ãŠã©ãªã¹ã®ç©ã§ååãå¶æ°ã忝ã奿°ã§ç©ãäœã
(2*2*4*4*6*6*8*8*10*10*12*12*14*14*16*16*18*18*)/(1*1*3*3*5*5*7*7*9*9*11*11*13*13*15*15*17*17*)
=Ï/2
ãšããçåŒããããŸãããã
ããã§ãããã
2*(2*4)/(3*3)*(4*6)/(5*5)*(6*8)/(7*7)*(8*10)/(9*9)*(10*12)/(11*11)*(12*14)/(13*13)*(14*16)/(15*15)*(16*18)/(17*17)*=Ï/2
ãã£ãŠ
(2*4)/(3*3)*(4*6)/(5*5)*(6*8)/(7*7)*(8*10)/(9*9)*(10*12)/(11*11)*(12*14)/(13*13)*(14*16)/(15*15)*(16*18)/(17*17)*=Ï/4
å³ã¡
lim[n->oo]Î (k=1,n,(2*k)*(2*k+2)/(2*k+1)^2)=Ï/4â
ããã¯ãŸãã¬ã³ã颿°ã䜿ãã°
Î(3/2)^2 ã«ãã£ãŠã瀺ãããã
ããã§â ã3以äžã®çŽ æ°pã«éå®ã«ããŠã¿ãŠkçªç®ã®çŽ æ°ãprime(k)ã§è¡šããš
lim[n->oo]Î (k=2,n,(prime(k)-1)*(prime(k)+1)/prime(k)^2â¡
å³ã¡
=(2*4)/(3*3)*(4*6)/(5*5)*(6*8)/(7*7)*(10*12)/(11*11)*(12*14)/(13*13)*(16*18)/(17*17)*
ãã©ããªæ¥µéå€ããšãã®ãã¯é¢çœãããŒããšãªããŸããã
ããã«ãã¯ã¡ã¹ãããããªã€ã©ãŒç©ã¯ééãã§ãããšããŠæ²èŒããŠããçåŒ
[{(2+1)(2-1)/2^2}{(3+1)(3-1)/3^2}{(5+1)(5-1)/5^2}{(7+1)(7-1)/7^2}{(11+1)(11-1)/11^2}ã»ã»ã»]*ζ(2)=1
ãå©çšãããŠããããš
3/4*{(2*4)/(3*3)*(4*6)/(5*5)*(6*8)/(7*7)*(10*12)/(11*11)*(12*14)/(13*13)*(16*18)/(17*17)*}*ζ(2)=1
å³ã¡â¡=4/3*(1/ζ(2))
ç§ã¯ãªã€ã©ãŒããã®çºèŠã¯ééãã©ãããã人éã®èããåã®çµæ¶ãšé«ãè©äŸ¡ããã®çµæã
å©çšãããŠããããš,
ããã=4/3*6/Ï^2=8/Ï^2
æŽã«çºå±ãããã°ã奿°ã®åææ°ã«éå®ããŠ
(8*10)/(9*9)*(14*16)/(15*15)*(20*22)/(21*21)*(24*26)/(25*25)*(26*28)/(27*27)*â¢
ã¯ã©ããªæ¥µéå€ãªã®ããšããããšãèããããã
ããã«ã¯â ,â¡ã®çµæãã
â¢=â /â¡=(Ï/4)/(8/Ï^2)=Ï^3/32
ãã®æ¥µéå€ã¯
