次å
衚é¢ç©ãããããããäœç©ïŒ
ïŒæ¬¡å
ïŒÏïœ ããããããÏïœ^2
ïŒæ¬¡å
ãïŒÏïœ^ïŒããããã4Ïïœ^ïŒ/3
ïŒæ¬¡å
2Ï^ïŒïœ^ïŒãããÏ^ïŒïœ^ïŒ/2
ïŒæ¬¡å
8Ï^ïŒïœ^ïŒ/3ããããïŒÏ^ïŒïœ^ïŒ/15
ïŒæ¬¡å
Ï^ïŒïœ^5ãããã Ï^ïŒïœ^6/6
ïŒæ¬¡å
ïŒïŒÏ^ïŒïœ^ïŒ/15 ïŒïŒÏ^ïŒïœ^ïŒ/105
éç©åã§ãæ±ããŠã¿ãŸããã
A005021ã瞊ç·ã6æ¬ã®æã暪ç·ãåèšnæ¬åŒããæã®ãã¿ã ããã®ãã¿ãŒã³æ°ãšããŠ
ãã®ãµã€ãã«ç¹ãã£ãŠãããã§ã¯Random Walksã®è§£èª¬ãšãªã£ãŠããããšã«èå³ãæã¡
ã©ããªå
容ãªã®ãèªãã§ã¿ããš
P_6ãšåŒã°ããéïŒçŽç·äž6ç¹A,B,C,D,E,Fã䞊ãã§ãããïŒ
ãAããåºçºã2*n+5(æ©)ã«ãŠFã®å°ç¹ã«å°çããé
æ©ã®ã³ãŒã¹ãäœéãã§ãããïŒ
ãšããããšãããã
n=1ãªãå
šéšã§7æ©ãªã®ã§ã次ã®5ã³ãŒã¹ããããšããã
1;[A, B, A, B, C, D, E, F]
2;[A, B, C, B, C, D, E, F]
3;[A, B, C, D, C, D, E, F]
4;[A, B, C, D, E, D, E, F]
5;[A, B, C, D, E, F, E, F]
ããã§n=2ãªãå
šéšã§9æ©ãªã®ã§ãå
šã³ãŒã¹ãæ§æããŠã¿ãã
1;[A, B, A, B, A, B, C, D, E, F]
2;[A, B, A, B, C, B, C, D, E, F]
3;[A, B, A, B, C, D, C, D, E, F]
4;[A, B, A, B, C, D, E, D, E, F]
5;[A, B, A, B, C, D, E, F, E, F]
6;[A, B, C, B, A, B, C, D, E, F]
7;[A, B, C, B, C, B, C, D, E, F]
8;[A, B, C, B, C, D, C, D, E, F]
9;[A, B, C, B, C, D, E, D, E, F]
10;[A, B, C, B, C, D, E, F, E, F]
11;[A, B, C, D, C, B, C, D, E, F]
12;[A, B, C, D, C, D, C, D, E, F]
13;[A, B, C, D, C, D, E, D, E, F]
14;[A, B, C, D, C, D, E, F, E, F]
15;[A, B, C, D, E, D, C, D, E, F]
16;[A, B, C, D, E, D, E, D, E, F]
17;[A, B, C, D, E, D, E, F, E, F]
18;[A, B, C, D, E, F, E, D, E, F]
19;[A, B, C, D, E, F, E, F, E, F]
ãã®æ§ã«ã€ãã¯n=3ã§ã®11æ©ã§ã®ã³ãŒã¹ã¥ãããããã°å
šéšã§66ã³ãŒã¹
åããn=4ã§ã®13æ©ã§ã®221ã³ãŒã¹
n=5ã§ã®15æ©ã§ã®728ã³ãŒã¹

ãšããã«èŒããããŠããæ°ã®ã³ãŒã¹ã次ã
ãšå€æãããšããããšã«ãªã£ãŠããæ§ã ã
ãŸããããã¿ã ãããé
ã£æãã®æ©ãæ¹ãšç¹ãã£ãŠãããšã¯å€¢ã«ãæããªãã£ãã(䌌ãŠãªãããªããïŒ)
ç§ããã³ã¡ããã«å±ãããã®çªçµãèŠãŠããŠ
瞊ç·ã5æ¬ã暪ç·ã8æ¬ãããªããã¿ã ããã®å
šãã¿ãŒã³æ°ã9841éããã
äžã®ç· 1 | 2 | 3 | 4 | 5
äžã®ç·(1ã®äžãa,,5ã®äžãe)
a; 43.92 | 24.61 |16.53 |10.25 | 4.68
b; 24.61 |25.46 |22.06 |17.61 |10.25
c; 16.53 |22.06 |22.81 |22.06 |16.53
d; 10.25 |17.61 |22.06 |25.46 |24.61
e; 4.68 |10.25 |16.53 |24.61 |43.92
ã®è¡šãæ åã«åºããïŒéæ¢ç»é¢ã«ããŠã¡ã¢ãããïŒ
確ãã«çäžã«åœãããããã°ããããã¹ã¿ãŒãããã°ç¢ºçãé«ãã
ãã®ç¢ºçãã©ããããåºããã®ãè²ã
ææŠããŠããã®ã ãããªããªããã®å€ãæãããããªãã
ãŸã9841ã¯ã©ãããã©ãããŠç®åºãããã®ãªã®ãïŒ
暪ç·ã®ç«äœäº€å·®ã¯ã¢ãªã§ãããïŒ
ããšãã°ã
â å·ŠããïŒæ¬ç®ã®çžŠç·ãšïŒæ¬ç®ã®çžŠç·ãšã®ããã ã«æšªç·ãïŒåã€ãªããããã ããïŒæ¬ç®ã®çžŠç·ãšãã®æšªç·ãšã¯ç«äœäº€å·®ã«ããã
â¡æšªç·ã©ããã§ç«äœäº€å·®ãããã
ç¹ã«ç«äœäº€å·®ã®ã³ã¡ã³ãã¯ç¡ãã£ãã®ã§ãéåžžã®ãã¿ã ã®æšªç·ã®åŒãæ¹ã§èãããã®ã ãšæããŸãã
https://manabitimes.jp/math/1157
ã«ãããš
瞊ç·5æ¬ã暪ç·8æ¬ã§ã®ãã¿ã ããã®è¡ãå
ã®ç¢ºçã¯
P5=
[3/4 1/4 0 0 0]
[1/4 1/2 1/4 0 0]
[ 0 1/4 1/2 1/4 0]
[ 0 0 1/4 1/2 1/4]
[ 0 0 0 1/4 3/4]
ãã
P5^8=
[12155/32768 19449/65536 12393/65536 1581/16384 765/16384]
[19449/65536 8627/32768 3345/16384 9129/65536 1581/16384]
[12393/65536 3345/16384 6995/32768 3345/16384 12393/65536]
[ 1581/16384 9129/65536 3345/16384 8627/32768 19449/65536]
[ 765/16384 1581/16384 12393/65536 19449/65536 12155/32768]
ãããå°æ°ãžçŽã
=
[ 0.37094116 0.29676819 0.18910217 0.096496582 0.046691895]
[ 0.29676819 0.26327515 0.20416260 0.13929749 0.096496582]
[ 0.18910217 0.20416260 0.21347046 0.20416260 0.18910217]
[0.096496582 0.13929749 0.20416260 0.26327515 0.29676819]
[0.046691895 0.096496582 0.18910217 0.29676819 0.37094116]
ãšãªããã§ã¯ãªãããšæããã§ãããã»ã»ã»ïŒ
ãã®ãµã€ãã§ã¯æšªç·ã®åŒãæ¹ãm^néããšèšã£ãŠããŸãã®ã§ã確çååžãéãã®ã§ã¯ãªãã§ããããã
äŸãã°
ââ¡â¡ââ¡â¡ââ¡â¡â
ââââ€â¡â¡ââ¡â¡â
ââ¡â¡ââ¡â¡ââââ€
ââ¡â¡ââââ€â¡â¡â
ââ¡â¡ââ¡â¡ââ¡â¡â
ãš
ââ¡â¡ââ¡â¡ââ¡â¡â
ââ¡â¡ââ¡â¡ââââ€
ââââ€â¡â¡ââ¡â¡â
ââ¡â¡ââââ€â¡â¡â
ââ¡â¡ââ¡â¡ââ¡â¡â
ãå¥ã®ãã®ãšèããŠããã®ã§ã¯ïŒ
# å
šéšãã¡ããšèªãã ããã§ã¯ãããŸããã®ã§ã
# ãããšãã¡ããããªããšãèšã£ãŠãããã容赊äžããã
ãã€ãã¿ãŒæ€çŽ¢ã§èª¿ã¹ãã
ãã³ã¡ããã®çªçµã§ãã¿ã ããã«ã€ããŠè§£èª¬ããå
çã岩æå€§åŠã®çå·¥åŠéšã®å±±äžå
ä¹
ææã§ãããšããããŸããã
OEIS ã®ãµã€ãã§ãã®å
çã®ååã§æ€çŽ¢ããããããããŸããã
https://oeis.org/A006245
A006245 ã®åèæç®ã«ä»¥äžããããããŠããŸããã
ã²ãšã€ã
Katsuhisa Yamanaka, Takashi Horiyama, Takeaki Uno and Kunihiro Wasa, Ladder-Lottery Realization, 30th Canadian Conference on Computational Geometry (CCCG 2018) Winnipeg.
