åããŸããŠãinazumaãšç³ããŸã
è¶£å³ã§çŽ å æ°åè§£æ³ãèãæ¥œããã§ããæ°åŠã®çŽ äººã§ãã
ãã®äžã§ãããæ°Pãäžèšâ ã®æ§è³ªãæã€ãšã
Pã®ã¿ããaãšbãæ±ããæ¹æ³ãæãä»ããŸããã
â PïŒa^2+b^2
â»ãã ãaã¯3以äžã®å¥æ°ãbã¯(2Ã(aã®æ¡æ°)ïŒ1)æ¡ä»¥äžã®å¶æ°
ãäŸãã°aã10æ¡ãªãbã¯21æ¡ä»¥äž
èªåã§èšç®ããŠããåã«ã¯ããŸãç®åºåºæ¥ãŠããã®ã§ãã
ïŒäººã§èããŠããçºããªã«ãåéãããããããããäžå®ããããŸãã
ã€ããŸããŠã¯ãã©ãªãã詊ãã«åé¡ãåºããŠé ããŸããã§ãããã
ããŸãããã°ç¿æ¥ãŸã§ã«ã¯è§£çåºæ¥ããšæããŸã
(èªå®
ã®å®ãããŒãPCã§èšç®ããŠããçºãè§£çåºæ¥ãªãã£ãããŽã¡ã³ããµã€)
Pã¯ãšãããã1000æ¡ä»¥äžã§ãã©ããå®ãããé¡ãããããŸãã
äŸ
äžèšã®Pãäºå¹³æ¹åã§è¡šãïŒâ ã®æ§è³ªãæã€ãã®ãšããïŒ
P=
79300000037195311469172088857218716366006504413694
67498094008133486079015170644844470927388048966664
71364084114224459809838073427764684299991893020117
87456020152022982982334498187590674933322035197451
04138548852323106359705380406209799321075786700748
97251075824794270095130531665785303520499625246843
70719102407952977609918264565309676875315113912408
70267500957407099187560193071952151611248261841935
69337549765652585924269731770243974032307256739067
91188751144938670681822892207721337339864143140179
90528196878053630706148037821924972860860994861603
49098958042925035090429124946155124465500090226636
49467540005250471043364183315967627035324264859599
67141415803012592347134057555165265478404500762265
44199380968805924457560332031071504504197590397342
71810321003237239447831652868964102212153370316814
06796846409047670450150851793080134210157112772689
58519839847317362637053099816619843793064691538365
63139531004179897193286960125022553379570957235139
114494973770246343671593770077506746282454373742765
è§£ç
P=a^2ïŒb^2ãšããŠ
a=971850087035976191464617231403297972574042219987
37604269099307011774498957130732413787709812587433
59436158490894589690601193310837963651081208892631
60509147749602073918962661325153912810181096212403
04342638679979807519201662423980308668745308379247
49
b=281602556872616679494401001682286851751858783815
69338551112252743400193260172387120135518294422427
78838310590521946063454706138104382199264928161756
74092487130258413580634521135685378302594171044661
48079337014481304132621133013307367835289583866914
10360524815089534203712403396836912245502098199475
20868911981852164328164894139907121661474629654027
63051608555640043109432063403957953650490954108565
20533856524433967448235687012774426104809360200738