1 - 1/3^3 + 1/5^3 - 1/7^3 + 1/9^3 - 1/11^3 + 1/13^3 - 1/15^3 +â£
ã§ãããã
ã€ãŸãâ¢=â£
ç¡éã«æäœããããšã«ã¯äžæè°ãªããšãèµ·ãããšã€ãã¥ãæããããŸãã
GAIæ§ããã¯ããããããŸãã
ç¡éã£ãŠãããæå³éœåã®ãã話ã§ãããã
ç§ã¯ããªã€ã©ãŒã®ããŒãŒã«åé¡ã¯ãæçæ°ãååæŒç®ã§éããŠããã®ã«ãç¡çæ°ã«ãªã£ãŠããããšããããããšæããŸãã
ããã§ãç¡éåã«ã€ããŠã調ã¹ãŠããã®ã§ããã
ïŒïŒïŒã®ç¡éåã¯ïŒã§ããã
ïŒïŒã§ãããããæéåã®å
ããïŒã®ç¡éåã§ãããšãæéåã«çããã
ãšããããšã§ãããŒãŒã«åé¡ããlim1/n^2â0ïŒäžéã§ã¯=0ãšæžããŠããŸãïŒã§ããããéäžãã0ã®ç¡éåã«ãªãã¯ãã§ããããæéåã§ãããšæã£ãŠããŸããã€ãŸããæçæ°ã§ãããšããããšã§ããç¡çæ°ãªããã«ã¯ãªããªãã®ã§ã¯ïŒ
ç¡éã®ç ç©¶ã¯ãNHKã®ãç¬ããªãæ°åŠãã§ç¡éã®è©±ã§ãã«ã³ããŒã«ã®è©±ãèããŸããã
å€ãã®å Žåãå¯ä»çªç¡éã§ã宿°ã¯è¶
ç¡éãšãããããªæãã§ãã
GAIæ§ã®ç¡éã¯ãå¯ä»çªç¡éã§ããããçªå·ãã€ããŠæ°ããããç¡éã§ãããã€ãŸããèªç¶æ°ã®ç¯å²ã ãšæãã®ã§ãã
ããã§ããã°ãæ°åŠçåž°çŽæ³ã®ç¯å²ãããªãããªãšæã£ããããŸãã
ããããã§ãããïŒ
ç¡éã£ãŠãããæå³éœåã®ãã話ã§ããã
ãšããææ³ãèŠãŠãã¯ã¡ã¹ãããã¯ç®ã«èŠãããã®ã ãã¯ä¿¡ãããããç®ã«èŠããªããã®ã¯ä¿¡ããããªããš
å
ãä¿¡ããããŠããããã«æããããŸãã
ã¯ãããã«ãŒãã«ã³ããŒã«ã«å¯ŸããŠãšã£ãæ
床ã«äŒŒãŠãªãããªãã
ãšããããç¡éã¯æ·±é ã§è±é¥ãªäžçãå
ã¿èŸŒãã§ãããšæãããŠã¯ã©ãã§ãããïŒ
BBCããæ¥æ¬ã®éç¶ããæŸéããããã§ããYOUTUBEã§ã¿ãŸããã
å£ããè¶ç¢ãæŒãšéç²ã§ãã€ãªãåãããŠãå
ãããèžè¡çãªã£ãŠããããã³ã»ãã³ãªãã ããã§ãã
æ¥æ¬ã§ã¯ããã®ããã«ãå£ãããã®ãåçããããŸãã§ãå·ã€ãã人éã§ããåãããçŸãã埩掻ã§ãããšããå²åŠã§ããã人éããããå·ã€ããéç¶ãã§é¥ãã«è±ããªäººéãšããŠåŸ©æŽ»ãããã
西æŽã§ã¯ãäžç¥æãªã®ã§ãå®å
šãäžå®å
šããããªããäžå®å
šã¯æšãŠãããã
äŸãã°ãé»è»ã§å¯ããããªãäžæ³šæãªäººéã¯ã財åžãããããŠãåœç¶ã§ãããšããããšã§ãã
