仿¥ãNHKã®Eãã¬ã§ãååŸ9:30ããããç¬ããªãæ°åŠãçŽ æ°ãããæŸéãããŸããåæŸéã§ãããæ°ã·ãªãŒãºãæåŸ
ãããã§ããã
No.826ããããã¯ã¡ã¹ã2023幎4æ8æ¥ 14:51
ææ¥ãNHKã®Eãã¬ã§ãååŸ9:30ããããç¬ããªãæ°åŠãç¡éãããæŸéãããŸãã
å
é±ã¯ãçŽ æ°ã远ããããŠãããªã€ã©ãŒãçŽ æ°ãÏãšé¢ä¿ããã¬ãŠã¹ãeãšé¢ä¿ããããšãçºèŠãããªãŒãã³äºæ³ã®é¶ç¹ééããååãšé¢ä¿ãããšããŸã§ãããŸãããçŽ æ°ã¯å®å®ã®æãç«ã¡ãšé¢ä¿ããããã§ãã
ææ¥ã¯ãã«ã³ããŒã«ã®ç¡éã§ãã
No.891ããããã¯ã¡ã¹ã2023幎4æ14æ¥ 18:27 仿¥ãNHKã®Eãã¬ã§ãååŸïŒæåããããç¬ããªãæ°åŠãåè²åé¡ããæŸéãããŸãã
確ããã³ã³ãã¥ãŒã¿ã§è±æœ°ãã§èšŒæããããã§ãããèªããããŠãªããããªã»ã»ã»ã»ã»
ãã®åŸããœãããŠã§ã¢ã§ã¡ãããšè§£æ±ºãããããã»ã»ã»ã»ïŒ
No.933ããããã¯ã¡ã¹ã2023幎4æ22æ¥ 07:15 ãããããã ããªããšãããšãã¡ãã»ã»ã»ã»
No.936ããããã¯ã¡ã¹ã2023幎4æ22æ¥ 15:18 ããšã¬ã¬ã³ããªèšŒæããããšããã®ã¯å®æã¿ãããªãã®ã ãããšèšã£ãŠãŸãããã
ã§ããå®éã«ããããããããŸããã
ãã§ã«ããŒã®æçµå®çãã¯ã€ã«ãºã®èšŒæããšã¬ãã¡ã³ããªèšŒæã ãšããã°ãåçæ°åŠã§ããšã¬ã¬ã³ããªèšŒæãå®éãããããããŸãããã
No.937ããããã¯ã¡ã¹ã2023幎4æ22æ¥ 22:36
å
é±ã¯ç¡éã§ãããã«ã³ããŒã«ã®è©±ã§ãããæçæ°ã¯ãå¯ç®éåãªã®ã§ãèªç¶æ°çšåºŠã®ç¡éã§ãã
ãšããã§ããªã€ã©ãŒã¯ãªã€ã©ãŒç©ã§ãã¹ãŠã®çŽ æ°ã®ç©ã€ãŸããå¯äžã®èªç¶æ°mãå®çŸ©ããã®ã§ããã§ãããŠãŒã¯ãªããã«ãããïœïŒïŒã¯æ°ããçŽ æ°ãåææ°ãªã¯ãã§ããããšããããmããã以éã®èªç¶æ°ã«ã¯çŽ æ°ããªããšããããšã§ãããçŽ æ°å®çãããããªããšã¯ãããŸããã
ãããšããªã€ã©ãŒã¯ãèªç¶æ°ã¯ïœãæå€§ã§ãããšãã£ãŠãããããªãã®ã§ããããã¯ãèªç¶æ°ã¯æéã§ãããšããããšã§ã¯ãªãã§ããããïŒ
ããã¯ããªã€ã©ãŒã®æ°ããæ¥çžŸã§ã¯ãªãã§ããããïŒ
No.941ããããã¯ã¡ã¹ã2023幎4æ23æ¥ 07:28
çŽ æ°ã¯ç¡éã«ãããŸãããïœã¯ãç¡é倧ã§ã¯ãããŸãããçŽ å æ°åè§£ã§ãããããèªç¶æ°ã§ãªããšãããªãã®ã§ããèªç¶æ°ã¯ãå¯ç®éåã®èŠçŽ ã§ããããå¯ä»çªéåã®èŠçŽ ã§ãã£ãŠããã¹ãŠã®èŠçŽ ã®ïŒã€ïŒã€ã«çªå·ãã€ããŠããã®ã§ãããããã£ãŠãç¡é倧ã«ã¯ãªããªãã®ã§ãã
倧äœç¡é倧ã¯ã宿°ãè€çŽ æ°ãªã®ã§ãèªç¶æ°ã«ã¯ãç¡é倧ã¯ãããŸããã
No.942ããããã¯ã¡ã¹ã2023幎4æ23æ¥ 12:02
ãªããããªããããªããšã«ãªãããšãããšããªã€ã©ãŒç©ãããããééãã ããã æãã
ãŸãããªã€ã©ãŒç©ããééãã§ããã°ããªãŒãã³ã®ãŒãŒã¿é¢æ°ãééãã§ããã
ãããã£ãŠãçŽ æ°ãå®å®ã®æãç«ã¡ãšã¯ãå
šãé¢ä¿ããªãã®ã§ããã
No.943ããããã¯ã¡ã¹ã2023幎4æ23æ¥ 13:49
ãªãã§ãããªããããªããšã«ãªãããšãããšãã¯ã¡ã¹ãããã¯ãæ°åŠçã«æ£ãããããšããããšã¯ããã£ãœã£ã¡ãèããŠãããããèªåã®äºæ³ã«äžèŽããããã§ããèããŠãªãããã§ãã
ç§ã¯ãã®çªçµãèŠãŠããªãã®ã§ãããç¡éãããŒããªã®ã«ç¡éãšã¯äœããæ£ãã解説ããŠããããªãã£ãã®ã§ããïŒ
No.944DD++2023幎4æ23æ¥ 15:47
DD++æ§ãããã«ã¡ã¯ã
ãªã«ãäžéœåããããŸãããïŒç§ã®ææ³ã§ããç¹ã«ãæå³ã¯ãããŸããã
No.945ããããã¯ã¡ã¹ã2023幎4æ23æ¥ 16:17
æ°åŠçã«èšŒæãããŠããããšãããã ã®æã蟌ã¿ãçç±ã«èª€ãã ãšæããã
æ°åŠãšããäžçã«ãããŠäžéœå以å€ã®äœç©ã§ããªãã§ãããã
No.946DD++2023幎4æ23æ¥ 16:28
ïŒãªããããªããããªããšã«ãªãããšãããšããªã€ã©ãŒç©ãããããééãã ããã æãã
ã¯ãNo.941ã®ããèªç¶æ°ã¯æéã§ãããããããããªããããªããšã«ãªãããšèšã£ãŠãããã§ãå¯ç®éåã§ãå¯ä»çªæ°åã§ããç¡é倧ã§ããããŸããã
No.947ããããã¯ã¡ã¹ã2023幎4æ23æ¥ 17:03
ãã¯ãäœãèšã£ãŠããã®ããã£ã±ãããããŸããã
誰ããNo947 ã§ã¯ã¡ã¹ããããèšã£ãŠããããšãçè§£ã§ãã人ããããéèš³ããŠãã ããâŠâŠã
No.948DD++2023幎4æ23æ¥ 17:38
çªçµã§ã¯ãèªç¶æ°ãšå¥æ°ãåå°ã§ãããèªç¶æ°ãšå¶æ°ãåå°ã§ãããèªç¶æ°ãšæçæ°ãåå°ã§ãããšããŠã宿°ã¯ã察è§ç·è«æ³ã§ã§ã£ããç¡éã§ãããšãªããèªç¶æ°ã¯å°ããªç¡éã§ããããšãã«ã³ããŒã«ã¯ãäžãããã®ç¡éã€ãŸããé£ç¶äœä»®èšãšé²ã¿ããã€ç
ã ã£ããã«ãªã£ãŠã蚌æã§ããªãã£ããããšã§ãã²ãŒãã«ã®äžå®å
šæ§åçïŒã«ãã£ãŠãããã¯ãã§ããªãåé¡ã ã£ãããšããã«ã³ããŒã«ã®è©±ã§ããã
ç§ã¯ãããŒãŒã«åé¡ãšãã§ããããèªç¶æ°ããç¡éã§ãªããã°ãããªãšæã£ãŠãNo.471ãæãç«ã£ãã®ã§ãã
ã§ããããNo.471ã¯ãç§ã®ææ³ã§ãã£ãŠãçªçµãšã¯é¢ä¿ãªãã®ã§ãã
ããã§å°ãã¯ãçåã¯æŽããã§ããããïŒ
No.949ããããã¯ã¡ã¹ã2023幎4æ23æ¥ 17:57
ããããã£ã±ãæå³ãããããŸããã
ãèªç¶æ°ãæéã ãšèªåã®äºæ³ã«åãããããªã€ã©ãŒç©ã«ããèªç¶æ°ãç¡éã«ãã蚌æãééã£ãŠãããšããããšã«æ±ºããããšããèªããŸãããã
No.950DD++2023幎4æ23æ¥ 18:14
ãŸããã©ãã§ãæ§ããªãã§ãã
ãšããã§ã4è²åé¡ã®ã³ã³ãã¥ãŒã¿ã«ãããšã¬ãã¡ã³ããªèšŒæã¯ããšã¬ã¬ã³ãã§ãªããšéé£ãããŸãããã圌ã¯ããšã¬ã¬ã³ããªèšŒæããããšããã®ã¯å®æã¿ãããªãã®ã ãšåãæšãŠãŸããããã³ã³ãã¥ãŒã¿ã®äžã€äžã€ã®è§£æã芳å¯ããã°ããã£ãšåé¡ãã§ããæ³åãèŠã€ãã£ãŠãšã¬ã¬ã³ããªèšŒæãã§ãããšæãã®ã§ããããç§åŠãšããæåã®æå³ã¯ã芳å¯ããŠåé¡ããããšãªã®ã§ããŸãã«ç§åŠãããšããããšã§ãã
ç§ã®(a^n+b^n)^2>(a+b)^nããäœãããããªããšãããããn=3,5,7ãšé ã«é²ã¿ãæ°ã¶æããã£ãŠã芳å¯ãç¶ããŠããã®èšŒæã«ãªã£ãã®ã§ãããããããªãã¯äžæ¥ã§ãçµãããããã€ãŸããåé¡ã®çŠç¹ã極ãŸãã°ã極ããŠæ©ããšããããšã§ããã§ãããã4è²åé¡ããããšåãã§ãã³ã³ãã¥ãŒã¿ã®è§£æçµæããããã芳å¯ããã°ããšã¬ã¬ã³ããªèšŒæã¯ã§ãããšæãã®ã§ãããã
ãã§ã«ããŒã®æçµå®çã®åçç蚌æãããã ãšæããŸãã
No.951ããããã¯ã¡ã¹ã2023幎4æ23æ¥ 18:32
æ°åŠçã«æ£ãããã©ããããã©ãã§ãæ§ããªãããšèšããŠããŸã人ã¯ãæ°åŠã«é¢ããã¹ãã§ã¯ãªããšæããŸããã
No.952DD++2023幎4æ23æ¥ 18:49
åã«ãèšã£ããšãããç§ã®ééãããã§ãããããããã³ããåŸã人ããããããããŸãããçœå·å士ã®ããŒãã«è³ã§ããç§ã«ã¯ãæ°åŠã¯åããŠãªããããããŸãããã誰ããããããã³ãã«ãèªç¶æ°ã¯æéã§ãããšèšŒæãããããããŸããã
æ¥æ¬äººã«ã¯ãäžçå¯äžã®ãã£ãããªããšããçºæ³ããããŸãã
ãã£ãããªãããããã°ãç¡é§ãªããŠãªããšæããŸããã
No.953ããããã¯ã¡ã¹ã2023幎4æ23æ¥ 19:02
> èªç¶æ°ã¯æéã§ãããšèšŒæãããããããŸããã