ãµãã€ã
K. Yamanaka, S. Nakano, Y. Matsui, R. Uehara and K. Nakada, Efficient enumeration of all ladder lotteries and its application, Theoretical Computer Science, Vol. 411, pp. 1714-1722, 2010.
ãªã
ladder lotteries ãšã¯ã¢ããã¯ãžã®ããšã§ãã
9841éãã®èšç®ã¯
Σ[i=0ïœ8]Σ[j=0ïœ8-i](i+j)CjÃ9C(i+j+1)=9841
ãšããåŒã§åºããŸããã
iã¯2æ¬ç®ã®çžŠç·ãš3æ¬ç®ã®çžŠç·ã®éã«æãæšªç·ã®æ°ã
jã¯3æ¬ç®ã®çžŠç·ãš4æ¬ç®ã®çžŠç·ã®éã«æãæšªç·ã®æ°ã
(i+j)Cjã¯ã2æ¬ç®ã®çžŠç·ãš3æ¬ç®ã®çžŠç·ã®éã®æšªç·ããš
ã3æ¬ç®ã®çžŠç·ãš4æ¬ç®ã®çžŠç·ã®éã®æšªç·ãã®äœçœ®é¢ä¿ã®å Žåã®æ°ã
9C(i+j+1)ã¯æ®ãã®8-i-jæ¬ã®æšªç·ãã1æ¬ç®ã®çžŠç·ãš2æ¬ç®ã®çžŠç·ã®éããš
ã4æ¬ç®ã®çžŠç·ãš5æ¬ç®ã®çžŠç·ã®éãã«é
眮ããå Žåã®æ°ã§ãã
ãããããããåãã§ãã
ãã®æ°å€ãã¯ããåºãæ°åŒãèŠã€ãããªããŠããã¯ãªã§ãã
åæãããŠé ããŸããã
[i,j] [binomial(i+j,j)"*"binomial(9,8-(i+j))] [2ã€ã®ç©]
0,0 1*9 9
0,1 1*36 36
0,2 1*84 84
0,3 1*126 126
0,4 1*126 126
0,5 1*84 84
0,6 1*36 36
0,7 1*9 9
0,8 1*1 1
1,0 1*36 36
1,1 2*84 168
1,2 3*126 378
1,3 4*126 504
1,4 5*84 420
1,5 6*36 216
1,6 7*9 63
1,7 8*1 8
2,0 1*84 84
2,1 3*126 378
2,2 6*126 756
2,3 10*84 840
2,4 15*36 540
2,5 21*9 189
2,6 28*1 28
3,0 1*126 126
3,1 4*126 504
3,2 10*84 840
3,3 20*36 720
3,4 35*9 315
3,5 56*1 56
4,0 1*126 126
4,1 5*84 420
4,2 15*36 540
4,3 35*9 315
4,4 70*1 70
5,0 1*84 84
5,1 6*36 216
5,2 21*9 189
5,3 56*1 56
6,0 1*36 36
6,1 7*9 63
6,2 28*1 28
7,0 1*9 9
7,1 8*1 8
8,0 1*1 1
åèš 9841
ããã§
i,j=0,2 ã§ã1*84=84
ã®è§£éã
瞊ç·2,3çªç®ã«ã¯0æ¬,3,4çªç®ã«ã¯2æ¬åŒãããŠããã®ã§
1,2ãš4,5éã«ã¯åèš6æ¬ã®çžŠç·ãããã
ããã§
1,2çªéã;4,5çªé
6 ;0
5 ;1
4 ;2
3 ;3
2 ;4
1 ;5
0 ;6
æ¬ã®ç·ãããå Žåã«å¥ããã
ãšããã§2,3çªéã«ã¯i=0ããäžèšã®å·Šã®æ¬æ°ã¯äœã®å¶éããªãåŒãããšãåºæ¥ãã
äžæ¹j=2ããæ¢ã«3,4çªéã«ã¯2æ¬ã®æšªæ£ãåŒãããŠããã
ããã§äžèšã®å³ã®æ¬æ°ã®æšªæ£ãåŒãäœçœ®ã¯ããããéè€çµåããã
3H0=1
3H1=3
3H2=6
3H3=10
3H4=15
3H5=21
3H6=28
ããã®åèšã84ãšãªãã
ãªããšãããäžçºã§9C6=9C3=9*8*7/(3*2*1)=3*4*7=84ãªããã§ããã
åãã
i,j=0,3 ã§1*126=126ã¯
1,2çªéã;4,5çªé
5 ;0
4 ;1
3 ;2
2 ;3
1 ;4
0 ;5
äžèšã®å³ã®æ¬æ°ã®æšªæ£ãåŒãäœçœ®ã¯ããããéè€çµåããã
4H0=1
4H1=4
4H2=10
4H3=20
4H4=35
4H5=56
ãã®åèšã126
åããäžçºã§9C5=9C4=9*8*7*6/(4*3*2*1)=126
ãããªä»çµã¿ã§èšç®ãããŠãããã§ããïœ
5æ¬ã®çžŠç·ã«næ¬ã®æšªç·ãåŒãå Žåã(3^(n+1)-1)/2 éãã§ããïŒ
ïŒïŒæ¬ã®çžŠç·ã«næ¬ã®æšªç·ãåŒãå Žåã(3^(n+1)-1)/2 éãã§ããïŒ
ãããªæå¿«ãªåŒã«ãªããšã¯ïŒ
ã²ãã£ãšããŠæãå·Šã®çžŠç·ãšæãå³ã®çžŠç·ãšãåäžèŠããŠåèšïŒæ¬ã®çžŠç·ãšã¿ãªãããšã«ãã£ãŠå
šãŠã®çžŠç·ã«ã€ããŠå¯Ÿç§°ãšãããã¯ããã¯ã䜿ããšããããšãªã®ã§ããããïŒ
((4-1)^(n+1)-1)/2
-1ãã®ãã¡ã¯ã¿ãŒã®æå³ãåããŸãããâŠâŠ orz
(3^(n+1)-1)/2 éãã®å Žå
n=3ãªã40ãšãªãã
å¥ã§èª¿æ»ããã°ç¢ºãã«40éããšãªããŸããã
äŸã®
(i,j)=
(0,0)-->4
(0,1)-->6
(0,2)-->4
(0,3)-->1
(1,0)-->6
(1,1)-->8
(1,2)-->3
(2,0)-->4
(2,1)-->3
(3,0)-->1
ã§èš40éã
äœã瞊ç·mæ¬,暪ç·næ¬ã®ãã¿ã ããã§ã®äžè¬åŒãäœãããã§ããã
äžè¬åŒãäœãããšæã£ãŠãããã瞊ç·ã奿°ãšå¶æ°ã§ã¯æ§é ãå€ããæ§ã«
æããã®ã§çžŠç·ã4æ¬ã§æšªç·ãnæ¬ã§ããå Žåã®ãã¿ã ããã®çš®é¡ã調ã¹ãŠã¿ããã
n=1-->3
n=2-->8
n=3-->21
n=4-->55
n=5-->144
n=6-->377
ãããŸã§èª¿ã¹ãŠããã®æ°åã¯ãªããèŠãããšãããïŒ
ã§æ€çŽ¢ãããšãã£ããããæ°åfibo(n)ã§ã®
fibo(2*n+2)ã®éšåã察å¿ããŠããã
ãªã
ãã®ååèšæ°ã¯æ¬¡ã®çµåã颿°nCr(=binomial(n,r))ã䜿ããš
gp > T(n,k)=binomial(n+k,2*k-1);
gp > for(n=1,10,S=[];for(k=1,n+1,S=concat(S,[T(n,k)]));print(n"=>"S";"vecsum(S)))
1=>[2, 1];3
2=>[3, 4, 1];8
3=>[4, 10, 6, 1];21
4=>[5, 20, 21, 8, 1];55
5=>[6, 35, 56, 36, 10, 1];144
6=>[7, 56, 126, 120, 55, 12, 1];377
7=>[8, 84, 252, 330, 220, 78, 14, 1];987
8=>[9, 120, 462, 792, 715, 364, 105, 16, 1];2584
9=>[10, 165, 792, 1716, 2002, 1365, 560, 136, 18, 1];6765
10=>[11, 220, 1287, 3432, 5005, 4368, 2380, 816, 171, 20, 1];17711
ã§æ±ããŠããããšã«ãªã£ãŠããã
ããã瞊ç·ã6æ¬ã®å Žåã¯æªèª¿æ»ãªã®ã§ãŸã äœãšãèšããªãã§ãã
瞊ç·ã m æ¬ã§ããå Žåã
ã1 ãã m-1 ãŸã§ã®æ°ãéè€ãèš±ã㊠n å䞊ã¹ãããã ãçŽåã®æ°ãã 2 ã€ä»¥äžå°ãããªã£ãŠã¯ãããªãã
ã®äžŠã¹æ¹ã®ç·æ°ãšäžèŽããŸãã
ãªã®ã§ã
瞊ç·3æ¬
[1,1] * [[1,1],[1,1]]^(n-1) * t[1,1] = 2^n
瞊ç·4æ¬
[1,1,1] * [[1,1,0],[1,1,1],[1,1,1]]^(n-1) * t[1,1,1] = 1/â5 * ( ((3+â5)/2)^(n+1) - ((3-â5)/2)^(n+1) )
瞊ç·5æ¬
[1,1,1,1] * [[1,1,0,0],[1,1,1,0],[1,1,1,1],[1,1,1,1]]^(n-1) * t [1,1,1,1] = (3^(n+1)-1)/2
ãšåºããŸãã
瞊ç·6æ¬ã¯åºæå€ã綺éºã«åºãªãã®ã§é£ãããã
ïŒæ¬ã®çžŠç·ãããå Žåã«ã€ããŠæšªç·ãnæ¬ã®å Žåã®æ§ææ°ã«ã€ããŠèª¿ã¹ãŠã¿ãŸããã
n=1-->5
n=2-->11
n=3-->40
n=4-->145
n=5-->525
n=6-->1900
n=7-->6875
n=8-->24875
ãããŸã§ã§OEISã®ãäžè©±ã«ãªããšn=1ãé€ããŠA136775ãããããããããã«ã¯
Number of multiplex juggling sequences of length n, base state <1,1> and hand capacity 2.