ç¡éãããããæå³ã§ã¯ããã³ã»ãã³ãªã®ãããããŸãããã
ã§ããæ°åŠã¯ãäžç¥æãªã®ã§ã¯ããªãã®ã§ããïŒ
ïŒç§ã¯ããªã€ã©ãŒã®ããŒãŒã«åé¡ã¯ãæçæ°ãååæŒç®ã§éããŠããã®ã«ãç¡çæ°ã«ãªã£ãŠããããšããããããšæããŸãã
ãéããŠãããã®å®çŸ©ã«ã€ããŠåéãã
ãªãã£ãŠããã§ã§ãã
å®çŸ©ã«æ»ãã°ã
äºé
æŒç®ãïŒåè¡ã£ããšãã«
ãã®çµæãå°ãããã§ã¯æçæ°äœã«
å«ãŸããããšãšãªããŸãã
â»æéåã®äºé
æŒç®ã®çµã¿åããã®
çµæããŸããæçæ°ã«ãªãããšã嫿ããŠããŸãã
ãããã«ã¯ã¡ã¹ãããã¯
éããŠããããšã®å®çŸ©ããµã¿ã¯ãããŠ
ç¡éåã®ååæŒç®ã®çµæããŸã
å¿
ããã€ãæçæ°ã§ããã¯ãã ãšã
æã蟌ãã§ããã£ãããã
Dengan kesaktian Indukmuæ§ãããã°ãã¯ã
ç¡éãšã²ãšãããã«ãããããééã£ãŠããŸãã®ã§ãã
(((((a+b)+c)+d)+e)+f)+ã»ã»ã»
ãšããã°ãç¡éã«ïŒé
æŒç®ã§ããèšç®ã¯ãå°åŠæ ¡ã§ãããç¿ããŸããã
ã¯ã¡ã¹ãããã®ãç¡éã«äºé
æŒç®ã
ãã®æäœã«ã€ããŠã¯ããéããŠãããããšã®å®çŸ©ããã¯ãããŠããŸãã
æéã§ã®ããã·ã
ç¡éçžæã§ãéçšããã
ããããæ°åã¯æšãŠãŠé ããã
åããŸãã
仿¥ã®BSããžãã¬ãªã¬ãªXã¯ã¢ã¬ã«ã®ãŒã®è©±ã§ããã
ãããŸã§ã¯ãé£åããã¢ã¬ã«ã®ãŒç©è³ªãé€å»ããæ²»çã ã£ãããã§ãããä»ã§ã¯ã埮éã®ã¢ã¬ã«ã®ãŒç©è³ªãæ®ããã ãã ãæ
£ãããŠãã¢ã¬ã«ã®ãŒåå¿ããªããæ¹åã«é²ãã§ããããã§ãã
ç¡éãã¢ã¬ã«ã®ãŒåå¿ã§ã¯ãªãã§ããããã
ïŒã¯ã¡ã¹ãããã®ãç¡éã«äºé
æŒç®ã
ãã®æäœã«ã€ããŠã¯ããéããŠãããããšã®å®çŸ©ããã¯ãããŠããŸãã
ã©ãããŠãªã®ã§ããããç§ã¯ã()ã€ããŠæŒç®ã«å¶éãããŠããŸãã()ã¯åªå
é äœããããŸããç¡éã«ïŒé
æŒç®ã§ã¯ãããŸããã
åã®ïŒé
æŒç®ã®çµæã¯åé
ã§ããããåæŒç®ã¯ãïŒé
æŒç®ã«éããããŸããã
ïŒé
æŒç®ã§ãéããŠããããšããªãããŠããã®ã§ããããã©ãã«ç¡çãããã®ã§ãããïŒ
ç¡éãšããèšèã«ãã¢ã¬ã«ã®ãŒãããã®ã§ã¯ãªãã§ããã
èšç®ã¯ãå°åŠæ ¡ã§ãåã®æŒç®ã®çµæãšïŒé
æŒç®ãããšç¿ããŸããã
ã©ãããããããã®ã§ããããïŒ
ãŸãã
