ååã®åé¡ãšã¯é¢ä¿ãããŸããããçžè«ãªã®ã§ããã
N(N-1)ãªããN=2kãªã2ã®åæ°ã§ãããN=2k+1ã§ã2ã®åæ°ã§ããã
N(N-1)(N-2)ãªããN=3kãªã3ã®åæ°ã§ãããN=3k+1ã§ã3ã®åæ°ã§ãããN=3k+2ã§ã3ã®åæ°ã§ããã
N(N-1)(N-2)(N-3)ãªããN=4kãªã4ã®åæ°ã§ãããN=4k+1ã§ã4ã®åæ°ã§ãããN=4k+2ã§ã4ã®åæ°ã§ãããN=4k+3ã§ã4ã®åæ°ã§ããã
åæ§ã«ãN(N-1)(N-2)(N-3)(N-4)ãªãã5ã®åæ°ã§ããã
N(N-1)(N-2)(N-3)(N-4)(N-5)ãªãã6ã®åæ°ã§ããã
ãããã£ãŠã
N(N-1)(N-2)(N-3)ã»ã»ã»ã»{N-(S-1)}ãªããSã®åæ°ã§ããã
ããŠãèšç®ã«ãããš
N(N-1)=N^2-Nããã2ã®åæ°ã§ããã
N(N-1)(N-2)=N^3-3N^2+2N=(N^3-N)-3(N^2-N)ããã¯3ã®åæ°ã§ããã
N(N-1)(N-2)(N-3)=(N^4-N)-6(N^3-N)+11(N^2-N)ããã¯4ã®åæ°ã§ãªã2ã®åæ°ã
N(N-1)(N-2)(N-3)(N-4) =(N^5-N)-10(N^4-N)+35(N^3-N)-50(N^2-N)ããã¯5ã®åæ°ã
N(N-1)(N-2)(N-3)(N-4)(N-5)=(N^6-N)-15(N^5-N)+85(N^4-N)-225(N^3-N)+274(N^2-N)ããã¯åæ°ãæããªãã
N(N-1)(N-2)(N-3)(N-4)(N-5)(N-6)=(N^7-N)-21(N^6-N)+175(N^5-N)-735(N^4-N)+1624(N^3-N)-1764(N^2-N)ããã¯7ã®åæ°
N(N-1)(N-2)(N-3)(N-4)(N-5)(N-6)(N-7)=(N^8-N)-28(N^7-N)+322(N^6-N)-1960(N^5-N)+6769(N^4-N)-13132(N^3-N)+13068(N^2-N)ããã¯ã8ã®åæ°ã§ãªãã2ã®åæ°
çå±ã§ã¯ãSãçŽ æ°ãªãã巊蟺ãšå³èŸºã¯èšç®ãšäžèŽããããåææ°ã§ã¯å·ŠèŸºãšå³èŸºã¯äžèŽããªãã
ããããèšç®äžã¯å·ŠèŸºïŒå³èŸºã¯æç«ããã巊蟺ãå±éãèšç®ãããšå³èŸºã«ãªãã
SãçŽ æ°ãªããïŒçŽ æ°ã§ãªããŠãïŒ
N(N-1)(N-2)(N-3)ã»ã»ã»ã»{N-(S-1)}=(N^S-N)-a1{N^(S-1)-N}+a2{N^(S-2)-N}ã»ã»ã»ã»-a(s-2)(N^3-N)+a(s-1)(N^2-N)
ãäžã®çµæããæãç«ã€ã¯ãã§ããã
ããŸã蚌æã¯ãªãã ãããïŒ
ãŸãã
1x2x3x4xã»ã»ã»ã»x(S-1)N+N-a1N+a2N-a3Nã»ã»ã»ã»-a(s-2)N+a(s-1)N=0
1x2x3x4xã»ã»ã»ã»x(S-1)+1-a1+a2-a3ã»ã»ã»ã»-a(s-2)+a(s-1)=0
ã蚌æããããšã§ããã®ã§ããã
詳现èšç®ã¯ããªã³ã¯ã«ãããŸãã
å床修æ£æžã¿
ããããã¯ã¡ã¹ããããããã«ã¡ã¯ã
ïŒçå±ã§ã¯ãSãçŽ æ°ãªãã巊蟺ãšå³èŸºã¯èšç®ãšäžèŽããããåææ°ã§ã¯å·ŠèŸºãšå³èŸºã¯äžèŽããªãã
ããããèšç®äžã¯å·ŠèŸºïŒå³èŸºã¯æç«ããã巊蟺ãå±éãèšç®ãããšå³èŸºã«ãªãã
åææ°ã®å Žåã§ãä»ã®å€åœ¢ãããã°ãäžèŽããŸããããããããçŽ æ°ã®å Žåã¯ãã®å€åœ¢ã§ä¿æ°ãå
šãŠçŽ æ°åã«ãªãäºãèŠäºã§ããã
ãŸããä¿æ°ã®ç¬Šå·ã±ã§äº€æ¿ã«ãªã£ãŠããäºãé¢çœãã§ãããæ°åŠçåž°çŽæ³ã§ã¡ãã£ãšãã£ãŠã¿ãŸããããç¡çã£ãœãã®ã§æ¢ããŸããã