ç¡éã«ãããšèšŒæãããŠããã®ã§ãããããããªå¯èœæ§ã¯çµ¶å¯Ÿã«ããããŸããã
ãããçè§£ã§ããªãã®ã§ããã°ããããã蚌æãšã¯äœããå匷ããŠãã ããã
No.954DD++2023幎4æ23æ¥ 19:18
ã¯ã¡ã¹ãããããã£ãããã«ã
ã倧äœç¡é倧ã¯ã宿°ãè€çŽ æ°ãªã®ã§ãèªç¶æ°ã«ã¯ãç¡é倧ã¯ãããŸãããããšã®ããšã
ã²ãšã€ã¢ããã€ã¹ããŠãããŸãã
ç¡é倧ã¯ãæ°ã§ã¯ãããŸããã
ç¡é倧ã¯å®æ°ãè€çŽ æ°ãªã©ã®æ°ã§ã¯ãªãã®ã§ãã
å匷ããªãããŠãã ããã
No.955Dengan kesaktian Indukmu2023幎4æ23æ¥ 21:38
仿¥ãååŸ9æåããã®ãNHKã®Eãã¬ã§ããç¬ããªãæ°åŠãP察NPåé¡ãããããŸãã
NPåé¡ãšã¯ãè±æœ°ãã§æ¢ããããªãåé¡ã§ãPåé¡ãšã¯ãããææ³ã§è§£ããåé¡ã§ããå
é±ã®åè²åé¡ã®äºèŸºåœã¯ãNPåé¡ãšããŠè§£æ±ºãããŸããã
NPåé¡ã¯ããããããã£ãŠãè±æœ°ããšèšã£ãŠãã倩æåŠçæ°ã§ãšãŠã倪åæã¡ã§ããŸãããã¹ãŒããŒã³ã³ãã¥ãŒã¿ããã¯ããã«éãéåã³ã³ãã¥ãŒã¿ã§ã倪åæã¡ã§ããŸããã
ãããã1970幎ã«ãœé£ãšã¢ã¡ãªã«ã®æŠç¥ç ç©¶è
ããå¥ã
ã«ã倧çºèŠããã®ã§ããããã¯ãäžçªé£ããNPåé¡ãè§£ãããšããã¹ãŠã®NPåé¡ã¯è§£ãããšèšŒæãããã®ã§ãã
ããŠãp=NPã§ãããããPâ NPã§ããããïŒ
No.975ããããã¯ã¡ã¹ã2023幎4æ29æ¥ 07:12
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒïŒïŒïŒïŒâŠïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒâŠïŒïŒ
ïŒïŒïŒ
å±±ãªãã®æ¡ä»¶
â å·Šå³å¯Ÿç§°â¡ïŒããå§ããâ¢åºçŸ©ã®å調å¢å åŸãå調æžå°
äœããå
šãŠïŒã®å Žåãé€ã
ã©ã®ãããªåå²ãããã§ããããïŒ
No.956ks2023幎4æ24æ¥ 11:02
6!/2=360
1ïœ26ã®åã¯351ãªã®ã§1+âŠ+26ã«ãããšæ®ã18ã§äžé©
1ïœ25ã®åã¯325ãªã®ã§1+âŠ+25ã«ãããšæ®ã70
ãã£ãŠæžãããŠããæ¡ä»¶ã ããªã
1+âŠ+25+70+25+âŠ+1ã§ãããçŸããã¯ãªã
1ïœ24ã®åã¯300ãªã®ã§1+âŠ+24ã«ãããšæ®ã120
ããã¯24ã§å²ãåããã®ã§
1+âŠ+23+24+24+24+24+24+24+24+23+âŠ+1
ãšã§ãã
åã«æ¡ä»¶ãæºããã°ããã ããªãäœãèããã«
1+2+2+âŠ+2+2+1ãïŒ2ã¯359åïŒ
ãªã©ãå¯
No.957ãããã2023幎4æ24æ¥ 13:14
ïŒã€äœã£ãŠã¿ãŸããã
1+3+5+âŠ+33+35+36+36+35+33+âŠ+5+3+1
No.958å£ããæ2023幎4æ24æ¥ 15:56
3!ïœ6!ã®äžè¬åŒ
N!(N=3,4,5,6) ã«å¯ŸããŠ
n=[2.1â(N!-2)] ã«ããé
æ°nãå®ãããš
N=3,4,5,6ã«å¯ŸããŠn=4,9,22,56
ãããŠa[1]ïœa[n]ã®å€ã¯
a[k]=[â(N!/2)ã»sin((2k-1)Ï/(2n))+1.265]
ãã®åŒã«ãããš
N=3ã®ãšãn=4ã§
a[1]ïœa[4]=1,2,2,1
N=4ã®ãšãn=9ã§
a[1]ïœa[9]=1,2,3,4,4,4,3,2,1
N=5ã®ãšãn=22ã§
a[1]ïœa[22]=1,2,3,4,5,6,7,8,8,8,8,8,8,8,8,7,6,5,4,3,2,1
N=6ã®ãšãn=56ã§
a[1]ïœa[56]=
1,2,3,4,6,7,8,9,9,10,11,12,13,14,15,15,16,17,17,18,18,18,19,19,19,20,20,20,
20,20,20,19,19,19,18,18,18,17,17,16,15,15,14,13,12,11,10,9,9,8,7,6,4,3,2,1
sinã§çæããŠããŸãã®ã§ãã°ã©ããæãã°sinã«ãŒãã«è¿ã綺éºãªåœ¢ã«ãªããšæããŸãã
â»N=7ã«ã¯äœ¿ããŸããã
No.959ãããã2023幎4æ24æ¥ 18:18
åæã«èããåé¡ã§ããã
æ¡ä»¶ããäžã€å¿ããŸããã
ïŒããã¯ãããŠãäžæ®µã¥ã€ãã®åºçŸ©ã®å調å¢å ãåŸå調æžå°ã§ãã
å ã¿ã«ãå¹³æ¹æ°ã¯ãããããªå±±ãªãã«ãªããŸããã
é©åœãªæ¡ä»¶ã§ãããããªåé¡ãšè§£çã«ãªãã°ããã§ããã
No.960ks2023幎4æ25æ¥ 09:45
åã€ã®æ¡ä»¶ã ãã ãšãè§£ã¯è€æ°ãããŸãã
ããã§ãããäžã€ãåãæ°ãã§ããã ã䜿ããªã
ãããããšãåãïŒã ãã®å Žåããé€ãããŸãã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒÃïŒïŒïŒïŒïŒïŒ
æ®ãïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ïŒïŒïŒ1ïŒâŠïŒïŒïŒïŒïŒâŠïŒïŒïŒïŒïŒïŒïŒâŠïŒïŒïŒïŒïŒâŠïŒïŒ
26äœåã§ãããïŒãïŒåã§ããèšæ£ããŸãã
ãåãæ°ãã§ããã ã䜿ããªãããææ§ã§ããããïŒ
No.968ks2023幎4æ26æ¥ 12:09
ææ§ä»¥åã«
> ïŒïŒïŒ1ïŒâŠïŒïŒïŒïŒïŒâŠïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒâŠïŒïŒïŒïŒïŒâŠïŒïŒ
巊蟺ã¯720ãå³èŸºã¯746ã§äžèŽããªããšæããŸãã
No.969ãããã2023幎4æ26æ¥ 13:55
ïŒïŒïŒïŒã»ã»ã»ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒã»ã»ã»ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒã»ã»ã»ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒã»ã»ã»ïŒïŒïŒïŒ
ãšããã°ããã®ã§ã¯ã»ã»ã»ïŒ
No.970HP管çè
2023幎4æ26æ¥ 17:09 ä»»æã®ïŒå€§ããæ°ïŒã®å Žå
N奿°ã®æãNãŒå¥æ°ã®å¹³æ¹æ°ïŒæ®ãå¶æ°
Nå¶æ°ã®æãNãŒå¶æ°ã®å¹³æ¹æ°ïŒæ®ãå¶æ°
æ®ãã®å¶æ°éšåãé©åœã«æ¯ãåããã°ã
å±±ãªãã®å¯å£«å±±ã®ãããªåå²ã«ã§ããããã§ãã
No.973ïœïœ2023幎4æ27æ¥ 21:05
ãã§ã«ããŒã®æçµå®çã«ææŠãçŽãã§ãã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
äºé
å®çããã{http://y-daisan.private.coocan.jp/html/felmer-7-2.pdfãã}
ãããn
a^n-1=Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(a-1)^(n-i)}----(a)
ããã i=1
ãããn
b^n-1=Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(b-1)^(n-i)}----(b)
ããã i=1
ãããn
c^n-1=Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(c-1)^(n-i)}----(c)
ãããi=1
a^n+b^n=c^nãšãããšã{ãã ãa<b<cãšãã}
a^n-1+b^n-1=c^n-1
(a^n-1)+(b^n-1)=(c^n-1)
(a^n-1)=(c^n-1)-(b^n-1)
åŒ(a),(b),(c)ããã
n
Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(a-1)^(n-i)}
i=1
ãn
ïŒÎ£ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(c-1)^(n-i)}
ãi=1
ãn
ãŒÎ£ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(b-1)^(n-i)}
ãi=1
ãããn
a^n-1ïŒÎ£ nCi{b^(n-i)+(b+1)^(n-i)+(b+2)^(n-i)+ã»ã»ã»+(c-1)^(n-i)}
ãããi=1
ããã§ã(a^n-1)=(c^n-1)-(b^n-1)ãæãç«ã€ã«ã¯ã
ïŒïŒi=nã®ãšããa^n-1ã®nCné
ã¯ã
nCn{1^0+2^0+3^0+ã»ã»ã»+(a-1)^0)}=nCn{a-1}=a-1----(d)