ïŒç§ã¯ããªã€ã©ãŒã®ããŒãŒã«åé¡ã¯ãæçæ°ãååæŒç®ã§éããŠããã®ã«ãç¡çæ°ã«ãªã£ãŠããããšããããããšæããŸãã
ããã§ãç¡éåã«ã€ããŠã調ã¹ãŠããã®ã§ããã
ïŒïŒïŒã®ç¡éåã¯ïŒã§ããã
ïŒïŒã§ãããããæéåã®å
ããïŒã®ç¡éåã§ãããšãæéåã«çããã
ãšããããšã§ãããŒãŒã«åé¡ããlim1/n^2â0ïŒäžéã§ã¯=0ãšæžããŠããŸãïŒã§ããããéäžãã0ã®ç¡éåã«ãªãã¯ãã§ããããæéåã§ãããšæã£ãŠããŸããã€ãŸããæçæ°ã§ãããšããããšã§ããç¡çæ°ãªããã«ã¯ãªããªãã®ã§ã¯ïŒ
æéåãšããŠããŸããç¡éåã§ã¯ãããŸãããã¡ãããšèªãã§ãããããããããŸãã
ããããããããŸãããã
ã¯ã¡ã¹ãããã®ãè«çïŒã
ã¯å
šãçè§£ã§ããŸããã
æã蟌ã¿ãçŸ
åããŠããã ããªã®ã§ã¯ïŒ
ãã®ã§ãã§ããã°
ãã€ãã¢æ° e ãæçæ°ã«ãªããŸããã
ãã
å調å¢å æçæ°å a_n
å調æžå°æçæ°å b_n
ãååšããŠãä»»æã®æ£ã®èªç¶æ° n ã«ã€ããŠ
a_n < e < b_n
ãšãªãããã€
n â â ã®ãšãã«
b_n - a_n â 0
ãšããããšãã§ããããã§ãã
è¶
è¶æ° e ã§ããæçæ°ã§ãªããã°ãªãã¬ãšãã
ãã®ãããªã¯ã¡ã¹ãããã®æã蟌ã¿ã
äžçãçŽåŸãããšã¯ãšãŠãæããŸããã
Dengan kesaktian Indukmuæ§ããã¯ããããããŸãã
ïŒããããããããŸãããã
ã¯ã¡ã¹ãããã®ãè«çïŒã
ã¯å
šãçè§£ã§ããŸããã
ïŒãã®ã§ãã§ããã°
ãã€ãã¢æ° e ãæçæ°ã«ãªããŸããã
ãã€ãã¢æ°ã¯ãlimïŒïŒïŒ1/n)^nã§ããnâç¡é倧ã§ããããéäžãã0ã®ç¡éåã«ã§ããŸããããããã£ãŠãæéåã«ã§ãããæçæ°ã«ãªãæ ¹æ ããããŸããã
ãªã€ã©ãŒã¯ãããã埮åã§èšŒæããŠããŸãã
ãŸããããŒãŒã«åé¡ãèšç®ã§ãÏ^/6ãšç¢ºä¿¡ããæçµçã«åŸ®åã§è«çã€ããããŠããŸãã
äž¡æ¹ãšããç¡çæ°ã§ãã
ïŒãã
å調å¢å æçæ°å a_n
å調æžå°æçæ°å b_n
ãååšããŠãä»»æã®æ£ã®èªç¶æ° n ã«ã€ããŠ
a_n < e < b_n
ãšãªãããã€
n â â ã®ãšãã«
b_n - a_n â 0
ãšããããšãã§ããããã§ãã
ãããããå°ã詳ããæããŠããããªãã§ããããïŒ
dengan ãããããŠããã®ã¯ã
e = Σ[k=0..â] 1/(k!)
ã®è©±ã§ãããã
ãããã0ã«åæããæçæ°ã®ç¡éåãã§ãã
ïŒdengan ãããããŠããã®ã¯ã
e = Σ[k=0..â] 1/(k!)