å ã¿ã«ã
N(N-1)=N^2-NïŒè¿œå ããŸãããïŒ
N(N-1)(N-2)=(N^3-N)-3(N^2-N)
N(N-1)(N-2)(N-3)=(N^4-N)-6(N^3-N)+11(N^2-N)
N(N-1)(N-2)(N-3)(N-4) =(N^5-N)-10(N^4-N)+35(N^3-N)-50(N^2-N)
N(N-1)(N-2)(N-3)(N-4)(N-5)=(N^6-N)-15(N^5-N)+85(N^4-N)-225(N^3-N)+274(N^2-N)
N(N-1)(N-2)(N-3)(N-4)(N-5)(N-6)=(N^7-N)-21(N^6-N)+175(N^5-N)-735(N^4-N)+1624(N^3-N)-1764(N^2-N)
N(N-1)(N-2)(N-3)(N-4)(N-5)(N-6)(N-7)=(N^8-N)-28(N^7-N)+322(N^6-N)-1960(N^5-N)+6769(N^4-N)-13132(N^3-N)+13068(N^2-N)
ãããã®å³èŸºã®ä¿æ°ãå段ãããã足ããšã巊蟺ã®Nãé€ããå®æ°é
ã®ç¬Šå·ãéã«ããæ°ã«ãªãã®ãé¢çœãã§ãããïŒèšŒæã¯å
šç¶èããŠããŸãããïŒ
ãã£ããããŸããã蚌æã¯ç°¡åã§ããã巊蟺ã®Nã®é
ã®ä¿æ°ã¯ïœæ®µç®ã¯(-1)^kã»ïœ!ã§ãå³èŸºã®Nã®ä¿æ°ã¯æ¬åŒ§ã®ä¿æ°ã®åÃ(-1)ã§ããããã巊蟺ã®Nãé€ããå®æ°é
ã®ç¬Šå·ãéã«ããæ°ã«ãªããã®ã¯åœç¶ã§ããã
å£ããææ§ãããã°ãã¯ã
ïŒå·ŠèŸºã®Nã®é
ã®ä¿æ°ã¯ïœæ®µç®ã¯(-1)^kã»ïœ!ã§ãå³èŸºã®Nã®ä¿æ°ã¯æ¬åŒ§ã®ä¿æ°ã®åÃ(-1)ã§ããããã巊蟺ã®Nãé€ããå®æ°é
ã®ç¬Šå·ãéã«ããæ°ã«ãªããã®ã¯åœç¶ã§ããã
ããå°ããããããã説æããŠããããªãã§ããããïŒ
ããããã¯ã¡ã¹ããããããã°ãã¯ã
ç§ãæžããåŸã«äžéå端ã§å€ã ãªãšæã£ãŠããŸããã
巊蟺ã®Nã®é
ã®ä¿æ°ã¯ãN(N-1)(N-2)ã ã£ããNãå€ãã(N-1)(N-2)ã®å®æ°é
ãšçããã§ããããN(N-1)(N-2)(N-3)ã ã£ãã(N-1)(N-2)(N-3)ã®å®æ°é
ãšçãããšããäºã§ããïŒããã§ãïœæ®µç®ã¯(-1)^kã»ïœ!ãªããŠå¿
èŠãããŸããã§ãããïŒ
ãŸããå³èŸºã®Nã®é
ã®ä¿æ°ã¯ã(N^3-N)-3(N^2-N)ã ã£ããïŒãïŒã®ä¿æ°ïŒãšïŒïŒã足ããŠïŒNããããã®ã§ã{ïŒïŒ(ïŒïŒ)}Ã(ïŒïŒ)ã§æåŸã®Ã(ïŒïŒ)ã§ç¬Šå·ãéã«ãªãã®ã§ããå³èŸºã®ä¿æ°ãå段ãããã足ããšã巊蟺ã®Nãé€ããå®æ°é
ã®ç¬Šå·ãéã«ããæ°ã«ãªããã®ã¯åœç¶ã§ãããšããäºã§ããïŒãŸããã¡ãã£ãšåããé£ããããããŸãããïŒ
çµå±ãããããã¯ã¡ã¹ããããèŠãåºãããN(N-1)(N-2)(N-3)ã»ã»ã»ã»{N-(S-1)}=(N^S-N)-a1{N^(S-1)-N}+a2{N^(S-2)-N}ã»ã»ã»ã»-a(s-2)(N^3-N)+a(s-1)(N^2-N)ãæãç«ã€äºãããŒãšããäºã§ãã
N(N-a)=N^2-Na=(N^2-N)-Na+N=(N^2-N)+(1-a)N
N(N-a)(N-b)=N^3-(a+b)N^2+Nab
=(N^3-N)-(a+b)(N^2-N)+Nab+N-(a+b)N
=(N^3-N)-(a+b)(N^2-N)+{ab+1-(a+b)}N
(%i3) factor(a*b+1-(a+b));å æ°å解ãã
(%o3) (a - 1) (b - 1)
N(N-a)(N-b)(N-c)=N^4-(a+b+c)N^3+(ab+bc+ac)N^2-abcN
