8åã®çޝä¹å
ïŒ1ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒãš
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒïœïŒä¹åãŸã§ãæç«ããŸãã
å人ããããã°ã©ã ããŠãã¿ã€ããŠãããŸããã
No.1658ks2024幎1æ13æ¥ 09:07
12åã®çޝä¹å
(0, 11, 24, 65, 90, 129, 173, 212, 237, 278, 291, 302) ãš
(3, 5, 30, 57, 104, 116, 186, 198, 245, 272, 297, 299)
ãªã0ïœ11ä¹åãŸã§æç«ãããšæããŸãã
No.1660GAI2024幎1æ13æ¥ 14:15
0ä¹åãèããäžã§ã0ã¯åé¡ããããšæããŸãã
No.1662ãããã2024幎1æ13æ¥ 17:30
ãããããªããã°ã©ã èšèªã§0^0(ãŸãã¯0**0)ãå°ãããš
Mathematica ã§ã¯äžå®
Wolfram Alpha ã§ã¯æªå®çŸ©
Microfoft Excel ã§ã¯#NUM!
Python, Ruby, SageMath, PARI-GP, VBA, GAP, GRAPS çå€ãã®ãœããã§ã¯1
ãè¿ãããã§ããã
PARIã®ãœããã§èšç®ç¢ºèªããŠãããã®ã§ããããã€ã0ä¹ãå«ããŠèšè¿°ããŠããŸããã
ãªããŠã£ãããã£ã¢ã®ã0ã®ïŒä¹ãã§ã®èšäºã«
èšç®æ©ç§åŠè
ã®ããã«ãã»ã¯ããŒã¹ã¯ã0^0 㯠1 ã§ãªããã°ãªããªããšåŒ·ã䞻匵ããŠãã
ãšããæç« ãèŒããŠããã
No.1663GAI2024幎1æ13æ¥ 21:18
ãããã¯ããŒã¹ã«ã¯ããããããšèšç®æ©ç§åŠã§äœ¿ãããåçš®å
¬åŒã綺éºã«ãªããšããçç±ããã£ããšæããŸãã
èããããŸãæ·±ãçç±ã§ã¯ãããŸããã
â»ããšãã° nC0 㯠1 ãšèãããã
ããªãã¡ãå
¬åŒãçŽ çŽã«æ¡åŒµãããš
nC0=n!/(0!*(n-0)!) =1
ãšãããã
æ€ãããããããã«ã¯
0!=0^0=1
ãèŠè«ãããâŠâŠâŠãªã©ã
æªç¢ºèªã§ãããExcelã®è¡šèšç®ãšExcelã®vbaãšã§0^0ã®æ±ããéãææããã£ããšèšæ¶ããŠããŸããä»ã¯ã©ããªã®ã§ããããã
No.1664Dengan kesaktian Indukmu2024幎1æ13æ¥ 22:36
ïŒã€ã®æ°ããããããããïŒä¹ããŠãåãåããšå¹³æ¹æ°ã«ãªããŸãã
ãŸããïŒä¹ããŠãåãåããšå¹³æ¹æ°ã«ãªããŸãã
äœããïŒïŒïŒïŒïŒïŒïŒïŒïŒã®å Žåãé€ãã
No.1646ks2024幎1æ11æ¥ 09:59
ïŒ2, 2, 2, 2ïŒ, ïŒ4, 4, 4, 4ïŒ, ïŒ8, 8, 8, 8ïŒ, ã»ã»ã»
ãšããèªæãªè§£ããããŸãããäºãã«çŽ ãªç°ãªã4æ°ã«éå®ãããš
ïŒ26, 22, 7, 4ïŒ, ïŒ33, 27, 17, 3ïŒ, ïŒ46, 44, 13, 2ïŒ, ïŒ58, 17, 8, 2ïŒ,
ïŒ74, 52, 22, 19ïŒ, ïŒ75, 45, 35, 27ïŒ, ïŒ87, 82, 36, 6ïŒ, ïŒ118, 92, 31, 26ïŒ, ã»ã»ã»
No.1647ãããã2024幎1æ11æ¥ 13:18
ãããããããããããšãããããŸãã
å ã¿ã«ãïŒã€ã®æ°ã¯ã
ïŒä¹ããŠåãåããšãå¹³æ¹æ°ã«ãªããŸãã
No.1650ks2024幎1æ12æ¥ 09:09
