äº¬å€§åææç³»ã®åé¡ã§
管ç人æ§ã
ãæ°åã®æ±ãã«æ¬çªã®è©Šéšã§ã¯èªä¿¡ãæãŠãªãããš
æžãããŠããŸãããã
ç§ãçãã®æ°åãæ±ããšãééã£ãŠããã®ã§ã¯ãšã
çžåœäžå®ã«ãªããŸãã粟ç¥é¢ã®åŒ·ãã詊ãããŠããããŒãªããã
é£å¡©æ°Žãäœãã«ã¯åœç¶æ°Žãšå¡©ãæ··ããŠäœãã
ãããäœãããã«1(g)åäœã§èšæž¬ã§ãããã«ãªãæºåãããŠãããšããã
仿°Žã100(cc)ãããªã(1(cc)=1(g)ãšãã),å¡©ã¯å€§éã«ãããã®ãšããã
ããŠæž¬ããéããæŽæ°ããèš±ãããªããšãããšãããã äžéãã®çµåã
ã§ããäœããªãæŽæ°ã§ã®é£å¡©æ°Žæ¿åºŠã¯äœ%ã®é£å¡©æ°Žã«ãªããïŒ
ãŸãéã«ã©ããªæŽæ°ã®æ°Žã«å¯ŸããŠã察å¿ããå¡©ãæž¬ããŠããŸãæŽæ°ã®
é£å¡©æ°Žæ¿åºŠã¯äœ%ã®ãã®ãå¯èœãïŒ
1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 27 (%)
ã§å
šéšã§ãããã
æ°Žã®éã w (g) ãé£å¡©ã®éã s (g) ãé£å¡©æ°Žæ¿åºŠã x% (0<x<28.20) ãšãããšã
s/(w+s) = x/100
ã€ãŸã
w = (100-x)s/x
ãšãªããŸãã
wâŠ50 ã§ããã° w ãš s ãã©ã¡ãã 2 åã«ããè§£ãååšããŸãã
ãããŠã100-x ãš x ãäºãã«çŽ ã§ãªãå Žåãå³èŸºãæŽæ°ã«ãªãæå°ã® s ããšãã°ãwâŠ49 ã®è§£ãååšããŸãã
ãã£ãŠãã®å Žåã¯å¯äžè§£ã«ãªããŸããã
ãããã£ãŠã100-x ãš x ãäºãã«çŽ ãã€ãŸã x ãš 100 ãäºãã«çŽ ãªå Žåã®ã¿èããã°ååã§ãã
ãã®å Žåãs 㯠x ã®åæ°ã§ãã
ãããŠãs=x ã®è§£ã¯å¿
ãååšããã®ã§ãæ¡ä»¶ãæºããã«ã¯ s=2x ã®è§£ãååšããªãããšãå¿
èŠå忡件ã«ãªããŸãã
ããªãã¡ 100-x>50 ã§ããå¿
èŠããããŸãããããããé£å¡©æ°Žæ¿åºŠã¯ 0<x<28.20 ããååšãåŸãªãã®ã§ãæå³ã®ãªãå¿é
ã§ããã
ãã£ãŠãx 㯠100 ãšäºãã«çŽ ãª 28.20 æªæºã®æŽæ°ãçããšããããšã§ãçãã¯åé ã® 10 åã«ãªããŸãã
ïŒ27%é£å¡©æ°Žã¯å®€æž©ããååšããŸããããç±æ°Žã䜿ã£ãé£å¡©æ°ŽããŸãé£å¡©æ°Žã«ã¯å€ãããªãã®ã§æ¿åºŠäžéã 28.20% ãšããããšã§è§£çã«å«ããŸããïŒ
é£å¡©æ°Žæ¿åºŠã x% (0<x<28.20) ãšãããš
ã®çç±ãã©ãããŠã€ãã®ãããç§ã¯çè§£ã§ããªãã§ããŸãã
ãã®éšåã®èª¬æããé¡ãããŸãã
æ°ŽïŒïŒïŒïœã«æº¶ããé£å¡©ã®éã¯ãïŒåºŠã§ã¯ïŒïŒïŒïŒïœïŒïŒïŒïŒïŒïŒ
ïŒãïŒïŒåºŠã§ã¯ïŒïŒïŒïŒïœïŒïŒïŒïŒïŒïŒ
ïŒã
ïŒïŒåºŠã§ã¯ïŒïŒïŒïŒïœïŒïŒïŒïŒïŒïŒ
ïŒãã»ã»ã»ãïŒïŒïŒåºŠã§ã¯ïŒïŒïŒïŒïœïŒïŒïŒïŒïŒïŒ
ïŒã§ããããšãç¥ãããŠããŸãã
åŸã£ãŠãé£å¡©æ°Žã®æ¿åºŠã¯ãïŒïŒïŒïŒïŒ
ãéçãšãªããŸããé£å¡©æ°Žã®äžã«é£å¡©ã®æ²æ®¿ç©ããã£ãŠãããŸããªããšãã芳ç¹
ã§ã¯ããã¡ãããã®éãã§ã¯ãããŸããããé£å¡©æ°Žã®åé¡ã§æ²æ®¿ç©ãæ³å®ããããšã¯ä»ãŸã§çµéšããããŸãããé£œåæ°Ž
溶液ãšãã芳ç¹ã§ãç®æ°ã®åé¡ã¯äœæãããŠãããšæããŸãã
飜åé£å¡©æ°Žãšãã芳念ãå
šãæãèœã¡ãŠããŸã£ãŠããã
é£å¡©æ°Žã®åé¡ãäœããšãããã£ãã30%ã®é£å¡©æ°Žããšãã®è¡šçŸãããã倱ç¬ãã®ã«ãªããŸããã
ããã°ããããã°ã
第 4 åãªãã§ããããããåé¡ãšããŠåºæ¥ãæªãããã«æããŸãã
ïŒãããã¯ãç®æ°ã®ã»ã³ã¹ãããåãéžããããããã«ãããšïŒïŒ
ãã¹ãšéæ¹åã« 90 åéèµ°ãããšãèããŸãã
å
ã
ã®éãã ãšå€ªéãã㯠90 ååŸã® 9 å°ç®ã®ãã¹ã®äœçœ®ãŸã§é²ã¿ã
倿ŽåŸã®é床ã®å Žå㯠90 ååŸã® 10 å°ç®ã®ãã¹ã®äœçœ®ãŸã§é²ã¿ãŸãã
ã€ãŸãã倪éããã 90 åã§é²ãã è·é¢ã®å·® 6km/h * (90/60)h = 9km ãã9 å°ç®ã®ãã¹ãš 10 å°ç®ã®ãã¹ã®ééã§ãã®ã§ãçã㯠9km ã§ãã
âŠâŠæåã®è¿œãæããã話ã¯ãªãã ã£ããã§ãããïŒ
管ç人ããã®è¿œå ã®è§£çã£ãŠãçã¯éã£ãŠããã§ããããïŒ
çæ¹ã¯ 9 åã§çæ¹ã¯ 10 åã ãšããã¹ã®é²ãã è·é¢ãå€ãã£ãŠãããã§ããâŠâŠã
ãã¹ãïŒïŒåã§å°éããè·é¢ãéããå¢ããèªè»¢è»ãïŒåã§å°éãããšèããã®ã§ããïŒïŒïŒã
é床ã¯ãçžå¯Ÿé床ããã¹ã®é床ïŒèªè»¢è»ã®é床ãã§èšç®ããŠããŸãã
1æ¥èããŠãã£ãšçè§£ããŸããã
ãã¹ïŒãšèªè»¢è»ïŒãïŒïŒåã§å°éããè·é¢ïŒã®åèšïŒãïŒãã¹ãšïŒéããå¢ããèªè»¢è»ãïŒåã§å°éããïŒã®ã§ãããããã®çžå¯Ÿé床ã衚ãããšã§æ¹çšåŒãç«ãŠãïŒ
ã§çè§£ãã£ãŠãŸããïŒ
åã£ãŠãããšæããŸããããã«ããŠããããã¹ã«ïŒïŒåããšã«è¿œãè¶ãããŸããããšããæ¡ä»¶ã䜿ããã«è§£ããŠããŸãã®ã¯äœãªã®ã§ããããïŒ
ãã¹ã®éããåéïœ(ïœ)ãèªè»¢è»ã®éããïœ(ïœ)ãšããïœãïœ ãå¥åã«æ±ããã«ã¯ãããã¹ã«ïŒïŒåããšã«è¿œãè¶ãããŸãããã®æ¡ä»¶ãå¿
èŠã§ããã
ãã¹ã®éé (ïœ)ãæ±ããã ãã ã£ãããçžå¯Ÿé床 ïœïŒïœ ãåããã°ååã§ããã®ããšã¯ãããããããçäžåŠã®åºé¡è
ã®æ¹ãæ°ãã€ããªãã£ã
ã®ãããããªãã§ããïŒ
ãã©ã³ã52æãååã«ã·ã£ããã«ããåŸ4æãã€13çµã«åããã
åçµãã1æã ããããã©ã³ããæãåºããŠ13æã®ãã©ã³ãã§
1ãã13ãŸã§ã®æ°å(ããŒã¯ã¯ç¡èŠ)ãæããããã®ãïŒ
ããäžå¯èœã§ããã°ãã®çµåããã®å®äŸã瀺ããŠã»ããã
åçµãã 1 æãã€åãåºããŠå
šãŠã®æ°åãæããããšã
ããã«åçµæ®ãã® 3 æãã 1 æãã€åãåºããŠåã³å
šãŠã®æ°åãæãã
ããã«ããã«åçµæ®ãã® 2 æãã 1 æãã€åãåºããŠäžåºŠå
šãŠã®æ°åãæãã
æåŸã«æ®ã£ã 1 æãã€ããŸãå
šãŠã®æ°åã®çµã«ãªãâŠâŠ
âŠâŠãŸã§ã§ããããªæ°ãããŸãã
ãã ã蚌æã¯é£ãããã§ããã
ãã䌌ãïŒåé¡ã§ãã
ãã©ã³ã 52 æãååã«ã·ã£ããã«ããåŸã«
ããŒãã«äžã« 4 è¡ 13 åã«äžŠã¹ãŠåæé
眮ãšããŸãã
åãæ°ã®ã«ãŒã㯠1 察 1 ã§äºãã«äœçœ®ã亀æã§ããŸãããããã亀æã¯å¥œããªã ãè¡ããŸãã
ãŽãŒã«ã¯ãå
šãŠã®åã«ã¹ããŒãããŒããã€ã€ã¯ããŒããŒãæããããšã§ãã
ä»»æã®åæé
眮ã«ã€ããŠãå¿
ããŽãŒã«ããããšãã§ããã®ã§ããããã
ããäžå¯èœã§ããã°ãã®çµåããã®å®äŸããããŠãã ããã
â»åãæ°ã®ã«ãŒããšã¯ãããšãã°ãjack ã©ãããå«ã¿ãŸãã
â»ç§ã¯ãã®åé¡ã«ã€ããŠãŸã ããçè§£ããŠããŸãããå¿
ããŽãŒã«ã§ããæ°ãããããŸãã蚌æãšãããŸãããé©åãªã¢ã«ãŽãªãºã ãäžæã§ãã
éåžžã®ãã©ã³ãã§DD++ãããèšãããçŸè±¡ãèµ·ããããã®ãçŽæ¥ãããã¯ãã
ç¡ãã£ãã®ã§èŠæš¡ãçž®å°ã
{1,2,3,4}ã®æ°åãå3æãã€ããèš12æã®ã«ãŒãã
3æãã€ã§4çµãæ§æããŠãç°ãªãçµåãããå
·äœçã«
ã©ã®æ§ã«ãªãã®ãã調ã¹ãŠã¿ãŸããã
ç§ã®ããã°ã©ã ã®ä»æ¹ãªã®ã§åãæéãããã£ãŠããŸãã
12æéã»ã©ã®æéãèŠããŠæ¬¡ã®93éããäœããŸããã
å
šéšãã§ãã¯åºæ¥ãããã§ã¯ãããŸããããã©ã³ãã ã«
10éãã»ã©ã®å¥ãæ¹ã§1ïœ4ã®æ°åã3ååãåºããã
å®éšãããå
šãŠå¯èœãšãªããŸããã
åŸã£ãŠ1ïœ13ã®æ°åãå4åãã€ãã52æã§ã®éåžžã®ãã©ã³ãã§
åçµã4æãã€ã®13çµãäœã£ããšããŠãã
åçµããäžæãã€åãåºããš1ïœ13ã®ã»ãããæãåºãããšã
4åèµ·ãããããšã¯åå確ããããèµ·ããããšæãããŸããã
ãã ãã¹ãŠã®çµåããã䞊ã¹ãããããšèšãã°ãç§ã®ããã°ã©ã å
ã§ã¯ã©ãã«ããªããŸããã(å
šéšã§äœéããèšç®ã§æ±ãããããã®ãªã®ã§ããããïŒ)
ãŸãã
è«ççã«èšŒæãšèšãããŠãæãè¶³ãåºãŸããã
1;[[1, 1, 1], [2, 2, 2], [3, 3, 3], [4, 4, 4]]
2;[[1, 1, 1], [2, 2, 2], [3, 3, 4], [3, 4, 4]]
3;[[1, 1, 1], [2, 2, 3], [2, 3, 3], [4, 4, 4]]
4;[[1, 1, 1], [2, 2, 3], [2, 3, 4], [3, 4, 4]]
5;[[1, 1, 1], [2, 2, 3], [2, 4, 4], [3, 3, 4]]
6;[[1, 1, 1], [2, 2, 4], [2, 3, 3], [3, 4, 4]]
7;[[1, 1, 1], [2, 2, 4], [2, 3, 4], [3, 3, 4]]
8;[[1, 1, 1], [2, 2, 4], [2, 4, 4], [3, 3, 3]]
9;[[1, 1, 1], [2, 3, 3], [2, 3, 4], [2, 4, 4]]
10;[[1, 1, 1], [2, 3, 4], [2, 3, 4], [2, 3, 4]]
11;[[1, 1, 2], [1, 2, 2], [3, 3, 3], [4, 4, 4]]
12;[[1, 1, 2], [1, 2, 2], [3, 3, 4], [3, 4, 4]]
13;[[1, 1, 2], [1, 2, 3], [2, 3, 3], [4, 4, 4]]
14;[[1, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 4]]
15;[[1, 1, 2], [1, 2, 3], [2, 4, 4], [3, 3, 4]]
16;[[1, 1, 2], [1, 2, 4], [2, 3, 3], [3, 4, 4]]
17;[[1, 1, 2], [1, 2, 4], [2, 3, 4], [3, 3, 4]]