ãšããåãããããã説æãä»ããããŠããã
ãã ããã®æ°å€ã¯ãããããããæ§æãããŠããããã°ã©ã ãåèã«ãããŠããã
F(n)=for(i=0,n,for(j=0,n-i,for(k=0,n-i-j,\
print(i","j","k"=>"binomial(i+j,j)"*"binomial(j+k,k)"*"binomial(n-1,n-(i+j+k))"=>"\
binomial(i+j,j)*binomial(j+k,k)*binomial(n-1,n-(i+j+k))))))
ã§
2,3çªç®ã®éã«ããæšªç·ã®æ°ãi
3,4çªç®ã®éã«ããæšªç·ã®æ°ãj
4,5çªç®ã®éã«ããæšªç·ã®æ°ãkæ¬
ãšããŠ
ãã®æšªç·ã®åãæ¹ãbinomial(i+j,j)*binomial(j+k,k)ã§èµ·ãããŠ
æ®ãã®æ¬æ°n-(i+j+k)ã1,2çªç®ãš5,6çªç®ã®éã«åããå Žåã®å¯èœæ§ãbinomial(n-1,n-(i+j+k))ãš
ããŠããããšã§äžæãåãããšã芳å¯ããŠã¿ãã
ããããã¹ãŠæãåãããããšã§ã(i,j,k)ã«å¯Ÿãããã¿ãŒã³æ°ãæ±ãŸã£ãŠããã®ã§ããã¹ãŠã®ç·åãã
n>=2ã§ã®æ°å€ãæ±ããŠè¡ããŸããã
n=6ã§1900ãšãªãçµéãäžã®è¡šã§ãã(F(6)ããã®è¡šç€º)
(i,j,k)
0,0,0= 1*1*0= 0
0,0,1= 1*1*1= 1
0,0,2= 1*1*5= 5
0,0,3= 1*1*10= 10
0,0,4= 1*1*10= 10
0,0,5= 1*1*5= 5
0,0,6= 1*1*1= 1
0,1,0= 1*1*1= 1
0,1,1= 1*2*5= 10
0,1,2= 1*3*10= 30
0,1,3= 1*4*10= 40
0,1,4= 1*5*5= 25
0,1,5= 1*6*1= 6
0,2,0= 1*1*5= 5
0,2,1= 1*3*10= 30
0,2,2= 1*6*10= 60
0,2,3= 1*10*5= 50
0,2,4= 1*15*1= 15
0,3,0= 1*1*10= 10
0,3,1= 1*4*10= 40
0,3,2= 1*10*5= 50
0,3,3= 1*20*1= 20
0,4,0= 1*1*10= 10
0,4,1= 1*5*5= 25
0,4,2= 1*15*1= 15
0,5,0= 1*1*5= 5
0,5,1= 1*6*1= 6
0,6,0= 1*1*1= 1
1,0,0= 1*1*1= 1
1,0,1= 1*1*5= 5
1,0,2= 1*1*10= 10
1,0,3= 1*1*10= 10
1,0,4= 1*1*5= 5
1,0,5= 1*1*1= 1
1,1,0= 2*1*5= 10
1,1,1= 2*2*10= 40
1,1,2= 2*3*10= 60
1,1,3= 2*4*5= 40
1,1,4= 2*5*1= 10
1,2,0= 3*1*10= 30
1,2,1= 3*3*10= 90
1,2,2= 3*6*5= 90
1,2,3= 3*10*1= 30
1,3,0= 4*1*10= 40
1,3,1= 4*4*5= 80
1,3,2= 4*10*1= 40
1,4,0= 5*1*5= 25
1,4,1= 5*5*1= 25
1,5,0= 6*1*1= 6
2,0,0= 1*1*5= 5
2,0,1= 1*1*10= 10
2,0,2= 1*1*10= 10
2,0,3= 1*1*5= 5
2,0,4= 1*1*1= 1
2,1,0= 3*1*10= 30
2,1,1= 3*2*10= 60
2,1,2= 3*3*5= 45
2,1,3= 3*4*1= 12
2,2,0= 6*1*10= 60
2,2,1= 6*3*5= 90
2,2,2= 6*6*1= 36
2,3,0= 10*1*5= 50
2,3,1= 10*4*1= 40
2,4,0= 15*1*1= 15
3,0,0= 1*1*10= 10
3,0,1= 1*1*10= 10
3,0,2= 1*1*5= 5
3,0,3= 1*1*1= 1
3,1,0= 4*1*10= 40
3,1,1= 4*2*5= 40
3,1,2= 4*3*1= 12
3,2,0= 10*1*5= 50
3,2,1= 10*3*1= 30
3,3,0= 20*1*1= 20
4,0,0= 1*1*10= 10
4,0,1= 1*1*5= 5
4,0,2= 1*1*1= 1
4,1,0= 5*1*5= 25
4,1,1= 5*2*1= 10
4,2,0= 15*1*1= 15
5,0,0= 1*1*5= 5
5,0,1= 1*1*1= 1
5,1,0= 6*1*1= 6
6,0,0= 1*1*1= 1
ãåèš 1900
ã¯ãŠããã¯äžã€ã®åŒã§äœããã®ãïŒ
> æ®ãã®æ¬æ°n-(i+j+k)ã1,2çªç®ãš5,6çªç®ã®éã«åããå Žåã®å¯èœæ§ãbinomial(n-1,n-(i+j+k))
ããã¯
binomial(n+1-j,n-(i+j+k))
ã«ããªããšãããªããšæããŸã(äžå€®ã«äœ¿ã£ãjæ¬ã¯æ®ãæ¬æ°ã«åœ±é¿ããŸããé
眮ã«åœ±é¿ããŸãã)ã
ãã£ãŠn=1,2,3,âŠã«å¯Ÿããæ§ææ°ã¯
5,19,66,221,728,2380,7753,25213,81927,âŠ
ã®ããã«ãªããŸãã
ïŒn=2ãæäœæ¥ã§æ°ããŠã¿ããšã19ã§æ£ããããšãããããšæããŸããïŒ
ãããŠãã®æ°åã¯A005021ã«ãããæŒžååŒã
a[1]=5, a[2]=19, a[3]=66, a[n+3]=5a[n+2]-6a[n+1]+a[n]
ãšæžãããŠããŸãã®ã§ããããè§£ããŠäžè¬é
ã¯
a[n]=up^n+vq^n+wr^n
ãã ã
u={-(4â91)sin(arcsin(127â91/2366)/3)+7}/21
v={-(4â91)cos(arccos(-127â91/2366)/3)+7}/21
w={(4â91)cos(arccos(127â91/2366)/3)+7}/21
p={-(2â7)cos(arccos(-â7/14)/3)+5}/3
q={-(2â7)sin(arcsin(â7/14)/3)+5}/3
r={(2â7)cos(arccos(â7/14)/3)+5}/3
ãšããããŸãã
# u,v,wã¯49x^3-49x^2-105x+1=0ã®3è§£ãp,q,rã¯x^3-5x^2+6x-1=0ã®3è§£ã§ãã
ããããããããã®ææãåããŠæ¹ããŠ(æ°åã®ãã¿ãŒã³ã§ãããšåæã«æã£ãŠããŸãæªãç)
ïŒæ¬ã®çžŠç·ãããå Žåã«ã€ããŠæšªç·ãnæ¬ã®å Žåã®æ§ææ°ã«ã€ããŠèª¿ã¹ãŠã¿ãŸããã
n=1-->5
n=2-->19
n=3-->66
n=4-->221
n=5-->728
n=6-->2380
n=7-->7753
n=8-->25213
ãããŸã§ã§OEISã®ãäžè©±ã«ãªããšA005021ããããããã
ãããããããšn=3ã§éã£ãã®ã§
(i,j,k)
0,0,0= 1*1*4= 4
0,0,1= 1*1*6= 6
0,0,2= 1*1*4= 4
0,0,3= 1*1*1= 1
0,1,0= 1*1*3= 3
0,1,1= 1*2*3= 6
0,1,2= 1*3*1= 3
0,2,0= 1*1*2= 2
0,2,1= 1*3*1= 3
0,3,0= 1*1*1= 1
1,0,0= 1*1*6= 6
1,0,1= 1*1*4= 4
1,0,2= 1*1*1= 1
1,1,0= 2*1*3= 6
1,1,1= 2*2*1= 4
1,2,0= 3*1*1= 3
2,0,0= 1*1*4= 4
2,0,1= 1*1*1= 1
2,1,0= 3*1*1= 3
3,0,0= 1*1*1= 1
åèš; 66
ã§ãã§ãã¯ããŠã¿ãã®ã§ãããã©ãããŠã67ã«ã¯ãªããªãã®ã§ããã»ã»ã»?