ïŒ4, 4, 4, 4ïŒã¯äœä¹åã§ãå¹³æ¹æ°ã«ãªããŸãã
No.1654ãããã2024幎1æ12æ¥ 14:47
ïŒïŒã®çŽæ°ã®ãçŽæ°ã®åæ°
ïŒïŒ2ïŒ2ïŒ4ããããããäœä¹ããŠããå¹³æ¹æ°ã«ãªããŸããã
ããèŠããšãïŒïŒAïŒAïŒA^2ïŒïŒïŒïŒAïŒïŒŸïŒ
å
ã
ãå¹³æ¹æ°ã§ãããç¡æ°ãæªãããã
No.1656ks2024幎1æ13æ¥ 08:32
ïœïŒïœïŒïœïŒïŒïŒïŒïœïŒŸïŒããšãªãïœãïœãæ±ãã
äœããïŒïœãïœïŒã¯ãïŒïœïŒŸïŒïŒïŒïœïŒãïŒïŒïœïŒŸïŒãïœïŒã
ïŒïœãïŒïœïŒŸïŒïŒä»¥å€ã§ãé¡ãããŸãã
No.1651ks2024幎1æ12æ¥ 09:16
ïŒïŒŠïŒïŒ§ïŒïŒïŒïŒïŒ/ïŒïŒïœ^4ïŒïŒâïœïŒããªã©ç¡æ°ã«ååšãããããªïŒïŒïŒïŒåºé¡ã®æå³ãããåãããªãã
No.1652管çè
2024幎1æ12æ¥ 12:00 (f,g)=(x+a,4x^2-a),(4(x-a)^2,x+a),((2x/a)^2,ax)
ãªã©ïŒaã¯0ã§ãªã宿°å®æ°ïŒã
No.1653ãããã2024幎1æ12æ¥ 12:49
éå®ããŠããè§£ãç¡æ°ã«ããããã§ããã
æããããå匷ã«ãªããŸããã
ïœïŒïŒïœïŒŸïŒãŒ4ïœïŒ2ãïœïŒâïŒïœïŒ1
No.1655ks2024幎1æ13æ¥ 08:26
髿 ¡æ°åŠç¯å²ã§ã以äžããéãè§£æ³ïŒç¹ã«ãåŒãããããåããªãåç幟äœçè§£æ³ïŒã¯ãããã§ããããïŒ
-----
åžåè§åœ¢ã®ã¿èããã°ããããšã¯æããã§ãã
â D ã®å€§ããã倿° Ξ ãšãããŸãã
åžåè§åœ¢ã®ã¿èããŠããã®ã§ã0 < Ξ < Ï ã§ãã
â B ã®å€§ããã倿° Ï ãšãããŸãã
ãã¡ãã¯èŸºã®é·ãã®éœåã§ã0 < Ï < Ï ããã¯çãããç¯å²ããåããŸãã
äœåŒŠå®çã§ AC^2 ã 2 éãã«è¡šãããšã«ããã
3^2 + 5^2 - 2*3*5*cosΞ = 10^2 + 12^2 - 2*10*12*cosÏ
ããªãã¡
34 - 30cosΞ = 244 - 240cosÏ
ãã
cosΞ + 7 = 8cosÏ âŠâŠ (A)
ã0 < Ï < Ï ããã¯çãããç¯å²ãã§ã¯ cosÏ ã¯ç矩å調æžå°é¢æ°ãªã®ã§ãΞ ãæ±ºããã° Ï ã 1 ã€ã«æ±ºãŸãã
ã€ãŸã Ï ã¯ Îž ã®é¢æ°ãšã¿ãªãããšãã§ããŸãã
(A) åŒã Ξ ã§åŸ®åãããšã
-sinΞ = -8sinÏ*(dÏ/dΞ)
ã€ãŸãã
dÏ/dΞ = (1/8)*(sinΞ/sinÏ)
ãšå°é¢æ°ãåŸãããŸãã
ãŸããsinΞ > 0, sinÏ > 0 ã§ããããšãã Ï ã¯ Îž ã®å調å¢å 颿°ã§ããããšãããããŸãã
åè§åœ¢ã®é¢ç© S ãèããŸãã
S = (1/2)*3*5*sinΞ + (1/2)*10*12*sinÏ
= (15/2)sinΞ + 60sinÏ
ãªã®ã§ã
dS/dΞ = (15/2)cosΞ + 60cosÏ*(dÏ/dΞ)
= (15/2)cosΞ + (15/2)cosÏ*(sinΞ/sinÏ)
= (15/2)*sin(Ξ+Ï)/sinÏ
sinÏ > 0 ã§ããããšããã
Ξ+Ï âŠ Ï ãšãªãç¯å²ã§ã¯ S ã¯å調å¢å ã
Ξ+Ï â§ Ï ãšãªãç¯å²ã§ã¯ S ã¯å調æžå°ã§ãã
ãããš Ï ã Ξ ã®å調å¢å 颿°ã§ããããšãåãããŠèãããšã