ã®è©±ã§ãããã
ããã¯ã埮åç©ååŠã®åºæ¬çãªé¢æ°ã䜿ã£ãå®çŸ©ã§ãããã
ç§ã¯ã埮ç©ååŠã䜿ããªããªã€ã©ãŒã®ããŒãŒã«åé¡ã«ã€ããŠèšã£ãŠããŸãã
ãªã€ã©ãŒã¯ã埮ç©ååŠã䜿ã£ãŠããã¯ããŒãªã³å±éã§ãx^3ã®é
ãæ¯èŒããŠÏ^2/6=Σ[k=0..â] 1/(k^2)ãçè«ã¥ããŠããŸãããåãåŒãããx^5,x^7ã®é
ã¯æ±ããããšã¯ã§ããŸãããç§ãèšç®ããŠã§ããŸããã§ããã
ããã§ããªã€ã©ãŒã¯ãΣ[k=0..â] 1/(k^4)ããx^5ã®é
ãæ±ããŠããã¯ãã§ãã
ãªã€ã©ãŒã®åŸ®ç©ååŠã䜿ã£ãŠãx^3ã®é
ãæ¯èŒããŠÏ^2/6=Σ[k=0..â] 1/(k^2)ãçè«ã¥ãã¯ããã®å Žãã®ããšæã£ãŠããŸãã
ãŸãããããªããšãæžããšç°åžžäººã«ãªãã§ããããã»ã»ã»ã»
ããšããšããããã芪ç¶ã§ãããã»ã»ã»ã»
1Ïãã7ÏãŸã§ã®æãç®ãèšç®ããŠã¿ãŸããã
((1-x^2/(1Ï)^2) (1-x^2/(2Ï)^2) (1-x^2/(3Ï)^2) (1-x^2/(4Ï)^2) (1-x^2/(5Ï)^2) (1-x^2/(6Ï)^2) (1-x^2/(7Ï)^2))
=x^14ã®é
ãã»ã»ã»x^8ã®é
ã
x^6ã®é
- x^2/(4Ï)^2 x^2/(6Ï)^2 x^2/(7Ï)^2 - x^2/(5Ï)^2 x^2/(6Ï)^2 x^2/(7Ï)^2
- x^2/(4Ï)^2 x^2/(5Ï)^2 x^2/(7Ï)^2 - x^2/(3Ï)^2 x^2/(5Ï)^2 x^2/(7Ï)^2
- x^2/(3Ï)^2 x^2/(4Ï)^2 x^2/(7Ï)^2 - x^2/(4Ï)^2 x^2/(5Ï)^2 x^2/(6Ï)^2
- x^2/(3Ï)^2 x^2/(6Ï)^2 x^2/(7Ï)^2 - x^2/(2Ï)^2 x^2/(6Ï)^2 x^2/(7Ï)^2
- x^2/(1Ï)^2 x^2/(6Ï)^2 x^2/(7Ï)^2 - x^2/(2Ï)^2 x^2/(5Ï)^2 x^2/(7Ï)^2
- x^2/(1Ï)^2 x^2/(5Ï)^2 x^2/(7Ï)^2 - x^2/(3Ï)^2 x^2/(5Ï)^2 x^2/(6Ï)^2
- x^2/(2Ï)^2 x^2/(4Ï)^2 x^2/(7Ï)^2 - x^2/(1Ï)^2 x^2/(4Ï)^2 x^2/(7Ï)^2
- x^2/(2Ï)^2 x^2/(3Ï)^2 x^2/(7Ï)^2 - x^2/(1Ï)^2 x^2/(3Ï)^2 x^2/(7Ï)^2
- x^2/(1Ï)^2 x^2/(2Ï)^2 x^2/(7Ï)^2 - x^2/(2Ï)^2 x^2/(3Ï)^2 x^2/(6Ï)^2
- x^2/(2Ï)^2 x^2/(5Ï)^2 x^2/(6Ï)^2 - x^2/(1Ï)^2 x^2/(5Ï)^2 x^2/(6Ï)^2
- x^2/(3Ï)^2 x^2/(4Ï)^2 x^2/(6Ï)^2 - x^2/(2Ï)^2 x^2/(4Ï)^2 x^2/(6Ï)^2
