ç§ããã³ã¡ããã«å±ãããã®çªçµãèŠãŠããŠ
瞊ç·ã5æ¬ã暪ç·ã8æ¬ãããªããã¿ã ããã®å
šãã¿ãŒã³æ°ã9841éããã
äžã®ç· 1 | 2 | 3 | 4 | 5
äžã®ç·(1ã®äžãa,,5ã®äžãe)
a; 43.92 | 24.61 |16.53 |10.25 | 4.68
b; 24.61 |25.46 |22.06 |17.61 |10.25
c; 16.53 |22.06 |22.81 |22.06 |16.53
d; 10.25 |17.61 |22.06 |25.46 |24.61
e; 4.68 |10.25 |16.53 |24.61 |43.92
ã®è¡šãæ åã«åºããïŒéæ¢ç»é¢ã«ããŠã¡ã¢ãããïŒ
確ãã«çäžã«åœãããããã°ããããã¹ã¿ãŒãããã°ç¢ºçãé«ãã
ãã®ç¢ºçãã©ããããåºããã®ãè²ã
ææŠããŠããã®ã ãããªããªããã®å€ãæãããããªãã
ãŸã9841ã¯ã©ãããã©ãããŠç®åºãããã®ãªã®ãïŒ
暪ç·ã®ç«äœäº€å·®ã¯ã¢ãªã§ãããïŒ
ããšãã°ã
â å·ŠããïŒæ¬ç®ã®çžŠç·ãšïŒæ¬ç®ã®çžŠç·ãšã®ããã ã«æšªç·ãïŒåã€ãªããããã ããïŒæ¬ç®ã®çžŠç·ãšãã®æšªç·ãšã¯ç«äœäº€å·®ã«ããã
â¡æšªç·ã©ããã§ç«äœäº€å·®ãããã
ç¹ã«ç«äœäº€å·®ã®ã³ã¡ã³ãã¯ç¡ãã£ãã®ã§ãéåžžã®ãã¿ã ã®æšªç·ã®åŒãæ¹ã§èãããã®ã ãšæããŸãã
https://manabitimes.jp/math/1157
ã«ãããš
瞊ç·5æ¬ã暪ç·8æ¬ã§ã®ãã¿ã ããã®è¡ãå
ã®ç¢ºçã¯
P5=
[3/4 1/4 0 0 0]
[1/4 1/2 1/4 0 0]
[ 0 1/4 1/2 1/4 0]
[ 0 0 1/4 1/2 1/4]
[ 0 0 0 1/4 3/4]
ãã
P5^8=
[12155/32768 19449/65536 12393/65536 1581/16384 765/16384]
[19449/65536 8627/32768 3345/16384 9129/65536 1581/16384]
[12393/65536 3345/16384 6995/32768 3345/16384 12393/65536]
[ 1581/16384 9129/65536 3345/16384 8627/32768 19449/65536]
[ 765/16384 1581/16384 12393/65536 19449/65536 12155/32768]
ãããå°æ°ãžçŽã
=
[ 0.37094116 0.29676819 0.18910217 0.096496582 0.046691895]
[ 0.29676819 0.26327515 0.20416260 0.13929749 0.096496582]
[ 0.18910217 0.20416260 0.21347046 0.20416260 0.18910217]
[0.096496582 0.13929749 0.20416260 0.26327515 0.29676819]
[0.046691895 0.096496582 0.18910217 0.29676819 0.37094116]
ãšãªããã§ã¯ãªãããšæããã§ãããã»ã»ã»ïŒ
ãã®ãµã€ãã§ã¯æšªç·ã®åŒãæ¹ãm^néããšèšã£ãŠããŸãã®ã§ã確çååžãéãã®ã§ã¯ãªãã§ããããã