20583425159772741360209507101982427257315634250395
458
Dengan kesaktian Indukmuãã
ãè¿ä¿¡ããããšãããããŸãã
>P ã 4 ã§å²ã£ããšãã®äœãã 3 ã®ãšãã¯å€§äžå€«ã§ããïŒ
PãïŒã§å²ã£ãäœããïŒã§ãªããšãä»ã®ãšããèšç®åºæ¥ãŸããã
ãã£ãã¿ãŸããã
åéãããŠèªæãªè³ªåãããŠããŸã£ãŠããããåé€ãããšãããªã®ã§ããã
ãè©«ã³ããããŸãã
Dengan kesaktian Indukmuãã
äºè§£ããããŸãã
ãŸããã質åçããã°ãåŸ
ã¡ããŠãããŸãã^v^
ã詊ãã§ããã
æ¡ä»¶ãâ»ãã ãaã¯3以äžã®å¥æ°ãbã¯(2Ã(aã®æ¡æ°)ïŒ1)æ¡ä»¥äžã®å¶æ°ãã§ã®ãæ¡æ°ã®çžãã«ã€ããŠã¯ç¢ºãããŠãããŸããããã©ãã奿°^2 +å¶æ°^2 ã§ããããšãå人çã«ã¯ç¢ºãããæ°æã¡ã«ãªã£ãŠãã以äžã®Pããé¡ãããŸããäžèšã®Pã«ã€ããŠã¯çŽ å æ°åè§£ã®çµæãç¥ã£ãŠãããŸãã
P = 10^110 +1
æ¡æ°ã®ãªãŒããŒãçããŠãã¿ãŸããã
Dengan kesaktian Indukmuãã
>P = 10^110 +1
P=(10^55)^2+1^2
= 89 Ã 101 Ã 661 Ã 3541 Ã 18041 Ã 27961 Ã 148721 Ã 1052788969 Ã 1056689261 Ã 1121407321 Ã 1395900370 916327245555441901 Ã 36380545029953205956377406702261
ã§ãããïŒçŽ å æ°åè§£ã¯ä»åã§è¡ããŸããwïŒ
aãnæ¡ãbã2n+1æ¡ä»¥äžãªãã°
10^(n-1)âŠaïŒ10^n, bâ§10^(2n)
ãšãªã
(b+1)^2-(b^2+a^2)=2b+1-a^2ïŒ2ã»10^(2n)+1-10^(2n)=10^(2n)+1ïŒ0
ãã
(b+1)^2ïŒa^2+b^2ïŒb^2
ãªã®ã§
b=[âP]ãïŒ[ã]ã¯ã¬ãŠã¹èšå·ïŒ
ã§bãæ±ãŸããŸããã
äžèšã¯a,bã®å¶å¥ãšé¢ä¿ãããŸããã®ã§ã
ãbã(2Ã(aã®æ¡æ°)+1)æ¡ä»¥äžããšããæ¡ä»¶ããããã°ã
a,bã®å¶å¥ã«ãããããæ±ãããããšæããŸãã
ãããããã
ãè¿ä¿¡ããããšãããããŸã
ããããã§ãïŒ
ïŒæµç³ããããããã®ç¥wïŒ
ç§ã®å Žåaããæ±ããæ¹æ³ã詊ããŠããã®ã§
ãææã«ã¯ç®ããé±ã§ã
ããããšãããããŸãã
[2114] ã§ç§ãäŸæ ããã®ã¯ä»¥äžã®å®çãªã®ã§ããã
åææ°ãé«ã
äºåã®å¹³æ¹æ°ã®åã§è¡šãããããã®å¿
èŠå忡件ã¯ã4ãæ³ãšããŠ3ã«ååãªçŽ å æ°ãå
šãŠå¹³æ¹ïŒåªææ°ãå¶æ°ïŒã«ãªã£ãŠããããšã§ããã
çŽ å æ°åè§£ããŠäžã確èªã§ãã倧ããªæ°ãæ¢ããã®ã§ãã
ãããããèªæãªãã®ã«ãªã£ãŠããŸã£ãŠããŸãããç³ãèš³ãªãããšã§ãã
Dengan kesaktian Indukmuãã
äºè§£ããããŸããã
ããããããã®æ¹æ³ãå¿çšããŠ
æ¡æ°å·®ãæžããäºã¯å¯èœã§ãããã
äŸãã°
ãbã(2Ã(aã®æ¡æ°))æ¡ä»¥äžã
ãbã(2Ã(aã®æ¡æ°)-1)æ¡ä»¥äžã
ça,bã®æ¡æ°å·®ãæžããäºã¯å¯èœã§ããããã
ãªãå鲿°ã§æ¡æ°ãïŒ
ãšåèŠã§æããŸããã
ç§ãæåŸ
ããŠããŸãã
äžã«æžããæ¹æ³ã¯èŠã¯(b+1)^2-(b^2+a^2)=2b+1-a^2ïŒ0ã§ããã°è¯ãã®ã§
a^2ïŒ2b+1ããªãã¡a^2âŠ2bã§ããã°b=[âP]ãæãç«ã¡ãŸãã
bã2næ¡ã§ãè¯ãããã«ããããã«ã¯ãäŸãã°b+1ãb+5ã«å€ãããš
(b+5)^2-(b^2+a^2)=10b+25-a^2ïŒ0ããªãã¡a^2ïŒ10b+25
âbïŒâPïŒb+5ããªãã¡[âP]-5ïŒbâŠ[âP]
ã€ãŸãbã¯[âP],[âP]-1,[âP]-2,[âP]-3,[âP]-4ã®ã©ãããªã®ã§
ãã®5åã§èšç®ããŠã¿ãã°bã2næ¡ã®å Žåã察å¿ã§ããããã«ãªããŸãã
åæ§ã«[âP]ïœ[âP]-49ã®50åã§èšç®ããã°bã2n-1æ¡ã§ãOKã
[âP]ïœ[âP]-499ã®500åã§èšç®ããã°bã2n-2æ¡ã§ãOKã®ããã«ãªããŸããã
巚倧æ°ã§bã(宿°)æ¡çž®ãããšããã§ããŸãæå³ã¯ãªããããªæ°ãããŸãã
ãããããã
詳ãã解説æé£ãããããŸã
ãã¯ãé£ããäºãå確èªããããŸãã
èªåãªãã«ãŸãèããŠã¿ãããšæããŸã
ããããšãããããŸããã