡æ²ç·(â»)ã®æ¹çšåŒã¯
|x^2 x*y y^2 x y 1|
|x1^2 x1*y1 y1^2 x1 y1 1|
|x2^2 x2*y2 y2^2 x2 y2 1| = 0
|x3^2 x3*y3 y3^2 x3 y3 1|
|x4^2 x4*y4 y4^2 x4 y4 1|
|x5^2 x5*y5 y5^2 x5 y5 1|
â»åºçŸ©ã®äºæ¬¡æ²ç·âŠãééåäºæ¬¡æ²ç·(æ¥åã»æŸç©ç·ã»åæ²ç·)ããã2çŽç·ããã1ç¹ããã1çŽç·ã
******
åå¿ç³»ããªããªã4ç¹A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4)ãéãåºçŸ©ã®çŽè§åæ²ç·(â»â»)ã®æ¹çšåŒã¯
|x^2 x*y y^2 x y 1|
|x1^2 x1*y1 y1^2 x1 y1 1|
|x2^2 x2*y2 y2^2 x2 y2 1| = 0
|x3^2 x3*y3 y3^2 x3 y3 1|
|x4^2 x4*y4 y4^2 x4 y4 1|
|1 0 1 0 0 0|
ãããã¯ãåŒå€åœ¢ããã°ã
|x^2-y^2 x*y x y 1|
|x1^2-y1^2 x1*y1 x1 y1 1|
|x2^2-y2^2 x2*y2 x2 y2 1| = 0
|x3^2-y3^2 x3*y3 x3 y3 1|
|x4^2-y4^2 x4*y4 x4 y4 1|
â»â»åºçŸ©ã®çŽè§åæ²ç·âŠãç矩ã®çŽè§åæ²ç·(挞è¿ç·ãçŽäº€ããåæ²ç·)ãããçŽäº€ãã2çŽç·ããã1çŽç·ã
ã¡ãªã¿ã«ã4ç¹A,B,C,Dãåå¿ç³»ããªãå ŽåãäžåŒã®å·ŠèŸºã¯(x,y)ã«äŸããæççã«0ã«ãªããŸãã
ãããæå³ããã®ã¯ãä»»æã®ç¹ã(4ç¹ãéã)åºçŸ©ã®çŽè§åæ²ç·äžã«ãããšããããšã§ãã
å®éã®ãšããã¯ãåå¿ç³»ããªã4ç¹ãéãåºçŸ©ã®çŽè§åæ²ç·ãç¡æ°ã«ååšãããã®4ç¹ãé€ãä»»æã®ç¹ã¯ãããã®ãã¡ã®1æ¬ã®äžã«ãããŸãã
******
GAIãããèŒããåã®æ¹çšåŒããæ¬¡ã®ããã«æžãã°äºæ¬¡æ²ç·ã«æ¡ä»¶ä»å ããããã®ãšããã®ããããããããªããŸãã
ãã ãã®åŒã¯è¡ååŒã®å±éãšåºæ¬å€åœ¢ã«ããç°¡åã«GAIããã®åŒã«ãªãã®ã§ãã¡ãªããã¯ããŸããããŸãããâŠâŠã
3ç¹A(x1,y1),B(x2,y2),C(x3,y3)ãéãåºçŸ©ã®å(â»â»â»)ã®æ¹çšåŒã¯
|x^2 x*y y^2 x y 1|
|x1^2 x1*y1 y1^2 x1 y1 1|
|x2^2 x2*y2 y2^2 x2 y2 1| = 0
|x3^2 x3*y3 y3^2 x3 y3 1|
|1 0 -1 0 0 0|
|0 1 0 0 0 0|
â»â»â»åºçŸ©ã®åâŠãç矩ã®åããã1çŽç·ã
奿°ã¯ãå
šãŠãäžè¶³æ°ã®ããã§ãããéå°æ°ãããã®ã§ããããïŒ
å®å
šæ°ã¯ãèŠã€ãã£ãŠãªãããã§ããã
945
gp > sigma(945)-945
%485 = 975
ä»ã«ãå€ãã®éå°æ°ã¯å¥æ°ã®äžã«èŠã€ãããšæããŸãã
å§åçã«äžäœã®æ°ã¯5ã®ãã¿ãŒã³ãèµ·ãããããã®ã§ããïŒä»ã«ã
81081
153153
207207
189189
ãªã©ã®ããã§ããªããã®ãååšããŠããããã§ãã
GAIãããæ©éã®ãè¿äºããããšãããããŸãã
äºæ¡ã§ã¯ãèŠã€ãããŸããã§ããã
ç¡è¬ã«ãã奿°ã®å®å
šæ°ãããªãããšãèçæ³ã§ç€ºãããšããŠããŸããã
ïŒïŒ°ïŒŸÎ±âŠïŒ±ïŒŸÎ²ãå¥çŽ æ°ã®ç©ãšããŠã
ïŒïŒïŒâŠïŒïŒ°ïŒŸÎ±ïŒâŠïŒïŒïŒâŠïŒïŒ±ïŒŸÎ²ïŒïŒ2ããæãç«ã€ãšã
å³èŸºã¯ãçŽ å æ°ïŒããäžã€ã ããªã®ã§ã巊蟺ã®äžã€ãã奿°åãä»ã¯å¶æ°åã®çŽ å æ°ã«ãªãããšãããããŸãããã奿°åãšããŠã
αïŒïŒïœïŒïŒã®ãšãã¯ãïŒã®åæ°ã«ãªããççŸ
αïŒïŒïœïŒïŒã®ãšãã¯ãïŒïŒhïŒïŒãšãïŒhïŒïŒã«å ŽååããããŸãããããã以äžã¯é²ããŸããã§ããã