(1) æ¹çšåŒ x^3 - 3ïœ + 2-a = 0ãç°ãªã2ã€ã®å®æ°è§£ããã€ãšãã å®æ°aã®å€ãæ±ãã.
(2) æ¹çšåŒ x^4 + (a â 5)x^3 + bx^2 â 4ax + a = 0 ã é解å«ããŠ4 ã€ã®æ£ã®å®æ°è§£ããã€ãšãã å®æ°aãbã®å€ãæ±ãã.
(1)ã¯ããã£ãã®ã§ããã(2)ãããããŸãããããã
p ãçŽ æ°ãšãã. p ã®åæ°ã§ãã£ãŠ, å
šãŠã®äœã®æ°ã 1 ã§ãããããªãã®ãååšããªããã㪠p ãå
šãŠ
æ±ããŠãã ãã.
確å®ã«ããïœïŒïŒãïœïŒïŒãã¯ãããŸãããïŒïœïŒïŒã¯ãïŒÃïŒïŒïŒïŒïŒïŒã§é§ç®ã ããïœïŒïŒã¯
ïŒÃïŒÃïŒïŒÃïŒïŒÃïŒïŒïŒïŒïŒïŒïŒïŒïŒã§é§ç®ãïœïŒïŒïŒã¯ãïŒïŒÃïŒïŒïŒïŒïŒïŒïŒïŒã§é§ç®ãïœïŒïŒïŒã¯ã
ïŒïŒÃïŒÃïŒÃïŒïŒÃïŒïŒïŒïŒïŒïŒïŒïŒïŒã§é§ç®ãã»ã»ã»
æãããŠãïœïŒïŒãïœïŒïŒã以å€ã«ååšããã®ããªïŒ
æ¡ä»¶ãæºããã®ã¯p=2,5ã ãã§ããã
p=3ã®ãšã3Ã37=111
pã2,3,5以å€ã®ãšã
1/pãçŽåŸªç°å°æ°ã«ãªãããšããã埪ç°æ¡æ°ãnã埪ç°ç¯1åšæåã®å€ãNãšããã°1/p=N/(10^n-1)
Np=10^n-1
å³èŸºã¯9ã§å²ãåããŸãããpã¯3ã§å²ãåããŸããã®ã§
Nã9ã§å²ãåãã
(N/9)p=(10^n-1)/9
ãã®å³èŸºã¯111âŠ11ã§ããããpãN/9åããã°111âŠ11ã«ãªãããšãããããŸãã
äŸãã°
p=7ãªãã°1/p=0.142857142857âŠã§142857/9=15873ãªã®ã§7Ã15873=111111
p=23ãªãã°1/p=0.04347826086956521739130434782608695652173913âŠ
ã§434782608695652173913/9=48309178743961352657ãªã®ã§
23Ã48309178743961352657=1111111111111111111111
ã®ããã«ãªããŸãã
å¹³é¢äžã®ç¹ P,Q,R ãåäžçŽç·äžã«ãªããšã, ãããã 3 é ç¹ãšããäžè§åœ¢ã®é¢ç©ã â³PQR ã§
è¡šã. ãŸã, P,Q,R ãåäžçŽç·äžã«ãããšãã¯, â³PQR = 0 ãšãã.
A, B, C ãå¹³é¢äžã® 3 ç¹ãšã, â³ABC = 1 ãšãã. ãã®å¹³é¢äžã®ç¹ X ã, â³ABC ã®å€æ¥åã®
åšããã³å
éšãåã. ãã ã, â³ABC ã®åšäžã¯é€ã. ç¹ X ããçŽç· BC, CA, AB ã«ãããã
åç·ã®è¶³ã L, M, N ãšãããšã
0 ⊠â³LMN âŠ1/4
ãšãªãããšã瀺ã. ãŸã, çå·ãæãç«ã€ã®ã¯ã©ã®ãããªãšãã.
ïŒçå·ãæãç«ã€ã®ã¯ã©ã®ãããªãšãã.