äžæ¹(c^n-1)-(b^n-1)ã®nCné
ã¯ã
nCn{b^0+(b+1^0+(b+2)^0ã»ã»ã»+(c-1)^0}=nCn{(c-1)-(b-1)}=c-b---(e)
åŒ(d),(e)ãçå·ã§çµã°ããã®ã¯ã
c-b=a-1---(i)
ã®ãšãã ãã§ããã
ïŒïŒi=n-1ã®ãšããa^n-1ã®nC(n-1)é
ã¯ã
nC(n-1){1+2+3+4+5+ã»ã»ã»+(a-1)}=nC(n-1){(a-1)a/2}----(f)
äžæ¹(c^n-1)-(b^n-1)ã®nC(n-1)é
ã¯ã
nC(n-1){b+(b+1)+(b+2)ã»ã»ã»+(c-1)}=n{(c-1)c/2-(b-1)b/2}---(g)
åŒ(f),(g)ãçå·ã§çµã°ããã®ã¯ã
(c-1)c/2-(b-1)b/2=(a-1)a/2
ã®ãšãã ãã§ããã
(c-1)c-(b-1)b=(a-1)a
c^2-c-b^2+b=(a-1)a
c^2-b^2-(c-b)=(a-1)a
(c-b)(c+b-1)=(a-1)a
åŒ(d),(e)ãçãããšãåŒ(f),(g)ãçãããªããšãããªããããåŒ(i)ããã
c+b-1=aã巊蟺ã(c-b)ã§å²ã£ãŠãå³èŸºã(a-1)ã§å²ã£ãŠïœãªããªãåŒ(i)ããïœ
c+b-2=a-1=c-bãåŒ(i)ãã
c+b-2=c-b
c+b-2-(c-b)=0
c+b-2-c+b=0
2b-2=0
b=1
ããã¯ãc>b>aã«ççŸããã
ãããã£ãŠã
(d)â (e)ã(f)â (g)
ã€ãŸãã
(a^n-1)â (c^n-1)-(b^n-1)
a^nâ c^n-b^n
a^n+b^nâ c^n
ãã£ãŠããã§ã«ããŒã®æçµå®çã¯åççã«èšŒæãããã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
äºé
å®çã®ææžã®åŒçšã¯ç·è²ã®ãããããã¯ã¡ã¹ãããã¯ãªãã¯ããã°ãéããŸãã
No.869ããããã¯ã¡ã¹ã2023幎4æ11æ¥ 15:18 > a^n+b^n=c^nãšãããšã{ãã ãa<b<cãšãã}
> a^n-1+b^n-1=c^n-1
巊蟺㧠2 å -1 ãããªããå³èŸºã 2 å -1 ããå¿
èŠãããã®ã§ã¯ã
No.872DD++2023幎4æ11æ¥ 16:16
äºé
å®çããã{http://y-daisan.private.coocan.jp/html/felmer-7-2.pdfãã}
ãããn
a^n-1=Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(a-1)^(n-i)}----(a)
i=1
ãããn
b^n-1=Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(b-1)^(n-i)}----(b)
i=1
ãããn
c^n-1=Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(c-1)^(n-i)}----(c)
i=1
a^n+b^n=c^nãšãããšã{ãã ãa<b<cãšãã}
a^n-1+b^n-1+1=c^n-1
(a^n-1)+(b^n-1)+1=(c^n-1)
(a^n-1)+1=(c^n-1)-(b^n-1)
åŒ(a),(b),(c)ããã
n
Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(a-1)^(n-i)}ïŒïŒ
i=1
ãn
ïŒÎ£ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(c-1)^(n-i)}
ãi=1
ãn
ãŒÎ£ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(b-1)^(n-i)}
ãi=1
ããããn
a^n-1+1ïŒÎ£ nCi{b^(n-i)+(b+1)^(n-i)+(b+2)^(n-i)+ã»ã»ã»+(c-1)^(n-i)}
ããããi=1
ããã§ã(a^n-1)+1=(c^n-1)-(b^n-1)ãæãç«ã€ã«ã¯ã
ïŒïŒi=nã®ãšããa^n-1ã®nCné
ã¯ã
nCn{1^0+2^0+3^0+ã»ã»ã»+(a-1)^0)}+1=nCn{a-1}+1=a----(d)
äžæ¹(c^n-1)-(b^n-1)ã®nCné
ã¯ã
nCn{b^0+(b+1^0+(b+2)^0ã»ã»ã»+(c-1)^0}=nCn{(c-1)-(b-1)}=c-b---(e)
åŒ(d),(e)ãçå·ã§çµã°ããã®ã¯ã
c-b=a---(i)
ã®ãšãã ãã§ããã
ïŒïŒi=n-1ã®ãšããa^n-1ã®nC(n-1)é
ã¯ã
nC(n-1){1+2+3+4+5+ã»ã»ã»+(a-1)}=nC(n-1){(a-1)a/2}----(f)
äžæ¹(c^n-1)-(b^n-1)ã®nC(n-1)é
ã¯ã
nC(n-1){b+(b+1)+(b+2)ã»ã»ã»+(c-1)}=n{(c-1)c/2-(b-1)b/2}---(g)
åŒ(f),(g)ãçå·ã§çµã°ããã®ã¯ã
(c-1)c/2-(b-1)b/2=(a-1)a/2
ã®ãšãã ãã§ããã
(c-1)c-(b-1)b=(a-1)a
c^2-c-b^2+b=(a-1)a
c^2-b^2-(c-b)=(a-1)a
(c-b)(c+b-1)=(a-1)a
åŒ(d),(e)ãçãããšãåŒ(f),(g)ãçãããªããšãããªããããåŒ(i)ããã
c+b-1=a-1ã巊蟺ã(c-b)ã§å²ã£ãŠãå³èŸºãaã§å²ã£ãŠïœãªããªãåŒ(i)ããïœ
c+b=a=c-bãåŒ(i)ãã
c+b=c-b
c+b-(c-b)=0
c+b-c+b=0
2b=0
b=0
ããã¯ãc>b>aã«ççŸããã
ãããã£ãŠã
(d)â (e)ã(f)â (g)
ã€ãŸãã
(a^n-1)â (c^n-1)-(b^n-1)
a^nâ c^n-b^n
a^n+b^nâ c^n
ãã£ãŠããã§ã«ããŒã®æçµå®çã¯åççã«èšŒæãããã
No.875ããããã¯ã¡ã¹ã2023幎4æ11æ¥ 17:48 (d) ãš (e) ãçãããšãããæ ¹æ ã¯ãªãã§ããïŒ
No.876DD++2023幎4æ11æ¥ 17:51
(a^n-1)+1=(c^n-1)-(b^n-1)ãæãç«ã€ããã§ãã
ã€ãŸãã
ããããn
a^n-1+1ïŒÎ£ nCi{b^(n-i)+(b+1)^(n-i)+(b+2)^(n-i)+ã»ã»ã»+(c-1)^(n-i)}
ããããi=1
ãšããããšã§ãå³èŸºã¯ãã¹ãŠæ£ã®æ°ãªã®åãªã®ã§ãã
ãŸããa^n-1+1ã¯
n
Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(a-1)^(n-i)}ïŒïŒ
i=1
ããã¹ãŠãæ£ã®æ°ã®åã§ãããã
nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(a-1)^(n-i)}
ã®å³å·ŠèŸºã®nCiã©ããçãããªããã°ãªããŸããã
åŒ(d),(e)ã¯ãnCnã®é
ãªã®ã§ã
a^n-1+1ã¯i=nã®
nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(a-1)^(n-i)}ïŒïŒ
ã§ããããã®é
ã ããïŒïŒãäœåã«ããã(c^n-1)-(b^n-1)ã¯ãi=nã®
nCi{b^(n-i)+(b+1)^(n-i)+(b+2)^(n-i)+ã»ã»ã»+(c-1)^(n-i)}
ã§ãããããäºãã«çãããªããã°ãªããŸãããã ããåŒ(d),(e)ã¯ãçãããªããã°ãªããŸããã
äºé
å®çã§ãåãã¹ãä¹ãªãã
(a+b)^nã®åé
ã¯ãnCi a^(n-i) b^iã§ã(a+b)^n=(c+d)^nãªãã a^(n-i) b^i= c^(n-i) d^iãšããããšã§ãã
ã€ãŸããnCiã®ä¿æ°é
ã¯a^(n-i) b^i= c^(n-i) d^iã®ããã«çãããªããªããã°ãªããªããšããããšã§ãã
No.877ããããã¯ã¡ã¹ã2023幎4æ11æ¥ 19:36
ïŒïŒïŒi=n-1ã®ãšããa^n-1ã®nC(n-1)é
ã¯ã
nC(n-1){1+2+3+4+5+ã»ã»ã»+(a-1)}=nC(n-1){(a-1)a/2}----(f)
ïŒïŒi=n-1ã®ãšããa^n-1ã®nC(n-1)é
ã¯ã
nC(n-1){1+2+3+4+5+ã»ã»ã»+(a-1)}+1=nC(n-1){(a-1)a/2}----(f)
ãããªãã§ããããã
No.878KY2023幎4æ11æ¥ 20:45
> (a+b)^n=(c+d)^nãªãã a^(n-i) b^i= c^(n-i) d^iãšããããšã§ãã
a=1, b=-1, c=0, d=0 ã§èãããšã
ã(1-1)^n = (0+0)^n ãªãã1^(n-i) (-1)^i = 0^(n-i) 0^i ãšããããšãã£ãŠæå³ã«ãªããŸããã©ããã£ãŠãŸãïŒ
No.879DD++2023幎4æ11æ¥ 21:58
KYæ§ããã¯ããããããŸãã
nC(n-1)=n!/(n-(n-1)!(n-1)!)=n!/(n-1)!=n