18;[[1, 1, 2], [1, 2, 4], [2, 4, 4], [3, 3, 3]]
19;[[1, 1, 2], [1, 3, 3], [2, 2, 3], [4, 4, 4]]
20;[[1, 1, 2], [1, 3, 3], [2, 2, 4], [3, 4, 4]]
21;[[1, 1, 2], [1, 3, 3], [2, 3, 4], [2, 4, 4]]
22;[[1, 1, 2], [1, 3, 4], [2, 2, 3], [3, 4, 4]]
23;[[1, 1, 2], [1, 3, 4], [2, 2, 4], [3, 3, 4]]
24;[[1, 1, 2], [1, 3, 4], [2, 3, 3], [2, 4, 4]]
25;[[1, 1, 2], [1, 3, 4], [2, 3, 4], [2, 3, 4]]
26;[[1, 1, 2], [1, 4, 4], [2, 2, 3], [3, 3, 4]]
27;[[1, 1, 2], [1, 4, 4], [2, 2, 4], [3, 3, 3]]
28;[[1, 1, 2], [1, 4, 4], [2, 3, 3], [2, 3, 4]]
29;[[1, 1, 3], [1, 2, 2], [2, 3, 3], [4, 4, 4]]
30;[[1, 1, 3], [1, 2, 2], [2, 3, 4], [3, 4, 4]]
31;[[1, 1, 3], [1, 2, 2], [2, 4, 4], [3, 3, 4]]
32;[[1, 1, 3], [1, 2, 3], [2, 2, 3], [4, 4, 4]]
33;[[1, 1, 3], [1, 2, 3], [2, 2, 4], [3, 4, 4]]
34;[[1, 1, 3], [1, 2, 3], [2, 3, 4], [2, 4, 4]]
35;[[1, 1, 3], [1, 2, 4], [2, 2, 3], [3, 4, 4]]
36;[[1, 1, 3], [1, 2, 4], [2, 2, 4], [3, 3, 4]]
37;[[1, 1, 3], [1, 2, 4], [2, 3, 3], [2, 4, 4]]
38;[[1, 1, 3], [1, 2, 4], [2, 3, 4], [2, 3, 4]]
39;[[1, 1, 3], [1, 3, 3], [2, 2, 2], [4, 4, 4]]
40;[[1, 1, 3], [1, 3, 3], [2, 2, 4], [2, 4, 4]]
41;[[1, 1, 3], [1, 3, 4], [2, 2, 2], [3, 4, 4]]
42;[[1, 1, 3], [1, 3, 4], [2, 2, 3], [2, 4, 4]]
43;[[1, 1, 3], [1, 3, 4], [2, 2, 4], [2, 3, 4]]
44;[[1, 1, 3], [1, 4, 4], [2, 2, 2], [3, 3, 4]]
45;[[1, 1, 3], [1, 4, 4], [2, 2, 3], [2, 3, 4]]
46;[[1, 1, 3], [1, 4, 4], [2, 2, 4], [2, 3, 3]]
47;[[1, 1, 4], [1, 2, 2], [2, 3, 3], [3, 4, 4]]
48;[[1, 1, 4], [1, 2, 2], [2, 3, 4], [3, 3, 4]]
49;[[1, 1, 4], [1, 2, 2], [2, 4, 4], [3, 3, 3]]
50;[[1, 1, 4], [1, 2, 3], [2, 2, 3], [3, 4, 4]]
51;[[1, 1, 4], [1, 2, 3], [2, 2, 4], [3, 3, 4]]
52;[[1, 1, 4], [1, 2, 3], [2, 3, 3], [2, 4, 4]]
53;[[1, 1, 4], [1, 2, 3], [2, 3, 4], [2, 3, 4]]
54;[[1, 1, 4], [1, 2, 4], [2, 2, 3], [3, 3, 4]]
55;[[1, 1, 4], [1, 2, 4], [2, 2, 4], [3, 3, 3]]
56;[[1, 1, 4], [1, 2, 4], [2, 3, 3], [2, 3, 4]]
57;[[1, 1, 4], [1, 3, 3], [2, 2, 2], [3, 4, 4]]
58;[[1, 1, 4], [1, 3, 3], [2, 2, 3], [2, 4, 4]]
59;[[1, 1, 4], [1, 3, 3], [2, 2, 4], [2, 3, 4]]
60;[[1, 1, 4], [1, 3, 4], [2, 2, 2], [3, 3, 4]]
61;[[1, 1, 4], [1, 3, 4], [2, 2, 3], [2, 3, 4]]
62;[[1, 1, 4], [1, 3, 4], [2, 2, 4], [2, 3, 3]]
63;[[1, 1, 4], [1, 4, 4], [2, 2, 2], [3, 3, 3]]
64;[[1, 1, 4], [1, 4, 4], [2, 2, 3], [2, 3, 3]]
65;[[1, 2, 2], [1, 2, 3], [1, 3, 3], [4, 4, 4]]
66;[[1, 2, 2], [1, 2, 3], [1, 3, 4], [3, 4, 4]]
67;[[1, 2, 2], [1, 2, 3], [1, 4, 4], [3, 3, 4]]
68;[[1, 2, 2], [1, 2, 4], [1, 3, 3], [3, 4, 4]]
69;[[1, 2, 2], [1, 2, 4], [1, 3, 4], [3, 3, 4]]
70;[[1, 2, 2], [1, 2, 4], [1, 4, 4], [3, 3, 3]]
71;[[1, 2, 2], [1, 3, 3], [1, 3, 4], [2, 4, 4]]
72;[[1, 2, 2], [1, 3, 3], [1, 4, 4], [2, 3, 4]]
73;[[1, 2, 2], [1, 3, 4], [1, 3, 4], [2, 3, 4]]
74;[[1, 2, 2], [1, 3, 4], [1, 4, 4], [2, 3, 3]]
75;[[1, 2, 3], [1, 2, 3], [1, 2, 3], [4, 4, 4]]
76;[[1, 2, 3], [1, 2, 3], [1, 2, 4], [3, 4, 4]]
77;[[1, 2, 3], [1, 2, 3], [1, 3, 4], [2, 4, 4]]
78;[[1, 2, 3], [1, 2, 3], [1, 4, 4], [2, 3, 4]]
79;[[1, 2, 3], [1, 2, 4], [1, 2, 4], [3, 3, 4]]
80;[[1, 2, 3], [1, 2, 4], [1, 3, 3], [2, 4, 4]]
81;[[1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]
82;[[1, 2, 3], [1, 2, 4], [1, 4, 4], [2, 3, 3]]
83;[[1, 2, 3], [1, 3, 3], [1, 4, 4], [2, 2, 4]]
84;[[1, 2, 3], [1, 3, 4], [1, 3, 4], [2, 2, 4]]
85;[[1, 2, 3], [1, 3, 4], [1, 4, 4], [2, 2, 3]]
86;[[1, 2, 4], [1, 2, 4], [1, 2, 4], [3, 3, 3]]
87;[[1, 2, 4], [1, 2, 4], [1, 3, 3], [2, 3, 4]]
88;[[1, 2, 4], [1, 2, 4], [1, 3, 4], [2, 3, 3]]
89;[[1, 2, 4], [1, 3, 3], [1, 3, 4], [2, 2, 4]]
90;[[1, 2, 4], [1, 3, 3], [1, 4, 4], [2, 2, 3]]
91;[[1, 2, 4], [1, 3, 4], [1, 3, 4], [2, 2, 3]]
92;[[1, 3, 3], [1, 3, 4], [1, 4, 4], [2, 2, 2]]
93;[[1, 3, 4], [1, 3, 4], [1, 3, 4], [2, 2, 2]]
ç§ãè¿°ã¹ãå
å®¹ãæ£ããããšã®èšŒææ¹éããæå
ã§ã¯ç«ã¡ãŸããã
ãã ããããèšèã§äŒããããã«èšè¿°ããã®ãéåžžã«é£ããâŠâŠã
> GAIãã
3æãã€ã®å Žåã¯æ°åã®çš®é¡ã®æ°1,2,3,âŠã«å¯ŸããŠ
1, 2, 10, 93, 1417, 32152, 1016489, 42737945, 2307295021,âŠéã
ãšãªãããã®æ°å㯠https://oeis.org/A254243 ã«ãããŸãã
ïŒ4çªç®ã®93ãGAIãããç®åºãããå€ã§ããïŒ
4æãã€ã®å Žåã¯æ°åã®çš®é¡ã®æ°1,2,3,âŠã«å¯ŸããŠ
1, 3, 23, 465, 19834, 1532489, 193746632,âŠéã
ãšãªãããã®æ°å㯠https://oeis.org/A268668 ã«ãããŸãã
ïŒããããæ°åãµã€ãã§ã¯ã0çš®é¡ãããã§ããïŒ
ãã£ãŠA268668ã«ãããå
ã®åé¡ã®å Žåã§ã¯
1276433147589499725385063éã
ã§ããããšãããããŸãããã®ãµã€ãã«æ°åŒãæžãããŠããŸããã®ã§ã
ç°¡åãªèšç®ã§ç®åºããæ¹æ³ã¯èŠã€ãã£ãŠããªããã®ãšæããŸããã
50çš®é¡ã®æ°ããšãã§ããªã倧ããã§ããããšãããããã°ã©ã ã§ããŸã
ç®åºããæ¹æ³ãããã®ã§ããããã
ç§ã®èããèšè¿°ãããšäœãã©ãæžããŠãéåžžã«é·ãæã«ãªã£ãŠããŸããæåãå°å
¥ããäžè¬çãªèšŒæã§ã¯ããããéåžžã«ã€ã¡ãŒãžãã«ããã§ããããã®ã«ãªã£ãŠããŸããŸãã
ãã®ãããäŸç€ºã«ããèãæ¹ã ããæžãã«ãšã©ããŸãã
ããã«ããã¿ãªãããªãããèªèº«ã§äžè¬çãªãã®ã«æžãçŽãã®ã容æã ãšæããŸãã®ã§ã
GAI ããã®äžèЧããé©åœã«
43;[[1, 1, 3], [1, 3, 4], [2, 2, 4], [2, 3, 4]]
ããåãããŠãå®éã«ãã£ãŠã¿ãŸãã
ãããããåçµã®äžã§é çªãäžŠã³æ¿ããŠãä»»æã® i ã«å¯Ÿãåçµã® i çªç®ãå
šãŠç°ãªãæ°ã§ããããã«ãããã®æé ã以äžã«èšè¿°ããŸãã
ãã®ãããã®æäœããä»¥åŸæŽåãšè¡šçŸããããšã«ããŸãã
ãŸãã2 ã¶æç©Žããã«ãªã£ãŠããç¶æ
ã®è§£æ³ãèšèŒããŸãã
ââââââââ ãããã ââââââââ
ãåé¡ã(step 1)
[[1, 1, 3], [1, 3, 4], [2, 2, 4], [2, 3, 4]] ãæŽåããã
ãŸãã æå€§æ°ã§ãã 4 ãå
¥ã£ãŠããçµã 1 ã€éžã³ãŸãã
ä»åã¯ã2 çªç®ã®çµãéžæãããã®çµã«å«ãŸãã 4 ã«ã¯ç®å°ã« # ãä»ããŠãããŸãã
[[1, 1, 3], [1, 3, 4#], [2, 2, 4], [2, 3, 4]]
éžæããçµä»¥å€ã® 4 ãšéžæããçµã® 4 以å€ã®æ°åã 1 察 1 ã§ä»»æã«å
¥ãæ¿ããŠå¥ã®åé¡ãäœããŸãã
å
¥ãæ¿ããèµ·ãããã®ã¯ç®å°ã« ? ãä»ããŠãããŸãã
ïŒã©ããšã©ããå
¥ãæ¿ããããããããã«ã? ã®åæ°ã§åºå¥ããŸãïŒ
[[1, 1, 3], [4?, 4??, 4#], [2, 2, 1?], [2, 3, 3??]]