=(N^4-N)-(a+b+c)(N^3-N)+(ab+bc+ac)(N^2-N)
-abcN+N-(a+b+c)N+(ab+bc+ac)N={-abc+1-(a+b+c)+(ab+bc+ac)}N
(%i5) factor(-a*b*c+1-(a+b+c)+(a*b+b*c+a*c));å æ°å解ãã
(%o5) - (a - 1) (b - 1) (c - 1)
N(N-a)(N-b)(N-c)(N-d)=N^5-(a+b+c+d)N^4+(ab+bc+cd+ac+ad+bd)N^3-(abc+abd+acd+bcd)N^2+abcdN
=(N^5-N)-(a+b+c+d)(N^4-N)+(ab+bc+cd+ac+ad+bd)(N^3-N)-(abc+abd+acd+bcd)(N^2-N)
+abcdN+N-(a+b+c+d)N+(ab+bc+cd+ac+ad+bd)N+(abc+abd+acd+bcd)N
(%i8) factor(a*b*c*d+1-(a+b+c+d)+(a*b+b*c+c*d+a*c+a*d+b*d)-(a*b*c+a*b*d+a*c*d+b*c*d));å æ°å解ãã
(%o8) (a - 1) (b - 1) (c - 1) (d - 1)
ããã§ãa=1ã§ããã0ã§ããã
ãã®é¢ä¿ãã
N(N-a)(N-b)(N-c)(N-d)(N-e)ã¯ã
(%o8) (a - 1) (b - 1) (c - 1) (d - 1)(e-1)
ã«ãªãã®ã§ããããã
å£ããææ§ãããã«ã¡ã¯ã
(a - 1) (b - 1) (c - 1) (d - 1)(e-1)ãšN(N-a)(N-b)(N-c)(N-d)(N-e)ã¯ãã»ãŒåãã ãããåœããåã ãšããã®ãããããŸããã
ããããã¯ã¡ã¹ããããããã«ã¡ã¯ã
ä»æã¯äœæ
ãæçš¿ã§ããŸããã§ããã
N(N-a)(N-b)(N-c)(N-d)=N^5-(a+b+c+d)N^4+(ab+bc+cd+ac+ad+bd)N^3-(abc+abd+acd+bcd)N^2+abcdN
=(N^5-N)-(a+b+c+d)(N^4-N)+(ab+bc+cd+ac+ad+bd)(N^3-N)-(abc+abd+acd+bcd)(N^2-N)
-abcdN+N-(a+b+c+d)N+(ab+bc+cd+ac+ad+bd)N-(abc+abd+acd+bcd)N
(%i8) factor(a*b*c*d+1-(a+b+c+d)+(a*b+b*c+c*d+a*c+a*d+b*d)-(a*b*c+a*b*d+a*c*d+b*c*d));å æ°å解ãã
(%o8) (a - 1) (b - 1) (c - 1) (d - 1)
ãã£ãŠãN(N-a)(N-b)(N-c)(N-d)=(N^5-N)-(a+b+c+d)(N^4-N)+(ab+bc+cd+ac+ad+bd)(N^3-N)-(abc+abd+acd+bcd)(N^2-N)+(a - 1) (b - 1) (c - 1) (d - 1)
ãšå€åœ¢åºæ¥ãŠãïœïŒïŒãããN(N-a)(N-b)(N-c)(N-d)=(N^5-N)-(a+b+c+d)(N^4-N)+(ab+bc+cd+ac+ad+bd)(N^3-N)-(abc+abd+acd+bcd)(N^2-N)ãšåºæ¥ãã®ã§ããã
ïŒN(N-1)(N-2)(N-3)ã»ã»ã»ã»{N-(S-1)}=(N^S-N)-a1{N^(S-1)-N}+a2{N^(S-2)-N}ã»ã»ã»ã»-a(s-2)(N^3-N)+a(s-1)(N^2-N)
ãäžã®çµæããæãç«ã€ã¯ãã§ããã
ããŸã蚌æã¯ãªãã ãããïŒ
èŠäºã«èªåã§è§£æ±ºãããŸãããã
å ã¿ã«ãäœæ¬¡ã§ã-abcdN+N-(a+b+c+d)N+(ab+bc+cd+ac+ad+bd)N-(abc+abd+acd+bcd)Nã®éšåã¯Nã®é
ã«ãªãã解ãšä¿æ°ã®é¢ä¿ãšåãã§Â±ã亀äºã«ãªããå¿