ãªã®ã§ã
nC(n-1){1+2+3+4+5+ã»ã»ã»+(a-1)}=nC(n-1){(a-1)a/2}=n{(a-1)a/2}----(f)
ãŸãã
nC(n-1){1+2+3+4+5+ã»ã»ã»+(a-1)}+1=nC(n-1){(a-1)a/2}---(f)
ïŒïŒã¯ãnCnã®é
ã ãã«äœçšããŸãã®ã§ãnC(n-1)ã«ã¯ãé¢ä¿ããŸããã
ã§ãããã
nC(n-1){1+2+3+4+5+ã»ã»ã»+(a-1)}=nC(n-1){(a-1)a/2}=n{(a-1)a/2}----(f)
ã§ããã¯ãã§ãã
DD++æ§ããã¯ããããããŸãã
ãããããµãã«ããã°ããããªããŸããã
æçš¿å¶éãããã£ãŠããã®ã§ãããã«æžããŸãã
ïŒãªãã»ã©ãã€ãŸããã¯ã¡ã¹ããã㯠(-1)^i = 0^n ãæ£ãããšåºåŒµããŠããããã§ããïŒ
ä»åã®å Žåãa,b,c,dãšãã«ãèªç¶æ°ã§ããããããã¯ãªããªããšæããŸãã
ãææã®ã
ïŒã(1-1)^n = (0+0)^n ãªãã1^(n-i) (-1)^i = 0^(n-i) 0^i ãšããããšã
ã§ãããã(1-1)^n=0ã(0+0)^n=0ã§ãå
šäœã§èŠãã°ãçå·ãæãç«ã¡ãŸããã1^(n-i) (-1)^i = 0^(n-i) 0^iãšã¯ãèšããªãã§ããã
ã¡ãªã¿ã«ã(1-1)^nã¯ã
(1-1)^n=nC0 1^n (-1)^0+nC1 1^(n-1) (-1)^1+nC2 1^(n-2) (-1)^2+nC3 1^(n-3) (-)1^3+ã»ã»ã»ã»+nC(n-1) 1^(n-(n-1)) (-1)^(n-1)+nCn 1^(n-n) (-1)^n
ã«ãããŠã
nãå¶æ°ãªããããšãã°n=10ãªãã
0=10C0-10C1+10C2-10C3+10C4-10C5+10C6-10C7+10C8-10C9+10C10
ãã€ãã¹ã®é
ã巊蟺ã«ç§»é
ãããšã
10C1+10C3+10C5+10C7+10C9=10C0+10C2+10C4+10C6+10C8+10C10
ãã£ãŠã
nC1+nC3+nC5ã»ã»ã»+nC(n-1)=nC0+nC2+nC4+ã»ã»ã»ã»+nCn
å·Šå³ã§é
æ°ãéãã®ã«äžæè°ã«æããããããŸãããããããªã®ã§ãã
nã奿°ãªããããšãã°n=11ãªãã
0=11C0-11C1+11C2-11C3+11C4-11C5+11C6-11C7+11C8-11C9+11C10-11C11
ãã€ãã¹ã®é
ã巊蟺ã«ç§»é
ãããšã
11C1+11C3+11C5+11C7+11C9+11C11=11C0+11C2+11C4+11C6+11C8+11C10
ãã£ãŠã
nC1+nC3+nC5ã»ã»ã»+nCn=nC0+nC2+nC4+ã»ã»ã»ã»+nC(n-1)
ãã¹ã«ã«ã®äžè§åœ¢ãæãåºããŠãã ããã
ããããããããã1ã-2ã1
ãããããããã1ã-3ã3ã-1
ããããããã1ã-4ã6ã-4ãã1
ãããããã1ã-5ã10ã-10ã5ã-1
ããããã1ã-6ã15ã-20ã15ã-6ã1
ãšãªããŸãã
No.880ããããã¯ã¡ã¹ã2023幎4æ12æ¥ 07:20
ãªãã»ã©ãã€ãŸããã¯ã¡ã¹ããã㯠(-1)^i = 0^n ãæ£ãããšäž»åŒµããŠããããã§ããïŒ
No.881DD++2023幎4æ12æ¥ 07:24
æŽæ°èšäºãèŠãŠãæ²ç€ºæ¿ã«ãªãã¯ãã®è¬ã®è¿ä¿¡ãæ¥ãŠãããšæã£ããâŠâŠã
è¿äºã¯å¿
ãæ°ããã¡ãã»ãŒãžã§æžããŠãã ããã
éå»ã®æçš¿ã«å çããŠè¿äºããããŠãæ°ã¥ããŸããã
ãªãã»ã©ãèªç¶æ°éå®ã ãããšãã£ããããªãããããŸãããã
a = 1, b = 3, c = 2, d = 2 ã§èããŸãã
æå¥ãªãèªç¶æ°ã§ããïŒ
ã§ã(1+3)^n = (2+2)^n ã¯æãç«ã¡ãŸãããããåé¡ãªãã§ããïŒ
ãšããããšã¯ãã¯ã¡ã¹ããã㯠1^(n-i) 3^i = 2^(n-i) 2^i ã§ããããšã
ã€ãŸã 3^i = 2^n ã¯æ£ããåŒã§ãããšäž»åŒµããããã§ããïŒ
ã¯ã¡ã¹ãããããã®åŒã誀ãã ãšæãããªãããŸã£ããåãè«çã§äœã£ã (d) = (e) ã誀ããšããããšã§ãã
No.882DD++2023幎4æ12æ¥ 16:01
DD++æ§ããã¯ããããããŸãã
ãã®ãšããã§ããã
ãã®ãã§ã«ããŒã®æçµå®çã®èšŒæã¯ãééãã§ããã
No.883ããããã¯ã¡ã¹ã2023幎4æ13æ¥ 06:59
äŒãã£ãããã§ãããã£ãã§ãã
No.884DD++2023幎4æ13æ¥ 07:48
äºé
å®çããã{http://y-daisan.private.coocan.jp/html/felmer-7-2.pdfãã}
ãããn
a^n-1=Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(a-1)^(n-i)}----(a)
i=1
ãããn
b^n-1=Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(b-1)^(n-i)}----(b)
i=1
ãããn
c^n-1=Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(c-1)^(n-i)}----(c)
i=1
a^n+b^n=c^nãšãããšã{ãã ãa<b<cãšãã}
a^n-1+b^n-1+1=c^n-1
(a^n-1)+(b^n-1)+1=(c^n-1)
(a^n-1)+1=(c^n-1)-(b^n-1)
åŒ(a),(b),(c)ããã
n
Σ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(a-1)^(n-i)}ïŒïŒ
i=1
ãn
ïŒÎ£ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(c-1)^(n-i)}
ãi=1
ãn
ãŒÎ£ nCi{1^(n-i)+2^(n-i)+3^(n-i)+ã»ã»ã»+(b-1)^(n-i)}
ãi=1
ããããn
a^n-1+1ïŒÎ£ nCi{b^(n-i)+(b+1)^(n-i)+(b+2)^(n-i)+ã»ã»ã»+(c-1)^(n-i)}
ããããi=1
n
Σ nCi{b^(n-i)+(b+1)^(n-i)+(b+2)^(n-i)+ã»ã»ã»+(c-1)^(n-i)}-(a)åŒ-1----(d)
i=1
ãšãããšã(d)åŒã®
(c-1)^(n-i)-(a-1)^(n-i)
ã®å€§å°é¢ä¿ã調ã¹ãã°ããã
å
Œ΋
x^n-y^n=(x-y){x^(n-1)+x^(n-2)y+x^(n-3)y^2+ã»ã»ã»+xy^(n-2)+y^(n-1)}
ããã
x,yãèªç¶æ°ãªãã{}ã®äžã¯ãæ£ã®èªç¶æ°ããããã£ãŠã(x-y)ãæ£ãè² ã§x^nãšy^nã®å€§å°é¢ä¿ããããã
(c-1)^(n-i)-(a-1)^(n-i)
ã«ãããŠãc>b>aãããc-1>a-1ããã
(c-1)^(n-i)-(a-1)^(n-i)>0
ãšãªãããã£ãŠ(d)åŒã¯>0
ãã ãc-bã®é
æ°ãšaã®é
æ°ãåé¡ãšãªãã
ãããã£ãŠãæ¡ä»¶ã¯c-bâ§aãã€ãã
ãããæºè¶³ããã°ããã§ã«ããŒã®æçµå®çã¯èšŒæã§ããã
ãªãã(a)åŒ+1ã®éšåã¯ãb^0-1-1>0ã¯a,b,cã¯èªç¶æ°ã§ãããc>b>a>0ãša=1ã§ã¯ãb>3ã§ããããåé¡ãªãã
ããšãã°ãa=1ã®ãšãã1^3+b^3=c^3ã®ãšãb=2ã§ã3ã§ã¯ãªãã
No.898ããããã¯ã¡ã¹ã2023幎4æ15æ¥ 07:08
a,b,cã«ãããŠã
a^n+b^n=c^n
ãæãç«ã€ãšãã
(a^n+b^n)^2=(c^n)^2
ããã§ã
http://y-daisan.private.coocan.jp/html/pdf/felmer-5-4.pdfïŒç·è²ã®ããããã¯ã¡ã¹ããã¯ãªãã¯ããã°éããŸããïŒ
ã®è£é¡ããã
(a^n+b^n)^2>(a+b)^n
ã§ããããã
(a^n+b^n)^2=(c^n)^2
(a+b)^n<(c^2)^n
a,b,cã¯èªç¶æ°ããã
(a+b)<c^2
a<c^2-b
ããããªããc^2-b>aãªããå¶éããªããªã£ãã®ã«ãªãã
No.906ããããã¯ã¡ã¹ã2023幎4æ15æ¥ 11:27 ïŒããããªããc^2-b>aãªããå¶éããªããªã£ãã®ã«ãªãã
ããã¯ã©ãããäºãæå³ããŠããã®ã§ãããããå¶éãä»ããŠè¡ã£ãŠããåŸãªã蚌æãããã®ãçãªã®ã§ã¯ãªãã§ããããã
å ã¿ã«ãïœïŒïœïŒïœïŒïœããïœïŒïœïŒïŒïœã§ãããïœâ§ïŒã§ïœïŒïœïŒïœ^2ããïœïŒïœã«å¶éãä»ããããŸããã
è£é¡ã®èšŒæã¯èŠäºã§ããã
No.909KY2023幎4æ15æ¥ 13:21