ïŒïŒã®å Žåã¯ãã·ã ãœã³ã®å®çããç¹Xãååšäžã«ããå Žåã§ããã
ïŒïŒ/ïŒã®å Žåã¯ãäžç¹é£çµå®çããç¹LïŒMïŒNãå蟺ã®äžç¹ã®å Žåã§ãããç¹Xãå€å¿ã®å Žåã§ããã
ïŒ0 ⊠â³LMN âŠ1/4
ãšãªãããšã瀺ã.
ãã®åŸãã€ããæ€çŽ¢ããŠããŸããŸãããhttp://www.auemath.aichi-edu.ac.jp/teacher/iijima/gc/world/simson/12.htm
倧åŠå
¥è©Šå
±éè©Šéš
æ°åŠã®å¹³åã¯ãã ãããïŒïŒç¹å°ã ãã©ã
ãªãã§ãããªã«é£ããããå¿
èŠãããã®ã ããïŒ
èªåãæ°åŠã®è©ŠéšãåããŠååäœããåºæ¥ãªãã£ãã
èœã¡ãããªãšæã£ãŠããŸããã©ã
粟ç¥çã«èœã¡èŸŒãã»ã»ã»
ä»®ã«å¹³åç¹ã80ç¹ã®è©Šéšã ã£ãããå¹³å以äžã«æ°åŠãã§ãã人ã®éã§æ倧20ç¹ããå·®ãã€ããªãããã§ããããã
ç¹æ°ãå
šãŠåå·®å€åããŠååŠã決ããæ¹éã ã£ããå¹³åç¹ãå€å°äžäžããŠãåé¡ãªããšæããŸãããåçŽã«åŸç¹ãåèšãã以äžå¹³åç¹ããäžã«ååãªå¹
ããªããŠã¯ãããŸããã
ãŸãããããã倧åŠå
¥è©Šã®ã·ã¹ãã ããäœç¹ä»¥äžã§åæ Œãã§ã¯ãªããäœäœä»¥äžãåæ Œãã§ãã以äžãé£ããããšã ããçç±ã§èœã¡ããšããããšã¯ã»ãšãã©ãªãã¯ãã§ãã
ïŒïŒãã
æé£ãããããŸãã
èªåã®ãæšãèŠãŠæ£®ãèŠããã®æ§æ Œã ãšãåºæ¥ãªãã£ããšãã
èãã ããæµ®ãã³ãã¬ãã£ãã«ãªã£ãŠããŸããŸãã
å
ã
ãé ã®è¯ã人ã£ãŠãèãæ¹ãããžãã£ããªãã§ãããã
ãèªåã«åºæ¥ãªãåé¡ã¯ãã¿ããªãåºæ¥ãªãã®ã ããã
ãšã
ãå¥ã«ãå
šéšåºæ¥ãå¿
èŠãªããŠãªããèªåã«åºæ¥ãæã ããããã°è¯ãã
ãªã©ãæ°æã¡ã«äœè£ããããŸããã
倧æãå
±éäžæ¬¡è©Šéšããã£ãæãæš¡æ¬è©Šéšåé¡ãèŠããšããã«
ãã³ã·ã§ã³ããããŒããšäžããããããé§ç®ã ãŒãã§é ã®äžããã£ã±ãã«ãªãã
è«Šãã¢ãŒãã§ã ãã ããšè§£ããŠèšæ¶ããããŸãã
æåãããå¹³åç¹ãïŒïŒç¹äœãæ³å®ããŠäœã£ãŠããåé¡ã ãšåãã£ãŠããŠæã
ã®ãšãå
šãç¥ããªãã§æãã®ã§ã¯ç²Ÿç¥çãªãã®ãå
šç¶éã£ãŠããŸããã
æè¿ã倧åŠå
±éãã¹ãã話é¡ã«ãªã£ãŠ
éå»ã®æããã³ãã«æ代ãæãåºããŠããŸããŸããã
倱瀌èŽããŸããã
3ãã109ãŸã§ã«ã¯å
šéšã§28åã®å¥çŽ æ°ãååšããã
ãããã12åãåãåºãã6åãã€ã®2çµ
A=[p1,p2,p3,p4,p5,p6]
B=[q1,q2,q3,q4,q5,q6]
ã«åããããã®æ
p1^r+p2^r+p3^r+p4^r+p5^r+p6^r = q1^r+q2^r+q3^r+q4^r+q5^r+q6^r
ã
r=1,2,3,4,5
å
šãŠã§æç«ãããšããã
ãã®ãããª2çµA,Bã¯ã©ããªçµåããïŒ
ãããããèŠã€ããããæ¹ã¯ãã©ã®æ§ãªæ段ããšãåŸããããã®ãªã®ãç²çãæããŠæ¬²ããã