- x^2/(1Ï)^2 x^2/(4Ï)^2 x^2/(6Ï)^2 - x^2/(1Ï)^2 x^2/(3Ï)^2 x^2/(6Ï)^2
- x^2/(1Ï)^2 x^2/(2Ï)^2 x^2/(6Ï)^2 - x^2/(3Ï)^2 x^2/(4Ï)^2 x^2/(5Ï)^2
- x^2/(2Ï)^2 x^2/(4Ï)^2 x^2/(5Ï)^2 - x^2/(1Ï)^2 x^2/(4Ï)^2 x^2/(5Ï)^2
- x^2/(2Ï)^2 x^2/(3Ï)^2 x^2/(5Ï)^2 - x^2/(1Ï)^2 x^2/(3Ï)^2 x^2/(5Ï)^2
- x^2/(1Ï)^2 x^2/(2Ï)^2 x^2/(5Ï)^2 - x^2/(2Ï)^2 x^2/(3Ï)^2 x^2/(4Ï)^2
- x^2/(1Ï)^2 x^2/(3Ï)^2 x^2/(4Ï)^2 - x^2/(1Ï)^2 x^2/(2Ï)^2 x^2/(4Ï)^2
- x^2/(1Ï)^2 x^2/(2Ï)^2 x^2/(3Ï)^2
x^4ã®é
+ x^2/(6Ï)^2 x^2/(7Ï)^2 + x^2/(5Ï)^2 x^2/(7Ï)^2 + x^2/(4Ï)^2 x^2/(7Ï)^2
+ x^2/(3Ï)^2 x^2/(7Ï)^2 + x^2/(2Ï)^2 x^2/(7Ï)^2 + x^2/(1Ï)^2 x^2/(7Ï)^2
+ x^2/(5Ï)^2 x^2/(6Ï)^2 + x^2/(4Ï)^2 x^2/(6Ï)^2 + x^2/(3Ï)^2 x^2/(6Ï)^2
+ x^2/(2Ï)^2 x^2/(6Ï)^2 + x^2/(1Ï)^2 x^2/(6Ï)^2 + x^2/(4Ï)^2 x^2/(5Ï)^2
+ x^2/(3Ï)^2 x^2/(5Ï)^2 + x^2/(2Ï)^2 x^2/(5Ï)^2 + x^2/(1Ï)^2 x^2/(5Ï)^2
+ x^2/(3Ï)^2 x^2/(4Ï)^2 + x^2/(2Ï)^2 x^2/(4Ï)^2 + x^2/(1Ï)^2 x^2/(4Ï)^2
+ x^2/(2Ï)^2 x^2/(3Ï)^2 + x^2/(1Ï)^2 x^2/(3Ï)^2 + x^2/(1Ï)^2 x^2/(2Ï)^2
x^2ã®é
- x^2/(7Ï)^2 - x^2/(6Ï)^2 - x^2/(5Ï)^2 - x^2/(4Ï)^2 - x^2/(3Ï)^2 - x^2/(2Ï)^2 - x^2/(1Ï)^2
宿°é
+ 1
x^2(å®éã¯x^3)ã®é
ãã
(x^2/Ï^2){1/1^2+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2}=(x^2/Ï^2) Σ1/n^2ã¯ã§ããŸããã
x=4,6(å®éã¯x^5,7)ã®é
ããã§ããŸããããã¡ãªã¿ã«ãx^4ïŒå®éã¯x^5)ã®é
ã¯ããªã€ã©ãŒã«ãããšÏ^4/90ã ããã§ãã
ã€ãŸããåãåŒããæ±ããããŸããã
ããã§ããªã€ã©ãŒã¯ãΣ[k=0..â] 1/(k^4)ããx^5ã®é
ãæ±ããŠããã¯ãã§ãã
ã¯ã¡ã¹ããããžã
a_n = (1 +1/n)^n
b_n = (1 +1/n)^(n +1)
ãšããããã
Dengan kesaktian Indukmuæ§ãããã«ã¡ã¯ã