KYæ§ãããã«ã¡ã¯ã
ä»ç§ã¯ã24æéã§20ä»¶ã®æçš¿å¶éã§ãäœãæ¶ããªããšæçš¿ã§ããªãã®ã§ããç¡çãã1ã€æ¶ããŸããã
ïŒå ã¿ã«ãïœïŒïœïŒïœïŒïœããïœïŒïœïŒïŒïœã§ãããïœâ§ïŒã§ïœïŒïœïŒïœ^2ããïœïŒïœã«å¶éãä»ããããŸããã
ãªãã»ã©ãããšã¡ãã£ãšã§ã»ã»ã»ã»ã»
å¶éãªãã«ãªãã°ããã§ã«ããŒã®æçµå®çã®åçç蚌æã«ãªã£ããã§ããã©ãã
æ®å¿µã
No.910ããããã¯ã¡ã¹ã2023幎4æ15æ¥ 16:23
> è£é¡ã®èšŒæ
aâ§2, bâ§2 ã®ãšããè«ç¹å
åã§äžçºéå Žã§ã¯ã
å
¥è©Šãšãã ãšäžè¡èªãã ã ãã§ 0 ç¹ã«ããããã€ã§ãã
No.912DD++2023幎4æ15æ¥ 17:46
ããããc-b<aã®ãšãã(d)åŒã¯<0ã§ãã
èŠããã«ã(d)åŒã=0ã§ãªããã°ããã§ã«ããŒã®æçµå®çã®åçç蚌æã¯ã§ãããã ã
ãªããšããå
ãèŠããŠããŸããã
DD++æ§ã®ææã®
ïŒã§ã(1+3)^n = (2+2)^n ã¯æãç«ã¡ãŸãããããåé¡ãªãã§ããïŒ
ãšããããšã¯ãã¯ã¡ã¹ããã㯠1^(n-i) 3^i = 2^(n-i) 2^i ã§ããããšã
ã€ãŸã 3^i = 2^n ã¯æ£ããåŒã§ãããšäž»åŒµããããã§ããïŒ
ããããå®ã«ãããããææã§ãa^n-1+1=c^n-1-(b^n-1)ããæãç«ã€æ¡ä»¶ã¯ãªããšããããæå³ãããã³ããªããããããªãã»ã»ã»ã»ã»
No.913ããããã¯ã¡ã¹ã2023幎4æ15æ¥ 18:59
ïŒaâ§2, bâ§2 ã®ãšããè«ç¹å
åã§äžçºéå Žã§ã¯ã
ããããè«ç¹å
åã§ã¯ãããŸããããŸããæ¬é¡ã®èšŒæã®æ¹ã§ïœïŒïŒïŒïœïŒïŒã®å Žåãè¿°ã¹ãŠããŠã次ã«è£é¡ã®æã§ïœïŒïŒïŒïœïŒïŒïŒïœïŒïŒïŒïœïŒïŒïŒã®å Žåãè¿°ã¹ãŠããŠãæ®ãã¯ïœâ§ïŒïŒïœâ§ïŒã®å Žåãããªãããã§ãã
å ã¿ã«ãå
·äœäŸã¯ã
ãããã¯è«ç¹å
åã ããšèšããã®ã¯ã1ã€ã®äžæ®µè«æ³ã®äžã§ã埪ç°è«æ³ãã䜿ãããŠããå Žåã§ãããããªãã¡ãæšè«éçšã«èšŒæãã¹ãäºæãåæãšããåœé¡ãå«ãã§ããå Žåã§ãããæ¬è³ªçã«ãåœé¡ãããèªèº«ã®èšŒæã«äœ¿ããããããªæŠè¡ã¯ãã®åºæ¬ç圢åŒã«ãããŠèª¬åŸåããªããäŸãã°ãããŒã«ãæ¬åœã®ããšãèšã£ãŠãããšèšŒæããããšããã
ããŒã«ã¯åãèšã£ãŠããªããšä»®å®ããã
ããŒã«ã¯äœãã話ããŠããã
ãããã£ãŠãããŒã«ã¯æ¬åœã®ããšãèšã£ãŠããã
ãã®æç« ã¯è«ççã ãã話è
ã®ç宿§ãçŽåŸãããããšã¯ã§ããªããåé¡ã¯ãããŒã«ã®ç宿§ã蚌æããããã«ããŒã«ãæ¬åœã®ããšãèšã£ãŠãããšä»®å®ããããšãèŽè¡ã«é Œãã§ãããããããã¯å®éã«ã¯ãããŒã«ãåãã€ããŠããªããªããããŒã«ã¯çå®ãèšã£ãŠããããšããããšã蚌æããŠããã«éããªãã
ãã®ãããªè«èšŒã¯è«ççã«ã¯åŠ¥åœã§ãããããªãã¡ãçµè«ã¯å®éã«åæããå°ãåºãããŠããããã ããäœããã®æå³ã§ãã®çµè«ã¯åæãšåäžã§ãããèªå·±åŸªç°è«æ³ã¯å
šãŠããã®ãããªèšŒæãã¹ãåœé¡ãè«èšŒã®ããæç¹ã§ä»®å®ããããšããæ§è³ªãæã€ã
åŒçšå
ïŒhttps://ja.wikipedia.org/wiki/%E8%AB%96%E7%82%B9%E5%85%88%E5%8F%96#%E5%85%B7%E4%BD%93%E4%BE%8B
åœãŠã¯ãŸã£ãŠããªããšæããŸããã
No.914å£ããæ2023幎4æ15æ¥ 19:53
äŸãšã㊠1 ã€ã®äžæ®µè«æ³ãæããŠããã ãã§ãè€æ°ã®å Žåã§ãè«ç¹å
åã¯è«ç¹å
åã§ãããã
ãããã¯åŸªç°è«æ³ãšèšã£ãæ¹ãããã£ãã§ããïŒ
ä»åã®å Žåãªãã©ã£ã¡ã«ã該åœããïŒãšãããäž¡è
ã«æç¢ºãªåºåãããããã§ããªãïŒãšæã£ãŠããã®ã§ã
No.915DD++2023幎4æ15æ¥ 20:35
DD++æ§ããã¯ããããããŸãã
bâ 0ãšãããa/bã»ã»ã»
ã¯ãã©ããªããã ããïŒ
No.917ããããã¯ã¡ã¹ã2023幎4æ16æ¥ 07:33
ãããå¿
ã p åã§ãã
ã¯ã¡ã¹ãããã¯ãp = 7 ãéžãã§ããã®ã« 8 åãã£ãŠãŸããã
No.905DD++2023幎4æ15æ¥ 11:11
ãŸããçŽ æ° p ããã³ãããšäºãã«çŽ ãªèªç¶æ° a ãæ±ºããŠãã ããã
p=7ãa=5ããšããŸãã
ã1, 1+p, 1+2p, âŠâŠ, 1+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
1+2p=15
ã2, 2+p, 2+2p, âŠâŠ, 2+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
2+3p=23
ã3, 3+p, 3+2p, âŠâŠ, 3+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
3+3p=24
ã4, 4+p, 4+2p, âŠâŠ, 4+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
4+4p=32
ã5, 5+p, 5+2p, âŠâŠ, 5+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
5+p=12
ã6, 6+p, 6+2p, âŠâŠ, 6+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
6+p=13
ããã«ãã£ãŠãa*p 以äžã®èªç¶æ°ã p-1 åéžã³åºããŸãããã
ã§ã¯ãããããå°ããé ã«äžŠã¹ãŠäžã€ã®çµãšããŠãã ããã
{12,13,15,23,24,32}
å°ããé ã«äžŠãã§ãã p-1 åã®æ°ã®çµã«ã以äžã®ãã㪠3 ã€ã®æé ãããªãæäœ R ãããŸãã
ãŸããæ«å°Ÿã« a*p ãä»ãå ããäžæçã« p åçµãšããŸãã
{12,13,15,23,24,32,35}
å
é ã®æ°ããã£ããèŠããäžã§åãèœãšããŠãp-1 åçµã«æ»ããŸãã
{13,15,23,24,32,35}
p-1 åã®æ°ãããããããã£ãåãèœãšããæ°ãåŒãç®ããŸãã
{1,3,11,12,20,23}
ããŠãã§ã¯ã
(1) æ°ããã§ãã p-1 åã®æ°ã®çµã§ãããå®ã¯æåã®çµã®äœãæ¹ã®æ¡ä»¶ã«åœãŠã¯ãŸã£ãŠããŸããïŒ
ããªãã¡ã
ã»a*p 以äžã®èªç¶æ° p-1 åãå°ããé ã«äžŠãã§ãã
ã»p ã§å²ã£ãäœã㯠1 ãã p-1 ãŸã§ 1 åãã€
ã«ãªã£ãŠããŸããïŒ
{1,3,11,12,20,23}â¡{1,3,4,5,6,2}(mod p=7)
(2) ãšããããšã¯ãæ°ããã§ããçµã«å¯ŸããŠæäœ R ãããäžåºŠè¡ãããšãã§ããŸãã
ãããŠã§ããçµã«ãŸãããäžåºŠãããã«ããäžåºŠã
æäœ R ã p åç¹°ãè¿ãããšããäœããèµ·ãããšæããŸãããããã¯äœã§ãããã
(1)
{1,3,11,12,20,23}
{1,3,11,12,20,23,35}
{3,11,12,20,23,35}
{2,10,11,19,22,34}
(2)
{2,10,11,19,22,34}
{2,10,11,19,22,34,35}
{10,11,19,22,34,35}
{8,9,17,20,32,33}
(3)
{8,9,17,20,32,33}
{8,9,17,20,32,33,35}
{9,17,20,32,33,35}
{1,9,12,24,25,27}
(4)
{1,9,12,24,25,27}
{1,9,12,24,25,27,35}
{9,12,24,25,27,35}
{8,11,23,24,26,34}
(5)
{8,11,23,24,26,34}
{8,11,23,24,26,34,35}
{11,23,24,26,34,35}
{3,15,16,18,26,27}
(6)
{3,15,16,18,26,27}
{3,15,16,18,26,27,35}
{15,16,18,26,27,35}
{12,13,15,23,24,32}
çã
{12,13,15,23,24,32}
No.907ããããã¯ã¡ã¹ã2023幎4æ15æ¥ 12:12
ããã§ããããã§åã£ãŠãŸãã
No.908DD++2023幎4æ15æ¥ 12:15