ããããã# ä»ãã®æ°ãå«ãçµãåé€ãã? ã®ç®å°ãæ¶ãããã®ããåé¡åã« X ãä»å ããæ°ããåé¡ãšããŠå®çŸ©ããŸãã
以äžãäžæŠæ°ããåé¡ãè§£ãéçšã«å
¥ããŸãã
ãåé¡Xã
[[1, 1, 3], [2, 2, 1], [2, 3, 3]] ãæŽåããã
ïŒããã®è§£æ³ã¯ç©Žãããä»åã¯å¶ç¶èŠã€ããè§£ãçšããŠç¶ããèšè¿°ããŸãïŒ
[[1, 1, 3], [2, 2, 1], [3, 3, 2]] ãšæŽåã§ããŸããã
è§£ã®äžäŸãåŸãããã®ã§ãåé¡åã®æ«å°Ÿã® X ãåãé€ããåé¡ã® step 2 ã«é²ã¿ãŸãã
ãåé¡ã(step 2)
[[1, 1, 3], [1, 3, 4], [2, 2, 4], [2, 3, 4]] ãæŽåããã
step 1 ã§ã
[[1, 1, 3], [4?, 4??, 4#], [2, 2, 1?], [2, 3, 3??]]
ãšããå¥ã®åé¡ãäœã£ãç¶æ
ã«ãªã£ãŠããŸããã
ããã«å¯Ÿããæ¡ä»¶ä»ãæŽåãå®è¡ããŸãã
ããªãã¡ãããã i ã«ã€ããŠãi çªç®ã«ã¯ ? ä»ãã®æ°ãååšããªãããæç«ããŠãããããªæŽåãè¡ããŸãã
ãŸãã# ä»ãã®æ°ãå«ãçµä»¥å€ãæ®éã«æŽåããŸãã
ããã¯ãåé¡åã« X ãä»å ããæ°ããåé¡ã®è§£ãäžžããšåçŸããããšã§å¯èœã§ãã
[[1, 1, 3], [4?, 4??, 4#], [2, 2, 1?], [3, 3??, 2]]
ãã®ãšãã# ä»ãã®æ°ãå«ãçµããèŠãªããã°ãããã i ã«ã€ããŠãi çªç®ã«ã¯ ? ã€ãã®æ°ãååšããªãããå¿
ãæç«ããŠããŸãã
ãªããªããå
¥ãæ¿ããè¡ãªã£ããã¢ã®æ°ã¯ãåçµã®æ°åã®åæ°ãããå¿
ãå°ããããã§ãã
ä»å㯠i = 1 ãããã«è©²åœããŠããŸãã
ãã®åŸã# ä»ãã®æ°ãå«ãçµããi = 1 çªç®ã« # ä»ãã®æ°ãæ¥ãããã«é çªãå
¥ãæ¿ããŸãã
[[1, 1, 3], [4#, 4?, 4??], [2, 2, 1?], [3, 3??, 2]]
ããã§ãi = 1 çªç®ã« ? ã€ãã®æ°ããªãæŽåãã§ããŸããã
ãã®ç¶æ
ã§å
¥ãæ¿ããæ»ããšãå
ã®åé¡ã®ããšãããã i = 1 çªç®ã«ã¯å
šãŠç°ãªãæ°ããããç¶æ
ã«ãªããŸããã
[[1, 1, 3], [4#, 1, 3], [2, 2, 4], [3, 4, 2]]
ãããããå
šãŠã®çµã® i = 1 çªç®ã®æ°ãåé€ãããã®ããåé¡åã« Y ãä»å ããæ°ããåé¡ãšå®çŸ©ããŸãã
以äžãäžæŠæ°ããåé¡ãè§£ãéçšã«å
¥ããŸãã
ãåé¡Yã
[[1, 3], [1, 3], [2, 4], [4, 2]] ãæŽåããã
ïŒããã®è§£æ³ã¯ç©Žãããä»åã¯å¶ç¶èŠã€ããè§£ãçšããŠç¶ããèšè¿°ããŸãïŒ
[[1, 3], [3, 1], [2, 4], [4, 2]] ãšæŽåã§ããŸããã
è§£ã®äžäŸãåŸãããã®ã§ãåé¡åã®æ«å°Ÿã® Y ãåãé€ããåé¡ã® step 3 ã«é²ã¿ãŸãã
ãåé¡ã(step 3)
[[1, 1, 3], [1, 3, 4], [2, 2, 4], [2, 3, 4]] ãæŽåããã
step 2 ã§ã
[[1, 1, 3], [4#, 1, 3], [2, 2, 4], [3, 4, 2]]
ãšããšãããã i = 1 çªç®ã«ã¯å
šãŠç°ãªãæ°ããããç¶æ
ã«ãªã£ãŠããŸããã
ãããŠãi = 1 çªç®ä»¥å€ã®éšåã¯ãåé¡åã« Y ãä»å ããæ°ããåé¡ã®è§£ãå©çšããŠæŽåã§ããŸãã
[[1, 1, 3], [4#, 3, 1], [2, 2, 4], [3, 4, 2]]
æåŸã« # ã®ç®å°ãæ¶ãã°ãè§£ã®äžäŸãåŸãããŸãã
[[1, 1, 3], [4, 3, 1], [2, 2, 4], [3, 4, 2]]
ââââââââ ãããŸã§ ââââââââ
ããŠããã¡ããããã§ã¯è§£å
šäœã¯å®æããŠããŸããã
éäžã®ãåé¡Xããšãåé¡Yãã®å
·äœçãªè§£ãæ¹ã空çœã®ãŸãŸã§ããããã
ãããããåé¡Xãã¯å®ã¯æå€§ã®æ°ãããšãã 1 å°ãããªã£ãæŽååé¡ãªã®ã§ããåé¡XXããšãåé¡XYãéšåã穎ããã®åæ§ã®è§£æ³ãçšããããšãã§ããŸãã
ãåé¡Yããåãæ°ã®åæ°ãããšãã 1 å°ãããªã£ãæŽååé¡ãªã®ã§ããåé¡YXããšãåé¡YYãéšåã穎ããã®åæ§ã®è§£æ³ãçšããããšãã§ããŸãã
ããã«ãåé¡XXãã¯ãåé¡XXXããšãåé¡XXYãéšåã穎ããã®åæ§ã®è§£æ³ãçšããããšãã§ããŠâŠâŠ
ãšããã®è§£æ³ã¯ååž°çã«çšããããšãå¯èœã§ãã
ãããã©ãã©ãç¹°ãè¿ããŠãããšããã®ãã¡ç©Žããéšåãèªæã«è§£ããåé¡ã«è¡ãåœãããŸãã
ããªãã¡ã
ã»åé¡åã« X ã 3 åå«ãŸããåé¡ã¯ã1 ã ãã§ã§ãã 1 çµãããªãåé¡ããªã®ã§ãèªæã«æŽåã§ããŠãã
ã»åé¡åã« Y ã 2 åå«ãŸããåé¡ã¯ãåæ°å 1 æãã€ãåçµ 1 æãã€ã«ãããŠããåé¡ããªã®ã§ãèªæã«æŽåã§ããŠãã
ã® 2 çš®ã¯ã穎ããéšåã¯èªæã«åãŸããŸãã
ãã£ãŠãæåã®ãåé¡ãã¯
ãåé¡ãstep 1
ããåé¡Xãstep 1
ãããåé¡XXãstep 1
ããããåé¡XXXãïŒèªæïŒ
ãããåé¡XXãstep 2
ããããåé¡XXYãstep 1
ãããããåé¡XXYXãïŒèªæïŒ
ããããåé¡XXYãstep 2
ãããããåé¡XXYYãïŒèªæïŒ
ããããåé¡XXYãstep 3
ãããåé¡XXãstep 3
ããåé¡Xãstep 2
ãããåé¡XYãstep 1
ããããåé¡XYXãstep 1
ãããããåé¡XYXXãïŒèªæïŒ
ããããåé¡XYXãstep 2
ãããããåé¡XYXYãïŒèªæïŒ
ããããåé¡XYXãstep 3
ãããåé¡XYãstep 2
ããããåé¡XYYãïŒèªæïŒ
ãããåé¡XYãstep 3
ããåé¡Xãstep 3
ãåé¡ãstep 2
ããåé¡Yãstep 1
ãããåé¡YXãstep 1
ããããåé¡YXXãstep 1
ãããããåé¡YXXXãïŒèªæïŒ
ããããåé¡YXXãstep 2
ãããããåé¡YXXYãïŒèªæïŒ
ããããåé¡YXXãstep 3
ãããåé¡YXãstep 2
ããããåé¡YXYãïŒèªæïŒ
ãããåé¡YXãstep 3
ããåé¡Yãstep 2
ãããåé¡YYãïŒèªæïŒ
ããåé¡Yãstep 3
ãåé¡ãstep 3
ãšããèªæãªåé¡ 10 åãšéèªæãªåé¡ 9 åãããªã 37 step ãèžãããšã§ç©Žããã®ãªãå®å
šãªè§£çã«ãªããŸãã
13 ãŸã§ã®æ°ã 4 åãã€ã®å Žåã¯ãèªæãªåé¡ 455 åãšéèªæãªåé¡ 454 åã® 1817 step å¿
èŠã«ãªãããã§ãã
ãã©ã³ãå®ç©ã 15 çµãããçšæããŠæäœæ¥ã§ããå ŽåãX ã 12 å䞊ã¶ãŸã§åŸ
ããªããŠã 10 åããã䞊ãã§ãåé¡ã¯æ°åãã§ã©ãã«ãããŠççž®ã§ãããã§ãã
ããã§ãæ°çŸ step ã¯å¿
èŠã«ãªãã§ãããããæ ¹æ°ããšãã§ããªãå¿
èŠã«ãªãã§ããããã
[1774] ã§ç§ãæåºããåé¡ã«ã€ããŠã§ãã以å€ã§ã¯äŸ¿å®ã®ãããã®åé¡ãããã³ã¬ã³ããšåŒç§°ããŸãã
ãã³ã¬ã³ã«ãããŠåæé
眮ãäžãããã«ãŒãã«ã€ããŠã®æäžã®äº€æã«ãŒã«ã«åŸã亀æãç¹°ãè¿ããŽãŒã«é
眮ã«èŸ¿ãçãããã®ãšããŸãã
ãŽãŒã«é
眮ã«ãããŠã¯13ããååã«ã¯å¿
ãã¹ããŒããïŒæã¥ã€ãããŸãããã®ã¹ããŒãã®ã«ãŒããã¡ã¯åœç¶ãªããïŒãã10,J,Q,KãŸã§ãïŒæã¥ã€å«ã¿ãŸãã
ãã®ã¹ããŒãã®ã«ãŒãã®é
眮äœçœ®ã«ããŒã¯ãã€ããŠãããŠã52æã®ã«ãŒãã®é
眮ãåã³åæé
çœ®ã«æ»ããŸãã
ããã»ã©ããŒã¯ãã€ããŠããã13æåã®ã«ãŒãã®é
眮äœçœ®(ããªãã¡ãŽãŒã«ã«ãããŠã¯ã¹ããŒãã«ãŒãã®ã¿ã眮ãããäœçœ®)ã«ã€ããŠèããŸããšãåæé
眮ã§ã¯ã¹ãŒãããŠããŒã¯ã«ã¯ãªã£ãŠããããã©ãã©ã§ã¯ãããŸããããããªãããã®13æåã®ã«ãŒãã®äœçœ®ã«ããã«ãŒããã¡ã¯ïŒãã10,J,Q,KãŸã§ãïŒæã¥ã€å«ã¿ãŸããæäžã®ã«ãŒãã®äº€æã«ãŒã«ãéã¿ãã°ããã¯åœç¶ã®ããšã§ããããã13æããã¹ãã¬ãŒãããšåŒã¶ããšãšããŸãã
以äžã¯ã¹ããŒãã®ã¿ã«ã€ããŠèããŸããããŽãŒã«é
眮ã«ãããããŒãããã€ã€ãã¯ããŒããŒã®3ã€ã®ã¹ãŒãã«ã€ããŠãåæã«åæ§ãªããšãèšããŸããããªãã¡ãã¹ããŒãã®ä»ã«ããŒãããã€ã€ãã¯ããŒããŒã®ã¹ãã¬ãŒããåŸãããããã§ãã
ããŠãããã§å€æãã4ã€ããã¹ãã¬ãŒãã¯ã
GAIããã®åé¡ã®è§£ã«ãªã£ãŠããããšã«ãªããŸããããªãã¡ãååããåãã¹ãã¬ãŒãã®ã¡ã³ããŒã®ã«ãŒããæŸãäžããŠããã°ããã®ã§ãã
åæé
眮ã«ãããã«ãã³ã¬ã³ã®åé¡ã«åžžã«è§£ãååšããã°ãGAIããã®åé¡ã«ãåžžã«è§£ãååšããããšãšãªããŸãã
äžæ¥èããŸãããããã³ã¬ã³ã®åé¡ã«ã€ããŠã¯åããšã«ã°ãªãŒãã£ãŒã«4ã¹ãŒããããããŠããããšãè¡ããããç¹°ãè¿ãã°ããããã¯ããŸãããããããšããææ³ãåŸãããã®ã¿ã§ããã蚌æã«ã¯ããããŸããã
ïŒãã©ã³ã52æãååã«ã·ã£ããã«ããåŸ4æãã€13çµã«åããã
ïŒåçµãã1æã ããããã©ã³ããæãåºããŠ13æã®ãã©ã³ãã§
ïŒ1ãã13ãŸã§ã®æ°å(ããŒã¯ã¯ç¡èŠ)ãæããããã®ãïŒ
å¿
ã1ãã13ãŸã§ã®æ°åãæããããšãå¯èœã§ãã
ããã¯ã°ã©ãçè«ã®ãããŒã«ã®å®çãããããããŸãã
4æãã€13çµã«åãããã®ãã
S_1, S_2, S_3, ... , S_13
ãšãããšãïŒä»»æã® A (Aâ{1,2, ... ,13}) ã«å¯ŸããŠïŒåžžã«ïŒ
|âª[jâA] S_j| â§ |A|
ãæãç«ã£ãŠããŸãã