Ξ+Ï = Ï ãšãªããšãã S ãæå€§ã«ãªããšãã§ãã
ãã®ãšã (A) åŒãã cosΞ = -7/9, cosÏ = 56/9
ãã£ãŠ sinΞ = sinÏ = 4â2/9 ãªã®ã§
S = (15/2)*(4â2/9) + 60*(4â2/9) = 30â2
No.1638DD++2024幎1æ9æ¥ 22:47
åç幟äœçã§ããªããéãããªãã§ããããšããããäžè§é¢æ°ã䜿ããªãè§£æ³ã§ãã
BD^2=xãšãããšã
> 3蟺ã®é·ãã®2ä¹ãp,q,rã§ããäžè§åœ¢ã®é¢ç©ã¯
> (1/4)â{2(pq+qr+rp)-(p^2+q^2+r^2)}
ãšããããã³ã®å
¬åŒã®äºçš®ã«ãã
4â³ABD=â{2(1296+153x)-(81+20736+x^2)}=â{(x-81)(225-x)}
4â³BCD=â{2(2500+125x)-(625+10000+x^2)}=â{(x-25)(225-x)}
4S=4(â³ABD+â³BCD)=â{(x-81)(225-x)}+â{(x-25)(225-x)}
{4S}'=(306-2x)/{2â{(x-81)(225-x)}}+(250-2x)/{2â{(x-25)(225-x)}}
={(306-2x)â(x-25)+(250-2x)â(x-81)}/{2â{(x-25)(x-81)(225-x)}}
={(153-x)â(x-25)+(125-x)â(x-81)}/â{(x-25)(x-81)(225-x)}
(153-x)â(x-25)+(125-x)â(x-81)=0ãšãããš
(153-x)â(x-25)=-(125-x)â(x-81)
(x-25)(153-x)^2=(x-81)(x-125)^2
(x-25)(x^2-306x+23409)=(x-81)(x^2-250x+15625)
x^3-331x^2+31059x-585225=x^3-331x^2+35875x-1265625
4816x=680400
âŽ43x=6075
ãã£ãŠé¢ç©ã®æå€§å€ã¯
S=(1/4){â{(x-81)(225-x)}+â{(x-25)(225-x)}}
=(â(225-x)/4){â(x-81)+â(x-25)}
={â(225*43-43x)/(4*43)}{â(43x-43*81)+â(43x-43*25)}
={â(9675-6075)/(4*43)}{â(6075-3483)+â(6075-1075)}
={â3600/(4*43)}{â2592+â5000}
={60/(4*43)}(â2){â1296+â2500}
={30/(2*43)}(â2)(36+50)
=(30/86)(â2)*86
=30â2
No.1639ãããã2024幎1æ10æ¥ 07:55
DD++ããã®èšç®çµæããABCDã¯åã«å
æ¥ããããšãã
A(-6,0),B(6,0)ãšx軞äžã«ãšããäžç¹ãåç¹ãšãyè»žã®æ£ã®æ¹åã«Cããšããš
C(-16/9,40/9*sqrt(2)), D(-237/43,90/43*sqrt(2))
ãããã4ç¹ãéãåã®æ¹çšåŒã
x^2+(y-3/8*sqrt(2))^2=(3/4*sqrt(129/2))^2
ãšãªããŸããã
No.1640GAI2024幎1æ10æ¥ 08:26
ãã¬ãŒãã·ã¥ãã€ããŒã®å
¬åŒã§ç€ºãããå蟺圢ã®é¢ç©ããã£ãšçšããšãé¢ç©ãæå€§ã«ãªãã®ã¯ãå
¬åŒäžã® cos() ã«åŒãæž¡ããã倿°ã®å€ã Ï/2 ã«ãªããšããšããããŸãã
ãã®å Žåã«å蟺圢ã¯åã«å
æ¥ããŸãã
ãã®å蟺圢ã®é¢ç©ã¯ãã©ãŒãã°ãã¿ã®å
¬åŒã§æ±ããããŸãã
ãšããããšã«ïŒ
No.1642Dengan kesaktian Indukmu2024幎1æ10æ¥ 09:57
