æ£ã®æŽæ°ã§
a^2+b^2=c^2
ãæºãã(a,b,c)ã¯å€æ°ã®çµãååšã
äžæ¹
a^3+b^3=c^3
ã§ã¯å
šãååšããªãã
ããã§
a^3+b^3=c^2ïŒïŒïŒ
ã§ã¯ã©ã®æ§ãªçµãå¯èœããèããŠã¿ãã
äœã1âŠaâŠbâŠcã§ãããšããã
ç°¡åãªèª¿æ»ã§
(a,b,c)=(1,2,3)
(2,2,4)
(4,8,24)
(8,8,32)
(9,18,81)
(7,21,98)
(18,18,108)

ãªã©ãèŠã€ãããäžè¬ã«ïŒïŒïŒãæºããäžçµã
(a.,b,c)=(A,B,C)ãšããã°nãèªç¶æ°ãšããŠ(A*n^2,B*n^2,C*n^3)
ã®çµãèªåçã«ïŒïŒïŒãæºããããŠããã
äœæ
ãªã
(A*n^2)^3+(B*n^2)^3=(A^3+B^3)*n^6=C^2*n^6=(C*n^3)^2
ãªã®ã§ãäŸãã°äžèšã®
(1,2,3),(4,8,24),(9,18,81)ã¯åãç³»åãšããŠ
(1,2,3)=(1*1^2,2*1^2,3*1^3)
(4,8,24)=(1*2^2,2*2^2,3*2^3)
(9,18,81)=(1*3^2,2*3^2,3*3^3)

ã§èšè¿°ãããã
åãã
(2,2,4),(8,8,32),(18,18,108)ã
(2,2,4)=(2*1^2,2*1^2,4*1^3)
(8,8,32)=(2*2^2,2*2^2,4*2^3)
(18,18,108)=(2*3^2,2*3^2,4*3^3)

ãšåãç³»åããªãã
ããã§(1,2,3)ã(2,2,4)ãèŠçŽãªçµãšåŒã¶ããšã«ããã
ããŠä»¥äžãèžãŸããŠaã10000ãè¶ãããã®ã§ãæå°ãªèŠçŽã®çµ
(a,b,c)ã¯äœã«ãªãããèããŠäžããã
No.353GAI2022幎10æ28æ¥ 08:41
ãšãããããããšæãã€ãã®ã¯
a=10010, b=1001, c=1002001
ã§ããããã£ãšå°ããã®ããããŸãããïŒ
No.354DD++2022幎10æ28æ¥ 12:15
äœã1âŠaâŠbâŠcã§ãããšããã
ã®æ¡ä»¶ã«åããªãã®ã§ããããå«ãã§ãé¡ãããŸãã
æå°ãšã³ã¡ã³ãããŠãããã§ãããæå°ã«å°ãèªä¿¡ãç¡ããªã£ãã®ã§a>10000
ã§ãããã®ãæ¢ããŠäžãããã§ããã°3çµã»ã©ã
No.355GAI2022幎10æ28æ¥ 14:42
ãæå°ããšããã®ã¯ããaãæå°ãã§ããïŒãããšããcãæå°ãã§ããïŒ
No.357ãããã2022幎10æ28æ¥ 19:16
aãã§ããããããŸãã
No.358GAI2022幎10æ28æ¥ 19:56
ããåé¡ãèªã¿é£ã°ãã¡ãã£ãŠãŸããã
倱瀌ããŸããã
No.359DD++2022幎10æ28æ¥ 21:29
aã®å°ããé ã ãš
10010^3+17290^3=2484300^2
10054^3+13178^3=1817904^2
10065^3+23010^3=3633525^2
ã§ãããã
No.360ãããã2022幎10æ29æ¥ 03:33
æå°ã«èªä¿¡ããªããªã£ããšã³ã¡ã³ãããã®ã¯ãbã®æ¢çŽ¢ç¯å²ãåºããŠã¿ãã
10016^3+2153440^3=3160088064^2
ãªããã®ãåºçŸããã®ã§ããã£ãšåºããŠããã°10010ãæå°ãšã¯éããªãããããªãã®ããªïŒ
ãšçåããã£ãããã§ããã
bã®æ¢çŽ¢ç¯å²ãåºããŠè¡ãã°æéãæãã£ãŠããŸãã
ã§ïŒåãšåãçŽããŸããã
ãšæã£ãŠããã
(10016,2153440,3160088064)=(626*4^2,134590*4^2,49376376*4^3)
ãªã®ã§æ¢çŽã§ã¯ãããŸããã§ããã
ä»ã®aã§ã¯
10080^3+15120^3=2116800^2( ãããããã¯æ¢çŽã«ãªããªãã)
(10080,15120,2116800)=(70*12^2,105*12^2,1225*12^3)