ã ±(a - 1) (b - 1) (c - 1) (d - 1)âŠãšå æ°å解ã§ããïœïŒïŒããã
N(N-1)(N-2)(N-3)ã»ã»ã»ã»{N-(S-1)}=(N^S-N)-a1{N^(S-1)-N}+a2{N^(S-2)-N}ã»ã»ã»ã»-a(s-2)(N^3-N)+a(s-1)(N^2-N)ã®åœ¢ã«åºæ¥ãã®ã§ããã
çåŒã¯æãç«ã€ã®ã§ã巊蟺ã®åæ°ãšå³èŸºã®åæ°ã¯çããã®ã§ãã
ãšããããåææ°ã®ãšãã巊蟺ãšå³èŸºãäžèŽããªããšããçå±ãããããã®ã§ãã
ã€ãŸãN^s-Nã§ïœãåææ°ãªãsã®åæ°ã«ãªããªããšããããšã§ãã
ããšãã°ã
N(N-1)(N-2)(N-3)=(N^4-N)-6(N^3-N)+11(N^2-N)
ã¯å·ŠèŸºã¯4ã®åæ°ã§ãããå³èŸºã®ä¿æ°ã¯6,11ã§å
±éã®åæ°ãæã¡ãŸãããN^4-Nã4ã®åæ°ãšãããšãã§ãããæãç«ã¡ãŸããã
N^3-Nã¯ïŒã®åæ°ãN^2-Nã¯2ã®åæ°ã§ãããã(N^4-N)-6(N^3-N)+11(N^2-N)=4a-6x3b+11x2c=4a-18b+22cã§4ã®åæ°ã«ã¯ãªããŸããã
N^4-Nãããã€ã®åæ°ããšãã°ãïœã§ããxa-18b+22cã¯a,b,cã«é¢ããã4ã®åæ°ã«ã¯ãªããŸããã
ã ãããåææ°ã¯ãªã«ãäžæè°ãªåãäœçšããŠããã®ã§ãã
ãã®çç±ãããããŸããã
ããããã¯ã¡ã¹ãããããã¯ããããããŸãã
ïŒçåŒã¯æãç«ã€ã®ã§ã巊蟺ã®åæ°ãšå³èŸºã®åæ°ã¯çããã®ã§ãã
ãšããããåææ°ã®ãšãã巊蟺ãšå³èŸºãäžèŽããªããšããçå±ãããããã®ã§ãã
ãã®å³èŸºãÃã ãã§ã€ãªãã£ãåŒãªãããããã§ããã(N^4-N)-6(N^3-N)+11(N^2-N)ã¯åãšå·®ã§ã€ãªãã£ãŠããã®ã§ãããããããŸããã確ããNHKã®çªçµã§ãæãç®ã¯ç°¡åã§ãã足ãç®ã¯é£ãããšãããããªè©±ããã£ãŠããŸããããããããšåãäºã§ãã
ã»çŽ æ°ã¯ã
ïŒïŒN(N-1)=N^2-N
ïŒïŒN(N-1)(N-2)=N^3-3N^2+2N=(N^3-N)-3(N^2-N)
ïŒïŒN(N-1)(N-2)(N-3)(N-4) =(N^5-N)-10(N^4-N)+35(N^3-N)-50(N^2-N)
ïŒïŒN(N-1)(N-2)(N-3)(N-4)(N-5)(N-6) =N^7-N-21(N^6-N)+175(N^5-N)-735(N^4-N)+1624(N^3-N)-1764(N^2-N)
泚ïŒ175=5^2x7 735=3x5x7^2 1624=2^3x7x29 1764=2^2x3^2x7^2
ãã¹ãŠãä¿æ°ãçŽ æ°ã®åæ°ã
æ€ç®ãå³èŸºã®å æ°å解ã®çµæ
(%i1) factor((N^3-N)-3*(N^2-N));
(%o1) (N - 2) (N - 1) N
(%i2) factor((N^5-N)-10*(N^4-N)+35*(N^3-N)-50*(N^2-N));
(%o2) (N - 4) (N - 3) (N - 2) (N - 1) N
(%i3) factor(N^7-N-21*(N^6-N)+175*(N^5-N)-735*(N^4-N)+1624*(N^3-N)-1764*(N^2-N))
;
(%o3) (N - 6) (N - 5) (N - 4) (N - 3) (N - 2) (N - 1) N
ãã£ãŠããã
ã»åææ°ã¯ã
ïŒïŒN(N-1)(N-2)(N-3)=(N^4-N)-6(N^3-N)+11(N^2-N)
ïŒïŒN(N-1)(N-2)(N-3)(N-4)(N-5)=(N^6-N)-15(N^5-N)+85(N^4-N)-225(N^3-N)+274(N^2-N)