ãã¬ãŒãã·ã¥ãã€ããŒã®å
¬åŒãã®ãã®ã¯é«æ ¡ç¯å²ã§ã¯ãªãã
ããã髿 ¡ç¯å²ã®ç¥èã§ãã¬ãŒãã·ã¥ãã€ããŒã®å
¬åŒã®èšŒæãæžãããšãããšãå€åç§ã®è§£æ³ããé·ããªããããªæ°ãããŸãã
ããšããã©ãŒãã°ãã¿ã¯äœã®ããã«æã¡åºãããŠãããã§ãããïŒ
æã¡åºãããšã«äœã®æå³ããªããããªïŒ
No.1643DD++2024幎1æ10æ¥ 12:53
DD++ããã
ãŸããããã£ãããéãã§ããã
髿 ¡æ°åŠã®ã·ããªã倱念ããŠãããŸããã
ãªãããã©ãŒãã°ãã¿ã«ã€ããŠã¯
GAIããããABCDã¯åã«å
æ¥ããããšæžããŠããã§ã§ããŠãã®ããšãç§ã®é ã«åé¿ããŠãããŸããããªãã°ãã©ãŒãã°ãã¿ã§é¢ç©ãåºããšã
ãªãã°ãã©ãŒãã°ãã¿ã§ã¯åŠçã§ããªããšãã®ãã¬ãŒãã·ã¥ãã€ããŒã®å
¬åŒããããæå€§ããåŸãããŠãããã ãããšã®
éç®ã®çºæ³ã§ããèå°è£ã¯ãããªãšãããªã®ã§ããã
No.1649Dengan kesaktian Indukmu2024幎1æ11æ¥ 21:17
æ°å¹Žæ©ã
èœç»å°éã«ã¯é©ããŸããã
ãã¥ãŒã¹ã®åéã«ãäžèã
[1]
4ã€ã®éè² æŽæ°a,b,c,dã§
åã21ãæ§æã§ããã®ã¯äœéãïŒ
(a,b,c,d)=
(21,0,0,0)
(20,1,0,0)
(20,0,1,0)

(0,0,0,21)
[2]
3Ã3ã®ãããªãã¯ã¹Mã§22ãå§ããšãã
M=[binomial(22,1) binomial(22,2) binomial(22,3)]
ã [binomial(23,1) binomial(23,2) binomial(23,3)]
ã[binomial(24,1) binomial(24,2) binomial(24,3)]
ãæåã«æã€è¡ååŒã®å€ã¯ïŒ
[3]
èªç¶æ°p,qã§åã23ãšãã
p+q=23
ã®é¢ä¿ããã€(p,q)ã®åãåããã®ãã¹ãŠã«ã€ããŠ
p*qã®å€ã®åã¯ïŒ
1*22+2*21+3*20++22*1
No.1622GAI2024幎1æ2æ¥ 09:43
www.youtube.com/watch?v=Rgk0q6ecOeU&t=1000
âãã¡ãããã®ç¥èããã£ãã®ã§[1]ãš[3]ã¯èšç®äžèŠã§ããã
No.1623ãããã2024幎1æ2æ¥ 11:20
ãããæ¬å¹Žããããããé¡ãããŸãã
æ©éãè§£çã¯ã»ã»ã»ã
1ç°ãªãïŒåã®ãã®ããéè€ãèš±ããŠïŒïŒåãšãçµåãã®æ°ã«çããã®ã§ã421ïŒ2421ïŒ243ïŒïŒïŒïŒïŒïŒéãïŒ
2è¡ååŒãèšç®ããŠã2024 ãšãªããŸããã
3Σ(k=1~22)ïœ(23ïŒïœ)ïŒ23*22*23/2ïŒ22*23*45/ïŒïŒ5819ïŒ3795ïŒ2024
No.1624管çè
2024幎1æ2æ¥ 11:22 ãããŸããŠããã§ãšãããããŸãã
æšå€ããæšå€ã«ãããŠ
接波ããéããŠãããŸããã
äºå ±ã§ã¯ïŒã¡ãŒãã«äºæ³ã§ããã®ã§ãèªåè»ã§ïŒæéã»ã©å
éžãžã
ã©ãžãªèããŠãæŽ¥æ³¢ç¬¬ïŒæ³¢ã®é«ããããã»ã©ã§ããªããæ§ãã€ãã¿ãŒæ
å ±ã§ã被害ããªããããªã®ã§ããããèªå®
ã«ãã©ã£ãŠã飯é£ã¹ãŠé
å°ãã£ãŠå¯ã€ããŸããã
2024 ãšããã°ãèãããšããã§ã¯ä»¥äžãé¢çœãã®ã ããã§ããçããæ°åãšããããšã§ããããå°åŠçã«ãããããã¿ã§ãã