ïŒããïŒä¿®æ£ããããã§ãããå®å¿ããŸãããïŒ
A005021ã®ã³ã¡ã³ãã¯Random walksãšãªã£ãŠããã®ã§ãšãŠãé©ããŠããŸãã
9人ã®ããéçããŒã ã®ã¬ã®ã¥ã©ãŒéžæã
åæãªã°ã«ãŒãã«åããããšããããšã(äžäººã§ã1ã°ã«ãŒããšã¿ãã)
åãæ¹ã«ãã£ãŠã¯è²ã
ãªåãæ¹ã®æ°ãå€åããŠããã
ãã ãåæ°ã§ã®ã°ã«ãŒãåãã¯èŠåããã€ããªããã®ãšããã
ãšããã§9人ã®å Žåãã®åãæ¹ã®æ°ã6éãã®å Žåã«
ã¯å
šéšãåãæ¹ã®æ¹æ³ã«ãããåãæ°ãšãªããšããã
ããŠãã®6éãã®åãæ¹ã¯åŠäœãªãåãæ¹ã§ããã®ãïŒ
æç« èªè§£åã«ä¹ããç§ã«ã¯ã¡ãã£ãšçè§£ã§ããªãã®ã§ããã
ãšãããããå
šç¶ãã¯äœãã®å€æãã¹ã§ããïŒ
æç« åãç¡ãæç« ã§æ··ä¹±ãããŸããŠç³ãèš³ãããŸããã
9ã幟ã€ããã€ã®ã°ã«ãŒãã«åããæ¹æ³ã¯
[9],[8,1],[7,2],[6,3],[5,4],[7,1,1],,[1,1,1,1,1,1,1,1,1]
ãªã©å
šéšã§30éãã®ãã¿ãŒã³ãååšãããã®ã°ã«ãŒãã«9äººãæ¯ãåããã«ã¯
ããããã«å¯Ÿããæ¯ãåãæ¹ãèšç®ãããã(åèšæ°ã¯ãã«æ°Bell(9)=21147éããšãªãã)
ãã®æãåãæ°ãèµ·ãã6çµã®ã°ã«ãŒãã®åãæ¹ãååšããŠããã
(10人ã§ãåæ°ãšãªãçµåããå¿è«çºçã¯ããã®ã§ãããå€ããŠ4çµã§ããã®ã§ã
æ¯èŒçå°ãªã人æ°ã§éãªãçµåãã6åãçºçãã9人ãåé¡ã«éžã³ãŸããã
ãªã16人ãªã8çµãéãªãããã¿ãŒã³ãå€ãããã)
é©åœã«åè£ãèãããèŠã€ãããŸããã
[4,3,2]=[3,2,2,2]ãèŠã€ããã°çµããã§ããã
åãæ°ããªããã®äžã€ã ãããã©ããŠãå Žåã®æ°ãå€ãããŸããã®ã§ã
[4,3,2]=[1,1,1,1,3,2]=[4,1,1,1,2]=[4,3,1,1]
[3,2,2,2]=[1,1,1,2,2,2]
ã§6éãã§ãã
(远èš)
16人ã®å Žåã¯äžèšã®[4,3,2]=[3,2,2,2]ã«7人ã°ã«ãŒããä»ãå ããã ãã§ããã§ããã
[4,3,2]=[3,2,2,2]ãã[7,4,3,2]=[7,3,2,2,2]ãæãç«ã€ããšã¯æããã§
[7,4,3,2]=[1,1,1,1,1,1,1,4,3,2]=[7,1,1,1,1,3,2]=[7,4,1,1,1,2]=[7,4,3,1,1]
[7,3,2,2,2]=[1,1,1,1,1,1,1,3,2,2,2]=[7,1,1,1,2,2,2]
ãªã®ã§8éãã«ãªããŸãã
çè§£ããããšãã¡ãŸã¡è§£æ±ºãããŸããã
ããããã¡ããæã£ãŠãªãçºæ³ã§ãã³ã³ãã¥ãŒã¿ã«é Œãããšãªã
ãã£ããªãæ£è§£ãåºãŠããŸãã
ç§ã¯äœãšãn人ã®å岿¹æ³ãšãã®çµã¿å²ãæ°ã察å¿ããããããã°ã©ã ãäœãããš
çŽ2æéããããŠïŒããããã¿ããç¬ããããšæããŸãã)ãã£ãšå®æã§ã
ããã§è²ã
å®éšããŠããæãåæ°ã«ãªããã®ãçµæ§çºçããŠãããã®ã ãšæããã
äžã§ã9人ã®å岿¹æ³ã§ã¯å€æ°ã®åæ°ãæã€å岿¹æ³ãååšããŠããããšãé¢çœãã£ãã
ããããå€ããã®ãæ¢ããŠãããšãã£ãšïŒïŒäººã®å岿¹æ³ïŒå
šéšã§231éããããã)
ã§çµæããšã¯ã»ã«ã«è²Œãä»ããœãŒãããäœæ¥ãéããŠãã£ãš8çµãååšããŠããããšã
èªèã§ããŸããã
ãããªæéããããªãããããããã®æèæ¹æ³ã«ã¯åªã
é ã¯äœ¿ãããã ïŒãšæå¿ããã°ããã§ãã
ãn=9ã§æå€§6çµãn=16ã§æå€§8çµãã«ã€ããŠ
ä»ã®nã§ã¯ã©ããªãã®ãæ°ã«ãªã£ãã®ã§ããã°ã©ã ãäœã£ãŠèª¿ã¹ãŠã¿ãŸããã
n=1ïœ34ã«å¯Ÿããæå€§çµæ°ã®æ°åã¯
1,2,2,2,3,4,4,3,6,4,7,6,6,9,11,8,11,9,11,14,14,19,21,18,23,24,27,30,29,31,33,34,36,40
ãšãªããŸãããããããã«ãããªå€ãªæ°åã¯OEISã«èŒã£ãŠããŸãããã
æ°èŠã«èŒããããšæã£ãŠã説æãè€éã«ãªããŸãã®ã§ãè±èªãèŠæãªç§ã«ã¯æ®å¿µãªããäžå¯èœã§ãã
çµæãèŠãŠã¿ããšãn=9ãšn=16ã ããæäœæ¥ã§æ±ããããŸããããn=15ãn=17ã§ã¯å³ãããã§ãã
# n=34ã§ãããã®ã¯ãnâ§35ã§ã¯n!ã笊å·ãªã128ããã倿°ã«åãŸããªããªã£ãŠ
# ããã°ã©ã ã®å€æŽãå¿
èŠã«ãªãããã§ãããå®è¡æéçãªåé¡ã§ã¯ãããŸããã
çµæ§15人ãå€ãã®çµåãããäžèŽãããã§ããã
æ¹ããŠæ¢ããã6306300ã§çäžèŽããŸããã
[2, 3, 4, 6]
[3, 3, 4, 5]
[1, 1, 3, 4, 6]
[2, 2, 2, 3, 6]
[1, 1, 1, 2, 4, 6]
[1, 1, 1, 1, 2, 3, 6]
[1, 1, 1, 1, 3, 3, 5]
[1, 1, 1, 2, 2, 2, 6]
[1, 1, 1, 1, 1, 3, 3, 4]
[1, 1, 1, 1, 1, 1, 2, 3, 4]
[1, 1, 1, 1, 1, 1, 2, 2, 2, 3]
調æ»ãããäžã§2çªç®ã«å€ãã£ãn=33人ã§ã®åå²ã§ã®36éããçäžæã«æããã®ãèŠããã£ãã®ã§ææŠããŠã¿ãŸããã
ãã¹ãŠ30051520145226019440000ã®ãã¿ãŒã³æ°ã§äžèŽããŸããã
ç®ã ãã§ç¹æ€ããŠããã®ã§ä»ã®éšåãèŠèœãšããŠããããã»ã»ã»
1; [3, 3, 4, 4, 5, 6, 8]
2; [1, 2, 2, 4, 4, 5, 6, 9]
3; [2, 2, 2, 3, 4, 6, 6, 8]
4; [2, 2, 2, 4, 4, 6, 6, 7]
5; [2, 2, 3, 3, 4, 4, 5, 10]
6; [1, 1, 2, 2, 3, 4, 4, 6, 10]
7; [1, 2, 2, 2, 2, 4, 5, 6, 9]
8; [2, 2, 2, 2, 3, 3, 4, 5, 10]
9; [2, 2, 2, 2, 3, 3, 5, 5, 9]
10; [1, 1, 1, 1, 2, 3, 4, 6, 6, 8]
11; [1, 1, 1, 1, 2, 4, 4, 6, 6, 7]
12; [1, 1, 1, 1, 4, 4, 4, 5, 5, 7]
13; [1, 1, 1, 2, 2, 2, 4, 6, 6, 8]
14; [1, 1, 2, 2, 2, 2, 3, 4, 6, 10]
15; [2, 2, 2, 2, 2, 2, 3, 4, 5, 9]
16; [1, 1, 1, 1, 1, 3, 3, 4, 4, 6, 8]
17; [1, 1, 1, 1, 1, 3, 4, 4, 4, 5, 8]
18; [1, 1, 1, 1, 2, 2, 2, 3, 6, 6, 8]
19; [1, 1, 1, 1, 2, 2, 2, 4, 5, 5, 9]
20; [1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 10]
21; [1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 6, 8]
22; [1, 1, 1, 1, 1, 1, 3, 3, 4, 4, 5, 8]
23; [1, 1, 1, 1, 1, 2, 2, 2, 4, 4, 5, 9]
24; [1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 10]
25; [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 5, 10]
26; [1, 1, 1, 2, 2, 2, 2, 2, 2, 4, 5, 9]
27; [1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 10]
28; [1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 5, 9]