DD++æ§ãããã°ãã¯ã
ä»ç§ã¯ã24æéã§20ä»¶ã®æçš¿å¶éã§ãäœãæ¶ããªããšæçš¿ã§ããªãã®ã§ããç¡çãã1ã€æ¶ããŸããã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ãŸããçŽ æ° p ããã³ãããšäºãã«çŽ ãªèªç¶æ° a ãæ±ºããŠãã ããã
p=7ãa=5ããšããŸãã
ã1, 1+p, 1+2p, âŠâŠ, 1+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
1+p=8
ã2, 2+p, 2+2p, âŠâŠ, 2+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
2+2p=16
ã3, 3+p, 3+2p, âŠâŠ, 3+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
3+3p=24
ã4, 4+p, 4+2p, âŠâŠ, 4+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
4+4p=32
ã5, 5+p, 5+2p, âŠâŠ, 5+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
5+3p=26
ã6, 6+p, 6+2p, âŠâŠ, 6+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
6+p=13
ããã«ãã£ãŠãa*p 以äžã®èªç¶æ°ã p-1 åéžã³åºããŸãããã
ã§ã¯ãããããå°ããé ã«äžŠã¹ãŠäžã€ã®çµãšããŠãã ããã
{8,13,16,24,26,32}
å°ããé ã«äžŠãã§ãã p-1 åã®æ°ã®çµã«ã以äžã®ãã㪠3 ã€ã®æé ãããªãæäœ R ãããŸãã
ãŸããæ«å°Ÿã« a*p ãä»ãå ããäžæçã« p åçµãšããŸãã
{8,13,16,24,26,32,35}
å
é ã®æ°ããã£ããèŠããäžã§åãèœãšããŠãp-1 åçµã«æ»ããŸãã
{13,16,24,26,32,35}
p-1 åã®æ°ãããããããã£ãåãèœãšããæ°ãåŒãç®ããŸãã
{5,8,16,18,24,27}
ããŠãã§ã¯ã
(1) æ°ããã§ãã p-1 åã®æ°ã®çµã§ãããå®ã¯æåã®çµã®äœãæ¹ã®æ¡ä»¶ã«åœãŠã¯ãŸã£ãŠããŸããïŒ
ããªãã¡ã
ã»a*p 以äžã®èªç¶æ° p-1 åãå°ããé ã«äžŠãã§ãã
ã»p ã§å²ã£ãäœã㯠1 ãã p-1 ãŸã§ 1 åãã€
ã«ãªã£ãŠããŸããïŒ
{5,8,16,18,24,27}â¡{5,1,2,4,3,6}(mod p=7)
(2) ãšããããšã¯ãæ°ããã§ããçµã«å¯ŸããŠæäœ R ãããäžåºŠè¡ãããšãã§ããŸãã
ãããŠã§ããçµã«ãŸãããäžåºŠãããã«ããäžåºŠã
æäœ R ã p åç¹°ãè¿ãããšããäœããèµ·ãããšæããŸãããããã¯äœã§ãããã
(1)
{5,8,16,18,24,27}
{5,8,16,18,24,27,35}
{8,16,18,24,27,35}
{3,11,13,19,22,30}
(2)
{3,11,13,19,22,30}
{3,11,13,19,22,30,35}
{11,13,19,22,30,35}
{8,10,16,19,27,32}
(3)
{8,10,16,19,27,32}
{8,10,16,19,27,32,35}
{10,16,19,27,32,35}
{2,8,11,19,24,27}
(4)
{2,8,11,19,24,27}
{2,8,11,19,24,27,35}
{8,11,19,24,27,35}
{6,9,17,22,25,33}
(5)
{6,9,17,22,25,33}
{6,9,17,22,25,33,35}
{9,17,22,25,33,35}
{3,11,16,19,27,29}
(6)
{3,11,16,19,27,29}
{3,11,16,19,27,29,35}
{11,16,19,27,29,35}
{8,13,16,24,26,32}
çã
{8,13,16,24,26,32}
No.911ããããã¯ã¡ã¹ã2023幎4æ15æ¥ 16:50
ã¡ãã£ãšé¢çœãããšãæãã€ããŸããã
以äžã®ãããªæäœãããŠã¿ãŠãã ããã
ãŸããçŽ æ° p ããã³ãããšäºãã«çŽ ãªèªç¶æ° a ãæ±ºããŠãã ããã
æèšç®ã§ãããªã p 㯠3 ã 5 ã 7 ãa 㯠2 以äžã§ a*p ã 100 ãè¶
ããªããããããããšæããŸãã
ã³ã³ãã¥ãŒã¿ã§ããå Žåã¯å¥œããªå€§ããã®æ°ã§ãèªç±ã«ã©ããã
1, 1+p, 1+2p, âŠâŠ, 1+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
ã€ãŸããp ã§å²ããš 1 äœãæ°ã a*p 以äžã®èªç¶æ°ã§ 1 ã€éžãã§ãã ããããšããããšã§ãã
p > 2 ã§ããã°ã
2, 2+p, 2+2p, âŠâŠ, 2+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
ãã£ãã®ãã€ã®äœã 2 ããŒãžã§ã³ã§ãã
p > 3 ã§ããã°ã
3, 3+p, 3+2p, âŠâŠ, 3+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
äœã 3 ããŒãžã§ã³ã§ãã
以äžäœãã 1 ãã€å¢ãããªããç¹°ãè¿ããŠãäœã (p-1) ããŒãžã§ã³ãŸã§å®è¡ããŠãã ããã
ããã«ãã£ãŠãa*p 以äžã®èªç¶æ°ã p-1 åéžã³åºããŸãããã
ã§ã¯ãããããå°ããé ã«äžŠã¹ãŠäžã€ã®çµãšããŠãã ããã
å°ããé ã«äžŠãã§ãã p-1 åã®æ°ã®çµã«ã以äžã®ãã㪠3 ã€ã®æé ãããªãæäœ R ãããŸãã
ãŸããæ«å°Ÿã« a*p ãä»ãå ããäžæçã« p åçµãšããŸãã
å
é ã®æ°ããã£ããèŠããäžã§åãèœãšããŠãp-1 åçµã«æ»ããŸãã
p-1 åã®æ°ãããããããã£ãåãèœãšããæ°ãåŒãç®ããŸãã
ããŠãã§ã¯ã
(1) æ°ããã§ãã p-1 åã®æ°ã®çµã§ãããå®ã¯æåã®çµã®äœãæ¹ã®æ¡ä»¶ã«åœãŠã¯ãŸã£ãŠããŸããïŒ
ããªãã¡ã
ã»a*p 以äžã®èªç¶æ° p-1 åãå°ããé ã«äžŠãã§ãã
ã»p ã§å²ã£ãäœã㯠1 ãã p-1 ãŸã§ 1 åãã€
ã«ãªã£ãŠããŸããïŒ
(2) ãšããããšã¯ãæ°ããã§ããçµã«å¯ŸããŠæäœ R ãããäžåºŠè¡ãããšãã§ããŸãã
ãããŠã§ããçµã«ãŸãããäžåºŠãããã«ããäžåºŠã
æäœ R ã p åç¹°ãè¿ãããšããäœããèµ·ãããšæããŸãããããã¯äœã§ãããã
(3) æåã®çµãæ°ãã«äœãçŽããåã³æäœ R ã p åç¹°ãè¿ããŠã¿ãŠãã ããã
ãããã¯ã3 ã€ãã4 ã€ãã®çµãäœã£ãŠããããã§ãã
ã»ãšãã©å
šãŠã®çµã§åãçŸè±¡ãèµ·ããããšã確èªããŠãã ããã
(4) ãå
šãŠã®çµãã§ã¯ãªããã»ãšãã©å
šãŠã®çµããšèšã£ãã®ã¯ãå®ã¯ a ãš p ãäºãã«çŽ ã ãš 1 ã€ã ãäŸå€ãããããã§ããããŠãããã¯ã©ããªçµã§ãäœãèµ·ããã§ãããïŒ
(5) ãããŸã§ã®å®éšã§ãæåã®æ¡ä»¶ãæºãããã㪠p-1 åçµã®ç·æ°ããp ã®åæ° +1 åããããšãçŽåŸããŠãããããšæããŸãã
ãšããã§ãæåã®æ°ã®éžã³æ¹ãããæãåºããŠããã®ãã㪠p-1 åçµã£ãŠäœéããããã§ããã£ãïŒ
No.859DD++2023幎4æ10æ¥ 21:54
DD++æ§ããã¯ããããããŸãã
ãã¥ãŒãã³ã®ããªã³ããã¢ã¯ãæç« ã°ããã§ãæ°åŒã¯ãªãã£ãããã§ãããããçŸä»£ç§éãç¿ãç©çåŠãæ°åŒäžå¿ã§ãããããã¯ãªã€ã©ãŒã®æ¥çžŸã®1ã€ã ããã§ãã
ããŠãDD++æ§ãæç« ã°ããã§ãªããæ°åŒãã¡ãã°ããŠãæžããŠãã ãããšãã£ãšãããããããªãããããªãããªïŒãšæããŸãã
ãªããšããªããªããã®ã§ããããïŒ
No.861ããããã¯ã¡ã¹ã2023幎4æ11æ¥ 08:32
ãã®è©±é¡ãæ°åŒã¯åŒãç®ãšæãç®ãšå°äœããåºãŠããŸããã
æãç® a*p ã¯æžããŠãŸãã
å°äœ k+np ãå
šéšæžããŠãŸãã
åŒãç®ã¯ãæç« äžã« 1 åããç»å ŽããŸããããããããã¡ãã¡æžããã»ããããã§ããïŒ
ããã以å€ãæžããããŠãèšç®ãååšããŸããã