https://t.co/wwW6gNE4SH
No.1625Dengan kesaktian Indukmu2024幎1æ2æ¥ 15:10
ãããŸããŠããã§ãšãããããŸãã
æ¬å¹Žããããããé¡ãèŽããŸãã
åæã«è¿œå ã§
[4]
Σ[k=1âŠ21] 18/{k(k+1)(k+2)(k+3)} ã®å€ã¯ïŒ
No.1626DD++2024幎1æ2æ¥ 20:18
幎æãæ©ã
ã«å°éãæ¥ãããæ¥èªæ©ãæµ·äžä¿å®åºã®æ©äœãšæ¥è§ŠããŠçäžãããªã©ã波乱äžäžã®ïŒå¹Žã«ãªãããã§ãããçããããç¡äºã§äœããã§ãã
No.1627管çè
2024幎1æ3æ¥ 00:37 ãããŸããŠããã§ãšãããããŸãã
ä»å¹Žããããããé¡ãããŸãã
[4]
Σ[k=1âŠ21] 18/{k(k+1)(k+2)(k+3)}
= Σ[k=1âŠ21] { 6/{k(k+1)(k+2)} - 6/{(k+1)(k+2)(k+3)} }
= 6/(1*2*3) - 6/(22*23*24)
= 1 - 1/2024
= 2023/2024
No.1628ããã²ã2024幎1æ4æ¥ 02:54
ããå°çã®èµ€éäžãã²ãã§å·»ãä»ãããã®é·ãã«1(m)ã®é·ãã®ã²ããç¶ãè¶³ããŠ
åã³èµ€éã«å·»ãä»ãããšãããšãã©ãã ãã®ééãäžåšå
šäœã§ç©ºããããšãåºæ¥ããïŒ
ã®åãã«å¯ŸããŠ
èµ€éååŸãRãšããŠ
2*Ï*R+1=2*Ï*(R+x)ãã
x=1/(2*Ï)=0.159154
ã§çŽ16(cm)
ãšé©ããããã(Rã®å€ã«ã¯äŸåããªã!)
ããã§åãèšå®ã§å·»ãä»ããã²ããäžæ¹ã«å¯èœãªéãåŒã£åŒµããããå·»ãä»ããéšå以å€ã¯ãã³ãš
ã²ãã匵ã£ãŠããªãã ã空é«ãéšåã§ã²ããçµã¶æ§åãæ³åããŠæ¬²ããã
ããŠãã®æ§ã«ããŠ1(m)䌞ã°ããã²ããèµ€éäžã§ãã®æ§ã«åã³è²Œãä»ããŠè¡ã£ããšãããšã
ã²ãã¯ã©ãã ãå°äžããé«ãäœçœ®ã«äžããããšãå¯èœãïŒ
äœãå°çã¯å®å
šæ¥åäœãšãèµ€éååŸã¯6378137(m)ãšãããïŒWikipediaãã)
No.1614GAI2023幎12æ27æ¥ 15:47
å·»ãã€ããå°é¢ããé¢ãã 2 ç¹ãããããå°çäžå¿ãšçµãã ãšãããã®éã«ã§ããè§åºŠã 2Ξ ãšãããŸãã
æ¡ä»¶ãã
2RtanΞ + R(2Ï-2Ξ) = 2ÏR + 1
ã€ãŸã
2tanΞ - 2Ξ = 1/R
Ξ ã埮å°ã ãšæãã° tanΞ ã¯
tanΞ â Ξ + (1/3)Ξ^3
ãšè¿äŒŒã§ããã®ã§ã
(2/3)Ξ^3 = 1/R
ãã£ãŠãæ±ããé«ãã¯
R(1/cosΞ-1) â (1/2)RΞ^2 = (3/4)*(2R/3)^(1/3)
å®éã®å€ãšã¯ç°ãªããŸãããèšç®ãããã Râ6144000 ã ãš 120 m ãªã®ã§ãããããããã¡ãã£ãšé«ããããã§ãããã
æèŠçã« 1km ãããè¡ãããšæã£ãŠãã®ã«æå€ãšäœãâŠâŠã
èšç®ãã¹ã£ãŠãªãã§ãããïŒ
No.1619DD++2023幎12æ29æ¥ 08:18
2tanΞ - 2Ξ = 1/R
蟺ããã³ã³ãã¥ãŒã¿çã®å©çšã§ãÎžãæ¢ããš
Ξ=0,00617253(rad)
蟺ãã§ãããã
æå€§121.56060(m)
çšåºŠã«ãªããŸããã
ç§ã®å°è±¡ã§ã¯ãããªã«ãé«ããªããããïŒ
ã®æ¹ã§ã®é©ãã§ããã