ãã£ãŠã{1,2, ... ,13} ãã {S_1,S_2,S_3, ... ,S_13} ãžã®
å®å
šãããã³ã°ãååšããŸãã
https://ja.wikipedia.org/wiki/%E3%83%9B%E3%83%BC%E3%83%AB%E3%81%AE%E5%AE%9A%E7%90%86
ç§ãåœå{1,1,1,2,2,2,3,3,3,4,4,4}
ã®12æã®ã«ãŒããã·ã£ããã«ã3æãã€ã®4çµã«é
åžãããšã
ãã®ç°ãªãé
åžã®çµåãã93ãã¿ãŒã³ã«ãªãããšãèŠã€ãã
ã®ã«çŽ12æéããããŠããããšããæ¬¡ã®ãããªèå¯ã§åãçµæã
ã»ãã®æ°ç§ã§æ±ãŸãããšãã§ããŸããã
ç°ãªã4åã®çŽ æ°(2,3,5,7)ãå
šãŠæããå€ã®3ä¹ã®å€
(2*3*5*7)^3=9261000
ã§ã®ãã¹ãŠã®çŽæ°ã®äžã§ã3åã®çŽ æ°ã§æ§æãããŠããçŽæ°(bigomega(çŽæ°)==3ã®ã¿ã€ã)
ã ããéã(å
šéšã§20åããã)ããã®éåã§éè€ãèš±ã4åãåãåºããæ(å
šéšã§20H3=22C3=1540éã)
ã®äžãããã®åãåºã4åã®ç©ããã¿ãª9261000ãšäžèŽã§ãããã®ãäœåããã®ã調æ»ããã
ãã®ãã§ãã¯ã«åæ Œã§ããæ°ãæ±ããå€ãšäžèŽã§ãããšããã
gp > S=select(x->bigomega(x)==3,divisors((2*3*5*7)^3));â
gp > S
%21 = [8, 12, 18, 20, 27, 28, 30, 42, 45, 50, 63, 70,
ããã75, 98, 105, 125, 147, 175, 245, 343]
gp > #S
%22 = 20
gp > {M=[];}forvec(X=[[1,#S],[1,#S],[1,#S],[1,#S]],\
M=concat(M,[vecextract(S,X)]),1);â¡
gp > #select(i->vecprod(i)==(2*3*5*7)^3,M)â¢
%24 = 93
äžã®å®è³ªâ ,â¡,â¢ãçµåãããã°æžãã
ïŒç§ãåœå{1,1,1,2,2,2,3,3,3,4,4,4}
ïŒã®12æã®ã«ãŒããã·ã£ããã«ã3æãã€ã®4çµã«é
åžãããšã
ïŒãã®ç°ãªãé
åžã®çµåãã93ãã¿ãŒã³ã«ãªãããšãèŠã€ãã
ïŒã®ã«ïŒïŒïŒ
20åã® x ã®åé
åŒ
x^111,x^1011,x^1101,x^1110,
x^21,x^12,x^201,x^102,x^210,x^120,x^2001,x^1002,
x^2010,x^1020,x^2100,x^1200,
x^3,x^30,x^300,x^3000
ã®äžãããéè€ãèš±ããŠ4åãããããã®ç©ã x^3333
ãšãªãããã«éžã³åºããããªå Žåã®æ°ãæ°ãäžããŠã
ããã§ããã
ãã®èšç®ã Risa/Asir ã§å®è¡ããçµæã以äžã§ãã
[0] F=(1+x^10111+x^20222+x^30333)*(1+x^11011+x^22022+x^33033)*(1+x^11101+x^22202+x^33303)*(1+x^11110+x^22220+x^33330)*(1+x^10021)*(1+x^10012)*(1+x^10201)*(1+x^10102)*(1+x^10210)*(1+x^10120)*(1+x^12001)*(1+x^11002)*(1+x^12010)*(1+x^11020)*(1+x^12100)*(1+x^11200)*(1+x^10003)*(1+x^10030)*(1+x^10300)*(1+x^13000)$coef(F,43333,x);
[1] 93
ããªã匷åŒãªå€é
åŒã®å±éã§ãããäžç¬ã§çµæã衚瀺ããŠãããŸããã
äŸã®ããæ¹ã§éåžžã®ãã©ã³ãã®æ°åã ãã«çç®ãã
{1,1,1,1,2,2,2,2,,13,13,13,13}
ã®éåã§4æãã€13çµã«åé
ããæã®ç°ãªãæ°åã®çµã®åæ°ãæ±ããããšã«
å¿çšããããšè©Šã¿ãŠãããã§ãã
åççã«ã¯13åã®ç°ãªãçŽ æ°ã®ç©(2*3*5*11*13*17*19*23*29*31*37*41)^4
ãæã€bigomega==4ã®ãã¹ãŠã®çŽæ°ãåãåºãããã®éåã§ã®éè€ãèš±ããŠ
13ååãåºããã®ã®ç©ãäžèšã®çŽ æ°ã®ç©ãæºããå Žåã®ç·æ°ã調ã¹ãã°ããããšã«ãªãã
äœããã¹ãŠã®çŽæ°ã䞊ã¹ãããšãããšå€§å€ãªã®ã§,éã«bigomega==4ã«ãªããã®ãäœãããšã
ããã°
gp > P=primes(13);
%136 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41]
gp > M1=apply(i->i^4,P)
gp > #M1=13 (pi^4å)
gp > M2={M2=[];}for(i=1,13,for(j=1,13,if(i!=j,M2=concat(M2,[P[i]^3*P[j]]))));M2
gp > #M2
%86 = 156(pi^3*pjå);13*12=156)
gp > M3={M3=[];}for(i=1,13,for(j=1,13,if(i!=j,M3=concat(M3,[P[i]^2*P[j]^2]))));M3=Set(M3)
gp > #M3
%91 = 78 (pi^2*pj^2å;binomial(13,2)=78)
gp > M4={M4=[];}forsubset([13,4],i,M4=concat(M4,[vecprod(vecextract(P,i))]));M4
gp > #M4
%139 = 715 (pi*pj*pk*plå;binomial(13,4)=715)
gp > M5={M5=[];}for(i=1,13,for(j=1,13,for(k=1,13,if(i!=j && j>k && k!=i,\
M5=concat(M5,[P[i]^2*P[j]*P[k]]))))) ;M5=Set(M5)
gp > #M5
%141 = 858 (pi^2*pj*pkå;13*binomial(12,2)=13*66=858)
ã®5ã¿ã€ãã«åããããããåäœããŠ
MïŒM1âªM2âªM3âªM4âªM5
#M=1820
åŸã£ãŠãã®1820åãããéåããéè€ãèš±ããŠ13ååãåºãããã§ããã
1820H13=1832C13=4,0291,9125,1047,1060,9784,1375,0687,2800
4æŸ291æº9125ç©°1047ãã1060å9784京1375å687äž2å8çŸ
ãšããç©åãå Žåãããããã®äžã§æ¡ä»¶ãæºããããã®ãA268668ã§ã¯
1,2764,3314,7589,4997,2538,5063
ãšããããã§ããããçŽ2æ¶5åäžã®èª¿æ»ã§1åèŠã€ãããã©ãããããã«ãããããããªãã
ããã§ã¯ãããæéããããŠãç·æ°ãæŽãããšã¯äžå¯èœã«æããã
æ¢ãäœçœ®ãçµã£ãŠãã£ã𿬡ã®3ã€ã¯çºèŠã§ããŸããã
1;[16, 81, 625, 2401, 14641, 28561, 83521, 130321, 279841, 707281, 923521, 1874161, 2825761]
2;[16, 81, 625, 2401, 14641, 28561, 83521, 130321, 279841, 707281, 923521, 2076773, 2550077]
3;[16, 81, 625, 2401, 14641, 28561, 83521, 130321, 279841, 707281, 923521, 2301289, 2301289]
atããã®æ¹æ³ã¯ãŸã çè§£ããŠããŸããããããããã«ææŠãããã©ããªããã®ã§ããããïŒ
Hallã®å®çã«ã¯è§£ã®ååšå®çã®ãããªå°è±¡ãåããŸããããã®ãŸãŸã§ããšæ°ãäžãã¯é£ãããããªïŒ
4 ã€ã®åž A, B, C, D ãããããããã®éã«ã¯ä»¥äžã®ãããªç§»åææ®µããããŸãã
A-B éãB-C éãC-D éã«ã¯ãããããç§»åææ®µ X1, X2, X3 ããããŸãã
å X ã¯ãå©çšè
ãæ¯å 50 人以äžã§ããã°äººæ°ã«é¢ããã 30 åã§å°çããå©çšè
ãæ¯å 50 人ãè¶
ããå Žå㯠1 人è¶
ããããšã«æèŠæéã 1 åå¢å ããŸãã
A-C éãB-D éã«ã¯ãããããç§»åææ®µ Y1, Y2 ããããŸãã
å Y ã¯ãå©çšè
ãæ¯å 30 人以äžã§ããã°äººæ°ã«é¢ããã 110 åã§å°çããå©çšè
ãæ¯å 30 人ãè¶
ããå Žå㯠1 人è¶
ããããšã«æèŠæéã 1 åå¢å ããŸãã
ããã«ã€ããŠã以äžã® 2 ã€ãèããŠãã ããã
(1) ããæ¥ãA åžãã D åžãŸã§ãæ¯å 70 人ãç§»åããããšããŸããã
åã
èªåã®æèŠæéãæçã«ãªãããçµè·¯ãéžæããå Žåãç§»åã«åèšäœåãããã§ããããïŒ
(2) å®éã«ã¯ãã®æ¥ã®æ©æã« B-C éã® X2 ã«ãã©ãã«ãçºçããçµæ¥å©çšäžå¯ã«ãªã£ãŠããŸããŸããã
ãããããã§ããA åžãã D åžãŸã§ãæ¯å 70 人ãç§»åããããšããŸããã
åã
èªåã®æèŠæéãæçã«ãªãããçµè·¯ãéžæããå Žåãç§»åã«åèšäœåãããã§ããããïŒ
(1)8300(å)
________(20人)________
|<--------------------->|
A--(50人)--B--(30人)--C--(50人)--D
^^^^^^^^^ |_______(20人)________|
(2)10150(å)
_______(35人)________
|<------------------->|
A--(35人)--B--(0人)--C--(35人)--D
^^^^^^^^^ |_______(35人)________|
ã¹ããŒã¹ããŒãç¡èŠãããã®ã§ãäžèšã®ãããªè¡šçŸã«ãªã£ãŠããŸãã
ç·èšãããªããŠãååäººã®æèŠæéã§ãé¡ãããŸãã
(2) 㯠10150/70 = 145 åã§æ£è§£ã§ãã
(1) ã¯âŠâŠããã©ãããèšç®ã«ãªã£ããã§ããããïŒ
ããããããŸãããåèšã£ãŠããã®ã誀解ãæãããã§ããã
äŸãã° (2) ã®å Žåã
Y1âX3 ã®ã«ãŒããéã£ã人ã¯ãY1 ã§ 110+5 åãX3 ã§ 30 åãåèš 145 å
X1âY2 ã®ã«ãŒããéã£ã人ã¯ãX1 ã§ 30 åãY2 ã§ 110+5 åãåèš 145 å
ãããã®å ŽåãæèŠæéã®åèšã¯ 145 åã
ãšãåèšãšããã®ã¯ããããæå³ã®ã€ããã§ããã
ã¯ãã
åèšã£ãŠäœããã£ãŠã®åèšã ãããšãã£ãšæã£ãŠãããã§ããã
åã