No.862DD++2023幎4æ11æ¥ 08:40
ãããªããŸãããã©ãã§ãééããã®ã§ãããïŒ
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ãŸããçŽ æ° p ããã³ãããšäºãã«çŽ ãªèªç¶æ° a ãæ±ºããŠãã ããã
æèšç®ã§ãããªã p 㯠3 ã 5 ã 7 ãa 㯠2 以äžã§ a*p ã 100 ãè¶
ããªããããããããšæããŸãã
ã³ã³ãã¥ãŒã¿ã§ããå Žåã¯å¥œããªå€§ããã®æ°ã§ãèªç±ã«ã©ããã
1, 1+p, 1+2p, âŠâŠ, 1+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
ã€ãŸããp ã§å²ããš 1 äœãæ°ã a*p 以äžã®èªç¶æ°ã§ 1 ã€éžãã§ãã ããããšããããšã§ãã
1+r1p (mod p)â¡1
p > 2 ã§ããã°ã
2, 2+p, 2+2p, âŠâŠ, 2+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
ãã£ãã®ãã€ã®äœã 2 ããŒãžã§ã³ã§ãã
2+r2p (mod p)â¡2
p > 3 ã§ããã°ã
3, 3+p, 3+2p, âŠâŠ, 3+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
äœã 3 ããŒãžã§ã³ã§ãã
3+r3p (mod p)â¡3
以äžäœãã 1 ãã€å¢ãããªããç¹°ãè¿ããŠãäœã (p-1) ããŒãžã§ã³ãŸã§å®è¡ããŠãã ããã
(p-1)+r(p-1)p (mod p)â¡p-1
ããã«ãã£ãŠãa*p 以äžã®èªç¶æ°ã p-1 åéžã³åºããŸãããã
ã§ã¯ãããããå°ããé ã«äžŠã¹ãŠäžã€ã®çµãšããŠãã ããã
{r1,r2,r3,r4,r5,r6,ã»ã»ã»,r(p-1)}
å°ããé ã«äžŠãã§ãã p-1 åã®æ°ã®çµã«ã以äžã®ãã㪠3 ã€ã®æé ãããªãæäœ R ãããŸãã
ãŸããæ«å°Ÿã« a*p ãä»ãå ããäžæçã« p åçµãšããŸãã
{r1,r2,r3,r4,r5,r6,ã»ã»ã»,r(p-1),a*p}
å
é ã®æ°ããã£ããèŠããäžã§åãèœãšããŠãp-1 åçµã«æ»ããŸãã
{r2,r3,r4,r5,r6,ã»ã»ã»,r(p-1),a*p}
p-1 åã®æ°ãããããããã£ãåãèœãšããæ°ãåŒãç®ããŸãã
{r2-r1,r3-r1,r4-r1,r5-r1,r6-r1,ã»ã»ã»,r(p-1)-r1,a*p-r1}
ããŠãã§ã¯ã
(1) æ°ããã§ãã p-1 åã®æ°ã®çµã§ãããå®ã¯æåã®çµã®äœãæ¹ã®æ¡ä»¶ã«åœãŠã¯ãŸã£ãŠããŸããïŒ
ããªãã¡ã
ã»a*p 以äžã®èªç¶æ° p-1 åãå°ããé ã«äžŠãã§ãã
ã»p ã§å²ã£ãäœã㯠1 ãã p-1 ãŸã§ 1 åãã€
ã«ãªã£ãŠããŸããïŒ
----ãããã¡ãããªãã
No.867ããããã¯ã¡ã¹ã2023幎4æ11æ¥ 15:01
ãããããå°ããé ã«äžŠã¹ãŠäžã€ã®çµãšããŠãã ããã
ã®ãšããã§ããã
éžãã æ°ã¯ rk ãããªããŠãk+rk*p ã®æ¹ã§ãã
å
·äœçãªæ°ã§ãããªããšãããã®ãå°ããé ãã䞊ã¹ãã®ã¯é£ãããšæããŸããã
No.868DD++2023幎4æ11æ¥ 15:11
ããã«ãã£ãŠãa*p 以äžã®èªç¶æ°ã p-1 åéžã³åºããŸãããã
ã§ã¯ãããããå°ããé ã«äžŠã¹ãŠäžã€ã®çµãšããŠãã ããã
{1+r1p,2+r2p,3+r3p,4+r4p,5+r5p,6+r6p,ã»ã»ã»,(p-1)+r(p-1)}
å°ããé ã«äžŠãã§ãã p-1 åã®æ°ã®çµã«ã以äžã®ãã㪠3 ã€ã®æé ãããªãæäœ R ãããŸãã
ãŸããæ«å°Ÿã« a*p ãä»ãå ããäžæçã« p åçµãšããŸãã
{1+r1p,2+r2p,3+r3p,4+r4p,5+r5p,6+r6p,ã»ã»ã»,(p-1)+r(p-1),a*p}
å
é ã®æ°ããã£ããèŠããäžã§åãèœãšããŠãp-1 åçµã«æ»ããŸãã
{2+r2p,3+r3p,4+r4p,5+r5p,6+r6p,ã»ã»ã»,(p-1)+r(p-1),a*p}
p-1 åã®æ°ãããããããã£ãåãèœãšããæ°ãåŒãç®ããŸãã
{2+r2p-(1+r1p),3+r3p-(1+r1p),4+r4P-(1+r1p),5+r5p-(1+r1p),6+r6p-(1+r1p),ã»ã»ã»,(p-1)+r(p-1)p-(1+r1p),a*p-(1+r1p)}
ããŠãã§ã¯ã
(1) æ°ããã§ãã p-1 åã®æ°ã®çµã§ãããå®ã¯æåã®çµã®äœãæ¹ã®æ¡ä»¶ã«åœãŠã¯ãŸã£ãŠããŸããïŒ
ããªãã¡ã
ã»a*p 以äžã®èªç¶æ° p-1 åãå°ããé ã«äžŠãã§ãã
ã»p ã§å²ã£ãäœã㯠1 ãã p-1 ãŸã§ 1 åãã€
ã«ãªã£ãŠããŸããïŒ
---ã¯ããããã§ãæç€ºã®æé ã¯ããã£ãŠãŸããã
ãããããå®éã®æ°ã§ãåé¡ãé²ããããã§ããïŒ
No.870ããããã¯ã¡ã¹ã2023幎4æ11æ¥ 15:38
ãããéžãã§äžŠã¹ããšããããå
·äœçãªæ°ã§ã©ããã
ã¯ã¡ã¹ããã㯠1+r1*p ãæå°å€ãšããŠããŸãããå®é㯠r1 ãš r2 ã®å€§å°ã«ãã£ãŠã¯
2+r2*p < 1+r1*p
ãšãªãå Žåããããå¿
ããã 1+r1*p ãå
é ã«ãããããããªãã®ã§ã
No.871DD++2023幎4æ11æ¥ 15:58
ã¯ã¡ã¹ãããããã£ãããã«
>ãã¥ãŒãã³ã®ããªã³ããã¢ã¯ãæç« ã°ããã§ãæ°åŒã¯ãªãã£ãããã§ãããããçŸä»£ç§éãç¿ãç©çåŠãæ°åŒäžå¿ã§ãããããã¯ãªã€ã©ãŒã®æ¥çžŸã®1ã€ã ããã§ãã
ãŸããã®ããããå€ãã®é«åãªåŠè
ãããé¢ãã£ãŠããŸãã®ã§âŠâŠ
埡åèãŸã§ã«ã
æè³ æ¢è¿ª, ç§åŠå²å
¥é 18äžçŽãšãŒãããã®ååŠç ç©¶ : åŠè
ãã¡ã®äº€æµãšè«äº, ç§åŠå²ç ç©¶, 2014-2015, 53 å·», 272 å·, p. 473-, å
¬éæ¥ 2020/12/14, Online ISSN 2435-0524, Print ISSN 2188-7535, https://doi.org/10.34336/jhsj.53.272_473
, https://www.jstage.jst.go.jp/article/jhsj/53/272/53_473/_article/-char/ja
No.874Dengan kesaktian Indukmu2023幎4æ11æ¥ 17:19
éäžãŸã§äœæ¥ããŠãããããã¯ã¡ã¹ãããããã®åŸã©ããªã£ãã®ãããããŸããããæ°æ¥çµã¡ãŸããã®ã§çµå±ãããäœã ã£ãã®ããšãããã¿ãã©ã·ãã
ãŸããã¿ã€ãã«ã§æåããã»ãšãã©æžããŠãããããªãã®ã§ããã
å®ã¯ããããã§ã«ããŒã®å°å®çãããåæ°ãã䜿ãããšã§åŒå€åœ¢ãªãã«çŽæ¥èšŒæã§ããªãããšè©Šã¿ããã®ã§ãã
æåã«æç€ºããæ°ã®éžã³æ¹ã¯å
šéšã§ a^(p-1) éããããŸãã
ãã®ãã¡ãå
šãŠã®éžæã§ a ã®åæ°ãéžãã { a, 2a, 3a, âŠâŠ, (p-1)a } ãšããçµã¯å¯äžæäœ R ã§èªåèªèº«ã«ãªããŸãã
ïŒa ãš p ãäºãã«çŽ ã®ãšãããã®éžã³æ¹ãå¿
ãå¯èœïŒ
ãããŠæ®ãã® a^(p-1) - 1 åã®çµã¯ãåãæ¡ä»¶ãæºããå¥ã®çµãé ã«å·¡ã£ãŠã2 以äžã® p ã®çŽæ°ãååŸã«èªåèªèº«ã«åž°ã£ãŠããŸãã
ããããp ã¯çŽ æ°ãªã®ã§ãã2 以äžã® p ã®çŽæ°ã㯠p 以å€ã«ãããŸããã
ã€ãŸãããã®æäœ R ã§ãããããšç¹ããé¢ä¿ p å 1 ã°ã«ãŒãã« a^(p-1) - 1 åã®ãã®ããããªãããããªãåããããŸãã
ãã£ãŠãa ã p ãšäºãã«çŽ ã§ããã°ãa^(p-1) - 1 㯠p ã®åæ°ã§ããããšã瀺ããâŠâŠãããšããã»ã©ãã¡ããšæžããŠã¯ããŸãããããªãã»ã©ç¢ºãã«æãç«ã¡ããã ãšèšãããããã®ãªã¢ãã£ãã§ããŸããã
âŠâŠãšããããšãªã®ã§ããã
ã¿ãªããããäœã a^(p-1) åã®ãã®ãçšæããŠããããã 1 ã€ãåãé€ããšãæ®ããæŒããªã p åãã€ã®ã°ã«ãŒãã«ãããããããããªãã®ãæãã€ãããæ¯éæããŠãã ããã
å®éã«ãã£ãŠã¿ããšãç°¡åã«äœãããã«èŠããŠãã¡ããã¡ãé£ããã§ãã