äŸãã°
ââ¡â¡ââ¡â¡ââ¡â¡â
ââââ€â¡â¡ââ¡â¡â
ââ¡â¡ââ¡â¡ââââ€
ââ¡â¡ââââ€â¡â¡â
ââ¡â¡ââ¡â¡ââ¡â¡â
ãš
ââ¡â¡ââ¡â¡ââ¡â¡â
ââ¡â¡ââ¡â¡ââââ€
ââââ€â¡â¡ââ¡â¡â
ââ¡â¡ââââ€â¡â¡â
ââ¡â¡ââ¡â¡ââ¡â¡â
ãå¥ã®ãã®ãšèããŠããã®ã§ã¯ïŒ
# å
šéšãã¡ããšèªãã ããã§ã¯ãããŸããã®ã§ã
# ãããšãã¡ããããªããšãèšã£ãŠãããã容赊äžããã
ãã€ãã¿ãŒæ€çŽ¢ã§èª¿ã¹ãã
ãã³ã¡ããã®çªçµã§ãã¿ã ããã«ã€ããŠè§£èª¬ããå
çã岩æå€§åŠã®çå·¥åŠéšã®å±±äžå
ä¹
ææã§ãããšããããŸããã
OEIS ã®ãµã€ãã§ãã®å
çã®ååã§æ€çŽ¢ããããããããŸããã
https://oeis.org/A006245
A006245 ã®åèæç®ã«ä»¥äžããããããŠããŸããã
ã²ãšã€ã
Katsuhisa Yamanaka, Takashi Horiyama, Takeaki Uno and Kunihiro Wasa, Ladder-Lottery Realization, 30th Canadian Conference on Computational Geometry (CCCG 2018) Winnipeg.
ãµãã€ã
K. Yamanaka, S. Nakano, Y. Matsui, R. Uehara and K. Nakada, Efficient enumeration of all ladder lotteries and its application, Theoretical Computer Science, Vol. 411, pp. 1714-1722, 2010.
ãªã
ladder lotteries ãšã¯ã¢ããã¯ãžã®ããšã§ãã
9841éãã®èšç®ã¯
Σ[i=0ïœ8]Σ[j=0ïœ8-i](i+j)CjÃ9C(i+j+1)=9841
ãšããåŒã§åºããŸããã
iã¯2æ¬ç®ã®çžŠç·ãš3æ¬ç®ã®çžŠç·ã®éã«æãæšªç·ã®æ°ã
jã¯3æ¬ç®ã®çžŠç·ãš4æ¬ç®ã®çžŠç·ã®éã«æãæšªç·ã®æ°ã
(i+j)Cjã¯ã2æ¬ç®ã®çžŠç·ãš3æ¬ç®ã®çžŠç·ã®éã®æšªç·ããš
ã3æ¬ç®ã®çžŠç·ãš4æ¬ç®ã®çžŠç·ã®éã®æšªç·ãã®äœçœ®é¢ä¿ã®å Žåã®æ°ã
9C(i+j+1)ã¯æ®ãã®8-i-jæ¬ã®æšªç·ãã1æ¬ç®ã®çžŠç·ãš2æ¬ç®ã®çžŠç·ã®éããš
ã4æ¬ç®ã®çžŠç·ãš5æ¬ç®ã®çžŠç·ã®éãã«é
眮ããå Žåã®æ°ã§ãã
ãããããããåãã§ãã
ãã®æ°å€ãã¯ããåºãæ°åŒãèŠã€ãããªããŠããã¯ãªã§ãã
åæãããŠé ããŸããã
[i,j] [binomial(i+j,j)"*"binomial(9,8-(i+j))] [2ã€ã®ç©]
0,0 1*9 9
0,1 1*36 36
0,2 1*84 84
0,3 1*126 126
0,4 1*126 126
0,5 1*84 84
0,6 1*36 36
0,7 1*9 9
0,8 1*1 1
1,0 1*36 36
1,1 2*84 168
1,2 3*126 378
1,3 4*126 504
1,4 5*84 420