èªåã®æèŠæéã®è¡šçŸããã£ãã®ã§ãå
šå¡ã®æèŠæéã®åèšã§æ¯èŒããŠããŸããŸããã
åŸã¯ããã°ã©ã ã§70人ã®åå²ã®ä»æ¹ãåé¡ã
(1)ã§ã¯å
šéšã§2556éãã«åé¡ã§ãããããå
šå¡ã®ã¿ã€ã ã®åèšã§ã®éèšã§ã®æå°å€æ¢ãã
(2)ã§ã¯äžèšã®B-Céã®éè¡ã0人ã®ãã¿ãŒã³(å
šéšã§71éã)ãéãããã®äžã§ã®æå°å€ãæ¢ããŸããã
æèŠæéã¯äœäººãåãã«ãŒããéžæããŠãããã«ãã£ãŠç°ãªã£ãŠããã®ã§ãäžå人ã ãã§æçæéã®ã³ãŒã¹ã¯
éžã¹ãªãããã©ãããŠãçµ±èšçåŠçã«ãªã£ãŠããŸããŸããã
(1)ã¯(50+30+50)(人)*30(å)+(20+20)(人)*110(å)=8300(å)ã§ãã
ãŸã第2äœã¯
A-B:50|B-C:31|C-D:51|A-C:20|B-D:19(人)
ã§(50+31)*30+51*31+(20+19)*110=8301(å)
ãŸãã¯
A-B:51|B-C:31|C-D:50|A-C:19|B-D:20(人)
ã§51*31+(31+50)*30+(19+20)*110=8301(å)
ã®ç§»åã§èµ·ããã
ã¡ãªã¿ã«(1)ã®æ£è§£ã¯äœã§ããïŒ
140(å)ãšããããšãªãã§ããããïŒ
(1) ã¯ãã®äººæ°ã«ã¯ãªããŸãããã
ãšããã®ã¯ãY1âX3 ã®çµè·¯ãéãããšãã人㯠110+30 = 140 åãããããšã«ãªããŸããã
X1âX2âX3 ã«å€æŽããã° (30+1)+30+30 = 91 åã§æžã¿ããã¡ãã«äœ¿çšçµè·¯ã倿Žããã¯ãã ããã§ãã
ããã°ã©ã ã§èãããªããããèããŠã¿ãŠãã ããã
æé 1ïŒ70 人ããããã«çªå·ãã€ããã©ã³ãã ãªçµè·¯ãéžæãã
æé 2ïŒ1 çªã®äººããé ã«ããããèªåãä»ã®çµè·¯ã«å€æŽãããèªåã®æèŠæéãçããªãå Žåããã£ã¡ã«å€æŽãããã 70 çªã®äººãŸã§å®è¡
æé 3ïŒæé 2 ã§èª°ã 1 人ã§ã倿Žããã£ãå Žåã誰ã倿ŽããªããªããŸã§ããã«æé 2 ãç¹°ãè¿ã
æé 4 ïŒåã
ã®ç§»åæéãäœåã«ãªã£ãããåºå
ããå¯èœã§ããã°ãX2 ãå®å
šã«éäŒããã®ã§ã¯ãªãã
ã»é
å»¶ã§ +5 åãããå Žå
ã»é
å»¶ã§ +10 åãããå Žå
ã»é
å»¶ã§ +15 åãããå Žå
âŠâŠ
ã»é
å»¶ã§ + 70 åãããå Žå
ãåºããŠã¿ãŠãã ããã
é¢çœãããšã«ãªããŸãã
DD++ããã®èª¬æãååçè§£ããŠããªãããç¥ããŸãããèªå°ã«åŸã£ãŠèããŠã¿ããš
1人ç®ã¯åœç¶åé§
ãéãã³ãŒã¹ã§
30+30+30=90åã§è¡ãã
2人ç®ã
30+30+30=90
以äž
50人ç®ã90
51人ç®ã¯æ¡ä»¶ãã
31+31+31=93
52人ç®ã¯
32+32+32=96

66人ç®ã¯
46+46+46=138
ããã§
67人ç®ã¯ãã®ã³ãŒã¹ã ãš
47+47+47=141
ã ã
A-Cã³ãŒã¹ïŒC-Dã³ãŒã¹ãéžæããã°
110+30=140
ãªã®ã§ããã¡ããçæéãšãªãã³ãŒã¹ã倿ŽããŠé²ãããšã«ãªãã
ãã®å€æŽãè¡ã£ãŠããã以åã®äººã¯ãªããã³ãŒã¹ã倿Žããå¿
èŠã¯æããªãã
以äž68,69,70人ç®ãåœç¶ãã®ã³ãŒã¹ã§ããããšãéžæããã(åèªã®æèŠæéã¯åãã140å)
ã ãã70人ãç§»åããã®ã«140åãæå°æéãšèããŠããŸãã®ã§ãããã©ãã®äœãããããã®ã§ãããïŒ
ãªã70äººã®æèŠæéã¯çåãã§ãªããŠããã©ãã©ã§ãæ§ããªãã®ã§ããããïŒ
GAI ããã誀解ãããŠãããã€ã³ã㯠2 ã€ã§ãã
1 ã€ãã
> 51人ç®ã¯æ¡ä»¶ãã
> 31+31+31=93
ã§ãããæžæ»ã«ããé
å»¶ã¯èªåãäœäººç®ãã§ã¯ãªãäžæ°ã«äœäººéãããšããŠãããã§æ±ºãŸããŸãã
ïŒéã人æ°ãã70 人ãã§ã¯ãªããæ¯å 70 人ããšããŠããã®ã¯ãã®ããïŒ
ã€ãŸãã51 人ã X1-X2-X3 ãéžæããã®ã¯ã51 人ç®ã 93 åãããã®ã§ã¯ãªãã51 人å
šå¡ã 93 åãããããšãæå³ããŸãã
2 ã€ãã
> 67人ç®ã¯ãã®ã³ãŒã¹ã ãš
> 47+47+47=141
> ã ã
> A-Cã³ãŒã¹ïŒC-Dã³ãŒã¹ãéžæ> ããã°
> 110+30=140
ã§ãããX3 ã¯æžæ»ãçºçããŠããã®ã§ åŸè
㯠110+47 = 157 åã«ãªããŸããã
ïŒããããç§»åããæ¯å 70 人ãã§ããããšã«æ³šæããŠãã ããïŒ
> ãªã70äººã®æèŠæéã¯çåãã§ãªããŠããã©ãã©ã§ãæ§ããªãã®ã§ãããã
æ§ããŸããããããããã®å Žåã¯é
ãã«ãŒãããæ©ãã«ãŒãã«å€æŽãããã人ãã©ããã«ãããšæããŸãã
ã ãããæ¯å人æ°ãéæŽæ°ã§ããããšããã°ãçµæçã«ã¯å
šå¡åãæèŠæéã«åæããã¯ãã§ãã
æŽæ°äººæ°éå®ã§èããå Žåã¯ã1 åã®å·®ã¯æ®ããããããŸãããã
èããã°èããã ãæ··ä¹±ããŠãããã§ãã
66人ã®éå£ã§ååžãå·¡ãã°(Xã®ææ®µã®ã¿)ãããæéã¯åèªå
±éã§46*3=138åã§ãããã
ããYã®ç§»åææ®µã䜿ãã°AããDåžã«äžäººã§ãæäœ110+30=140åã®æéã§ã®éå¹çã®è¡ãæ¹ãªã®ã§
70人ãäžæã«ç§»åããææ®µã¯Yã®ææ®µãåãå
¥ããªãã®ããããåçŽã«Xã ãã®ç§»åææ®µã§
70人ãå
±éã«50*3=150åã䜿ãã°ããããæçã®æèŠæéã«ãªããã§ã¯ãªãã®ããªïŒ
ããã§ãã(1) 㯠150 åã§æ£è§£ã§ãã
å
šå¡ã X ãå©çšããå Žåã§ã 50 åãªã®ã§ãã©ããªå Žåã§ã Y ã 1 åå©çšãããã X ã 2 åããæ¹ãçãæžã¿ãŸãã
ãã£ãŠå
šå¡ã X ã®ã¿ãå©çšããããšã«ãªããæèŠæé㯠50*3 = 150 åã§ãã
äžæ¹ã§ãæ¹ã㊠(2) ã®å Žåã145 åãæ£è§£ã§ãã
X2 ãéäŒããŠããã®ã§çµè·¯ãå®å
šã«åé¢ãã 2 ã€ãããªããæžæ»ããªããã°ã©ã¡ãã®çµè·¯åãæéã§ãã
ãšããããšã¯å
šå¡æžæ»ã®åœ±é¿ãå°ãªãæ¹ãžè¡ãããšããã®ã§ãåçµè·¯ã 35 人ãã€ãå©çšããŠãæèŠæé㯠115+30 = 145 åã§ãã
ãšããããšã§ã
A-D éã®äº€éã®ã¿ãèãããªããX2 ã¯ååšããæ¹ã亀éã®äŸ¿ãæªããªãå¥åŠãªçµè·¯ãªã®ã§ããã
ãããã²ãŒã äžçã®è©±ã§æ¬åœã« A-D éã®ç§»åããè¡ãããªããªããX2 ã¯å³å»æ€å»ãã¹ããšããããšã«ãªããŸãã
çŸå®ã§ã¯ B åžã C åžã®äœäººãããã§ããããã X2 æ€å»ãšã¯è¡ããªãã§ããããã©ã
åèãšããŠã
X2 ã«æžæ»ãšã¯å¥åå ã§é
å»¶ãçºçããæèŠæéã 30 åãããµããå Žåã 5 åå»ã¿ã§èšç®ãããã®ããã¡ãã§ãã
ïŒæ¯åã®äººæ°ãªã®ã§ãçµè·¯å©çšè
æ°ã¯éæŽæ°ãã¢ãªãšããŠããŸãïŒ
BC éããåèšæéïŒæ¯åã® X1-X2-X3 çµè·¯å©çšè
æ°ïŒ
30 å âŠâŠ 150 åïŒ50 人ïŒ
35 å âŠâŠ 155 åïŒ50 人ïŒ
40 å âŠâŠ 160 åïŒ50 人ïŒ
45 å âŠâŠ 158 å 20 ç§ïŒ145/3 人ïŒ
50 å âŠâŠ 156 å 40 ç§ïŒ140/3 人ïŒ
55 å âŠâŠ 155 åïŒ45 人ïŒ
60 å âŠâŠ 153 å 20 ç§ïŒ130/3 人ïŒ
65 å âŠâŠ 151 å 40 ç§ïŒ125/3 人ïŒ
70 å âŠâŠ 150 åïŒ40 人ïŒ
75 å âŠâŠ 145 åïŒ35 人ïŒ
80 å âŠâŠ 140 åïŒ0 ã 30 人ïŒ
85 å âŠâŠ 145 åïŒ0 人ïŒ
90 å âŠâŠ 145 åïŒ0 人ïŒ
95 å âŠâŠ 145 åïŒ0 人ïŒ
以äžãã£ãš145åïŒ0 人ïŒ
ããŸãã«çŽæçã§ãªãçµæãªãã§ããããªãã§ãããªçŸè±¡ãèµ·ãããã§ããããïŒ
(3) ãã(2) ã®ç®¡ç人ããã®æ¹è¯åŸã®è§£æ³ãšåæ§ã«ããã°ããããªå ŽååãããªããŠãæžãã®ã§ã¯ãªãããšæããŸãã
D ã C ãšçãããªã C ã®ç¯å²ã¯ 0âŠCâŠ6
C ã¯ããšããš 0âŠCâŠ16 ã ãããD ã C ãšç°ãªããããªç¯å²ã¯ 7âŠCâŠ16
C ã B ãšçãããªã B ã®ç¯å²ã¯ 0âŠBâŠ16
B ã¯ããšããš 0âŠBâŠ36 ã ãããD ã C ãšç°ãªããããªç¯å²ã¯ 17âŠBâŠ36
ãã®ãã¡ã7âŠCâŠ16 ãšãªãç¯å²ã¯ 24âŠBâŠ33
以äžã管ç人ããã®è§£çãšåã
幎è¶ããã¿ã§ãããã©ãäžçš®ã®æåãèŠããŸããã®ã§ã玹ä»ããããŸãã
(1349^3+675^3)/(1349^3+674^3) =
(1349+675)/(1349+674) =
2024/2023
ãããªããšãã§ããã®ã¯ã©ããªå¹Žã§ãããïŒ
æ¥å¹Žãªã
(4049^3+2026^3)/(4049^3+2023^3) = (4049+2026)/(4049+2023) = 2025/2024
ã¿ãããªããšã§ãããïŒ
ä»»æã®å¹Žã§ã§ãããããªïŒ
nâZ, nâ¡1(mod 3)ã®ãšã
ãã[a,b,c]=[(2*n+1)/3,(n+2)/3,(n-1)/3]
ã¯ã
ã a,b,câZ,
ã (a^3+b^3)/(a^3+c^3)=(a+b)/(a+c)=(n+1)/n,
(a+b)=(a+c)+1
ãæºããã
ãŸããnâZ-{0}ã«å¯ŸããŠã
ã (a^3+b^3)/(a^3+c^3)=(a+b)/(a+c)=(n+1)/n,
(a+b)=(a+c)+1
ãæŽæ°è§£[a,b,c]ãæã€ãªãã°ãnâ¡1 (mod 3)ã§ããã
以äžãããæçµè¡ã®åæ¯nããnâ¡1 (mod 3)ããæºãããšãã§ããããã®ãšãã«éãå¯èœã
æçåŒ
((x+y)^3+y^3)/(x^3+(x+y)^3) = ((x+y)+y)/(x+(x+y))
ããåºçºããŸããã
x+2y=2024
2x+y=2023
ãèŠè«ããŠ
x=675
y=674
ãåŸãŸããã
ãã®ããæ¹ã§ã¯
3x+3y=2023+2024
ã§å³èŸºã3ã®åæ°ãšãªãããŸããããŸãã