DD++ããã¯éãªãã§ããã
çŽç·ãšæ²ç·ã¯ãã£ã±ãéãæ§è³ªãæã£ãŠãããã ãªïœïŒåœããåãšèšãã°åœããåãïŒïŒ
ãªããã®è§åºŠã§R*Ξ=39369(m)ãªã®ã§
æé«ã«ãªãå°ç¹ããçŽ40ïœïœæ±è¥¿ã§ã²ãã¯å°é¢ããé¢ãå§ããããšã«ãªãæ§é ã§ãã
No.1620GAI2023幎12æ29æ¥ 09:11
å
šäœãæµ®ãããå Žåã¯çã倧ãããšäžå©ããïŒå®éã¯ããã§ããªãïŒãªã®ã«å¯Ÿãã
äžç®æã ãåŒã£åŒµã£ãŠæµ®ããããªãçã¯å€§ãããã°å€§ããã ãæå©ãªã®ãæããã§ãããããã
No.1621DD++2023幎12æ31æ¥ 09:26
245813719612412378787994384765625
ãµãã€ã®å¹³æ¹æ°ã®åãšããŠãæ°å¹Žã®è¥¿æŠã«ã¡ãªãã§
2024éãã®è¡šãæ¹ãããæ°(ããã)ã§ãã
èšç®æ©ã§ãã«ãŒããã©ãŒã¹çã«ç¢ºèªããã®ã§ãããïŒ
No.1615Dengan kesaktian Indukmu2023幎12æ28æ¥ 00:10
ã€ã³ãã®äºå¹³æ¹åå®çããèããã°ãçŽ å æ°åè§£ã®åœ¢ã§ãããªãæèšç®ã§ããããŸããã
2024/4 = 506 = 2*11*23 ãªã®ã§ã
4ã§å²ããš1äœãçŽ æ°ã«å°ããé ã« 23-1, 11-1, 2-1 ãææ°ãšããŠäžããã°ããã ãã§ãã
ã€ãŸã N = 5^22 * 13^10 * 17 ã§ãããã
âŠâŠããèªäœã幎æãã«åºé¡ããã°ããã£ãã®ã§ã¯ïŒ
No.1616DD++2023幎12æ28æ¥ 01:20
DD++ããã埡æç€ºããŸããšã«æé£ãããããŸãã
OEISã§ã¿ãããã®ã«ãæ€çŽ¢ã«ããããªããŠåŸçããŠãããŸããã
å¹Žè³æšæ¶ã®ãã©ã€ã³ã°ã¯ããããšãããã¯ãªã¹ãã¹ãéããã®ã§ããããªããšïŒãéã
No.1617Dengan kesaktian Indukmu2023幎12æ28æ¥ 18:23
URL ãã¿ã€ãããŸããã
https://oeis.org/A016032/b016032.txt
No.1618Dengan kesaktian Indukmu2023幎12æ28æ¥ 20:11
Dengan kesaktian Indukmuãããã玹ä»ããããµã€ãã®é¢é£ãªã³ã¯
http://www.math.aoyama.ac.jp/~kyo/sotsuken/2019/sotsuron_2019_Shoda.pdf
ãèªãã§ããã
ã¬ã³ã颿°Î(z),ãªã€ã©ãŒã®ã¬ã³ãæ°Î³,ãŒãŒã¿é¢æ°Î¶(z)ã®é¢ä¿åŒãšããŠ
Î(1)=1
Î'(1)=-γ
Î''(1)=Ï^2/6+γ^2=ζ(2)+γ^2
ã®å»¶é·ãšããŠ
Î'''(1)=-(2*ζ(3)+3*γ*ζ(2)+γ^3)
ã玹ä»ãããŠããã®ã§æŽã«ç¶ããæ¢ã£ãŠãããš
Î''''(1)=6*ζ(4)+8*γ*ζ(3)+3*ζ(2)^2+6*γ^2*ζ(2)+γ^4
(ãªã³ã¯å
ã®ãã®éšåã¯èšç®ãã¹ãèµ·ããŠãããšæãããŸãã)
æŽã«
Î'''''(1)=-(24*ζ(5)+20*γ*ζ(4)+20*γ^2*ζ(3)+20*ζ(2)*ζ(3)+15*γ^2*ζ(2)^2+10*γ^3*ζ(2)+γ^5)
çã
ã®é¢ä¿åŒãçãŸããŠããããã§ãã
ãããŸã§ã¯äžå¿èšç®æ©ã«ããåãå€ãäžããŠããããšã確èªããŸãããïŒæåŸã®éšåã®ç¢ºèªãäžèš)
gp > gamma'''''(1)