1,5 6*36 216
1,6 7*9 63
1,7 8*1 8
2,0 1*84 84
2,1 3*126 378
2,2 6*126 756
2,3 10*84 840
2,4 15*36 540
2,5 21*9 189
2,6 28*1 28
3,0 1*126 126
3,1 4*126 504
3,2 10*84 840
3,3 20*36 720
3,4 35*9 315
3,5 56*1 56
4,0 1*126 126
4,1 5*84 420
4,2 15*36 540
4,3 35*9 315
4,4 70*1 70
5,0 1*84 84
5,1 6*36 216
5,2 21*9 189
5,3 56*1 56
6,0 1*36 36
6,1 7*9 63
6,2 28*1 28
7,0 1*9 9
7,1 8*1 8
8,0 1*1 1
åèš 9841
ããã§
i,j=0,2 ã§ã1*84=84
ã®è§£éã
瞊ç·2,3çªç®ã«ã¯0æ¬,3,4çªç®ã«ã¯2æ¬åŒãããŠããã®ã§
1,2ãš4,5éã«ã¯åèš6æ¬ã®çžŠç·ãããã
ããã§
1,2çªéã;4,5çªé
6 ;0
5 ;1
4 ;2
3 ;3
2 ;4
1 ;5
0 ;6
æ¬ã®ç·ãããå Žåã«å¥ããã
ãšããã§2,3çªéã«ã¯i=0ããäžèšã®å·Šã®æ¬æ°ã¯äœã®å¶éããªãåŒãããšãåºæ¥ãã
äžæ¹j=2ããæ¢ã«3,4çªéã«ã¯2æ¬ã®æšªæ£ãåŒãããŠããã
ããã§äžèšã®å³ã®æ¬æ°ã®æšªæ£ãåŒãäœçœ®ã¯ããããéè€çµåããã
3H0=1
3H1=3
3H2=6
3H3=10
3H4=15
3H5=21
3H6=28
ããã®åèšã84ãšãªãã
ãªããšãããäžçºã§9C6=9C3=9*8*7/(3*2*1)=3*4*7=84ãªããã§ããã
åãã
i,j=0,3 ã§1*126=126ã¯
1,2çªéã;4,5çªé
5 ;0
4 ;1
3 ;2
2 ;3
1 ;4
0 ;5
äžèšã®å³ã®æ¬æ°ã®æšªæ£ãåŒãäœçœ®ã¯ããããéè€çµåããã
4H0=1
4H1=4
4H2=10
4H3=20
4H4=35
4H5=56
ãã®åèšã126
åããäžçºã§9C5=9C4=9*8*7*6/(4*3*2*1)=126
ãããªä»çµã¿ã§èšç®ãããŠãããã§ããïœ
5æ¬ã®çžŠç·ã«næ¬ã®æšªç·ãåŒãå Žåã(3^(n+1)-1)/2 éãã§ããïŒ
ïŒïŒæ¬ã®çžŠç·ã«næ¬ã®æšªç·ãåŒãå Žåã(3^(n+1)-1)/2 éãã§ããïŒ
ãããªæå¿«ãªåŒã«ãªããšã¯ïŒ
ã²ãã£ãšããŠæãå·Šã®çžŠç·ãšæãå³ã®çžŠç·ãšãåäžèŠããŠåèšïŒæ¬ã®çžŠç·ãšã¿ãªãããšã«ãã£ãŠå
šãŠã®çžŠç·ã«ã€ããŠå¯Ÿç§°ãšãããã¯ããã¯ã䜿ããšããããšãªã®ã§ããããïŒ
((4-1)^(n+1)-1)/2
-1ãã®ãã¡ã¯ã¿ãŒã®æå³ãåããŸãããâŠâŠ orz
(3^(n+1)-1)/2 éãã®å Žå
n=3ãªã40ãšãªãã
å¥ã§èª¿æ»ããã°ç¢ºãã«40éããšãªããŸããã
äŸã®
(i,j)=
(0,0)-->4
(0,1)-->6
(0,2)-->4
(0,3)-->1
(1,0)-->6
(1,1)-->8
(1,2)-->3
(2,0)-->4
(2,1)-->3
(3,0)-->1
ã§èš40éã