H.Nakao ããããã¯ãã¡ãã®ã«ãŒããå³å¯ã«ç€ºããŠããã ããŸããã
äžæ¹ã«ãã㊠DD++ ããã«ãããæç€ºã«ã¯
ç§ã¯ãšãŠãé©ããŸããããªãã»ã©
çŽåâŠâŠãããŸãåããŠããŸãã
詳ãã解説ããé¡ãç³ãäžããŸãã
ããããDengan ããã«ä¹ã£ãã圢ã§ã
2 çªç®ã®èŸºãèŠçŽåæ°ã§ããå¿
èŠã¯ãªãã®ã§ã
x+2y=2024k
2x+y=2023k
ã§ããã°ããã
3x+3y=(2023+2024)k
ãšãªã£ããšãã«æ¬åŒ§å
ã 3 ã®åæ°ã§ãªããŠã k ã 3 ã®åæ°ã§ããã°äœãåé¡ãªããšããã ãã®è©±ã§ãã
ãšããã§ã
(7^3+7^3)/(8^3+5^3) = (7+7)/(8+5) = 14/13
ã¿ãããªãã¿ãŒã³ã£ãŠãã®åé¡ã«ãããŠã¢ãªã§ãããïŒ
4 æ°ãã©ãã©ãããã ãšããåæã§ã
(3N+2)/(3N+1) å以å€ãäœãã¯ãããã®ã®ããã®åœ¢ã®æ¹ãããããªåŒã§äœããããšãå€ãããã§ããã
(1025^3+999^3)/(1034^3+989^3) = (1025+999)/(1034+989) = 2024/2023
(1025^3+999^3)/(1034^3+989^3) = (1025+999)/(1034+989) = 2024/2023
倧å€ã«è峿·±ãã§ãã
a*b = c*d ãèŠãã 4 æ° a, b, c, d ã«å¯Ÿãã
p = a+b-c, q = a+b-d, r = c+d-a, s = c+d-b ãšãããšã
(p^3+q^3)/(r^3+s^3) = (p+q)/(r+s) ãæãç«ã¡ãŸãã
â» p, q, r, s ãæŽæ°ã§ããã°ãa, b, c, d ãæŽæ°ã§ããå¿
èŠã¯ãããŸããã
â» a = (2x+y)/3, b = 2(x+2y)/3, c = (x+2y)/3, d = 2(2x+y)/3 ãšããã°ãDengan ãããçšããåŒã«ãªããŸãã
(a+b)-(c+d) = k ã§ãããšãã(p+q)-(r+s) = 3k ã«ãªãã®ã§ã
k = 1/3 ã«ãªãããã«ããããp+q ã 3 ã®åæ°ã«ãªãããã«ããªãã k = 1 ã«ãããã§ã
ä»åã®ç®çã®ããã«ååã忝ãã 1 ã ã倧ããåæ°ãåŸãããŸãã
ãŸãã(a+b)-(c+d) = k ãèŠè«ããå Žåã
p = a+b-c = d+k, q = a+b-d = c+k, r = c+d-a = b-k, s = c+d-b = a-k ãšãªããæŽæ°ã«ãã調æŽãå€å°æ¥œã«ãªããŸãã
äŸ1
(a+b)-(c+d) = 1/3 ãš a*b = c*d = 400/9 ãèŠè«ããŠã
a = 16/3, b = 25/3, c = 20/3, d = 20/3 ãšãããšã
p = 7, q = 7, r = 8, s = 5 ãåŸããã14/13 ãäœããŸãã
äŸ2
(a+b)-(c+d) = 1/3 ãš a*b = c*d = 1120/9 ãèŠè«ããŠã
a = 28/3, b = 40/3, c = 32/3, d = 35/3 ãšãããšã
p = 12, q = 11, r = 13, s = 9 ãåŸããã23/22 ãäœããŸãã
äŸ3
(a+b)-(c+d) = 1 ãš a*b = c*d = 2*2024*2025 ãèŠè«ããŠã
a = 2024, b = 4050, c = 2025, d = 4048 ãšãããšã
p = 4049, q = 2026, r = 4049, s = 2023 ãåŸããã6075/6072 = 2025/2024 ãåŸãããŸãã
äŸ4
(a+b)-(c+d) = 1/3 ãš a*b = c*d = 2*2023*2024/9 ãèŠè«ããŠã
a = 2023/3, b = 4048/3, c = 2024/3, d = 4046/3 ãšãããšã
p = 1349, q = 675, r = 1349, s = 674 ãåŸããã2024/2023 ãåŸãããŸãã
äŸ5
(a+b)-(c+d) = 1/3 ãš a*b = c*d = 28*29*106*107/9 ãèŠè«ããŠã
a = 2968/3, b = 3103/3, c = 2996/3, d = 3074/3 ãšãããšã
p = 1025, q = 999, r = 1034, s = 989 ãåŸããã2024/2023 ãåŸãããŸãã
倧éå°å£«ã®åªæãèããŠããããã§
ãããªãŸããããœâ (â *ïŸâ ïŸâ *â )â ïŸ
çè§£ã«åªããããšæããŸãã
æææ¡ä»¶ã€ãã®æçåŒã£ãŠçŽ æµã§ããã
å
±éãã¹ãã®åé¡ãããã®ç®¡ç人ããã®è¿œç©¶ãããã®ããã«å
ãã
(5â13)^2 - 18^2 = 1 ãšå³èŸºã 1 ïŒãŸã㯠-1ïŒã«ãªããã®ãåŸãæç¹ã§ã
ããšã¯ (5â13-18) (5â13+18) = 1 ã®äž¡èŸºã n ä¹ããã ãã§ç°¡åã«ç²ŸåºŠãé«ããããŸãã
ã»2 ä¹ã®å Žå
(649-180â13) (649+180â13) = 1 ãš 1298 < 649+180â13 < 1299 ããã
(649-1/1299)/180 < â13 < (649-1/1298)/180
ããªãã¡
3.60555127546âŠâŠ < â13 < 3.60555127876âŠâŠ
ã§å°æ°ç¹ä»¥äž 8 æ¡
ã»3 ä¹ã®å Žå
(6485â13-23382) (6485â13+23382) = 1 ãš 46764 < 6485â13+23382 < 46765 ããã
(23382+1/46765)/6485 < â13 < (23382+1/46764)/6485
ããªãã¡
3.6055512754639187âŠâŠ < â13 < 3.6055512754639892
ã§å°æ°ç¹ä»¥äž 13 æ¡
â13 = 3.6055512754639892931âŠâŠ ãšæ¯èŒããã°ãããããã«ãå¶æ°ä¹ã§ã¯äžéãã奿°ä¹ã§ã¯äžéãããªã粟床ã®ããè¿äŒŒã«ãªããŸãã
ïŒ1ä¹ã®æãå®ã¯äžéåŽã¯ããªã粟床ãããïŒ
é£åæ°ã®æã¡åããšã®é¢ä¿
â13=[3;1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,âŠ]
[3;1,1,1,1]=18/5
[3;1,1,1,1,6,1,1,1,1]=649/180=(18+1/36)/5
[3;1,1,1,1,6,1,1,1,1,6,1,1,1,1]=23382/6485
[3;1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1]=842401/233640=(649-1/1298)/180
[3;1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1]=30349818/8417525
[3;1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1]
=1093435849/303264540=(23382+1/46764)/6485
ãªããäžãšéè€ããŸãã
(649-1/1298)/180=3.60555127546âŠ
=[3;1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1]
(649-1/1299)/180=3.60555127876âŠ
=[3;1,1,1,1,6,1,1,1,1,6,1,1,1,1,3]
(23382+1/46765)/6485=3.60555127546391878âŠ
=[3;1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,2,2,3,3,3]
(23382+1/46764)/6485=3.60555127546398929âŠ
=[3;1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1]
ãšãããŸã§æžããŠæ°ä»ããŸããã
(649-1/1299)/180 < â13 < (649-1/1298)/180
ã¯
(649-1/1298)/180 < â13 < (649-1/1299)/180
ã®èª€ãã§ããã
ãããããäžã®æµããèŠããš
18/5=3.6
(18+1/(18*2))/5=649/180=3.60555âŠ
(649-1/(649*2))/180=842401/233640=3.60555127546âŠ
(842401-1/(842401*2))/233640=1419278889601/393637139280
=3.60555127546398929311922âŠ
(1419278889601-1/(1419278889601*2))/393637139280
=4028705132934095091878401/1117361763886065161254560
=3.605551275463989293119221267470495946251296573845âŠ
ïŒå°æ°ã¯â13ãšäžèŽããæ¡ã®ã¿ïŒ
ã®ããã«èšç®ããããšã§ç²ŸåºŠãåã
ã«ããããšãã§ããŸããã
ãã1298 ãš 1299 éã ã£ãâŠâŠç®¡ç人ãããèšäºåã®æã«ä¿®æ£ãªããªããªãããé¡ãããŸãã
ãã«æ¹çšåŒã®è§£ã®æ§æããçæ³ãåŸãŠããã®ã§ãé£åæ°å±éãšé¢ä¿ãããã®ã¯ãŸãã«ãã®éãã§ãã
ããããããã®æ¹æ³ã§çåãªãã§ãããå粟床ã§äžèŽããŠããä¿èšŒã¯ã©ãããåãã®ã§ãããïŒ
DD++ããã®ã2ä¹ã®å Žåãã®èšç®ããèšããŠãããããªæ°ãããŸãããéããŸãããïŒ
(a-bâ13)(a+bâ13) = 1ã®ãšã
(a-bâ13)^2 = a^2+13b^2-2abâ13 = 2a^2-1-2abâ13
(2a^2-1)/(2ab) = (a-1/(2a))/b
ãšãªããããã¯a/bãšæ¯èŒããŠç²ŸåºŠã2å
ã¡ãã£ãšéã ã£ãããç¥ããŸããã®ã§è£è¶³ããŸãã
(a-bâ13)(a+bâ13)=1 ã®ãšã
a-bâ13=1/(a+bâ13)
a/b-â13=1/{b(a+bâ13)}
æåã®åŒã2ä¹ãããš
(a-bâ13)^2(a+bâ13)^2=1
2a^2-1-2abâ13=1/(a+bâ13)^2
(2a^2-1)/2ab-â13=1/{2ab(a+bâ13)^2}ïŒ1/{b(a+bâ13)}^2=(a/b-â13)^2
âŽ(a-1/(2a))/b-â13ïŒ(a/b-â13)^2
ããäžã€è£è¶³
(a-bâ13)(a+bâ13) = -1 ã®å ŽåïŒ5â13-18=1ã®ãããªå ŽåïŒã¯
13b^2=a^2-1 ã§ãªã 13b^2=a^2+1 ãšãªããŸãã®ã§
(a-bâ13)^2 = a^2+13b^2-2abâ13 = 2a^2+1-2abâ13
(2a^2+1)/(2ab) = (a+1/(2a))/b