ïŒããæã§ãããªãã®ãæç«ã§ããçµåãããå¯èœã§ããããšãç¥ã£ãããç·åœããæ»æ
ã®æ¹æ³ã§ã¯ç§ã®æ®ãã®äººçã䜿ã£ãŠãæéãç¡ãïŒ)
[19, 29, 53, 73, 97, 107]
[17, 37, 43, 83, 89, 109]
ã£ãŠããšã§ããïŒ
ããæ段ãã§ãããã
æ°åŠæåç§è©±ãè€çŽ äžçã®æ¡åŒµãã§ç§ãååãŸã§æ瀺ãã
[a+c, b+c, 2a+6b+c, 4a+4b+c, 5a+10b+c, 6a+9b+c]
[c, a+4b+c, 2a+b+c, 4a+9b+c, 5a+6b+c, 6a+10b+c]
ã§ãa=12, b=2, c=17 ãåœãŠã¯ããã ãã§ãã
ããããå
šãŠçŽ æ°ã«ããããšããã°ãa 㯠6 ã®åæ°ãb ã¯å¶æ°ãc 㯠7 以äžã®çŽ æ°ããããããã
6a+10b+câŠ109 ã®ç¯å²ã§ã¯ (a,b) ã®åããããã¿ãŒã³ã 4 éããããªãã®ã§é ã«è©ŠããŸããã
ããã°ã©ã ã§æ¢çŽ¢ããŸããã
(17,37,43,83,89,109)
(19,29,53,73,97,107)
å®è¡æé0.5ç§
æ段ã®ç²ç
ã»5ä¹ã®ã¿ã§äžèŽãããã®ãæ¢ããäžèŽããã4ä¹ä»¥äžãèšç®
ã»äœ¿çšããæ倧ã®èŠçŽ ã決ããŠãããp1ãšãã以éq1,p2,q2,p3,q3,p4,q4,p5,q5,p6ã®é ã«
æªäœ¿çšçŽ æ°ãããŠã¯ããŠããïŒæåŸã®q6ã¯ããŠã¯ããåèšã®å·®ã®5ä¹æ ¹ãèšç®ïŒ
ãã ãp1ïŒp2ïŒp3ïŒp4ïŒp5ïŒp6, q1ïŒq2ïŒq3ïŒq4ïŒq5ïŒq6
äŸãã°æ倧ãp1=97ã®ãšã次ã®q1ã¯89,83,79,âŠã®é ã«ããŠã¯ãã
ããã§ãäŸãã°p1=97,q1=71ãšãªã£ããšããq2âŠ67ãã€97^5ïŒ71^5+67^5Ã5ãã
q1âŠ71ã§ã¯è§£ããªãããšãããããŸãã®ã§ãäžæ¢ããŸãã
# 97^5ïŒ73^5+71^5+67^5+61^5+59^5+53^5ã®ããã«ãã¡ããšå€å®ããã°73ã§ã解ããªã
# ããšãããããŸãããå€å®ãç²ãããŠ5ä¹ã®åæ°ãæžãããŠããŸãã
q1ïœp6ãã¹ãŠã«ãããŠãã®å€å®ãå
¥ããŸãã
# åé¡ããèãããšæ倧ã¯109ãšäºæ³ã§ããŸãããã念ã®ãã
# 107以äžãæ倧ãšããå Žåã«è§£ããªãããšã確èªããŸããã
# ã¡ãªã¿ã«æ倧ã109ã«åºå®ãããšEnterããŒãé¢ããŸã§ã«å®è¡ãçµãããŸãã
2016幎ã«è«æã«ãªã£ããã®ã
DD++ ããã«ãã£ãŠãšã£ãã«äžè¬åãããŠããããšã«ããã¯ãªã§ãã
http://eslpower.org/TarryPrb.htm#Ideal%20prime
ã§ã
[19, 29, 53, 73, 97, 107]
[17, 37, 43, 83, 89, 109]
ãæ¢ããŠãã ããã
ã10åã®çŽ æ°ã5åãã€ã«åããŠ1ïœ4ä¹ã§äžèŽããããã«ãããã«ãããš109ãŸã§ã§ã¯ç¡çã¿ããã§ããã
æ°åŠæåç§è©±ãè€çŽ äžçã®æ¡åŒµã
ãèŠãŠããããªããšãæãã£ãŠããããšãæãããæãåºããŸããã