äœã瞊ç·mæ¬,暪ç·næ¬ã®ãã¿ã ããã§ã®äžè¬åŒãäœãããã§ããã
äžè¬åŒãäœãããšæã£ãŠãããã瞊ç·ã奿°ãšå¶æ°ã§ã¯æ§é ãå€ããæ§ã«
æããã®ã§çžŠç·ã4æ¬ã§æšªç·ãnæ¬ã§ããå Žåã®ãã¿ã ããã®çš®é¡ã調ã¹ãŠã¿ããã
n=1-->3
n=2-->8
n=3-->21
n=4-->55
n=5-->144
n=6-->377
ãããŸã§èª¿ã¹ãŠããã®æ°åã¯ãªããèŠãããšãããïŒ
ã§æ€çŽ¢ãããšãã£ããããæ°åfibo(n)ã§ã®
fibo(2*n+2)ã®éšåã察å¿ããŠããã
ãªã
ãã®ååèšæ°ã¯æ¬¡ã®çµåã颿°nCr(=binomial(n,r))ã䜿ããš
gp > T(n,k)=binomial(n+k,2*k-1);
gp > for(n=1,10,S=[];for(k=1,n+1,S=concat(S,[T(n,k)]));print(n"=>"S";"vecsum(S)))
1=>[2, 1];3
2=>[3, 4, 1];8
3=>[4, 10, 6, 1];21
4=>[5, 20, 21, 8, 1];55
5=>[6, 35, 56, 36, 10, 1];144
6=>[7, 56, 126, 120, 55, 12, 1];377
7=>[8, 84, 252, 330, 220, 78, 14, 1];987
8=>[9, 120, 462, 792, 715, 364, 105, 16, 1];2584
9=>[10, 165, 792, 1716, 2002, 1365, 560, 136, 18, 1];6765
10=>[11, 220, 1287, 3432, 5005, 4368, 2380, 816, 171, 20, 1];17711
ã§æ±ããŠããããšã«ãªã£ãŠããã
ããã瞊ç·ã6æ¬ã®å Žåã¯æªèª¿æ»ãªã®ã§ãŸã äœãšãèšããªãã§ãã
瞊ç·ã m æ¬ã§ããå Žåã
ã1 ãã m-1 ãŸã§ã®æ°ãéè€ãèš±ã㊠n å䞊ã¹ãããã ãçŽåã®æ°ãã 2 ã€ä»¥äžå°ãããªã£ãŠã¯ãããªãã
ã®äžŠã¹æ¹ã®ç·æ°ãšäžèŽããŸãã
ãªã®ã§ã
瞊ç·3æ¬
[1,1] * [[1,1],[1,1]]^(n-1) * t[1,1] = 2^n
瞊ç·4æ¬
[1,1,1] * [[1,1,0],[1,1,1],[1,1,1]]^(n-1) * t[1,1,1] = 1/â5 * ( ((3+â5)/2)^(n+1) - ((3-â5)/2)^(n+1) )
瞊ç·5æ¬
[1,1,1,1] * [[1,1,0,0],[1,1,1,0],[1,1,1,1],[1,1,1,1]]^(n-1) * t [1,1,1,1] = (3^(n+1)-1)/2
ãšåºããŸãã
瞊ç·6æ¬ã¯åºæå€ã綺éºã«åºãªãã®ã§é£ãããã
ïŒæ¬ã®çžŠç·ãããå Žåã«ã€ããŠæšªç·ãnæ¬ã®å Žåã®æ§ææ°ã«ã€ããŠèª¿ã¹ãŠã¿ãŸããã
n=1-->5
n=2-->11
n=3-->40
n=4-->145
n=5-->525
n=6-->1900
n=7-->6875
n=8-->24875
ãããŸã§ã§OEISã®ãäžè©±ã«ãªããšn=1ãé€ããŠA136775ãããããããããã«ã¯
Number of multiplex juggling sequences of length n, base state <1,1> and hand capacity 2.