a_n = (1 +1/n)^n
b_n = (1 +1/n)^(n +1)
ã§ãnââãšãªããšãa_n=eã«ãªããŸããã
a_nã®ã°ã©ãã¯ãhttp://y-daisan.private.coocan.jp/html/20230313_BMP/2023-3-13-010.png
b_nã®ã°ã©ãã¯ãhttp://y-daisan.private.coocan.jp/html/20230313_BMP/2023-3-13-011.png
b_n-a_nã®ã°ã©ãã¯ãhttp://y-daisan.private.coocan.jp/html/20230313_BMP/2023-3-13-012.pngãšhttp://y-daisan.private.coocan.jp/html/20230313_BMP/2023-3-13-013.png
ã§ãã
b_n-a_n=(1+1/n)^(n+1)-(1+1/n)^n={(1+1/n)-1}(1+1/n)^n=(1/n)(1+1/n)^n
ã§ãnââãšãªããšã(1/n)(1+1/n)^n=(1/n)eãšãªã£ãŠãç¡çæ°ã§ããã
(1/n)ãããã£ãŠããã®ã§ãlim(1/n)eâ0ã§ããã
ã°ã©ãããèŠããšãa_nã¯ãå²ãšæ©ãeã«åæããŸãããã€ãŸããç¡çæ°ã«è¿ã¥ããšããããšã§ããã
b_n=(1+1/n)a_nã§ããã
a_n<e<b_n ãã¯ãa_n<e<(1+1/n)a_nã
a_n<e<ã(1+1/n)ãa_n=b_n
b_n-a_nãã¯ã
0<e-a_n<ã(1+1/n)ãa_n-a_n=b_n-a_n
0<e-a_n<ã(1/n)ãa_n
ããŠãnããããŠã
0<n(e-a_n)<ãa_n
ne-n a_n<ãa_n
na_nãè¶³ããŠã
ne< a_n +n a_n
e<(1+1/n)a_n=b_n
ãªããè¡ãè©°ãŸã£ããªãã
a_nãb_nãeã«è¿äŒŒãããããç¡çæ°ãšèšããããããªãããªãã
Dengan kesaktian Indukmuæ§ããã¿ãŸããã
> x=4,6(å®éã¯x^5,7)ã®é
ããã§ããŸãããã
ã§ããŸããã
ãšãããããã€ãŠããã®ïŒæ§ïŒæ²ç€ºæ¿ã§å®éã«ãã£ãããšãããã®ã§ããµã€ãã®æ¹ã®èšå€§ãªèšäºã®ã©ããã«æ®ã£ãŠããã¯ãã§ãã
ã©ãã ã£ãããªã
ïŒã§ããŸããã
ãããªãã§ããïŒ
ã§ããã§ããã¯ãããªããšæããŸãã
ã¯ã¡ã¹ãããããã£ãããã«ã
ïŒa_nãb_nãeã«è¿äŒŒãããããç¡çæ°ãšèšããããããªãããªãã
ã¯ã¡ã¹ãããã¯
ã¯ã¡ã¹ããããªãã®
ãéããŠããããšãã«èº«ãæ§ããªããŠã¯ãããªãã®ã§ã¯ãªãã§ããããïŒ
a_nãb_nãæçæ°ã«ç¡éåã
ååæŒç®ãé©çšãããã®ã§ããã
ã¯ã¡ã¹ãããã«ãããéããŠãããå®çŸ©ã«ããã°
ãã€ãã¢æ° e ããŸãæçæ°ã§ããã¯ãã§ãã
ãããã«ç¡çæ°ã§ãããšãã£ãããã
èªå·±ççŸã