ïŒå¹Žãçµã€ãšãã£ããå¿ããŠããŸããã®ã§ãã
æ¹ããŠããããªåé¡ã«æ·±ãé¢ãããã®ãªãã ãšèªèãæ°ãã«ããŸãã
DD++ãããèããããŠãã5ä¹åªãŸã§ã®ãã©ã¡ãŒã¿è§£ãªãäžçºãªãã§ããã
éå»ã®ããŒãã®ã¡ã¢ããµãè¿ã£ãŠããããDD++ããã®ä»ã«ãã©ã¡ãŒã¿è§£ãšããŠ
S(a,b,c)=[6*a-3*b-8*c, 5*a-9*c, 4*a-4*b-3*c, 2*a+2*b-5*c, a-2*b+c, b]
T(a,b,c)=[6*a-2*b-9*c, 5*a-4*b-5*c, 4*a+b-8*c, 2*a-3*b, a+2*b-3*c, c]
ã䜿ããš
S(52,17,19)
%136 = [109, 89, 83, 43, 37, 17]
T(52,17,19)
%139 = [107, 97, 73, 53, 29, 19]
ãŸã
S(74,43,29)
%137= [83, 109, 37, 89, 17, 43]
T(74,43,29)
%140 = [97, 53, 107, 19, 73, 29]
ãªã©äžçºã§æ±ãŸãããšãåºæ¥ãŸããã
ããããããã®ããã°ã©ã ã®çµã¿æ¹ãèªãã§ããããªå·¥å€«ãããªãäºã«ã¯æéãããããã£ãŠãæ±ããããšãäžå¯èœ
ã§ããããšãèªèãããŸããã
ããããªã¿ãŒã³ããŒãé¢ãç¬éã«çããæ±ãããããšã¯æãå
¥ããŸãã
æ§ã
ãªãªã³ã¯ããã©ã£ãŠæ
å ±ãéããŠã¿ããš
4ä¹åªãŸã§ã®çŽ æ°çµã¯
A=[401,521,641,881,911]
B=[431,461,701,821,941]
(2016幎çºè¡š)
ã®æ§ã§ãã
ããã«é©ãã¹ãã¯
A=[32058169621, 32367046651, 32732083141, 33883352071,
ã 34585345321, 35680454791, 36915962911, 38011072381,
38713065631, 39864334561, 40229371051, 40538248081]
B=[32142408811, 32198568271, 32900561521, 33658714231,
34978461541, 35315418301, 37280999401, 37617956161,
38937703471, 39695856181, 40397849431, 40454008891]
ã®ïŒçµã§ã®12åãã€ã®çŽ æ°ã§ã¯äœãš11ä¹åªãŸã§ã®çåŒãæç«ãããšããã
(2023,4,8çºè¡š)
ãšããããšã§ãã€ãæè¿ã®çºèŠã ããã§ãã
人éã®æ¢ãå·å¿µã¯ç©åããã®ã§ããã
4ä¹åªãŸã§ã®çŽ æ°çµã¯ããã£ãšå°ãããã®ããããŸãã
A=[23,31,103,109,167]
B=[13,59,67,131,163]
èªåã®ããã°ã©ã ã§èŠã€ããçµæã§ããããæå°è§£ã§ãã
GAIãããæžããã解ã¯åã1342ã«ãªããã¢ã5åãšãªã£ãŠããã察称ãªã解ã§ããã
ãšããã§ã5幎åã®ç§ã¯ãã©ã¡ãŒã¿è§£ãèŠã€ããæ¹æ³èªäœãäŒããã¿ããã§ããã
GAI ããã®æ¥œãã¿ã奪ããªãããã ã£ãã®ãããããšããããããªæ¢ãæ¹ã®ã¢ã€ãã¢ãåºãŠããã®ã§ä»ã®æ¹ã«å€ãªå
å
¥èŠ³ãäžããªãããã ã£ãã®ãâŠâŠã