ãšããåãããããã説æãä»ããããŠããã
ãã ããã®æ°å€ã¯ãããããããæ§æãããŠããããã°ã©ã ãåèã«ãããŠããã
F(n)=for(i=0,n,for(j=0,n-i,for(k=0,n-i-j,\
print(i","j","k"=>"binomial(i+j,j)"*"binomial(j+k,k)"*"binomial(n-1,n-(i+j+k))"=>"\
binomial(i+j,j)*binomial(j+k,k)*binomial(n-1,n-(i+j+k))))))
ã§
2,3çªç®ã®éã«ããæšªç·ã®æ°ãi
3,4çªç®ã®éã«ããæšªç·ã®æ°ãj
4,5çªç®ã®éã«ããæšªç·ã®æ°ãkæ¬
ãšããŠ
ãã®æšªç·ã®åãæ¹ãbinomial(i+j,j)*binomial(j+k,k)ã§èµ·ãããŠ
æ®ãã®æ¬æ°n-(i+j+k)ã1,2çªç®ãš5,6çªç®ã®éã«åããå Žåã®å¯èœæ§ãbinomial(n-1,n-(i+j+k))ãš
ããŠããããšã§äžæãåãããšã芳å¯ããŠã¿ãã
ããããã¹ãŠæãåãããããšã§ã(i,j,k)ã«å¯Ÿãããã¿ãŒã³æ°ãæ±ãŸã£ãŠããã®ã§ããã¹ãŠã®ç·åãã
n>=2ã§ã®æ°å€ãæ±ããŠè¡ããŸããã
n=6ã§1900ãšãªãçµéãäžã®è¡šã§ãã(F(6)ããã®è¡šç€º)
(i,j,k)
0,0,0= 1*1*0= 0
0,0,1= 1*1*1= 1
0,0,2= 1*1*5= 5
0,0,3= 1*1*10= 10
0,0,4= 1*1*10= 10
0,0,5= 1*1*5= 5
0,0,6= 1*1*1= 1
0,1,0= 1*1*1= 1
0,1,1= 1*2*5= 10
0,1,2= 1*3*10= 30
0,1,3= 1*4*10= 40
0,1,4= 1*5*5= 25
0,1,5= 1*6*1= 6
0,2,0= 1*1*5= 5
0,2,1= 1*3*10= 30
0,2,2= 1*6*10= 60
0,2,3= 1*10*5= 50
0,2,4= 1*15*1= 15
0,3,0= 1*1*10= 10
0,3,1= 1*4*10= 40
0,3,2= 1*10*5= 50
0,3,3= 1*20*1= 20
0,4,0= 1*1*10= 10
0,4,1= 1*5*5= 25
0,4,2= 1*15*1= 15
0,5,0= 1*1*5= 5
0,5,1= 1*6*1= 6
0,6,0= 1*1*1= 1
1,0,0= 1*1*1= 1
1,0,1= 1*1*5= 5
1,0,2= 1*1*10= 10
1,0,3= 1*1*10= 10
1,0,4= 1*1*5= 5
1,0,5= 1*1*1= 1
1,1,0= 2*1*5= 10
1,1,1= 2*2*10= 40
1,1,2= 2*3*10= 60
1,1,3= 2*4*5= 40
1,1,4= 2*5*1= 10
1,2,0= 3*1*10= 30
1,2,1= 3*3*10= 90
1,2,2= 3*6*5= 90
1,2,3= 3*10*1= 30
1,3,0= 4*1*10= 40
1,3,1= 4*4*5= 80
1,3,2= 4*10*1= 40
1,4,0= 5*1*5= 25
1,4,1= 5*5*1= 25
1,5,0= 6*1*1= 6
2,0,0= 1*1*5= 5
2,0,1= 1*1*10= 10
2,0,2= 1*1*10= 10
2,0,3= 1*1*5= 5
2,0,4= 1*1*1= 1
2,1,0= 3*1*10= 30
2,1,1= 3*2*10= 60
2,1,2= 3*3*5= 45
2,1,3= 3*4*1= 12
2,2,0= 6*1*10= 60
2,2,1= 6*3*5= 90
2,2,2= 6*6*1= 36
2,3,0= 10*1*5= 50
2,3,1= 10*4*1= 40
2,4,0= 15*1*1= 15
3,0,0= 1*1*10= 10
3,0,1= 1*1*10= 10
3,0,2= 1*1*5= 5
3,0,3= 1*1*1= 1