29; [1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 4, 4, 5, 6]
30; [1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 4, 6, 6]
31; [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 9]
32; [1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 6, 6]
33; [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5]
34; [1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 5, 5]
35; [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 5]
36; [1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 5]
ãªãn=34äººã®æé«å€ã40ãªãã§ããã©ãæ¢ããŠããã®39ããèŠã€ãããªããŠã»ã»ã»
1; [1, 3, 4, 4, 4, 5, 6, 7]
2; [2, 3, 3, 3, 4, 5, 6, 8]
3; [3, 3, 3, 4, 4, 5, 5, 7]
4; [1, 1, 2, 3, 3, 4, 5, 6, 9]
5; [1, 1, 3, 3, 3, 4, 5, 6, 8]
6; [1, 2, 2, 2, 3, 4, 5, 6, 9]
7; [1, 2, 3, 3, 3, 3, 5, 6, 8]
8; [2, 2, 2, 3, 3, 3, 5, 6, 8]
9; [2, 3, 3, 3, 3, 3, 4, 5, 8]
10; [1, 1, 1, 2, 2, 3, 4, 5, 6, 9]
11; [1, 1, 1, 2, 3, 3, 4, 5, 5, 9]
12; [1, 1, 1, 3, 3, 3, 4, 5, 5, 8]
13; [1, 1, 2, 2, 2, 3, 3, 5, 6, 9]
14; [1, 1, 2, 2, 3, 3, 3, 4, 5, 10]
15; [1, 1, 2, 2, 3, 3, 3, 5, 5, 9]
16; [1, 1, 3, 3, 3, 3, 3, 4, 5, 8]
17; [1, 2, 2, 3, 3, 3, 3, 3, 6, 8]
18; [2, 2, 2, 3, 3, 3, 3, 3, 5, 8]
19; [1, 1, 1, 1, 2, 3, 3, 3, 5, 6, 8]
20; [1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 10]
21; [1, 1, 1, 2, 2, 2, 3, 3, 5, 5, 9]
22; [1, 2, 2, 2, 2, 2, 3, 3, 3, 5, 9]
23; [2, 2, 2, 2, 2, 2, 3, 3, 3, 6, 7]
24; [1, 1, 1, 1, 1, 2, 3, 3, 3, 4, 6, 8]
25; [1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 5, 8]
26; [2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 7]
27; [1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 4, 5, 8]
28; [1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 6, 8]
29; [1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 4, 8]
30; [1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 4, 4, 5, 5]
31; [1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 8]
32; [1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 8]
33; [1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 4, 5, 6]
34; [1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 6]
35; [1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 4, 5]
36; [1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 7]
37; [1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 5]
38; [1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 6]
39; [1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3]
1362335579916912881280000éãã«ãªããã®ã¯39åãããããŸããã
40åããã®ã¯ 14596452641966923728000éãã«ãªããã®ã§ãã
å
ãèšç®ããŠãããŸãæå³ã¯ãªãã®ã§ãããn=34ãŸã§ãšããã®ã¯ã©ãã
äžéåç«¯ã§æ°ã«ãªã£ãã®ã§ãn=100ãŸã§èšç®ããŸããã
n=1ïœ10: 1, 2, 2, 2, 3, 4, 4, 3, 6, 4
n=11ïœ20: 7, 6, 6, 9, 11, 8, 11, 9, 11, 14
n=21ïœ30: 14, 19, 21, 18, 23, 24, 27, 30, 29, 31
n=31ïœ40: 33, 34, 36, 40, 49, 51, 58, 54, 56, 75
n=41ïœ50: 73, 78, 79, 105, 108, 97, 115, 134, 155, 158
n=51ïœ60: 162, 173, 197, 209, 214, 224, 247, 306, 331, 339
n=61ïœ70: 330, 408, 434, 452, 490, 501, 564, 562, 618, 643
n=71ïœ80: 670, 734, 816, 816, 888, 951, 1060, 1130, 1178, 1195
n=81ïœ90: 1360, 1353, 1464, 1549, 1780, 1885, 1955, 2096, 2257, 2338
n=91ïœ100: 2512, 2751, 3062, 3146, 3301, 3733, 3744, 4250, 4428, 4996
n=100ã®èšç®ã¯2æéè¿ãããã£ãŠããŸãã
以åèªå販売æ©ã§ã®éçš®ã®æå
¥æ¹æ³ã§
[500,100,50,10]å硬貚ã§1000åãæ¯æãæ¹æ³ã158éã
[500,100,50,10,5]å硬貚ã§ã¯4908éã
[500,100,50,10,5,1]å硬貚ã§ã¯248908éã
ãå¯èœã§ããããšãèŠã€ããŠè²°ã£ãŠãããã§ãã
ãããããã°ã©ã ã䜿ã£ãŠæ±ããããªãããšRubyã®ãœãããçšããŠ
@cnt = 0
def change(target, coins, usable)
coin = coins.shift
if coins.size == 0 then
ã @cnt += 1 if target / coin <= usable
else
ã (0..target/coin).each{|i|
change(target - coin * i, coins.clone, usable - i)
}
end
end
change(1000, [500, 100, 50, 10], 100)
puts @cnt
ãã
158ãå
¥æã§ã
change(1000, [500, 100, 50, 10, 5], 200)
puts @cnt
ãã
4908ã
change(1000, [500, 100, 50, 10, 5, 1], 1000)
puts @cnt
ãã
248908ãèšç®ã§ããŸããã
ããã§[6, 4, 3, 2]ã§12ãéè€ãèš±ããŠæ¯æãããšãããšã
change(12, [6, 4, 3, 2], 6)
ã§æ±ãŸãã¯ãã ãšå®è¡ãããš
16
ãè¿ããŠããã
æããã«
6+6,6+4+2,6+3+3,6+2+2+2,4+4+4,4+4+2+2,4+3+3+2,4+2+2+2+2,3+3+3+3,3+3+2+2+2,2+2+2+2+2+2