ä»åã¯é瀺ããæ¹ã GAI ããã楜ãããããããªãããšããããšã§ã以äžã«æå³æ·±ãªããšãèšèŒããŠãããŸãã
f1(x) = x^17*(1-x^2)
f2(x) = 1-x^12
f3(x) = 1-x^14
f4(x) = 1-x^16
f5(x) = 1-x^18
f6(x) = 1-x^30
ãããã¯å
šãŠãfn(1) = 0 ãšãªãå€é
åŒã§ãã
ããŠãããã 6 ã€ã®åŒãæãåãããŠå±éãããšäœãèµ·ããã§ããããã
ç¡è¶èŠè¶åãããšãèµ·ããã§ã¯ãªãã§ããïŒ
ãããããªæ¯é¢æ°çåŒãæãã€ããŸããïŒ
DD++ããã®é ã®äžã¯ãªããéãã
ãããããããæ±ããŠãã
4ä¹åªãŸã§ã®çŽ æ°çµã¯ããã£ãšå°ãããã®ããããŸãã
A=[23,31,103,109,167]
B=[13,59,67,131,163]
ãšãããã®ã
DD++ããã®ææ³ã§æ§æããŠã¿ãããšææŠããŠã¿ãã
P=x^78 - x^74 + x^68 + x^66 - x^62 + x^58 + x^56 + x^54 - x^52 + x^48 + x^46 + x^44 + 2*x^36 + x^34 + x^26 + x^24 + x^22 + x^14 + x^12 + 1
ãªãã¡ãã£ãšäžçŽ°å·¥ãªåŒãå°å
¥ããããšã«ã¯ãªããŸããã
x^13*(x^22-1)*(x^18-1)*(x^14-1)*(x^12-1)*(x^10-1)*P
ã§è¡ãããã§ãã
<远䌞>
æåŸã®é¢åãªPãçç¥ããx^13ãåã«xã§
x*(x^22-1)*(x^18-1)*(x^14-1)*(x^12-1)*(x^10-1)
ãå±éãããš
A=[77, 53, 51, 49, 47, 45, 45, 43, 19, 15, 13, 11]
B=[67, 65, 63, 59, 35, 33, 33, 31, 29, 27, 25, 1]
ã®ã°ã«ãŒãåããå¯èœã§
ãã®12åãã€ã§ã®4ä¹åªãŸã§ã®çåŒãæç«ã§ããããšãèµ·ãããŸããã
ãããªãã§ããã
ãã®ææ³ãå±éåŸã®é
æ°ãå°ãªãããšããå¿
ãããå±éåã®ããŒãã®é
æ°ãå°ãªãããšãæå³ããªãã®ãé£ããç¹ã§ãã
çµå±ã®ãšãããåºãŠããé
ãã©ã®ãããå¹çããæ¶ããŠããããåè² ãªã®ã§âŠâŠã
ãçé§ãæãã¹ããã®èšäºã®çåŒãç§ã以åèããããšããã£ãŠããã£ãšã·ã³ãã«ãªèšŒæãèŠã€ããŠããŸãã®ã§æçš¿ããŸãã
é è§ A = 20° ã®äºç蟺äžè§åœ¢ ABC ãèããBC = 2 ãšããŸãã
蟺 AB äžã« â BCD = 20° ãšãªãããã«ç¹ D ããšãã蟺 AC äžã« CE = 1 ãšãªãããã«ç¹ E ããšããŸãã
â³CBD ãé è§ 20° ã®äºç蟺äžè§åœ¢ãªã®ã§ãCD = 2 ã§ãã
ãããšãâ³CDE ã¯é·ã 1 ãš 2 ã®èŸºã®éã 60° ãšããäžè§åœ¢ãªã®ã§ã
ããã¯çŽè§äžè§åœ¢ã§ãããACâ¥DE, DE = â3, â CDE = 30° ãåŸãããŸãã
ãããã£ãŠãâ ADE = 70° ãã AC = AE + CE = â3 tan70° + 1 ãšãªããŸãã
äžæ¹ãäºç蟺äžè§åœ¢ ABC ãã®ãã®ã«æ³šç®ããã°ãAC = 1/sin10° ã§ããããšã¯æããã§ãã