3,1,0= 4*1*10= 40
3,1,1= 4*2*5= 40
3,1,2= 4*3*1= 12
3,2,0= 10*1*5= 50
3,2,1= 10*3*1= 30
3,3,0= 20*1*1= 20
4,0,0= 1*1*10= 10
4,0,1= 1*1*5= 5
4,0,2= 1*1*1= 1
4,1,0= 5*1*5= 25
4,1,1= 5*2*1= 10
4,2,0= 15*1*1= 15
5,0,0= 1*1*5= 5
5,0,1= 1*1*1= 1
5,1,0= 6*1*1= 6
6,0,0= 1*1*1= 1
ãåèš 1900
ã¯ãŠããã¯äžã€ã®åŒã§äœããã®ãïŒ
> æ®ãã®æ¬æ°n-(i+j+k)ã1,2çªç®ãš5,6çªç®ã®éã«åããå Žåã®å¯èœæ§ãbinomial(n-1,n-(i+j+k))
ããã¯
binomial(n+1-j,n-(i+j+k))
ã«ããªããšãããªããšæããŸã(äžå€®ã«äœ¿ã£ãjæ¬ã¯æ®ãæ¬æ°ã«åœ±é¿ããŸããé
眮ã«åœ±é¿ããŸãã)ã
ãã£ãŠn=1,2,3,âŠã«å¯Ÿããæ§ææ°ã¯
5,19,66,221,728,2380,7753,25213,81927,âŠ
ã®ããã«ãªããŸãã
ïŒn=2ãæäœæ¥ã§æ°ããŠã¿ããšã19ã§æ£ããããšãããããšæããŸããïŒ
ãããŠãã®æ°åã¯A005021ã«ãããæŒžååŒã
a[1]=5, a[2]=19, a[3]=66, a[n+3]=5a[n+2]-6a[n+1]+a[n]
ãšæžãããŠããŸãã®ã§ããããè§£ããŠäžè¬é
ã¯
a[n]=up^n+vq^n+wr^n
ãã ã
u={-(4â91)sin(arcsin(127â91/2366)/3)+7}/21
v={-(4â91)cos(arccos(-127â91/2366)/3)+7}/21
w={(4â91)cos(arccos(127â91/2366)/3)+7}/21
p={-(2â7)cos(arccos(-â7/14)/3)+5}/3
q={-(2â7)sin(arcsin(â7/14)/3)+5}/3
r={(2â7)cos(arccos(â7/14)/3)+5}/3
ãšããããŸãã
# u,v,wã¯49x^3-49x^2-105x+1=0ã®3è§£ãp,q,rã¯x^3-5x^2+6x-1=0ã®3è§£ã§ãã
ããããããããã®ææãåããŠæ¹ããŠ(æ°åã®ãã¿ãŒã³ã§ãããšåæã«æã£ãŠããŸãæªãç)
ïŒæ¬ã®çžŠç·ãããå Žåã«ã€ããŠæšªç·ãnæ¬ã®å Žåã®æ§ææ°ã«ã€ããŠèª¿ã¹ãŠã¿ãŸããã
n=1-->5
n=2-->19
n=3-->66
n=4-->221
n=5-->728
n=6-->2380
n=7-->7753
n=8-->25213
ãããŸã§ã§OEISã®ãäžè©±ã«ãªããšA005021ããããããã
ãããããããšn=3ã§éã£ãã®ã§
(i,j,k)
0,0,0= 1*1*4= 4
0,0,1= 1*1*6= 6
0,0,2= 1*1*4= 4
0,0,3= 1*1*1= 1
0,1,0= 1*1*3= 3
0,1,1= 1*2*3= 6
0,1,2= 1*3*1= 3
0,2,0= 1*1*2= 2
0,2,1= 1*3*1= 3
0,3,0= 1*1*1= 1
1,0,0= 1*1*6= 6
1,0,1= 1*1*4= 4
1,0,2= 1*1*1= 1
1,1,0= 2*1*3= 6
1,1,1= 2*2*1= 4
1,2,0= 3*1*1= 3
2,0,0= 1*1*4= 4
2,0,1= 1*1*1= 1
2,1,0= 3*1*1= 3
3,0,0= 1*1*1= 1
åèš; 66
ã§ãã§ãã¯ããŠã¿ãã®ã§ãããã©ãããŠã67ã«ã¯ãªããªãã®ã§ããã»ã»ã»?
ïŒããïŒä¿®æ£ããããã§ãããå®å¿ããŸãããïŒ
A005021ã®ã³ã¡ã³ãã¯Random walksãšãªã£ãŠããã®ã§ãšãŠãé©ããŠããŸãã