åå ã¯ãéããŠããããšã«ã€ããŠã®
çè§£äžè¶³ãããã®ã§ãã
Dengan kesaktian IndukmuããŸããã¯ããããããŸãã
ãŸããããŒãŒã«åé¡ã¯ããŸãé²å±ãã¿ãããããå ±åããŸãã
ã¯ã¡ã¹ããããèãããšããã®
æçæ°äœã¯ïŒç¡éåã®ïŒååæŒç®ã«ã€ããŠéããŠããã
ã«ã€ããŠã¯ãæ¢ã«ãã€ãã¢æ°ãäŸã«äžããŠ
誀ãã§ãããšã瀺ããããŠé ããŸããã
å®ã¯ãå€ã®ããã£ãŠããããããã¯å€ãèšç®å¯èœãªä»»æã®ç¡çæ° c ã«ã€ããŠ
次ã®ããšããããŸããããªãã¡ã
ãã
å調å¢å æçæ°å a_n
å調æžå°æçæ°å b_n
ãååšããŠãä»»æã®æ£ã®èªç¶æ° n ã«ã€ããŠ
a_n < c < b_n
ãšãªãããã€
n â â ã®ãšãã«
b_n - a_n â 0
ãšãªãã
a_n ã b_n ããç¡è«ãc ã«åæããŸãã
ç¡çæ° c ãäžããããã°ãäžã®ãããªãæçæ°å a_n ã b_n ã
髿 ¡æ°åŠã®ç¯å²ã§ãååæŒç®ã䜿ã£ãŠæ§æå¯èœãªã®ã§ãã
éããŠåŒ·èª¿ããŠãããŸããã
ã¯ã¡ã¹ããããèãããšããã®
æçæ°äœã¯ïŒç¡éåã®ïŒååæŒç®ã«ã€ããŠéããŠããããšããæŠå¿µãçãªãã°
ä»»æã®ç¡çæ°ãæçæ°ã«ãªã£ãŠããŸããŸãã
ããŒãŒã«åé¡ã©ããã®éšãã§ã¯ãªãã®ã§ãã
ç¡éåã®æäœã§ã¯ãæéåã®æäœãŸã§ã®æèŠãéçšããªãããšããããããããŸãã
ãã®ãããããã¡ããšæç§æžã§åŠã°ãªããš
人çã®è²Žéãªæéãç¡é§ã«ãªããŸãã
ã¯ã¡ã¹ãããã«ãçè§£é ãããããšãããã²ãšã€ã
宿°ãaãbããã ããb > a ã«ã€ããŠä»¥äžããããŸãã
ä»»æã®æ£æ° ð ã«ã€ããŠ
ð - ð < ð
ã§ãããªãã°
ð - ð = 0
ã§ããããã¡ããšæžãã°
âð >0; ð - ð < ð â ð - ð = 0
ãããçã£ãŠãçããããŸããã
äºå®äžãå
¬çã ãšæã£ãŠäžããã
ã¯ã¡ã¹ããããåäŸãèŠåºãããšã¯äžå¯èœã§ããããããã ããåäŸãããã°
äžéå€ã®å®çãããŒã«ã®å®çãå¹³åå€ã®å®çãããŒã©ãŒå±éã«ãŸã€ããå®çããªãŒãã³ç©åã«ãŸã€ããå®çãªã©ã
ããããå
šãŠãççå€ãçãã«ãªããŸãã
æè¿ã®ãã¯ã¡ã¹ãããã«ããæ°ã®äœç³»ã«ã€ããŠã®
äžé£ã®ç矩ã蚎ãã¯ãå
šãŠ
âð >0; ð - ð < ð â ð - ð = 0
ãžã®ç°è°ç³ãç«ãŠã«ãªã£ãŠããã®ã§ãã
倱瀌ããããŸããã
宿°ãaãbããã ããb > a ã«ã€ããŠä»¥äžããããŸãã
ã§ã¯ãªã
宿°ãaãbããã ããb â§ a ã«ã€ããŠä»¥äžããããŸãã
ã«ããŠãã ãã