ãã£ãŠç€ºãããŸããã
é®®ããã§ããïŒDãEã®èšå®ãç¥ããã£ãŠããŸããè¯ããã®ãèŠãããŠããã ããŸããã
ã¡ãªã¿ã«ãé è§ã 20° ã§ã¯ãªã 2Ξ ã«ãšããšã
2sin(3Ξ)+2cos(3Ξ)tan(90°-2Ξ)=1/sinΞ
ãšããäžè¬åãããåŒã«ãªããŸãã
äœããèããããŠãã®å³ãäœã£ãèšæ¶ããããã§ãããäžäœäœã®ããã ã£ãã®ãæãåºããªãæ²ãã¿ã
ãæ°åŠç§ãã£ãŠã©ããããšããã§ããïŒ
æã£ãŠãããšããïŒäºæ³éãïŒã§ãããïŒ
æ¥çã¯
ãæ°åŠç§ããååŠç§ããçµå¶åŠç§ãã®ã©ããã«ããããã
ã©ãã«è»¢ãã§ãããçžããã£ããšããã§ããã
ç§ã¯ãããŸãã«ãé£ãéããæ°åŠã¯ãããããªãã
é«æ ¡ã§ãæ°â
ã»æ°â
¡ïŒ¢ã»æ°â
¢ãã ã£ããã
倧åŠã§ã¯ãæ°ïŒ¡ã»æ°ïŒ¢ã»æ°ïŒ£ããé£é¢äžåŠå
¥è©Šåé¡ã®ç®æ°
ããºã«ãã²ãŒã ã
ãã§ããäºåã®æ°åŠç§ããŸãã¯ãæ°æ¥œç§ããèªçããããããªïœã
åæã§ãã
æ°åŠïŒæµ·ãå±±ãå®å®ã®ã€ã¡ãŒãž
ãïœïŒã²ãŒã ãæèåã¯ãã©ãã§ãããã
环ä¹åã«ã€ããŠè²ã
ãªå Žé¢ã§ç®ã«ããŠããçµåããããŒãã«ã¡ã¢ããŠãããã®ã
ãŸãšããŠäžŠã¹ãŠã¿ãŸããã
ãã以å€ã«ããŸã ãããšæããŸãã®ã§ããæ°ã¥ãã®ãã®ããããŸããããç¥ããäžããã
ãŸããããã¯ã©ã®æ§ãªææ³ã§çºèŠã§ããã®ã ãããïŒ
#2ä¹ãŸã§äžèŽãã
A=[1, 5, 6]
B=[2, 3, 7]
ãŸãã¯
A=[1, 6, 8]
B=[2, 4, 9]
ãŸãã¯
A=[1, 4, 6, 7]
B=[2, 3, 5, 8]
ãŸãã¯
A=[1, 4, 7, 8]
B=[2, 3, 6, 9]
#3ä¹ãŸã§äžèŽãã
A=[1, 5, 8, 12]
B=[2, 3, 10, 11]
ãŸãã¯
A=[1, 7, 8, 14]
B=[2, 4, 11, 13]
ãŸãã¯
A=[1, 4, 8, 12, 17]
B=[2, 3, 7, 14, 16]
ãŸãã¯
A=[1, 6, 10, 14, 17]
B=[2, 4, 11, 15, 16]
ãŸãã¯
A=1, 10, 11, 12, 18]
B=[2, 6, 13, 15, 16]
ãŸãã¯
A=[1, 7, 8, 9, 18]
B=[3, 4, 6, 13, 17]
#4ä¹ãŸã§äžèŽãã
A=[1, 5, 9, 17, 18]
B=[2, 3, 11, 15, 19]
ãŸãã¯
A=[1, 7, 9, 18, 20]
B=[2, 4, 13, 15, 21]
ãŸãã¯
A=[1,18, 20, 47, 49]
B=[5, 7, 34, 36, 53]
ãŸãã¯
A=[1, 6, 7, 8, 14, 15]
B=[2, 3, 9, 10, 11, 16]
ãŸãã¯
A=[1, 5, 8, 12, 18, 19]
B=[2, 3, 9, 13, 16, 20]
#5ä¹ãŸã§äžèŽãã
A=[1, 6, 7, 17, 18, 23]
B=[2, 3, 11, 13, 21, 22]
#6ä¹ãŸã§äžèŽãã
A=[1, 19, 20, 51, 57, 80, 82]