10082^3+231886^3=111668232^2 (ãããæ¢çŽã§ãªããïŒ
(10082,231886,111668232)=(2*71^2,46*71^2,312*71^3)
10089^3+1169298^3=1264410081^2 (ãããæ¢çŽã§ãªããïŒ
(10089,1169298,1264410081)=(1121*3^2,129922*3^2,46830003*3^3)
ã§ãã®ã§aã10000ãè¶
ããŠæ¢çŽåè£ã®3åã¯äžã®ãã®ã§ããã
No.361GAI2022幎10æ29æ¥ 08:10
ç¶ãã¯
10122^3+149961^3=58081023^2
10129^3+1244420^3=1388195367^2
10147^3+115997^3=39519864^2
10166^3+17342^3=2503228^2
10185^3+234934^3=113877127^2
10199^3+182693^3=78094534^2
10270^3+13430^3=1872300^2
ãšãªãããã§ããã
ã¡ãªã¿ã«äžéšã®è§£ã¯æèšç®ã§ãåºããŸãã
äŸãã°2ã€ã®çŽ æ°11ãš19ã䜿ã£ãŠ
11^3+19^3=8190=2Ã3^2Ã5Ã7Ã13
å¹³æ¹èŠçŽ ãé€ããš 2Ã5Ã7Ã13=910
11Ã910=10010, 19Ã910=17290ãªã®ã§
10010^3+17290^3=(11^3+19^3)Ã910^3
=(2Ã3^2Ã5Ã7Ã13)Ã(2Ã5Ã7Ã13)^3
=(2^2Ã3Ã5^2Ã7^2Ã13^2)^2=2484300^2
17ãš29ã䜿ããš
17^3+29^3=29302=2Ã7^2Ã13Ã23
å¹³æ¹èŠçŽ ãé€ããš 2Ã13Ã23=598
17Ã598=10166, 29Ã598=17342ãªã®ã§
10166^3+17342^3=(17^3+29^3)Ã598^3
=(2Ã7^2Ã13Ã23)Ã(2Ã13Ã23)^3
=(2^2Ã7Ã13^2Ã23^2)^2
=2503228^2
# æåã®2æ°ã¯çŽ æ°ã§ããå¿
èŠã¯ãããŸããã
# äŸãã°15ãš346ãã
# 10185^3+234934^3=113877127^2
# ãåŸãããŸãã
ãŸãããã®æ¹æ³ã䜿ãã°åçŽæ¢çŽ¢ã§ã¯å³ãããããªããªã倧ããå€ã®è§£ã®äŸãç®åºã§ããŸãã
äŸãã°271ãš314ã䜿ããš
271^3+314^3=50861655=3^3Ã5Ã13Ã73Ã397
å¹³æ¹èŠçŽ ãé€ããš 3Ã5Ã13Ã73Ã397=5651295
271Ã5651295=1531500945, 314Ã5651295=1774506630ãªã®ã§
1531500945^3+1774506630^3=(271^3+314^3)Ã5651295^3
=(3^3Ã5Ã13Ã73Ã397)Ã(3Ã5Ã13Ã73Ã397)^3
=(3^3Ã5^2Ã13^2Ã73^2Ã397^2)^2
=95811405531075^2
No.362ãããã2022幎10æ29æ¥ 08:50
é¢çœãæ§ææ¹æ³ã§ãããïŒãããããªæ¹æ³ãæãã€ããŸãããïŒ
10129^3+1244420^3=1388195367^2
ã¯7 ãš860
10166^3+17342^3=2503228^2
ã¯17ãš29
10270^3+13430^3=1872300^2
ã¯13ãš17
ããæ§æã§ããŸããã
ã§ãããã§åºæ¥ãããåºæ¥ãªãã£ããããããšããŸãé¢çœãã§ãã
ïŒè¿œäŒžïŒ
æ¢çŽ¢ç¯å²ãåºããã°
ãããããããã§å
šéšäœããŠããŸããŸããã
10054^3+13178^3=1817904^2ã¯
457 ãš599
10065^3+23010^3=3633525^2ã¯
671 ãš1534
10122^3+149961^3=58081023^2ã¯
482 ãš 7141
10147^3+115997^3=39519864^2ã¯
139 ãš1589
10199^3+182693^3=78094534^2ã¯