ïŒïŒN(N-1)(N-2)(N-3)(N-4)(N-5)(N-6)(N-7)=(N^8-N)-28(N^7-N)+322(N^6-N)-1960(N^5-N)+6769(N^4-N)-13132(N^3-N)+13068(N^2-N)
æ€ç®ãå³èŸºã®å æ°å解ã®çµæ
(%i16) factor((N^4-N)-6*(N^3-N)+11*(N^2-N));
(%o16) (N - 3) (N - 2) (N - 1) N
(%i17) factor((N^6-N)-15*(N^5-N)+85*(N^4-N)-225*(N^3-N)+274*(N^2-N));
(%o17) (N - 5) (N - 4) (N - 3) (N - 2) (N - 1) N
(%i18) factor((N^8-N)-28*(N^7-N)+322*(N^6-N)-1960*(N^5-N)+6769*(N^4-N)-13132*(N^3-N)+13068*(N^2-N));
(%o18) (N - 7) (N - 6) (N - 5) (N - 4) (N - 3) (N - 2) (N - 1) N
ãã£ãŠããã
ããŠã
N(N-1)(N-2)(N-3)=(N^4-N)-6(N^3-N)+11(N^2-N)
ã¯ã4ã®åæ°ã§ãããä¿æ°6=2x3,11ã¯4ã®åæ°ã§ãªãã
N(N-1)(N-2)(N-3)(N-4)(N-5)=(N^6-N)-15(N^5-N)+85(N^4-N)-225(N^3-N)+274(N^2-N)
ã¯ã6ã®åæ°ã§ãããä¿æ°15=3x5,85=5x17,225=3^2x5^2,274=2x137ã¯6ã®åæ°ã§ãªãã
N(N-1)(N-2)(N-3)(N-4)(N-5)(N-6)(N-7)=(N^8-N)-28(N^7-N)+322(N^6-N)-1960(N^5-N)+6769(N^4-N)-13132(N^3-N)+13068(N^2-N)
ã¯ã8ã®åæ°ã§ãããä¿æ°28=2^2x7,322=2x7x23,1960=2^3x5x7^2,6769=7x967,13132=2^2x7^2x67,13068=2^2x3^3x11^2ã¯8ã®åæ°ã§ãªãã
ãªããã®ãããªéããåºãã®ã ããïŒäžæè°ã§ãã
ããããã¯ã¡ã¹ããããããã«ã¡ã¯ã
ïŒãªããã®ãããªéããåºãã®ã ããïŒäžæè°ã§ãã
äŸãã°ã
N(N-a)(N-b)(N-c)=N^4-(a+b+c)N^3+(ab+bc+ac)N^2-abcN
=(N^4-N)-(a+b+c)(N^3-N)+(ab+bc+ac)(N^2-N)
-abcN+N-(a+b+c)N+(ab+bc+ac)N={-abc+1-(a+b+c)+(ab+bc+ac)}N
(%i5) factor(-a*b*c+1-(a+b+c)+(a*b+b*c+a*c));å æ°å解ãã
(%o5) - (a - 1) (b - 1) (c - 1)
å³èŸºã®ä¿æ°ã¯(N^4-N)-(a+b+c)(N^3-N)+(ab+bc+ac)(N^2-N)ããa+b+cãšab+bc+acã§ãããããã¯å段éã®N^4-(a+b+c)N^3+(ab+bc+ac)N^2-abcNã®ä¿æ°ãšåãã§ããã€ãŸããïœïŒïœïŒïœã¯ïŒïŒïŒïŒïŒã§ããã¯å·ŠèŸºã®ç©ãçŽ æ°åã®å Žåã§ã¯ãããŸãããã
çŽ æ°åã®å Žåã¯ãïœïŒïœïŒïŒãšãªããïŒïŒïŒïŒïŒïŒïœ¥ïœ¥ïœ¥ïŒ(ïœïŒïŒ)ãšãªããïŒïœ(ïœïŒïŒ)/ïŒã§ïœã¯çŽ æ°ããïœã®åæ°ã«ãªããšããèš³ã§ãã
ãã ãã(ab+bc+ac)以äžã®å Žåã¯èšŒæåºæ¥ãŠããŸãããïŒæšæ¥ãã£ãŠè«ŠããŸãããïŒ
å£ããææ§ãããã«ã¡ã¯ã
N(N-a)(N-b)=N^3-(a+b)N^2+Nab
=(N^3-N)-(a+b)(N^2-N)
N(N-a)(N-b)(N-c)=N^4-(a+b+c)N^3+(ab+bc+ac)N^2-abcN