B=[2, 12, 31, 40, 69, 71, 85]
ãŸãã¯
A=[1, 19, 28, 59, 65, 90, 102]
B=[2, 14, 39, 45, 76, 85, 103]
ãŸãã¯
A=[1, 16, 26, 62, 75, 105, 107]
B=[5, 7, 37, 50, 86, 96, 111]
#7ä¹ãŸã§äžèŽãã
A=[1, 8, 26, 44, 54, 72, 90, 97]
B=[2, 6, 33, 34, 64, 65, 92, 96]
#8ä¹ãŸã§äžèŽãã
A=[â98, â82, â58, â34, 13, 16, 69, 75, 99]
B=[-99, -75, -69, -16, -13, 34, 58, 82, 98]
ãŸãã¯
A=[-174, -148, -132, -50, -8, 63, 119, 161, 169]
B=[-169, -161, -119, -63, 8, 50, 132, 148, 174]
#9ä¹ãŸã§äžèŽãã
A=[99, 100, 188, 301, 313,-99, -100, -188, -301, -313]
B=[71, 131, 180, 307, 308,-71, -131, -180, -307,-308]
ãŸãã¯
A=[103, 189, 366, 452, 515, -103, -189, -366, -452, -515]
B=[ 18, 245, 331, 471, 508, -18, -245, -331, -471, -508]
#10ä¹ãŸã§äžèŽãã
A=[1, 5, 11, 21, 36, 42, 48, 52, 54, 58, 79, 83, 94, 95]
B=[2, 3, 14, 18, 39, 43, 45, 49, 55, 61, 76, 86, 92, 96]
ãã®
#10ä¹ãŸã§äžèŽãã
A=[1, 5, 11, 21, 36, 42, 48, 52, 54, 58, 79, 83, 94, 95]
B=[2, 3, 14, 18, 39, 43, 45, 49, 55, 61, 76, 86, 92, 96]
ã¯é¢çœã圢ãããŠããŸããã
A=[1, 5, 11, 21, 36, 42, 48, 52, 54, 58, 79, 83, 94, 95]
B=[97-1, 97-5, 97-11, 97-21, 97-36, 97-42, 97-48, 97-52, 97-54, 97-58, 97-79, 97-83, 97-94, 97-95]
ãšãªã£ãŠããŸãã®ã§ã
8åã®çŽ¯ä¹å
ïŒ1ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒãš
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒïœïŒä¹åãŸã§ãæç«ããŸãã
å人ããããã°ã©ã ããŠãã¿ã€ããŠãããŸããã
12åã®çŽ¯ä¹å
(0, 11, 24, 65, 90, 129, 173, 212, 237, 278, 291, 302) ãš
(3, 5, 30, 57, 104, 116, 186, 198, 245, 272, 297, 299)
ãªã0ïœ11ä¹åãŸã§æç«ãããšæããŸãã
0ä¹åãèããäžã§ã0ã¯åé¡ããããšæããŸãã
ãããããªããã°ã©ã èšèªã§0^0(ãŸãã¯0**0)ãå°ãããš
Mathematica ã§ã¯äžå®
Wolfram Alpha ã§ã¯æªå®çŸ©
Microfoft Excel ã§ã¯#NUM!