ã®ããã«1ç®æç¬Šå·ãå€ãããŸãããä»ã¯åãã§ãã
äžåºŠ2ä¹ããåŸã¯ a-bâ13=1 ã®åœ¢ã«ãªããŸãã®ã§ã
(a+1/(2a))/b ã®ããã«ãã©ã¹ã«ãªãå¯èœæ§ãããã®ã¯ååã ãã§ãã
ç§ã®ã¯
3.60555127546âŠâŠ < â13 < 3.60555127876âŠâŠ
ãšäžäžããæãã§ãŸãã®ã§ã
ã»3.60555127 ãŸã§ã¯ç¢ºå®
ã»ç¶ãã 546 ããããŸã§ãã£ãŠããïŒäºæ³ïŒ
ãšããããã«èšŒæãšäºæ³ãåºå¥ããŠåºããŠããŸãã
DD++ãããæžãããŠããè©äŸ¡ãšããŠã¯ãã®éãã§ããã
ãããèšç®ã¯2ä¹ããŠããããšãããïŒèšãæ¹ãéã§ããïŒâ13ãšã®èª€å·®ã2ä¹ãããŠããŠ
粟床ã2åã«ãªã£ãŠããããšãèŠãŠãšããŸãããç§ãæžããäžã®èšç®ãèŠããšãå®éã«ã¯
2ä¹ããããã«å°ãããªã£ãŠããïŒ2ä¹ã®çŽ0.14åïŒããšãããããŸãã
å®éã1742ã§æžããèšç®ã§ãæ£ããå°æ°ç¹ä»¥äžã®æ¡æ°ã
2æ¡ã5æ¡ã11æ¡ã23æ¡ã48æ¡ã®ããã«2å以äžã«ãªã£ãŠããŸããã
ãã®èšç®æ¹æ³ã¯â13以å€ã«ã䜿ããŠãå®éã«ããã€ãèšç®ããŠã¿ãŸããã
â2ã¯7/5=1.4ããå§ããŠ5åã®èšç®ã§72æ¡
â3ã¯7/4=1.75ããå§ããŠ5åã®èšç®ã§71æ¡
â5ã¯9/4=2.25ããå§ããŠ5åã®èšç®ã§78æ¡
â6ã¯5/2=2.5ããå§ããŠ5åã®èšç®ã§62æ¡
ïŒããããæ¡æ°ã¯çå€ãšäžèŽããŠããå°æ°ç¹ä»¥äžã®æ¡æ°ïŒ
ã®ããã«ãªã£ãŠããŸããã
ãã£ããèšç®ããã®ã§å®éã®èšç®ãæžããŠãããŸãããã
ã»â2
7^2-(5â2)^2=-1ïŒå·®ã±1ã§ããããšã¯éèŠïŒ
7/5=1.4
(7+1/(7*2))/5=99/70ãïŒ7-5â2ïŒ0ãªã®ã§ããã ããïŒãïŒ
(99-1/(99*2))/70=19601/13860
(19601-1/(19601*2))/13860=768398401/543339720
(768398401-1/(768398401*2))/543339720=1180872205318713601/835002744095575440
(1180872205318713601-1/(1180872205318713601*2))/835002744095575440
=2788918330588564181308597538924774401/1972063063734639263984455073299118880
=1.414213562373095048801688724209698078569671875376948073176679737990732478âŠ
ã»â3
7^2-(4â3)^2=1
7/4=1.75
(7-1/(7*2))/4=97/56ãïŒ7-4â3ïŒ0ãªã®ã§ããã¯ãïŒãã以äžâ5ãšâ6ãåãïŒ
(97-1/(97*2))/56=18817/10864
(18817-1/(18817*2))/10864=708158977/408855776
(708158977-1/(708158977*2))/408855776=1002978273411373057/579069776145402304
(1002978273411373057-1/(1002978273411373057*2))/579069776145402304
=2011930833870518011412817828051050497/1161588808526051807570761628582646656
=1.73205080756887729352744634150587236694280525381038062805580697945193301âŠ
ã»â5
9^2-(4â5)^2=1
9/4=2.25
(9-1/(9*2))/4=161/72
(161-1/(161*2))/72=51841/23184
(51841-1/(51841*2))/23184=5374978561/2403763488
(5374978561-1/(5374978561*2))/2403763488=57780789062419261441/25840354427429161536
(57780789062419261441-1/(57780789062419261441*2))/25840354427429161536
=6677239169351578707225356193679818792961/2986152136938872067784669198846010266752
=2.236067977499789696409173668731276235440618359611525724270897245410520925637804âŠ
ã»â6
5^2-(2â6)^2=1
5/2=2.5
(5-1/(5*2))/2=49/20
(49-1/(49*2))/20=4801/1960
(4801-1/(4801*2))/1960=46099201/18819920
(46099201-1/(46099201*2))/18819920=4250272665676801/1735166549767840
(4250272665676801-1/(4250272665676801*2))/1735166549767840
=36129635465198759610694779187201/14749861913749949808286047759680
=2.44948974278317809819728407470589139196594748065667012843269256âŠ
ããããã®ãå
ã®å
±éãã¹ãã®åé¡ã¯ã芧ã«ãªã£ãŠãŸãããïŒ
ãã®åé¡ã¯ã©ãã ãè¿ãæçæ°ãäœãããã§ã¯ãªããçå€ãããããªãç¶æ
ã§äžãã n æ¡ã確å®ããããšããæå³ã®åé¡ã§ãã
ãªã®ã§ããå®éã®çå€ãèŠããšäžãã n æ¡åã£ãŠãããã ããªã®ã¯ããã»ã©äŸ¡å€ã¯ãªãã®ã§ããã
ããããæèŠããŠããŸããã
æåãããããã®ããã«èšç®ãããšç²ŸåºŠã®é«ãå€ãåŸãããšãåºæ¥ãŸããããšãããå
ã®åé¡ãšã¯é¢ä¿ãªãïŒç§ã®ïŒèå³ãããèšç®ãæžããã ãã®ã€ããã§ãã
å
ã®åé¡ãã話ããããŠã¯ãããªãã£ãã®ã§ããããããããªããã
éžããŠãããªãããšã¯ãªãã§ãããå¥ã®è©±ã ãšæããå
¥ããŠããå§ããªããšãã ç¡æå³ã«å Žãæ··ä¹±ãããã ãããšæããŸãã
ãããŠãè¿ãæçæ°ãåŸããã ããªã®ã§ããã°ã
(5â13-18)^16 = 4028705132934095091878401 - 1117361763886065161254560â13
ããïŒç¥ïŒ
ã§ãããããåã
èšç®ã蟿ããªããŠã 1 è¡ã®åŒã§ 48 æ¡åãããããŸããã
å
¬å¹³ãã®ä»£åè©ã§ãããã³ã€ã³ãã¹ã§ã®ã³ã€ã³ã«
ãšã¬ã¯ãããã¯ã¹ã®æå
ç«¯ã®æè¡ãçšããŠãéå»ã«åºãã
衚ãè£ã®åæ°ãèšæ¶ãããŠããæ©èœãå
èµããæ¬¡ã«åºã衚
è£ããã®éå»ã®åæ°ã«æ¯äŸããé »åºŠã§ã²ã£ããè¿ãæ§é ã
å·§ã¿ã«çµã¿èŸŒãŸããã³ã€ã³ãéçºããã
äŸãã°
1åç®ã®ãã¹ã§ã¯è¡šã
2åç®ã®ãã¹ã§ã¯è£ãåºããã®ç¹æ®ã³ã€ã³ã¯
3åç®ã衚ãã§ã確çã¯éå»2åã®å
ã§è¡šã¯1ååºãŠããã®ã§1/2ã®ç¢ºçã§èµ·ãã
åãã
1åç®ã®ãã¹ã§ã¯è¡šã
2åç®ã®ãã¹ã§ã¯è£ã§
3åç®ãè£ãã§ã確çã¯éå»2åã®å
ã§è£ã¯1ååºãŠããã®ã§1/2ã®ç¢ºçã§èµ·ããã
ãŸã
1åç®;衚ã
2åç®;è£ã
3åç®;衚ãã§ãã³ã€ã³ã¯
4åç®ã衚ã«ãªã確çã¯2/3(éå»ã®3åäž2åã衚ã«ãªã£ãŠãããã)
ãŸã1ïœ3åãŸã§ãåãç¶æ
ã®ãšã
4åç®ãè£ã«ãªã確çã¯1/3(éå»ã®3åäž1åãè£ã«ãªã£ãŠãããã)
ã§ã³ã€ã³ãã²ã£ããè¿ããšããã
ããŠãã®ç¹æ®ã³ã€ã³ã䜿ã
1åç®;衚ã
2åç®;è£ã
ã§ããšã
3åç®ä»¥éã³ã€ã³ãã¹ã10åãã£ããã®ãšããã
ãã®ãšã3å以éã®ã³ã€ã³ã®è¡šãè£ãåºãããããã®åæ°åèšã
(1)(衚,è£)=(4,6)ã§ãã確çP1
(2)(衚,è£)=(7,3)ã§ãã確çP2
ãããããæ±ããŠã»ããã
ãã®ã³ã€ã³ã¯ 1 åç®ã«è¡šãåºãã以åŸè¡šããåºãŸãããã1 åç®ãè£ãªã以åŸè£ããåºãŸããã
ãã£ãŠãã1 åç®ã衚ã2 åç®ãè£ãšããããšãããããèµ·ããåŸãªãããçãã§ãããã
1åç®ã ããèãããšããããããšã«ãªããŸããã
ããã§ã¯å
šãé¢çœãããªãã®ã§ã1,2åç®ãåææ¡ä»¶ãšããŠããã
3åç®ä»¥éããã®ç¹æ®ã³ã€ã³ã䜿ããããã®ãšèããŠãããããã®ã§ããã»ã»ã»
ãããŸã§ã«è¡šã m åãè£ã n ååºãŠããå Žåã衚ãšè£ã (m+1):(n+1) ã®ç¢ºçã§åºãã³ã€ã³ãäœã®åæããªãã« 10 åæãã
ãšæãã°ããã§ããïŒ
ãããªããä»»æã® 0âŠkâŠ10 ã«å¯Ÿãã衚ã k ååºã確ç㯠1/11 ã§ãã
以ååæ§ã®åé¡ãããã®æ²ç€ºæ¿ïŒteacup ã ã£ãæä»£ïŒã«ããªã¢ã®å£ºã®é¢é£åé¡ãšããŠè§£ããããšããã£ãã¯ãã§ããâŠâŠã©ã®èšäºã ã£ãããªïŒ
èŠåœãããªãã®ã§ã以åãšåããããªå
容ã«ãªããŸãããèãæ¹ãæžããŠãããŸãã
â0â ãã â10â ãŸã§ã®æ°åãæžãã 11 æã«ãŒããçšæããæåã« â0â ã ããããããšããŠæã«æã¡ãŸãã
x åç®ã«ã³ã€ã³ãæãããšããã³ã€ã³ã衚ã§ããã° â0â ã®ã«ãŒãããäžãã³ã€ã³ãè£ã§ããã° â0â ã®ã«ãŒãããäžã®ã©ããããç¡äœçºã« 1 ç®æãéžãã§ãâxâ ã®ã«ãŒãããããã«è¿œå ããŸãã
ããã¯çµå± x åç®ã« âxâ ã®ã«ãŒãããããã® x+1 ç®æããç¡äœçºã« 1 ç®æéžãã§è¿œå ããè¡çºãäºåºŠæéã§ãã£ãŠããã ããªã®ã§ã
æçµçã«ã§ãã 11 æã®ãããã®äžŠã³é ã¯ãããã 11! éãã®äžŠã³é ãåæ§ã«ç¢ºãããããªã£ãŠããŸãã
ããŠãã³ã€ã³ã®çµæã§è¡šã k ååºã確çã¯ãæçµçã«ãããã§ â0â ãäžãã k+1 æç®ã«ãã確çã§ãã
ãã£ãŠããã®ç¢ºç㯠k ã®å€ã«é¢ããã 1/11 ã§ãã