1457 ãš26099
No.364GAI2022幎10æ29æ¥ 11:33
ãã®æ§ææ¹æ³ã«æ°ã¥ããŸããã®ã§ã10100ãã倧ããè§£ã¯ãã®æ¹æ³ã®ããã°ã©ã ãäœã£ãŠèª¿ã¹ãŸããã
2æ°ãs,tïŒsâŠtïŒãšãããšããtã¯+1ãã€ã§ãããsã¯äŸãã°aã®ç¯å²ã10000ïœ10300ãšãããªãã°
s=4000ãs=6000ãªã©ã調ã¹ãå¿
èŠããªãïŒæŽæ°åããŠ10000ïœ10300ã®ç¯å²ã«ãªããªãïŒã®ã§
çµæ§é«éåã§ããŸããã
ïŒå
·äœçã«ã¯ãsã+1ãã€ããŠ[10000/s]=[10299/s]ã«ãªã£ããs/[10000/s]ãŸã§é£ã°ããŠããïŒ
No.365ãããã2022幎10æ29æ¥ 17:43
s;tãå€åãããŠäžæ°ã«æ§æããŠã¿ãŸããã
1;2=>1^3 + 2^3 = 3^2
1;3=>7^3 + 21^3 = 98^2
1;4=>65^3 + 260^3 = 4225^2
1;5=>14^3 + 70^3 = 588^2
1;6=>217^3 + 1302^3 = 47089^2
1;7=>86^3 + 602^3 = 14792^2
1;8=>57^3 + 456^3 = 9747^2
1;9=>730^3 + 6570^3 = 532900^2
1;10=>1001^3 + 10010^3 = 1002001^2
1;11=>37^3 + 407^3 = 8214^2
1;12=>1729^3 + 20748^3 = 2989441^2
1;13=>2198^3 + 28574^3 = 4831204^2
1;14=>305^3 + 4270^3 = 279075^2
1;15=>211^3 + 3165^3 = 178084^2
1;16=>4097^3 + 65552^3 = 16785409^2
1;17=>546^3 + 9282^3 = 894348^2
1;18=>5833^3 + 104994^3 = 34023889^2
1;19=>35^3 + 665^3 = 17150^2
1;20=>889^3 + 17780^3 = 2370963^2
1;21=>9262^3 + 194502^3 = 85784644^2
1;22=>10649^3 + 234278^3 = 113401201^2
1;23=>2^3 + 46^3 = 312^2
1;24=>553^3 + 13272^3 = 1529045^2
1;25=>15626^3 + 390650^3 = 244171876^2
1;26=>217^3 + 5642^3 = 423801^2
1;27=>4921^3 + 132867^3 = 48432482^2
1;28=>21953^3 + 614684^3 = 481934209^2
1;29=>2710^3 + 78590^3 = 22032300^2
1;30=>27001^3 + 810030^3 = 729054001^2
2;3=>70^3 + 105^3 = 1225^2
2;4=>4^3 + 8^3 = 24^2
2;5=>266^3 + 665^3 = 17689^2
2;6=>28^3 + 84^3 = 784^2
2;7=>78^3 + 273^3 = 4563^2
2;8=>260^3 + 1040^3 = 33800^2
2;9=>1474^3 + 6633^3 = 543169^2
2;10=>14^3 + 70^3 = 588^2
2;11=>2678^3 + 14729^3 = 1792921^2
2;12=>868^3 + 5208^3 = 376712^2
2;13=>10^3 + 65^3 = 525^2
2;14=>86^3 + 602^3 = 14792^2
2;15=>6766^3 + 50745^3 = 11444689^2
2;16=>228^3 + 1824^3 = 77976^2
2;17=>9842^3 + 83657^3 = 24216241^2
2;18=>730^3 + 6570^3 = 532900^2
2;19=>1526^3 + 14497^3 = 1746507^2