Python, Ruby, SageMath, PARI-GP, VBA, GAP, GRAPS çå€ãã®ãœããã§ã¯1
ãè¿ãããã§ããã
PARIã®ãœããã§èšç®ç¢ºèªããŠãããã®ã§ããããã€ã0ä¹ãå«ããŠèšè¿°ããŠããŸããã
ãªããŠã£ãããã£ã¢ã®ã0ã®ïŒä¹ãã§ã®èšäºã«
èšç®æ©ç§åŠè
ã®ããã«ãã»ã¯ããŒã¹ã¯ã0^0 㯠1 ã§ãªããã°ãªããªããšåŒ·ã䞻匵ããŠãã
ãšããæç« ãèŒããŠããã
ãããã¯ããŒã¹ã«ã¯ããããããšèšç®æ©ç§åŠã§äœ¿ãããåçš®å
¬åŒã綺éºã«ãªããšããçç±ããã£ããšæããŸãã
èããããŸãæ·±ãçç±ã§ã¯ãããŸããã
â»ããšãã° nC0 㯠1 ãšèãããã
ããªãã¡ãå
¬åŒãçŽ çŽã«æ¡åŒµãããš
nC0=n!/(0!*(n-0)!) =1
ãšãããã
æ€ãããããããã«ã¯
0!=0^0=1
ãèŠè«ãããâŠâŠâŠãªã©ã
æªç¢ºèªã§ãããExcelã®è¡šèšç®ãšExcelã®vbaãšã§0^0ã®æ±ããéãææããã£ããšèšæ¶ããŠããŸããä»ã¯ã©ããªã®ã§ããããã
ïŒã€ã®æ°ããããããããïŒä¹ããŠãåãåããšå¹³æ¹æ°ã«ãªããŸãã
ãŸããïŒä¹ããŠãåãåããšå¹³æ¹æ°ã«ãªããŸãã
äœããïŒïŒïŒïŒïŒïŒïŒïŒïŒã®å Žåãé€ãã
ïŒ2, 2, 2, 2ïŒ, ïŒ4, 4, 4, 4ïŒ, ïŒ8, 8, 8, 8ïŒ, ã»ã»ã»
ãšããèªæãªè§£ããããŸãããäºãã«çŽ ãªç°ãªã4æ°ã«éå®ãããš
ïŒ26, 22, 7, 4ïŒ, ïŒ33, 27, 17, 3ïŒ, ïŒ46, 44, 13, 2ïŒ, ïŒ58, 17, 8, 2ïŒ,
ïŒ74, 52, 22, 19ïŒ, ïŒ75, 45, 35, 27ïŒ, ïŒ87, 82, 36, 6ïŒ, ïŒ118, 92, 31, 26ïŒ, ã»ã»ã»
ãããããããããããšãããããŸãã
å ã¿ã«ãïŒã€ã®æ°ã¯ã
ïŒä¹ããŠåãåããšãå¹³æ¹æ°ã«ãªããŸãã
ïŒ4, 4, 4, 4ïŒã¯äœä¹åã§ãå¹³æ¹æ°ã«ãªããŸãã
ïŒïŒã®çŽæ°ã®ãçŽæ°ã®åæ°
ïŒïŒ2ïŒ2ïŒ4ããããããäœä¹ããŠããå¹³æ¹æ°ã«ãªããŸããã
ããèŠããšãïŒïŒAïŒAïŒA^2ïŒïŒïŒïŒAïŒïŒŸïŒ
å
ã
ãå¹³æ¹æ°ã§ãããç¡æ°ãæªãããã