=(N^4-N)-(a+b+c)(N^3-N)+(ab+bc+ac)(N^2-N)
N(N-a)(N-b)(N-c)(N-d)=N^5-(a+b+c+d)N^4+(ab+bc+cd+ac+ad+bd)N^3-(abc+abd+acd+bcd)N^2+abcdN
=(N^5-N)-(a+b+c+d)(N^4-N)+(ab+bc+cd+ac+ad+bd)(N^3-N)-(abc+abd+acd+bcd)(N^2-N)
N(N-a)(N-b)(N-c)(N-d)(N-e)
=N^6-(a+b+c+d+e)N^5+(ab+ac+bc+ad+bd+cd+ae+be+ce+de)N^4-(abc+abd+acd+bcd+abe+ace+bce+ade+bde+cde)N^3+(abcd+abce+abde+acde+bcde)N^2-Nabcde
=(N^6-N)-(a+b+c+d+e)(N^5-N)+(ab+ac+bc+ad+bd+cd+ae+be+ce+de)(N^4-N)-(abc+abd+acd+bcd+abe+ace+bce+ade+bde+cde)(N^3-N)+(abcd+abce+abde+acde+bcde)(N^2-N)
Sã®ãšãã
=N^S-N-(1+2+3+ã»ã»ã»+S-1){N^(s-1)-N}ã»ã»ã»ã»
=N^S-N-{(s-1)S/2}{N^(s-1)-N}ã»ã»ã»ã»
ããã§ãSãçŽ æ°ãªãS-1ã¯å¶æ°ããã£ãŠ{(s-1)S/2}ã¯ãsã®åæ°ã
ïœãåææ°ã§å¶æ°ãªãã(s-1)ã¯å¥æ°ã§ãs/2ã¯2ã§å²ããŠãsã®åæ°ã«ãªããªãã
ïœãåææ°ã§å¥æ°ãªãã(s-1)ã¯å¶æ°ã§2ã§å²ããŠã{(s-1)S/2}ã¯ãsã®åæ°ã
ïœãåææ°ã§å¥æ°ãªãã
=N^S-N-{(s-1)S/2}{N^(s-1)-N}ã»ã»ã»ã»
{(s-1)S/2}{N^(s-1)-N}ã¯ãïœã®åæ°ã«ãªãã
ããããé²æ©ã
ããŠã
=N^S-N-{(s-1)S/2}{N^(s-1)-N}+{ab+c(a+b)+d(a+b+c)+e(a+b+c+d)ã»ã»ã»}{N^(s-2)-N}ã»ã»ã»
ããã§ã
{ab+c(a+b)+d(a+b+c)+e(a+b+c+d)ã»ã»ã»}
ããã
2x1+3x(1+2)+4x(1+2+3)+5x(1+2+3+4)ã»ã»ã»ã»+(s-1)(1+2+3+4+ã»ã»ã»ã»+(s-2))}
ã©ããããã®ãïŒ
ïŒçŽ æ°åã®å Žåã¯ãïœïŒïœïŒïŒãšãªããïŒïŒïŒïŒïŒïŒïœ¥ïœ¥ïœ¥ïŒ(ïœïŒïŒ)ãšãªããïŒïœ(ïœïŒïŒ)/ïŒã§ïœã¯çŽ æ°ããïœã®åæ°ã«ãªããšããèš³ã§ãã
åãçµè«ã«ãªããŸããããã ããå¥æ°ã®åææ°ãåæ°ã«ãªãããã§ããæ®å¿µã
ïŒãã ããå¥æ°ã®åææ°ãåæ°ã«ãªãããã§ããæ®å¿µã
éãæã«æ°ä»ãããŸããããäžå¿ãå¥æ°ã®åææ°ã®å Žåã調ã¹ãŠã¿ãŸããã
N*(N-1)*(N-2)*(N-3)*(N-4)*(N-5)*(N-6)*(N-7)*(N-8)*(N-9)*(N-10)*(N-11)*(N-12)*(N-13)*(N-14)ãå±éãããšã
ð^15â105ð^14+5005ð^13â143325ð^12+2749747ð^11â37312275ð^10+368411615ð^9â2681453775ð^8+14409322928ð^7â56663366760ð^6+159721605680ð^5â310989260400ð^4+392156797824ð^3â283465647360ð^2+87178291200ð
ãã¯ããçŽ æ°ãããªããšæãç«ããªãã¿ããã§ããã
å£ããææ§ãããã°ãã¯ã
105/15=7ã§15ã®åæ°ã§ããã
5005=5x7x11x13ã¯ã15ã®åæ°ã§ãªãã§ããã
143325=3^2x5^2x7^2x13ã¯ã15ã®åæ°ã§ããã