%80 = -117.83940826837742425256416965496496106
äžæ¹
gp > -(24*zeta(5)+30*Euler*zeta(4)+20*Euler^2*zeta(3)+20*Euler^2*zeta(3)\
+20*zeta(2)*zeta(3)+15*Euler*zeta(2)^2+10*Euler^3*zeta(2)+Euler^5)
%81 = -117.83940826837742425256416965496496106
æ®å¿µãªããζ(3),ζ(5)ã«ã¯Ïãå«ãŸããŠããªãã®ã§Î''(1)ãæãçµã³ã€ããæ¥çåã匷ãããã§ãã
ãŸã
γ=1/2*(ζ(2)-1)+2/3*(ζ(3)-1)+3/4*(ζ(4)-1)+4/5*(ζ(5)-1)+
ãªãåŒã«ãåŒãä»ããããŸãã
(åè)
gp > sumpos(n=2,(n-1)/n*(zeta(n)-1))
%83 = 0.57721566490153286060651209008240243103
gp > Euler
%84 = 0.57721566490153286060651209008240243104
No.1613GAI2023幎12æ24æ¥ 17:09
次ã®å®ç©åã®å€ã¯äœïŒ
(1)â«[0â3]floor(x^2)dx
(2)â«[0â3]ceil(x^2+floor(x))dx
(3)â«[1/Ïâ1/2]log(floor(1/x))dx
(4)â«[e^âÏâ(âÏ)^e^2]ceil(x)dx
No.1595GAI2023幎12æ11æ¥ 01:19
åçã§ã¯ãããŸãããç³ãèš³ãããŸããã
æè¿ããããªã®ãèŠãããŸããŠç®ãäžžãããŠããæ¬¡ç¬¬ã§ãã
â«[0â1](1/x -floor(1/x))dx = 1 -γ
x=0 ã®ä»è¿ã§æ¿ããæ¯åãã颿°ã®å®ç©åãªã®ã§ã©ããã£ãŠæ±ããã®ããšææ¡æãéŠã§ãã
ãªããwolfalpha ã§ã¯çããŠãããŸããã§ããã
No.1598Dengan kesaktian Indukmu2023幎12æ12æ¥ 16:45
â«[0â1](1/x-floor(1/x))dx
=â«[1/2â1](1/x-1)dx+â«[1/3â1/2](1/x-2)dx+â«[1/4â1/3](1/x-3)dx+âŠ
=lim[nââ]{â«[1/nâ1](1/x)dx-Σ[k=2ïœn](1/n)}
=lim[nââ]{logn-Σ[k=2ïœn](1/n)}
=-lim[nââ]{Σ[k=2ïœn](1/n)-logn}
=1-lim[nââ]{Σ[k=1ïœn](1/n)-logn}
=1-γ
ãšãªããŸããã
No.1599ãããã2023幎12æ12æ¥ 17:25
â«[x=1ââ](1/floor(x)-1/x)dx=γ
ãšãªãããã§ããã
No.1601GAI2023幎12æ13æ¥ 08:15
Euler's constant (or the Euler-Mascheroni constant), gamma.
ãšèšãããγã«ã€ããŠãWikipediaã§ã®èšäºãèªãã§ã¿ãã
γãšååšçÏãšã®é¢ä¿ãåãã£ãŠããªããšããèšè¿°ãèŠãããã
äŸãã°Ïãšèªç¶å¯Ÿæ°ã®åºeãšã¯ãããã€ãªãé¢ä¿åŒã¯ãã°ãã°èŠãããšã¯ãããã
ããããã°Î³ãšÏã¯ããŸãèŠãããšã¯ãªãã£ãã
ããã§ãªãããªãã®ããšæ¢ãåã£ãã
Î颿°ã§
Î(1/2)=âÏ
Î'(1)=-γ
ãšã¬ã³ã颿°ã§è¡šçŸã§ã
ãŸãããŸããŸ
γ^2+Ï^2/6=Î''(1)=â«[x=0ââ]e^(-x)*(log(x))^2dx
ãæç«ããããšãçºèŠããã(A081855åç
§)