DD++ãããæ¢ããŠããããŒãžã¯ãã確çãïŒmathbun/mathbun1129ïŒã§ããïŒ
ããããã§ããã
ãŸãåœæèªåã®äžã§ãæŽçããããªããŸãŸè§£çãæžãããã§ãããããããæžãçŽãããšããæå³ã§ã¯ä»åãŸãæžãã䟡å€ã¯ãã£ãããªãšæããŸãã
以åã«ç¥äººããæãã£ãããšãè¿·ããŸããããã®ã¿ã€ãã³ã°ã§ããã«ã¶ãããããæããŸãã
ãããªã¢ã®å£ºã
å£ºã«æ¿ãã°ã¬ãŒã®è²ã®çã a åïŒèãã°ã¬ãŒã®çã b åå
¥ã£ãŠãããm = a+b ãšããããã®äžããçã 1 ã€ç¡äœçºã«åãåºãïŒéžãã çãå£ºã«æ»ããäžã§éžãã çãšåãè²ã®çã 1 ã€å£ºã«å ããã
ãã®è©Šè¡ã n åç¹°ãè¿ããn åç®ã«æ¿ãã°ã¬ãŒã®è²ã®çãéžã°ãã確ç Pn 㯠n ã«äŸåãã
Pn = a/m
ã§æ±ããããã
âŠâŠ8<âŠâŠ8<âŠâŠ8<âŠâŠ8<âŠâŠ
äžèšãçŽæçã«çè§£ããããã«ä»¥äžã®è£é¡ãèããã
ãè£é¡ïŒã
壺㫠m åã®çãå
¥ã£ãŠãããçã®è²ã¯äºãã«ããç°ãªãã(ããªãã¡ m è²ã®çã壺ã«ãã)
1 ⊠k ⊠m ãªãæŽæ° k ãèããŠããã
k çªç®ã®çã®è²ã C[k] ãšããã
壺ã®äžããçã 1 ã€ç¡äœçºã«åãåºãïŒéžãã çãå£ºã«æ»ããäžã§éžãã çãšåãè²ã®çã 1 ã€å£ºã«å ããã
ãã®è©Šè¡ã n åç¹°ãè¿ããn åç®ã« C[k] ã®è²ã®çãéžã°ãã確ç Pn[k] 㯠n ã k ã«äŸåãã
Pn[k] = 1/m
ã§æ±ããããã
蚌æ
æããã
âµ m è²ã®çããããããããã®è²ã«ã€ããŠå¯Ÿç§°ãªåé¡èšå®ãªã®ã§âŠâŠãããããåæ§ã«ç¢ºãããããšã)
âŠâŠ8<âŠâŠ8<âŠâŠ8<âŠâŠ8<âŠâŠ
è£é¡ïŒãããä»åã®æçš¿ã®åé ã«ãããããªã¢ã®å£ºã®åé¡ã«ã€ããŠèããã
å®å®äººããã£ãŠããã圌ãã¯å
ã®äžåè²ãèªèãããçœè²ãé»è²ãããã³ã«çœããé»ãŸã§ã®ã°ã©ããŒã·ã§ã³ã§åçš®ã®ç°è²ãèªèããã
è£é¡ïŒã«ãããŠã
C[1] ãã C[a] ã®è²ã® a åã®çã®è²ãå®å®äººã¯æ¿ãã°ã¬ãŒã®è²ãšèªèããC[a+1] ãã C[a+b] ã®è²ã® b åã®çã®è²ãèãã°ã¬ãŒã®è²ãšèªèããã
壺ã®äžããçã 1 ã€ç¡äœçºã«åãåºãïŒéžãã çãå£ºã«æ»ããäžã§éžãã çãšåãè²ã®çã 1 ã€å£ºã«å ããã
ãã®è©Šè¡ã n åç¹°ãè¿ããn åç®ã« æ¿ãã°ã¬ãŒã®è²ã®çãéžã°ãã確ç Pn 㯠n ã«äŸåãã
Pn = a/m
ã§æ±ããããã
蚌æã
Pn = Pn[1]+Pn[2]+ âŠâŠ +Pn[a] = a*(1/m) = a/m
(è£é¡ïŒã䜿ã£ãã)
âŠâŠ8<âŠâŠ8<âŠâŠ8<âŠâŠ8<âŠâŠ
確çã«ã€ããŠã®æŒžååŒãæ°åŠçåž°çŽæ³ã
åé¿ããŠããã®ã§ãã»ãŒèšç®ãªãã«çµè«ãåŸãããŸãã
äžæã«èª¬æããã°å°åŠçã«ããããããïŒ
1ã€ã®ã¹ã¬ããã®è¿ä¿¡æ°ãäžéã«éãããããç¶ãçšã®ã¹ã¬ãããäœããŸãã
ãªã€ãã
ããããšãããããŸãã
çŽè§äºç蟺äžè§åœ¢ãäœãè§£çã®æ¹ãé¢çœãè§£çã«ã§ãããšæããŸããã
ãããããªã€ããã®æå³ããŠããè§£ç㯠No.1717 ã«æžãããã®ã§ã¯ãªããæã£ãŠããŸãã
ãããã§ãããïŒ
ã¹ã¬ããäœæããããšãããããŸãïŒ
ãã¿ãŸãããèŠäºã«èŠèœãšããŠãããŸãããæ³å®è§£çãæ°ããã¹ã¬ããã«æžããŠãããå
ã«äœã£ãŠããã ããã®ã§ããã¡ãã§ç¶ããŸãã
å®ã¯æ³å®è§£çãšã¯éããŸããããããŸãæ±ããããå³åœ¢ã«å€åœ¢ããŠããããè§£ãæ¹ã§ããïŒãã€ã¯ãã®æåã®â³ACDãå転ããæ¹æ³ã§ãäºç蟺äžè§åœ¢ã«æã£ãŠããæ¹æ³ã¯ããã€ãããããã§ããã
ç°¡ç¥ãªç޹ä»ãšãªããŸãããäŸãã°å³ã®ããã«å€åœ¢ããŠãè§£ãããã§ããïŒæ¬è³ªã¯äžç·ã§ããïŒïŒ
æ³å®è§£æ³ã¯ãã®ãããªãã®ã§ãããã玹ä»ãããŠããã ããŸãm(_ _)m
ãåé¡ã
çèå°åœ¢ABCDããããAD//BCã§ãã
â ABCïŒâ DCBïŒ45°
â ACBïŒ15°
â ACDïŒ30°
ADïŒ10cm
åè§åœ¢ABCDã®é¢ç©ã¯ïŒ
ãæ³å®è§£æ³ãïŒå°ãçç¥ããŠæžããŸãïŒ
åè§åœ¢ABCDã«å€æ¥ããåã®äžå¿ãOãšçœ®ãïŒåããããããšã®è°è«ã¯å²æïŒ
äžå¿è§ã®å®çãããâ AOBïŒ15°Ã2ïŒ30°ãåæ§ã«â DOCïŒ30°ãâ AODïŒ30°Ã2ïŒ60°ã
ãã£ãŠãâ³AOBãšâ³DOCã¯30°ãé è§ãšããäºç蟺äžè§åœ¢ãâ³AODã¯æ£äžè§åœ¢ã
ããã§ãâ³AODãšâ³BOCãããããçãäžã®çžŠç·ã§ååã«ãããšãããããåã倧ããã®30°ã60°ã90°ã®çŽè§äžè§åœ¢ãã§ãããããâ³AODãšâ³BOCã®é¢ç©ã¯çãããïŒå³å¯ãªè°è«ã¯çç¥ïŒ
ããã«ãããåè§åœ¢ABCDã®é¢ç©ã¯â³AOBãšâ³DOCã®é¢ç©ã®åèšãšçãããªããïŒäºè§åœ¢ABOCDã®é¢ç©ããâ³AODã®é¢ç©ãåŒãããã®ãšäºè§åœ¢ABOCDã®é¢ç©ããâ³BOCã®é¢ç©ãåŒãããã®ãçããããïŒ
â³AOBãšâ³DOCã¯ããªãã¿ã®é¢ç©ãæ±ããããäºç蟺äžè§åœ¢ïŒ30°ã75°ã75°ïŒã§ããããã10cmÃ5cm÷2Ã2ïŒ50cm^2ïŒçãïŒ
éã«äœã£ãå³ãèŒããŠãããŸãæ±
DD++ããã®ãã®è§£æ³ã¯ãããŸã®æš¡ç¯è§£çãæãã€ããŸã§ã¯æš¡ç¯è§£çãšããŠãããŸãããäœåæã«ã¯ããããåé¡ãäœã£ãã®ã§ãç§ãšããŠã¯æå³ãçµãã§ãã ãã£ããšå€§å€ããããæã£ãŠãããŸãã
ãã®ä»ã®çæ§ããæ§ã
ã«è§£ããŠãã ããããããšãããããŸããïŒ
> "ãªã€"ãããæžãããŸãã:
> ã¹ã¬ããäœæããããšãããããŸãïŒ
> ãã¿ãŸãããèŠäºã«èŠèœãšããŠãããŸãããæ³å®è§£çãæ°ããã¹ã¬ããã«æžããŠãããå
ã«äœã£ãŠããã ããã®ã§ããã¡ãã§ç¶ããŸãã
> å®ã¯æ³å®è§£çãšã¯éããŸããããããŸãæ±ããããå³åœ¢ã«å€åœ¢ããŠããããè§£ãæ¹ã§ããïŒãã€ã¯ãã®æåã®â³ACDãå転ããæ¹æ³ã§ãäºç蟺äžè§åœ¢ã«æã£ãŠããæ¹æ³ã¯ããã€ãããããã§ããã
> ç°¡ç¥ãªç޹ä»ãšãªããŸãããäŸãã°å³ã®ããã«å€åœ¢ããŠãè§£ãããã§ããïŒæ¬è³ªã¯äžç·ã§ããïŒïŒ
ãªã€ããã®æ¹æ³ã§ã¯ãé¢ç©ã¯æ±ãŸããªãïŒçãããïŒïŒâïŒãšãªãã®ã§ã¯ïŒ
> "管çè
"ãããæžãããŸãã:
> ãªã€ããã®æ¹æ³ã§ã¯ãé¢ç©ã¯æ±ãŸããªãïŒçãããïŒïŒâïŒãšãªãã®ã§ã¯ïŒ
ã¡ãã»ãŒãžããããšãããããŸãã倧å€ç³ãèš³ããããŸããããâ³AOBãšâ³DOCããšè¡šèšãã¹ãéšåã2ãæãâ³AODãšâ³BOCããšèª€æ€ããŠããããã§ãããã®ããã§ããããã»ã»ã»ïŒïŒå
ã®æçš¿ã¯ä¿®æ£ããŸããïŒ
ãå
ã
ããã«ãããåè§åœ¢ABCDã®é¢ç©ã¯â³AODãšâ³BOCã®é¢ç©ã®åèšãšçãããªããïŒäºè§åœ¢ABOCDã®é¢ç©ããâ³AODã®é¢ç©ãåŒãããã®ãšäºè§åœ¢ABOCDã®é¢ç©ããâ³BOCã®é¢ç©ãåŒãããã®ãçããããïŒ
â³AODãšâ³BOCã¯ããªãã¿ã®é¢ç©ãæ±ããããäºç蟺äžè§åœ¢ã§ããããã10cmÃ5cm÷2Ã2ïŒ50cm^2ïŒçãïŒ
ãä¿®æ£åŸã
ããã«ãããåè§åœ¢ABCDã®é¢ç©ã¯â³AOBãšâ³DOCã®é¢ç©ã®åèšãšçãããªããïŒäºè§åœ¢ABOCDã®é¢ç©ããâ³AODã®é¢ç©ãåŒãããã®ãšäºè§åœ¢ABOCDã®é¢ç©ããâ³BOCã®é¢ç©ãåŒãããã®ãçããããïŒ
â³AOBãšâ³DOCã¯ããªãã¿ã®é¢ç©ãæ±ããããäºç蟺äžè§åœ¢ïŒ30°ã75°ã75°ïŒã§ããããã10cmÃ5cm÷2Ã2ïŒ50cm^2ïŒçãïŒ
ç§ã¯éã«å€æ¥åãäœ¿ãæ¹ãå
ã«æãã€ããŸããã
ãã ããæµç³ã«äžå¿è§ã®å®çã¯ç®æ°å€ãïŒããšæã£ãŠåŽäžãã¡ãã£ããã§ãããã
ã©ãããäžå¿è§ãã¢ãªã¿ãããªã®ã§ããããç§ã®ç¬¬äžã®è§£çãšããŠæçš¿ããŸãã
åè§åœ¢ ABCD ã®å€æ¥åãæžããäžå¿ã O ãšããŸãã
äžå¿è§ã®å®çãã â AOD = 60° ãªã®ã§ â³AOD ã¯æ£äžè§åœ¢ã§ããã®å€æ¥åã®ååŸã¯ 10 cm ã§ãã
ãŸããäžå¿è§ã®å®çãããâ AOC = 90°, â COD = 30° ã§ãã
ããŠãããã§ â³CAB ããç¹ O ãäžå¿ã« 90° å転移åããŠç¹ C ãç¹ A ã«éããâ³AEF ãšããŸãã
å°åœ¢ã®é¢ç©ã¯ â³ACD + â³AEF ã§æ±ãŸããŸãã
ãããŠãããçç©å€åœ¢ïŒâ»ïŒã㊠â³OCD + â³OEF ãšããŸãã
ããã 2 ã€ã¯ååãªäºç蟺äžè§åœ¢ã§ããã¯ãèšããŸã§ããªãæ¹æ³ã§ 1 〠25 cm^2 ãšåºãã®ã§ãå
ã®å°åœ¢ã®é¢ç©ã¯åã® 50 cm^2 ã§ãã
â» 2 ã€ã®äžè§åœ¢ã«ã€ããŠãåºèŸºå士ãå¹³è¡ã§é·ããçãããé ç¹ãåäžç¹ãã€ãããåºèŸºãå»¶é·ããå¹³è¡ç·ã®éã«ããå Žåããã®å
±éé ç¹ãå¹³è¡ç·ã®éã®ã©ããžç§»åããŠã 2 ã€ã®äžè§åœ¢ã®é¢ç©ã®åã¯äžå®
>æµç³ã«äžå¿è§ã®å®çã¯ç®æ°å€ãïŒ
DD++ããããææããããšãããããŸãããããã«äžå¿è§ã®å®çã¯ç®æ°å€ã¿ããã§ããããã£ãã説æãªãã«äœ¿ã£ãŠããŸã£ãŠãããŸããç³ãèš³ããããŸããããã
åã䜿ããã«ãããšã©ãããŠãé説çãªææ³ã«ãªã£ãŠããŸãããã§ããã
é«ãã®åèšãã¡ããã©äºç蟺äžè§åœ¢2ã€åã«ãªãçºæ³ã¯æãã€ããŸããã§ãããé¢çœãè§£æ³ãããããšãããããŸãïŒ