ã®11éããããªãã®ã§ãäž3ã€ãæ£ç¢ºã«è¿ãã®ã«å¯Ÿããªãããã誀ã£ãçµæãè¿ããŠããã®ã
åå ãåãããŸããã
ããã°ã©ã ã®äœãæ¹ã¯èŠããèŠãŸãã§ãã£ãŠããã®ã§è©³ããããšãåãããŸããã
詳ããæ¹æããŠäžããã
[6, 4, 3, 1]ã§12ãéè€ãèš±ããŠæ¯æãããšãããšãã«ã16éãã«ãªããŸãããå¶ç¶ïŒ
1000,[500,100,50,10],100ã®ãããªã±ãŒã¹ã§ã¯
500ãš100ãš50ãããã€ãã€äœ¿ã£ãŠãå¿
ãæ®ãã10ã§å²ãåããŸãã®ã§
ïŒã€ãŸãæå°ä»¥å€ã®æ°(500,100,50)ããã¹ãŠã®æå°ã®æ°(10)ã§å²ãåããïŒ
if target / coin <= usable
ã§åé¡ãèµ·ãããŸãããã
12,[6,4,3,2],6ã®ããã«æå°ã®2ã§å²ãåããªãæ°ããããš
targetã2ã§å²ãåããªãå Žåã§ã
@cnt += 1
ãå®è¡ãããŠããŸããšæããŸãã
ã€ãŸãã3ã奿°å䜿ãããŠæåŸã«targetã奿°ã«ãªã
6+3+2
4+4+3
4+3+2+2
3+2+2+2+2
3+3+3+2
ã®5åïŒãã¹ãŠ1äžè¶³ïŒãäœèšã«æ°ããããŠããŸã£ãŠããã®ã§ãããã
ãif target / coin <= usableã
ã
ãif targetãcoinã§å²ãåãããã€target / coin <= usableã
ã«ä¿®æ£ããã°æ£ããåããšæããŸãã
ïŒRubyã®ææ³ãç¥ããŸããã®ã§èšèã§æžããŸããïŒ
ããããããã®ä»°ãéããªã®ã§ãããã
((x^6)^2+(x^6)+1)*((x^4)^3+(x^4)^2+(x^4)^1+1)*((x^3)^4+(x^3)^3+(x^3)^2+(x^3)^1+1)*((x^2)^6+(x^2)^5+(x^2)^4+(x^2)^3+(x^2)^2+(x^2)^1+1)
ãå±éã㊠x^11 ã®é
ã®ä¿æ°ã 5 ã ãšãã©ãšé ãããã£ãã®ã§ãã
ãtargetã奿°ããšãªãããšãããã°ã©ã ããèªã¿åããŸããã§ãããæ®å¿µãªç§ã
ïŒïŒïŒïŒa^2+b^2+c^2+d^2
äœããabcd=ïŒã§ãªããè§£ãæ±ãã
ïŒïŒïœâŠïœâŠïœâŠïœããšããŠã
ïŒïœïŒïœïŒïœïŒïœïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒãïŒïŒïŒïŒïŒïŒïŒïŒïŒãïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒãïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
0ïŒaâŠbâŠcâŠd ãšããŠ
(a,b,c,d)=(1,1,2,12),(1,2,8,9),(1,6,7,8),(2,3,4,11),(2,4,7,9),(3,4,5,10),(4,6,7,7),(5,5,6,8)
æŽæ°ã®å¶éãä»ããŠãªãã®ã§ä»ã«ã
(14/5,33/5,47/5,16/5)
(33/13,79/13,112/13,74/13)
(56/25,137/25,193/25,186/25)
(41/21,103/21,48/7,26/3)
(48/23,119/23,238/23,79/23)
(109/57,275/57,550/57,104/19)
(12/7,31/7,62/7,7)
(52/33,137/33,359/33,38/11)
(115/79,309/79,812/79,410/79)
(6/5,17/5,56/5,17/5)
(31/17,127/17,158/17,36/17)
(53/31,221/31,274/31,132/31)
(39/25,167/25,206/25,148/25)
(101/71,445/71,718/71,180/71)
(4/3,6,29/3,13/3)
(21/19,101/19,202/19,52/19)
(16/13,103/13,119/13,18/13)
(107/91,701/91,808/91,42/13)
(50/51,353/51,168/17,95/51)
(31/37,303/37,334/37,32/37)
(119/27,64/9,238/27,41/27)
(55/13,89/13,110/13,48/13)
(155/39,84/13,310/39,211/39)
(137/37,224/37,361/37,78/37)
(103/29,169/29,272/29,114/29)
(153/49,254/49,508/49,17/7)
(271/81,623/81,718/81,28/27)
(153/47,353/47,406/47,136/47)
(101/35,237/35,338/35,8/5)
(149/57,458/57,168/19,37/57)
(224/43,313/43,359/43,18/43)
(169/33,709/99,812/99,226/99)
(254/55,357/55,508/55,61/55)
(505/119,921/119,1010/119,4/17)
(17/3,22/3,8,1/3)

ä»ã«
(3,5,11,131)
(3,5,29,113)
(3,5,41,101)
(3,5,53,89)
(3,5,59,83)

(11,19,47,73)
(11,19,53,67)
(11,19,59,61)
(11,23,37,79)
(11,23,43,73)

(19,29,31,71)
(19,29,41,61)
(19,29,43,59)
(19,31,41,59)
(19,31,47,53)
(19,37,41,53)
(19,41,43,47)
(23,29,31,67)
(23,29,37,61)
(23,31,37,59)
(23,31,43,53)
(23,37,43,47)
(29,31,37,53)
(29,31,43,47)
(29,37,41,43)

ãã ãæ°å€ã«âèšå·ãä»ããŠäžããã
æŽã«iãèæ°åäœãšã
(-10+i,-9+5*i,-5+7*i,10+9*i)
(-10+3*i,-9+4*i,2+5*i,8+7*i)
(-10+6*i,-8+7*i,-6+10*i,16+11*i)
(-9+2*i,-8+4*i,-5+6*i,10+8*i)
(-8+i,-6+2*i,-4+3*i,8+4*i)
(-8+3*i,-6+5*i,-5+6*i,12+7*i)

ãªã©ãªã©ç¡æ°ã«ããããã
é¢çœããªãåçã§ããã
宿°ç¯å²ã®äžè¬è§£ã¯p,q,rãä»»æã®æ£ã®å®æ°ãšããŠ
(a,b,c,d)=(屉{150/(1+p+q+r)},屉{150p/(1+p+q+r)},屉{150q/(1+p+q+r)},屉{150r/(1+p+q+r)})
è€çŽ æ°ç¯å²ã®äžè¬è§£ã¯p,q,rãä»»æã®è€çŽ æ°ïŒãã ãpqrâ 0ãã€p^2+q^2+r^2â 150ïŒãšããŠ
(a,b,c,d)=(p,q,r,屉(150-p^2-q^2-r^2))
äžæãçºããããŸããïœã
æå€§æ°ã«çç®ããŠ
ïŒïŒŸïŒïŒïŒïŒŸïŒïŒïŒïŒŸïŒïŒïŒïŒŸïŒ
ïŒïŒŸïŒïŒïŒïŒŸïŒïŒïŒïŒŸïŒïŒïŒïŒŸïŒ
ïŒïŒŸïŒïŒïŒïŒŸïŒïŒïŒïŒŸïŒïŒïŒïŒŸïŒ
ïŒïŒïŒŸïŒïŒïŒïŒŸïŒïŒïŒïŒŸïŒïŒïŒïŒŸïŒ
ïŒïŒïŒŸïŒïŒïŒïŒŸïŒïŒïŒïŒŸïŒïŒïŒïŒŸïŒ
ïŒïŒïŒŸïŒïŒïŒïŒŸïŒïŒïŒïŒŸïŒïŒïŒïŒŸïŒ
ïŒïŒïŒŸïŒïŒïŒïŒiïŒ^2+ïŒïŒiïŒ+i^2
14^2+(6i)^2+(3i)^2+i^2
è€çŽ æ°ã«ã¯å€§å°é¢ä¿ã¯ãããŸãããã
ãããããïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒãŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒãšïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒä¹åãïŒïŒïŒã«ãªããŸãããïŒïŒïŒïŒïŒïŒïŒãäžŠã¹æ¿ããšã笊å·ãé©åœã«ã€ãããšãïŒä¹åãçããã§ããŸãããïŒä¹åã¯ãã€ãããã¿ããã§ãã
ïŒa,b,c,d)ã®ïŒïŒïŒïŒïŒä¹åãŸã§ãçããã®ãèŠã€ãããš
ïŒ-a,-b,-c,-d,a,b,c,d)ããïŒåã®çޝä¹åãèŠã€ããäœæŠã§ãã