ããã¯ïŒã€ãçµã³ã€ãã倧ããªé¢ä¿ã§ã¯ãªããããïŒ
äœæ¹ãä»ã«äœãïŒã€ãçµã¶é¢ä¿åŒããåç¥ã®æ¹ã¯ãæãäžããã
No.1602GAI2023幎12æ13æ¥ 21:51
æ¬æ¥ã¿ãããã®ã§ãã
â«[x=0ââ] ((sin(x)*log(x))/x)dx = -γ*Ï/2
ãªã®ã ããã§ãã
ã埡åèã
https://mathlog.info/articles/FB8gF9bmpb3LJ5CDZBzo
No.1608Dengan kesaktian Indukmu2023幎12æ22æ¥ 12:59
èšç®æ©ã§ç¢ºèªããããã¿ãªåãæ°å€ã確èªããŸããã
sinãšlogã®çµåãïŒ
æ°åŠã£ãŠäžæè°ã§é¢çœãã
No.1610GAI2023幎12æ23æ¥ 07:44
ä»»æã®äžè§åœ¢ã¯ããã®é ç¹ããåäžååšäžã«ãåããããšãã§ããã
éè§ãªè§ãæã€å¹³è¡å蟺圢ã¯ãåäžååšäžã«ãåããããšãã§ããªãã
ä»»æã®åžäºè§åœ¢ã¯ããã®é ç¹ããåäžã®ååšäžã«ãåããããšãã§ããã
(ãã®ãŸãŸã§ã¯ç¡çå¹³è¡å蟺圢ãå«ããããæ¡ä»¶ãç·©ããŠãè§A,B,C,D,
Eãšåã䞊ã³ã®äºè§åœ¢ãååã§ã¯ãªã)ã¯å¯èœã§ããããïŒ
ãWATTAãADVENTUREãã®ããã«ãäžå¯èœããå¯èœã«ïŒ
No.1597ks2023幎12æ12æ¥ 10:37
åžäºè§åœ¢ABCDEã«å¯ŸããŠãâ AïŒaãâ BïŒb,â C=c,â D=d,â E=e
眮ããŸãã
a=Ξ1ïŒÎ2ïŒÎ3 +0 + 0
b=ïŒïŒÎ2ïŒÎ3ïŒÎ4+0
c=ïŒïŒïŒïŒÎ3ïŒÎ4ïŒÎ5 ïŒAïŒÎïŒïŒÎïŒïŒÎïŒïŒÎïŒïŒÎïŒïŒ
d=Î1ïŒïŒïŒïŒïŒÎ4ïŒÎ5ãããåãã¯ãã«
e=Î1ïŒÎ2ïŒïŒïŒïŒïŒÎ5
å·¡åè¡åAã¯ãæ£åã§ãéè¡åãæã¡ã
äžããããïŒa,b,c,d,e)ã«å¯ŸããŠãïŒÎïŒïŒÎïŒïŒÎïŒïŒÎïŒïŒÎïŒïŒ
ãæ±ºãŸããŸããäœå³ãã§ãããå¿é
ã§ãããïŒè§åºŠãåãåãã§ããã°ãïŒ
ååšäžã«ãäžç¹AïŒä»®ïŒãé©åœã«ãšããå·ŠãããÎ1ïŒâ BAC,ÎïŒïŒâ CAD,
ÎïŒïŒâ DAEãšããŠãç¹B,C,D,Eãå®ãããÎïŒïŒâ ECA,ÎïŒïŒâ ADBã«ãªãããã«ãæ¹ããŠç¹AãBEã®éã«å®ããã°ãã§ãããããããŸããããèªä¿¡ããããŸããã
No.1603ks2023幎12æ14æ¥ 16:25
æ£æ¹åœ¢BCDEãšæ£äžè§åœ¢ABCãšãäœå³ããŸãã
ãã®ãšãã«åžäºè§åœ¢ABCDEã®åé ç¹ãåäžååšäžã«ã¯é
眮ã§ããªããšæãããŸãããã©ããç§ã®é¡æèªã¿éããªã®ã§ããããïŒ
No.1605Dengan kesaktian Indukmu2023幎12æ15æ¥ 22:59
åäŸãããããšãããããŸãã
ãã®å ŽåãÎïŒãããã€ãã¹ã«ãªããŸããã
æ£æ°å€ã§ãã忝ãïŒã®å Žåãäœå³ãé£ãããã§ããã
No.1606ks2023幎12æ18æ¥ 09:54
察è§ã®åããïŒïŒïŒÂ°ãªãã°ãåã«å
æ¥ããããšãå¯èœã
ä»»æã®äºèæïŒãã³ã¿ã°ã©ãïŒã¯ãåã«å
æ¥ãããããšãã§ããã
ïŒé·ãã¯åãã§ãªããšããè§ã®äžŠã³ããåããšããæå³ã§ïŒ
ä»»æã®å
èæããå¯èœã
No.1607ks2023幎12æ20æ¥ 13:20
åèš2646ä»¶ (æçš¿463, è¿ä¿¡2183)