2;20=>4004^3 + 40040^3 = 8016008^2
2;21=>18538^3 + 194649^3 = 85914361^2
2;22=>148^3 + 1628^3 = 65712^2
2;23=>974^3 + 11201^3 = 1185845^2
2;24=>6916^3 + 82992^3 = 23915528^2
2;25=>386^3 + 4825^3 = 335241^2
2;26=>2198^3 + 28574^3 = 4831204^2
2;27=>39382^3 + 531657^3 = 387735481^2
2;28=>1220^3 + 17080^3 = 2232600^2
2;29=>48794^3 + 707513^3 = 595213609^2
2;30=>844^3 + 12660^3 = 1424672^2
3;4=>273^3 + 364^3 = 8281^2
3;5=>114^3 + 190^3 = 2888^2
3;6=>9^3 + 18^3 = 81^2
3;7=>1110^3 + 2590^3 = 136900^2
3;8=>33^3 + 88^3 = 847^2
3;9=>63^3 + 189^3 = 2646^2
3;10=>3081^3 + 10270^3 = 1054729^2
3;11=>4074^3 + 14938^3 = 1844164^2
3;12=>585^3 + 2340^3 = 114075^2
3;13=>417^3 + 1807^3 = 77284^2
3;14=>8313^3 + 38794^3 = 7678441^2
3;15=>126^3 + 630^3 = 15876^2
3;16=>12369^3 + 65968^3 = 16999129^2
3;17=>3705^3 + 20995^3 = 3050450^2
3;18=>1953^3 + 11718^3 = 1271403^2
3;19=>20658^3 + 130834^3 = 47416996^2
3;20=>24081^3 + 160540^3 = 64432729^2
3;21=>774^3 + 5418^3 = 399384^2
3;22=>1281^3 + 9394^3 = 911645^2
3;23=>36582^3 + 280462^3 = 148693636^2
3;24=>57^3 + 456^3 = 9747^2
3;25=>11739^3 + 97825^3 = 30623138^2
3;26=>52809^3 + 457678^3 = 309865609^2
3;27=>6570^3 + 59130^3 = 14388300^2
3;28=>65937^3 + 615412^3 = 483076441^2
3;29=>4578^3 + 44254^3 = 9314704^2
3;30=>9009^3 + 90090^3 = 27054027^2

No.366GAI2022幎10æ29æ¥ 20:21
sãštãäºãã«çŽ ã§ãªãå Žåã¯ãæ¢çŽãªçµãã«ãªããŸããã®ã§ãäºãã«çŽ ã§ãªããã®ã¯é€ããæ¹ãè¯ãããç¥ããŸããã
No.367ãããã2022幎10æ30æ¥ 01:25
ããã«é¡ããåé¡ãæ¢ããŠããã
A^4+B^3=C^2
ãæºããæŽæ°(A,B,C)ãåãåé¡ã«ééããŸããã
æ®éã«æ£ã®æŽæ°ã«éå®ããŠæ¢ããš
(A,B,C)=(1,2,3),(5,6,29),(6,9,45),(7,15,76),(9,27,162),
ãšãããããšåºãŠããŸãã
ãšããã§äžè¬ã«s,tãä»»æã®å®æ°ãšã
A(s,t)=6*s*t*(4*s^4+3*t^4)
B(s,t)=16*s^8-168*s^4*t^4+9*t^8
C(s,t)=64*s^12+1584*s^8*t^4-1188*s^4*t^8-27*t^12
ã«ããŠããã°ã
A(s,t)^4+B(s,t)^3=C(s,t)^2
ãæççã«æç«ãããšããã
å¿è«s,tãæŽæ°ã§æå®ããã°äžèšã®è§£ãã¯ããåºããŠãããã
ãã ã(1,2,3)ãªã©ã¯s,tãã©ããšãã°ããã®ãã¯åãããªãã