2(1,2,3,4)+(a,b,c,d)
äœããa,b,c,d ã¯ãé åºé¢ä¿ãªã1,2,3,4笊å·ãã€ãããã®ã§ãã
2(1,2,3,4)+(-4,-1,2,-3)=(-2,3,8,5)
2(1,2,3,4)+(-2,3,-4,-1)=(0,7,2,7)
ã®äºçµã¯ãäºä¹åãåä¹åããçãããªããŸãã
äžã®åœ¢åŒã§ãäºä¹åãåä¹åãå
ä¹åãŸã§ãçãããªã
äºçµã¯ãååšããã§ããããïŒ
4ã€ã®ç°ãªã忝ããã€æçæ°P,Q,R,Sã
P^2+Q^2+R^2+S^2=7777
ãæºãããšããã
(P,Q,R,S)ã®çµåããèŠã€ããŠã»ããã
äœãšãæäœæ¥ã§èŠã€ããŸããã
(236/7777)^2+(37/707)^2+(8/77)^2+(97976/1111)^2=7777
a^2+b^2+c^2+d^2=7777^3ãšãªãa,b,c,dã®çµã¿åããã§
7777ã§å²ã£ãŠçŽåãããšãã«å
šéšåæ¯ãç°ãªããã®ãæ¢ããŸããã
æäœæ¥ã§èŠã€ããŸããã
ãããåãã§ããã
確ãã«åæ¯ã[77,707,1111,7777]ã§ååãäžèšã®æ°å€ã§åæ°ãäœã£ãŠãããš
7777ãã€ãããã
ç§ãäœãšãã³ã³ãã¥ãŒã¿ã®åããåãããŠ
忝ã[3,15,25,75]ã§åºå®ããŠçœ®ããŠãååãè²ã
åãããŠã¿ããš
(100/3)^2+(454/15)^2+(974/25)^2+(4879/75)^2
(100/3)^2+(461/15)^2+(994/25)^2+(4826/75)^2
(100/3)^2+(464/15)^2+(967/25)^2+(4868/75)^2
(100/3)^2+(496/15)^2+(997/25)^2+(4738/75)^2
(100/3)^2+(508/15)^2+(913/25)^2+(4852/75)^2

ãšåšèŸºã«ããã€ãæ¡ä»¶ãæºããéå£ãçºèŠã§ããŸããã
åãã忝ã[3,21,35,105]åºå®ããã
(140/3)^2+(1301/21)^2+(1464/35)^2+(356/105)^2
(140/3)^2+(1306/21)^2+(1418/35)^2+(997/105)^2
(140/3)^2+(1318/21)^2+(1417/35)^2+(482/105)^2
(140/3)^2+(1325/21)^2+(1404/35)^2+(316/105)^2
(140/3)^2+(1363/21)^2+(1276/35)^2+(796/105)^2

[7,15,21,105]ã®åæ¯ã§ã¯
(404/7)^2+(653/15)^2+(898/21)^2+(2822/105)^2
(404/7)^2+(692/15)^2+(844/21)^2+(2783/105)^2
(405/7)^2+(676/15)^2+(866/21)^2+(2774/105)^2
(405/7)^2+(716/15)^2+(806/21)^2+(2734/105)^2
(409/7)^2+(692/15)^2+(832/21)^2+(2708/105)^2

ãæµ®ãã³äžãã£ãŠããŸãã
æŽæ°ã ãã«éå®ãããšæéåã§ãããŸããšãã
æçæ°ãžæ¢çŽ¢ãæ¡åŒµãããšäžçãå
šãç°ãªã£ãŠããæèŠã«ãªããŸãã
ãããæ¢ãèŠåŽã¯äžççžã§ã¯ãããªããªãã
ä»»æã®æŽæ°Nã4ã€ã®æçæ°ã®å¹³æ¹åã§äœãã¢ã«ãŽãªãºã ã¯æããç¡ããïŒ
ãæãç°¡åãªåŒãããªãã¡åå忝ã«ç»å Žããèªç¶æ°ã®æå€§å€ãæãå°ãããã®ã¯
(173/2)^2+(161/10)^2+(155/26)^2+(1/130)^2=7777
ïŒæå€§å€173ïŒ
ã§ãããæå€§å€ã173ã«ãªãåŒã¯å
šéšã§5ã€ããã
173ãé€ããæ°ã®æå€§å€ïŒãã®åŒã§ã¯161ïŒãæãå°ãããªãã®ããã®åŒã§ãã
ïŒ172以äžã®èªç¶æ°ã§ã¯7777ã¯äœããªããšããããšã«ãªããŸããïŒ
æå€§å€ã173ã«ãªãåŒã¯å
šéšã§5ã€ããã
(173/2)^2+(161/10)^2+(155/26)^2+(1/130)^2
(173/2)^2+(167/10)^2+(103/26)^2+(53/130)^2
(173/2)^2+(169/10)^2+(77/26)^2+(79/130)^2
(173/2)^2+(171/10)^2+(33/26)^2+(111/130)^2
以å€äœãããã®ã§ããïŒ
ããšäžã€ã¯
(173/2)^2+(167/10)^2+(133/34)^2+(127/170)^2
ã§ãã
(173/2)^2+(167/10)^2+(133/34)^2+(127/170)^2
ãæ¢ãåºãããã«ã¯ä»ã«ãå3ã€ã®æå°å
¬åæ°ã173ãè¶ããªãçµåã(1541éã)
ãå±±ã»ã©èããããã®ã§ãããããèŠã€ãåºãã£ãŠåããªãã§ããïŒ
(173/3)^2+(173/4)^2+(173/5)^2+(173/6)^2ïŒ7777ãã
äžã€ç®ã®åæ¯ã¯2ã«åºå®ã§ããŸãã®ã§ãæ¢çŽ¢ããçµã¿åããã¯æžããããšæããŸãã
åæ§ã«
(173/2)^2+(173/17)^2+(173/18)^2+(173/19)^2ïŒ7777ãã
äºã€ç®ã®åæ¯ã¯3ïœ16ïŒäžã€ç®ã®ååãå°ãããã°ããã«çµãããŸãïŒã«éããããªã©ã
åžžã«ããã®å€ïŒä»¥äžïŒã«ããå Žåã«åèšã7777ã«ãªãå¯èœæ§ããªããã°ãã¹ããšãã
åŠçãå
¥ããŠççž®ããã°ãå®è¡æéãçµæ§çããªãã®ã§ã¯ãªãããšæããŸãã
â»äžã€ç®ã®ã2ã®ã¿ããããããåºå®å€ã«ããŠããããã§ã¯ãªãã
ã3ã«ããå Žåã«æ®ããæå€§ãšããŠ7777ã«éãããããèšç®ããŠããŸãã
(è£è¶³)
äžèšã®ãã§ãã¯ã¯å·šå€§æŽæ°æŒç®ãåæ°æŒç®ã§ã¯å€åé
ãã®ã§ã
æå€§å€ãdoubleã§èšç®ããŠ7776.9ããå°ãããã°ãã¹ããšããŠããŸãã
ïŒïŒïŒæŽæ°ãããããããåºé¡ãè§ã®å€§ããïŒïŒïŒïŒ
ã§ã
ÎïŒïŒïŒïŒÂ°ã®æ
â ïŒâ ïŒâ ïŒïŒïŒïŒïŒÂ°
ã§åã£ãŠãŸãã§ããããïŒ
åãèšäºã®è©±é¡ãªã®ã§ãåäžã¹ã¬ããã«ã¶ãäžãããŸãã
â³ABC ããA ãäžå¿ã«æèšåšãã« 90° å転ãããŠããå€åšãé·æ¹åœ¢ã«ãªãããè£å©ç·ãåŒããšã
é·æ¹åœ¢ãã 3 ã€ã®çŽè§äžè§åœ¢ïŒãã¡ 2 ã€ã¯ååïŒãåãèœãšããŠçŽè§äºç蟺äžè§åœ¢ãæ®ãå³ãã§ããŸãã
ãã£ãŠ Îž-90° = 45° ãã Ξ=135°
ãšããè§£çãäžçªãæè»œã§ãããã
çŽè§äžè§åœ¢ 2 ã€ã§ãçŽè§ãæã 2 蟺ã®é·ãã
12+5=17, 12-5=7
17+7=24=12*2, 17-7=10=5*2
ã¿ãããªé¢ä¿ã®ãšãã«ã¯ãŸããã®å³ãäœãããšãèããããã«ããŠããŸãã
åé¡ãããå°ãå€ããŸãã
ïŒã€ã®ãçŽè§äžè§åœ¢å士ããããã®ãåããã§æ¥ããŠããæ
蟺ã®é·ãããåãã£ãŠããªããŠã
å¿
ã
â ΞïŒâ ïŒâ ããæãç«ã€ã»ã»ã»ãš
ã¡ããšããå
¬åŒïŒå€§ããïŒïŒã®åºæ¥äžããã«ãªãããªïŒ
äžåŠå
¥è©Šåé¡ã«ã¡ããã©ãã
ΞãïŒïŒïŒÂ°ã®æãâ ãšâ ã®åã¯äœåºŠã§ããïŒ
ïŒçŽæã§ãããã«åãã£ãŠããŸããšæããã©ïŒ
æè¿ã¯ãæŽæ°å±¥æŽãã§ã
ã倧åŠå
¥è©Šå顿¢èšªããé£ç¶ããŠããŸããã
èªåã®å
¥è©Šçµéšãããæ°åŠã®å
¥è©Šåé¡ã£ãŠ
ãã®å€§åŠã®ã¬ãã«ãšãã§ã¯ãªãã
ãããã
èªåãšåé¡ãšã®çžæ§
é£ãããŠãèªåã«åã£ãŠããã
(éã¿ãããªãã®)
èªåãšåºé¡è
ãšã®çžæ§
ã®æ¹ã倧äºã®ãããªæ°ãããŸãã
ãããšç¹ã«æ°åŠã¯ãæèšã®ç§ç®ãšéã£ãŠ
ãæ¬çªããåè² ãšããæããããŸãã
詊éšãçµãã£ãŠããªãã§ãã®åé¡ãè§£ããªãã£ããã ãã
ãšã»ã»ã»ã»ã»
ãã¯ãç·åŒµã¯ãæµãã§ããã
æ¥åžžããèªå販売æ©ãªããã®ãå©çšããŠããã