No.890DD++2023幎4æ14æ¥ 16:51
DD++æ§ãããã°ãã¯ã
æšæ¥ã1åç®ãŸã§ããããŸãããïŒïŒïŒã®åé¡ãŸã§ããªãå
ãããããã§ãã
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ãŸããçŽ æ° p ããã³ãããšäºãã«çŽ ãªèªç¶æ° a ãæ±ºããŠãã ããã
p=7ãa=5ããšããŸãã
ã1, 1+p, 1+2p, âŠâŠ, 1+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
1+3p=22
ã2, 2+p, 2+2p, âŠâŠ, 2+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
2+2p=16
ã3, 3+p, 3+2p, âŠâŠ, 3+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
3+2p=17
ã4, 4+p, 4+2p, âŠâŠ, 4+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
4+3p=25
ã5, 5+p, 5+2p, âŠâŠ, 5+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
5+2p=19
ã6, 6+p, 6+2p, âŠâŠ, 6+(a-1)p ã®äžããèªç±ã« 1 ã€éžãã§ãã ããã
6+2p=20
ããã«ãã£ãŠãa*p 以äžã®èªç¶æ°ã p-1 åéžã³åºããŸãããã
ã§ã¯ãããããå°ããé ã«äžŠã¹ãŠäžã€ã®çµãšããŠãã ããã
{16,17,19,20,22,25}
å°ããé ã«äžŠãã§ãã p-1 åã®æ°ã®çµã«ã以äžã®ãã㪠3 ã€ã®æé ãããªãæäœ R ãããŸãã
ãŸããæ«å°Ÿã« a*p ãä»ãå ããäžæçã« p åçµãšããŸãã
{16,17,19,20,22,25,35}
å
é ã®æ°ããã£ããèŠããäžã§åãèœãšããŠãp-1 åçµã«æ»ããŸãã
{17,19,20,22,25,35}
p-1 åã®æ°ãããããããã£ãåãèœãšããæ°ãåŒãç®ããŸãã
{1,3,4,6,9,19}
ããŠãã§ã¯ã
(1) æ°ããã§ãã p-1 åã®æ°ã®çµã§ãããå®ã¯æåã®çµã®äœãæ¹ã®æ¡ä»¶ã«åœãŠã¯ãŸã£ãŠããŸããïŒ
ããªãã¡ã
ã»a*p 以äžã®èªç¶æ° p-1 åãå°ããé ã«äžŠãã§ãã
ã»p ã§å²ã£ãäœã㯠1 ãã p-1 ãŸã§ 1 åãã€
ã«ãªã£ãŠããŸããïŒ
{1,3,4,6,9,19}â¡{1,3,4,6,2,5}(mod p=7)
(2) ãšããããšã¯ãæ°ããã§ããçµã«å¯ŸããŠæäœ R ãããäžåºŠè¡ãããšãã§ããŸãã
ãããŠã§ããçµã«ãŸãããäžåºŠãããã«ããäžåºŠã
æäœ R ã p åç¹°ãè¿ãããšããäœããèµ·ãããšæããŸãããããã¯äœã§ãããã
(1)
{1,3,4,6,9,19,35}
{3,4,6,9,19,35}
{2,3,5,8,18,34}
{2,3,5,8,18,34}â¡{2,3,5,1,4,6}(mod p=7)
(2)
{2,3,5,1,4,6}
{1,2,3,4,5,6}
{2,3,4,5,6,35}
{1,2,3,4,5,34}}â¡{1,2,3,4,5,6}(mod p=7)
(3)
{1,2,3,4,5,6,35}
{2,3,4,5,6,35}
{1,2,3,4,5,34}â¡{1,2,3,4,5,6}(mod p=7)
(4)
{1,2,3,4,5,6}
{1,2,3,4,5,6}
{2,3,4,5,6,35}
{1,2,3,4,5,34}}â¡{1,2,3,4,5,6}(mod p=7)
(5)
{1,2,3,4,5,6}
{1,2,3,4,5,6}
{2,3,4,5,6,35}
{1,2,3,4,5,34}}â¡{1,2,3,4,5,6}(mod p=7)
(6)
{1,2,3,4,5,6}
{1,2,3,4,5,6}
{2,3,4,5,6,35}
{1,2,3,4,5,34}}â¡{1,2,3,4,5,6}(mod p=7)
(7)
{1,2,3,4,5,6}
{1,2,3,4,5,6}
{2,3,4,5,6,35}
{1,2,3,4,5,34}}â¡{1,2,3,4,5,6}(mod p=7)
çã
{1,2,3,4,5,6}(mod p=7)
ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒ
ãŸã¡ãã£ãŠãŸãïŒ
No.892ããããã¯ã¡ã¹ã2023幎4æ14æ¥ 18:45
ã1 åç®ã®çµæã㯠{2,3,5,8,18,34} ã§ããã
No.893DD++2023幎4æ14æ¥ 19:04
ãã(2) ã® 1 åç®ãã€ãŸãå
šäœã® 2 åç®ã®çµæã®ããšã§ãã
No.894DD++2023幎4æ14æ¥ 19:05
ïŒ(2) ãšããããšã¯ãæ°ããã§ããçµã«å¯ŸããŠæäœ R ãããäžåºŠè¡ãããšãã§ããŸãã
ãããŠã§ããçµã«ãŸãããäžåºŠãããã«ããäžåºŠã
æäœ R ã p åç¹°ãè¿ãããšããäœããèµ·ãããšæããŸãããããã¯äœã§ãããã
ããããã£ãã€ããã§ãããã»ã»ã»ã»
ééã£ãŠãŸãããïŒ
ïŒ(3) æåã®çµãæ°ãã«äœãçŽããåã³æäœ R ã p åç¹°ãè¿ããŠã¿ãŠãã ããã
ãããã¯ã3 ã€ãã4 ã€ãã®çµãäœã£ãŠããããã§ãã
ã»ãšãã©å
šãŠã®çµã§åãçŸè±¡ãèµ·ããããšã確èªããŠãã ããã
ã§ãããã¯ã©ããªããã ãããšæ¢ãŸã£ãã®ã§ãã
No.895ããããã¯ã¡ã¹ã2023幎4æ14æ¥ 20:01
{1,3,4,6,9,19,35} <- æåŸã« 35 ãã€ããïŒæäœ R ã® 1 ã€ãïŒ
{3,4,6,9,19,35} <- 1 ãåãèœãšããŠïŒæäœ R ã® 2 ã€ãïŒ
{2,3,5,8,18,34} <- å
šéšãã 1 ãåŒãããå®æïŒæäœ R ã® 3 ã€ãïŒ
{2,3,5,8,18,34}â¡{2,3,5,1,4,6}(mod p=7) <- äœãããã©ãã©ã確èªããã ã
ããŠãæäœ R ã®å®æåã¯ã©ãã§ãããïŒ
æ¬åœã« {2,3,5,1,4,6} ã§ããïŒ
No.896DD++2023幎4æ14æ¥ 20:50
ãã 1 åæäœ R ã®å®çŸ©ããã¡ããšèªãã§ãã ããã
No.899DD++2023幎4æ15æ¥ 07:11
ïŒå°ããé ã«äžŠãã§ãã p-1 åã®æ°ã®çµã«ã以äžã®ãã㪠3 ã€ã®æé ãããªãæäœ R ãããŸãã
ãŸããæ«å°Ÿã« a*p ãä»ãå ããäžæçã« p åçµãšããŸãã
å
é ã®æ°ããã£ããèŠããäžã§åãèœãšããŠãp-1 åçµã«æ»ããŸãã
p-1 åã®æ°ãããããããã£ãåãèœãšããæ°ãåŒãç®ããŸãã
ã§ãããã
ãšãããšã
ïŒ{2,3,5,8,18,34} <- å
šéšãã 1 ãåŒãããå®æïŒæäœ R ã® 3 ã€ãïŒ
ã§ããããïŒ
No.900ããããã¯ã¡ã¹ã2023幎4æ15æ¥ 08:55
ã¯ãããããæäœ R ã®çµæã§ãã
ã§ããããæ¬¡ã¯ {2,3,5,8,18,34} ããåºçºã«ãªããŸãã
No.901DD++2023幎4æ15æ¥ 08:58
(1)
{1,3,4,6,9,19,35}
{3,4,6,9,19,35}
{2,3,5,8,18,34}
(2)
{2,3,5,8,18,34}
{3,5,8,18,34,35}
{1,3,6,16,32,33}
(3)
{1,3,6,16,32,33}
{3,6,16,32,33,35}
{2,5,15,31,32,34}
(4)
{2,5,15,31,32,34}
{5,15,31,32,34,35}
{3,13,29,30,32,33}
(5)
{3,13,29,30,32,33}
{13,29,30,32,33,35}
{10,26,27,29,30,32}
(6)
{10,26,27,29,30,32}
{26,27,29,30,32,35}
{16,17,19,20,22,25}
(7)
{16,17,19,20,22,25}
{17,19,20,22,25,35}
{1,3,4,6,9,19}
çã
{1,3,4,6,9,19}
ããã§ããã£ãŠãŸãããïŒ
No.902ããããã¯ã¡ã¹ã2023幎4æ15æ¥ 09:14
ã¯ããååã§ãã£ãŠããããšã¯ãã£ãŠããŸãã
ãã ã{16,17,19,20,22,25} ãã {1,3,4,6,9,19} ãäœã£ãã®ã 1 åç®ã§ãããã
> (6)
> {10,26,27,29,30,32}
> {26,27,29,30,32,35}
> {16,17,19,20,22,25}
ã 7 åç®ã§ãããã§ã¹ãããã§ãã
No.903DD++2023幎4æ15æ¥ 09:20