2749747=7x11x13x41x67ã¯ã15ã®åæ°ã§ãªãã§ããã
ãŸãããã®ãžãã§ãããŠãããŸãã
15ã¯ä¿æ°ããã¹ãŠ15ã®åæ°ã§ãªãã§ãããã€ãŸãã15ã®åæ°ã«ãªããŸãããã
ããå°ãåŒãæŽçãããŸããã
N(N-a)(N-b)(N-c)(N-d)(N-e)(N-f)=N^7-(f+e+d+c+b+a)N^6
+ {(e+d+c+b+a)f+(d+c+b+a)e+(c+b+a)d+(b+a)c+ab} N^5
- [{(d+c+b+a)e+(c+b+a)d+(b+a)c+ab}f+{(c+b+a)d+(b+a)c+ab}e+{(b+a)c+ab}d+abc] N^4
+ [{{(c+b+a)d+(b+a)c+ab}e+{(b+a)c+ab}d +abc)}f+{{(b+a)c+ab}d+abc}e+abcd] N^3
- [{{{(b+a)c+ab}d+abc}e+abcd}f+abcde] N^2
+ abcdef N
èŠåæ£ãããªã£ãŠãŸãããããããåŸããã®ã¯ãã»ã»ã»ã»ã»ïŒ
ãããããããã¯ã¡ã¹ããããè«ŠããŸãããã
ïŒN(N-a)(N-b)(N-c)(N-d)(N-e)(N-f)=N^7-(f+e+d+c+b+a)N^6
+ {(e+d+c+b+a)f+(d+c+b+a)e+(c+b+a)d+(b+a)c+ab} N^5
- [{(d+c+b+a)e+(c+b+a)d+(b+a)c+ab}f+{(c+b+a)d+(b+a)c+ab}e+{(b+a)c+ab}d+abc] N^4
+ [{{(c+b+a)d+(b+a)c+ab}e+{(b+a)c+ab}d +abc)}f+{{(b+a)c+ab}d+abc}e+abcd] N^3
- [{{{(b+a)c+ab}d+abc}e+abcd}f+abcde] N^2
+ abcdef N
N^5ã®ä¿æ°ã¯è§£æ±ºããŸããã(e+d+c+b+a)f+(d+c+b+a)e+(c+b+a)d+(b+a)c+abã¯ãa=1,b=2,âŠ,f=p-1ïŒïœã¯çŽ æ°ïŒã§ãããããã®æ¬åŒ§ã®å³ã®æ°åã¯æ¬åŒ§ã®æåŸã®æ°åã®æ¬¡ã®æ°åã«ãªã£ãŠããã®ã§ãïœãïœçªç®ãšãããšã
Σ(n=1~p-1){n(n-1)/2}nã§æ±ããããŸãã
âŽÎ£(n=1~p-1){n(n-1)/2}n=Σ(n=1~p-1){n^2(n-1)/2}=(1/2)Σ(n=1~p-1)(n^3-n^2)=(1/2)Σ(n=1~p-1)n^3ïŒ(1/2)Σ(n=1~p-1)n^2
=(1/2){p(p-1)/2}^2ïŒ(1/2){p(p-1)(2p-1)/6}=p^2(p-1)^2/8ïŒp(p-1)(2p-1)/12=3p^2(p-1)^2/24ïŒ2p(p-1)(2p-1)/24
=p(p-1){3p(p-1)-2(2p-1)}/24=p(p-1)(3p^2-7p+2)/24=p(p-1)(p-2)(3p-1)/24
ãã£ãŠãä¿æ°ã¯p(p-1)(p-2)(3p-1)/24ã§ïœã¯çŽ æ°ããïœã®åæ°ã«ãªãã
å ã¿ã«ãN^4ã®äžçªå·Šã®{(d+c+b+a)e+(c+b+a)d+(b+a)c+ab}fãåãæ¹æ³ã§ãããšã
(p-1)Σ(n=1~p-1){(n-2)(n-1)/2}(n-1)ã§ãããèšç®ãããšã
={(p-1)/2}[{p(p-1)/2}^2ïŒïŒ{p(p-1)(2p-1)/6}ïŒ5p(p-1)/2ïŒ2(p-1)}ã§åãã®ïŒé
ã¯åé¡ãããŸããããæåŸã®é
ã¯(p-1)^2ã§çŽ æ°ã«ãªããŸãããã€ãŸãããã®å解æ¹æ³ã§ã¯ãã¡ã¿ããã§ãã
念ã®ããããã®èšç®çµæãæ£ããäºã¯ïœïŒïŒãšãããšïŒïŒïŒãšãªãããŸãã{(4+3+2+1)5+(3+2+1)4+(2+1)3+1ã»2}6=510ãšãªãäºãã確èªæžã¿ã§ãã
å£ããææ§ããã¯ããããããŸãã