å®¢ã¯æ±ºãŸã£ãéçš®ãå
¥ããèš³ã§ã¯ãªããããŸããŸæã£ãŠãã
硬貚ãå©çšããŠããã
ããã§èªå販売æ©ãåãä»ããŠãã10å,50å,100å,500å硬貚ã§
1000åã®åç©ã販売æ©ã§è³Œå
¥ãããšããå Žåã販売æ©ã¯å
šéšã§
äœéãã®ç¡¬è²šã®çµåããåãä»ããããšã«ãªãã®ãïŒ
ãŸã5åçã販売æ©ãåãä»ããããã«ãããšããã°ããã®ç¡¬è²šã®
çµåãã¯ã©ãã»ã©ã«ãªããã®ãïŒ
æ³åããã®ãæãããã1åçãåãä»ãããªãã©ããªã£ãŠããŸãïŒ
ãã ã販売æ©ã¯ç¡¬è²šã¯äœåã§ãåãä»ãããã®ãšããã
ã²ãã£ãšããŠ
10åçãŸã§ã§
158éãã§ããããïŒ
((x^50)^2+(x^50)+1)*((x^10)^10+(x^10)^9+(x^10)^8+(x^10)^7+(x^10)^6+(x^10)^5+(x^10)^4+(x^10)^3+(x^10)^2+(x^10)^1+1)*((x^5)^20+(x^5)^19+(x^5)^18+(x^5)^17+(x^5)^16+(x^5)^15+(x^5)^14+(x^5)^13+(x^5)^12+(x^5)^11+(x^5)^10+(x^5)^9+(x^5)^8+(x^5)^7+(x^5)^6+(x^5)^5+(x^5)^4+(x^5)^3+(x^5)^2+(x^5)^1+1)*((x)^100+(x)^95+(x)^90+(x)^85+(x)^80+(x)^75+(x)^70+(x)^65+(x)^60+(x)^55+(x)^50+(x)^45+(x)^40+(x)^35+(x)^30+(x)^25+(x)^20+(x)^15+(x)^10+(x)^5+1)
ãå±éããŠx^100 ã®é
ã®ä¿æ°ãã¿ãŸããã
æ¬åœã¯æ¬¡ã®åŒãå±éãããã£ãã®ã§ããããªã³ã©ã€ã³å±éãµãŒãã¹ãåãä»ããŠãããŸããã§ããã
((A*x^50)^2+(A*x^50)+1)*((B*x^10)^10+(B*x^10)^9+(B*x^10)^8+(B*x^10)^7+(B*x^10)^6+(B*x^10)^5+(B*x^10)^4+(B*x^10)^3+(B*x^10)^2+(B*x^10)^1+1)*((C*x^5)^20+(C*x^5)^19+(C*x^5)^18+(C*x^5)^17+(C*x^5)^16+(C*x^5)^15+(C*x^5)^14+(C*x^5)^13+(C*x^5)^12+(C*x^5)^11+(C*x^5)^10+(C*x^5)^9+(C*x^5)^8+(C*x^5)^7+(C*x^5)^6+(C*x^5)^5+(C*x^5)^4+(C*x^5)^3+(C*x^5)^2+(C*x^5)^1+1)*((D*x)^100+(D*x)^95+(D*x)^90+(D*x)^85+(D*x)^80+(D*x)^75+(D*x)^70+(D*x)^65+(D*x)^60+(D*x)^55+(D*x)^50+(D*x)^45+(D*x)^40+(D*x)^35+(D*x)^30+(D*x)^25+(D*x)^20+(D*x)^15+(D*x)^10+(D*x)^5+1)
10åïŒ1ã®ã«ããšããŠ
100ã®ã«ãã®ååã
1ã®ã«ãã5ã®ã«ãã10ã®ã«ãã50ã®ã«ãã®ç¡¬è²šã§æ¯æããããšèããŸãã
ãã®ãšãã1ã®ã«ãç¡¬è²šã®ææ°ã¯æããã«5ã®åæ°ãªã®ã§ããããçžããã€ããŸãã
(D*x) ã¯1ã®ã«ã硬貚ã®ã·ã³ãã«ã§ãããã®é
ã®è©ã«ã®ã£ããææ°ã¯ã1ã®ã«ãç¡¬è²šã§æ¯æãäŸ¡æ Œã衚ããŸããäžã®åŒã§ã¯0ã®ã«ããã100ã®ã«ããŸã§5ã®ã«ãåäœã®å
šãŠã®å¯èœæ§ãåæããŠããŸãã
(C*x^5)ã¯ïŒã®ã«ã硬貚ã®ã·ã³ãã«ã§ãã0æãã20æãŸã§ãè©ã®ææ°ã§ãã£ãŠïŒæã¥ã€ã®å»ã¿ã§åæããŸãã
åæ§ã«(B*x^10)åã³ã«(A*x^50)ã¯ãããããã10ã®ã«ã硬貚ã50ã®ã«ã硬貚ã®ã·ã³ãã«ã§ããåŒã§ã®æå³ã¯ãããŸã§ã®æ±ãã«æºæ ããŸãã
ããã»ã©ã®åŒã¯ãããããã®ç¡¬è²šã®ææ°ã®äžéããã³ã«å»ã¿ã«å¶éãä»äžããäžã§ãæ¯æããéé¡ã®å
šãŠã®ãã¿ãŒã³ãèªåçã«(å±éãããŠããããµã€ããå©çšããŠã§ãã)æ±ãããã®ã§ãã
xã®ææ°ã100ã®ãã®ã®å
šãŠã®ããªãšãŒã·ã§ã³ãæ±ãããã®ãªã®ã§ãããã
ãŸããã«å±éã§ããã°ã100ã®ã«ãã®æ¯æãæ¹ãåä¿æ°ãã¿ãããšã§ãããã¯ãã§ãã
å±éããŠããããµã€ããã¿ã€ãããªãã£ãã®ã§ãAããDãŸã§ã«1ã代å
¥ããŠãããªãšãŒã·ã§ã³ã®çµã¿åããã®æ°ã®ã¿æ±ããããšãšããŸããã
äžã€ç®
10å硬貚ã§10nåãè¡šãæ¹æ³ã¯1éã
ãâ 50nåãè¡šãæ¹æ³ã1éã
10å硬貚ãš50å硬貚ã§50nåãè¡šãæ¹æ³ã¯ãΣ[k=0ïœn]1=n+1éã
ãâ 100nåãè¡šãæ¹æ³ã¯2n+1éã
10å硬貚ãš50å硬貚ãš100å硬貚ã§100nåãè¡šãæ¹æ³ã¯ãΣ[k=0ïœn]2k+1=(n+1)^2éã
ãâ 500nåãè¡šãæ¹æ³ã¯(5n+1)^2éã
10å硬貚ãš50å硬貚ãš100å硬貚ãš500å硬貚ã§500nåãè¡šãæ¹æ³ã¯ã
ãΣ[k=0ïœn](5k+1)^2=(n+1)(50n^2+55n+6)/6éã
ãã£ãŠ1000åãè¡šãæ¹æ³ã¯n=2ã代å
¥ããŠ3Ã316÷6=158éã
äºã€ç®
5å硬貚ã§5nåãè¡šãæ¹æ³ã¯1éã
ãâ 10nåãè¡šãæ¹æ³ã1éã
5å硬貚ãš10å硬貚ã§10nåãè¡šãæ¹æ³ã¯ãΣ[k=0ïœn]1=n+1éã
ãâ 50nåãè¡šãæ¹æ³ã¯5n+1éã
5å硬貚ãš10å硬貚ãš50å硬貚ã§50nåãè¡šãæ¹æ³ã¯ã
ãΣ[k=0ïœn]5k+1=(n+1)(5n+2)/2éã
ãâ 100nåãè¡šãæ¹æ³ã¯(2n+1){5(2n)+2}/2=(2n+1)(5n+1)éã
5å硬貚ãš10å硬貚ãš50å硬貚ãš100å硬貚ã§100nåãè¡šãæ¹æ³ã¯ã
ãΣ[k=0ïœn](2k+1)(5k+1)=(n+1)(20n^2+31n+6)/6éã
ãâ 500nåãè¡šãæ¹æ³ã¯(5n+1){20(5n)^2+31(5n)+6}/6=(5n+1)(500n^2+155n+6)/6éã
5å硬貚ãš10å硬貚ãš50å硬貚ãš100å硬貚ãš500å硬貚ã§500nåãè¡šãæ¹æ³ã¯
ãΣ[k=0ïœn](5k+1)(500k^2+155k+6)/6=(n+1)(625n^3+1050n^2+305n+6)/6éã
ãã£ãŠ1000åãè¡šãæ¹æ³ã¯n=2ã代å
¥ããŠ3Ã9816÷6=4908éã
äžã€ç®
1å硬貚ã§nåãè¡šãæ¹æ³ã¯1éã
ãâ 5nåãè¡šãæ¹æ³ã1éã
1å硬貚ãš5å硬貚ã§5nåãè¡šãæ¹æ³ã¯ãΣ[k=0ïœn]1=n+1éã
ãâ 10nåãè¡šãæ¹æ³ã¯2n+1éã
1å硬貚ãš5å硬貚ãš10å硬貚ã§10nåãè¡šãæ¹æ³ã¯ãΣ[k=0ïœn]2k+1=(n+1)^2éã
ãâ 50nåãè¡šãæ¹æ³ã¯(5n+1)^2éã
1å硬貚ãš5å硬貚ãš10å硬貚ãš50å硬貚ã§50nåãè¡šãæ¹æ³ã¯ã
ãΣ[k=0ïœn](5k+1)^2=(n+1)(50n^2+55n+6)/6éã
ãâ 100nåãè¡šãæ¹æ³ã¯(2n+1){50(2n)^2+55(2n)+6}/6=(2n+1)(100n^2+55n+3)/3éã
1å硬貚ãš5å硬貚ãš10å硬貚ãš50å硬貚ãš100å硬貚ã§100nåãè¡šãæ¹æ³ã¯ã
ãΣ[k=0ïœn](2k+1)(100k^2+55k+3)/3=(n+1)(100n^3+240n^2+131n+6)/6éã
ãâ 500nåãè¡šãæ¹æ³ã¯(5n+1){100(5n)^3+240(5n)^2+131(5n)+6}/6
ããã= (5n+1)(12500n^3+6000n^2+655n+6)/6éã
1å硬貚ãš5å硬貚ãš10å硬貚ãš50å硬貚ãš100å硬貚ãš500å硬貚ã§500nåãè¡šãæ¹æ³ã¯
ãΣ[k=0ïœn](5k+1)(12500k^3+6000k^2+655k+6)/6
ãã= (n+1)(12500n^4+29375n^3+15800n^2-195n+6)/6éã
ãã£ãŠ1000åãè¡šãæ¹æ³ã¯n=2ã代å
¥ããŠ3Ã497816÷6=248908éã