ïŒãã£ãŠãä¿æ°ã¯p(p-1)(p-2)(3p-1)/24ã§ïœã¯çŽ æ°ããïœã®åæ°ã«ãªãã
pãåææ°ã§24ãšçŽ ã§ããå Žåãpã®åæ°ã«ãªããŸããããïŒ
ãã ãã(p-1)((3p-1)ã¯24ã®åæ°ã
pãåææ°ã§24ãšçŽ ã§ããå Žåãpã¯ïŒãšïŒã®åæ°ã§ãªããšããããšã§ãããšãã°ãæå°ã¯25ã§ããã
(p-1)((3p-1)ã(25-1)(75-1)ã§24ã®åæ°ã§ãããã
ãããšãN^24ãšN^23ãçªç ŽããŸããN^22ã¯ãã©ãã§ãããïŒ
é çªã«ç©ã¿äžãããããããŸãããã
ã§ããïŒïŒä»¥äžã§ã¯ãæ£ããããšã蚌æãããŸãããåé²ã§ãã
ããããã¯ã¡ã¹ãããããã¯ããããããŸãã
ïŒpãåææ°ã§24ãšçŽ ã§ããå Žåãpã®åæ°ã«ãªããŸããããïŒ
以åã®ããã ããå¥æ°ã®åææ°ãåæ°ã«ãªãããã§ããæ®å¿µããã®æãæã£ãã®ã§ããããã®èšŒæããããšããŠããæ³åã¯å€åçŽ æ°ã®å Žåããæãç«ããªãã§ããããã ãããçŽ æ°ä»¥å€ã®åææ°ã®å Žåã¯å
šãèããå¿
èŠããããŸãããïŒå€åãããããã¯ã¡ã¹ããããšã¯èŠãè§åºŠãéã£ãŠããŠèª€è§£ãããŠãããšæããŸããïŒ
念ã®ããã巊蟺ã®ç©ã®æ°ãçŽ æ°åã®å Žåã®ã¿ãèããŠïŒèšŒæããããšããŠïŒãããšããäºã§ãã
N(N-a)(N-b)(N-c)(N-d)(N-e)(N-f)ã¯ïŒåã®ç©ãïŒå
ã«æ»ããšN(N-1)(N-2)(N-3)(N-4)(N-5)(N-6)ïŒ
å£ããææ§ãããã«ã¡ã¯ã
ããã¹ã¬ãããçµããã§ãããã
ïŒçŽ æ°ã®å Žåããæãç«ããªã
ãšããŠçµããã«ããŸããïŒ
ããããã¯ã¡ã¹ããããããã«ã¡ã¯ã
ãããããããŸããããä»åã¯è²ã
ãšåç©«ããããŸãããã
ããããã¯ã¡ã¹ããšå£ããæã®å®çïŒ
N(N-1)(N-2)(N-3)ã»ã»ã»ã»{N-(S-1)}ã¯å¿
ã(N^S-N)-a1{N^(S-1)-N}+a2{N^(S-2)-N}ã»ã»ã»ã»-a(s-3)(N^3-N)+a(s-2)(N^2-N)ã®åœ¢ã«å€åœ¢åºæ¥ãå³èŸºã®ä¿æ°ã®ç¬Šå·ã¯Â±äº€äºã«ãªãããã®ç·åã¯(-1)^Sã»(S-1)!ã«ãªããïŒä¿®æ£ããŸãããïŒ
ããããã¯ã¡ã¹ããšå£ããæã®å®çïŒ
ïŒïœïœïŒïŒãŸã§ã®ïœïŒïŒåã®èªç¶æ°ã®å
šãŠã®ïŒåã®çµã¿åããã®ç©ã®ç·åã¯ïœã®åæ°ã«ãªãããã ããïœâ§ïŒ
äŸãã°ãïœïŒïŒã®å Žåã1ã»2ïŒ1ã»3ïŒ1ã»4ïŒ2ã»3ïŒ2ã»4ïŒ3ã»4ïŒïŒïŒã§ïŒã®åæ°ã
ïœïŒïŒã®å Žåã1ã»2ïŒ1ã»3ïŒ1ã»4ïŒ1ã»5ïŒ1ã»6ïŒ2ã»3ïŒ2ã»4ïŒ2ã»5ïŒ2ã»6ïŒ3ã»4ïŒ3ã»5ïŒ3ã»6ïŒ4ã»5ïŒ4ã»6ïŒ5ã»6ïŒïŒïŒïŒïŒïŒïŒã»ïŒã§ïŒã®åæ°ã
ããããã¯ã¡ã¹ããšå£ããæã®äºæ³
ïŒïœïœïŒïŒãŸã§ã®ïœïŒïŒåã®èªç¶æ°ã®å
šãŠã®ïŒïœïœïŒïŒåã®çµã¿åããã®ç©ã®ç·åã¯ïœã®åæ°ã«ãªãã
äŸãã°ãïœïŒïŒã®å Žåã®ïœïŒïŒåã®å Žåã1ã»2ã»3ã»4ã»5ïŒ1ã»2ã»3ã»4ã»6ïŒ1ã»2ã»3ã»5ã»6ïŒ1ã»2ã»4ã»5ã»6ïŒ1ã»3ã»4ã»5ã»6ïŒ2ã»3ã»4ã»5ã»6ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒã»ïŒã§ïŒã®åæ°ããã£ãŠãïœã®åæ°ã«ãªãã