äžäœã©ã®æ§ãªèãæ¹ã§ãããªåŒãæ¢ãåºããã®ã ãããïŒ
ãããªåŒã
A^3+B^3=C^2
ãžé©å¿ã§ããåŒãå°ãåºããªããã®ããšæãã
No.363GAI2022幎10æ29æ¥ 09:21
ç¹ãšç·ã®å察åç
ãç°ãªãäºç¹ãéãããã äžã€ã®çŽç·ããååšãããã
ãç°ãªãã«çŽç·ãéãããã äžã€ã®ç¹ããååšãããã
ãã¹ã«ã«ã®å®çãšããªã¢ã³ã·ã§ã³ã®å®ç
ãã§ãã®å®çãšã¡ãã©ãŠã¹ã®å®ç
ãã¶ã«ã°ã®å®çã¯ãããèªèº«ãšå察ã®é¢ä¿
çŸå®ã®ç©çäžçã¯ãã©ããªç©ºéã§ããããïŒ
æéã ããã§ããã
No.350ks2022幎10æ26æ¥ 14:42
ãã§ãã®å®çãšã¡ãã©ãŠã¹ã®å®çã¯å°åœ±å¹Ÿäœã®å®çã§ã¯ãããŸããããå察ã®é¢ä¿ã§ã¯ãªããšæããŸãã
ç§ãä»å¹Žã®4æã«æçš¿ããåé¡
ïŒ
https://bbs1.rocketbbs.com/shochandas/posts/36
ãŸãã¯
ãè¶ã®æéãïŒãããºã«ïŒã¯ã€ãºãïŒãäžè§åœ¢ã®ããçåŒ
ïŒ
ã¯ãå³å¯ã«ã¯å察ã§ã¯ãªãã®ã§ãããããã©ãããããã®å®çã®å察ãæèããŠäœã£ãåé¡ã§ãã
[1]ãã¡ãã©ãŠã¹ã®å®çã«å¯Ÿå¿ãã[2]ããã§ãã®å®çã«å¯Ÿå¿ããŠããŸãã
No.352ããã²ã2022幎10æ27æ¥ 21:50
ãä»»æã®è§ã®äžçåãã€ããããšã¯ãå®èŠãšã³ã³ãã¹ã ãã§ã¯ã§ããªãã
ãšèšãããŠããŸãããæãçŽã§ã¯ãã§ããã¿ããã§ããã
No.342ks2022幎10æ18æ¥ 16:24
æãçŽã䜿ããšè§ã®ïŒçåã¯ãããïŒçåãã§ãããããã§ããã
宿šãšã³ã³ãã¹ãšã§ã¯åºæ¥ãªãæ£ïŒïŒè§åœ¢ã®äœå³ãã§ãããšãã
â
https://core.ac.uk/download/pdf/59041733.pdf
No.343Dengan kesaktian Indukmu2022幎10æ19æ¥ 06:54
å¹³é¢ã«ïŒç¹A,B,Cããšããä»è§â ABCãïŒçåããããšã詊ã¿ãã
äœãå®èŠã«ïŒã€ã®å·ããããã¯ç®å°ãšããŠP,Qã®ïŒç¹ãããžãã¯ã§å°ãä»ããŠããã
â ïŒçŽç·ABäžã«ç¹BããPQã®è·é¢ãšåãé·ããšãªãããã«ãããã«ç¹Oããšãã
â¡ ; ç¹OãéãçŽç·BCã«å¹³è¡ãªç·ODãåŒãã
⢠; ç¹Oãäžå¿ãšããŠååŸOB(=PQ)ã§ããåãæãã
⣠; å®èŠãç¹Bãéãæ§ã«ããŠãç¹Pãåãšç¹QãçŽç·ODãšéãªãæ§ã«èª¿æŽãããå®èŠã«ç·BEãåŒãã
ãã(説æã®ããã«åãšçŽç·(=OD)ãšã®äº€ç¹ãããããP,Qãšåä»ããã)
以äžã®äœæ¥ãã
â³OPQ,â³OBPã¯äºç蟺äžè§åœ¢ãã
â POQ=â PQO=Ξããªã
â OPB=â OBQ=2Ξãã§
ãŸãå¹³è¡ãã
â OQB=â CBQ=Ξ
ãããã
â ABC=3Ξ
ãããã£ãŠè§â ABCã®ïŒçåç·ã®äžã€ã¯çŽç·BEã§ãã
åŸã¯è§â ABE=2ΞãåŸæ¥ã®ããæ¹ã§ãããïŒçåããã°ããã
ïŒå®èŠã®ç®çãçŽç·ããã åŒããšãã圹ç®ã«ãã¡ãã£ãšæãå ããã ãã§å
šãŠãå€åãã
ãããšãé¢çœãã§ãã
No.344GAI2022幎10æ19æ¥ 07:09
> åŸã¯è§â ABE=2ΞãåŸæ¥ã®ããæ¹ã§ãããïŒçåããã°ããã
ãã£ããããããè£å©ç·ããããŸãã®ã§ããããå©çšããŠ
Qãäžå¿ãšããŠPãéãåãæããŠãåOãšã®Pã§ãªã亀ç¹ãFãšããã°
BFãããäžã€ã®äžçåç·ã«ãªããŸããã
No.345ãããã2022幎10æ19æ¥ 10:08
> ⣠; å®èŠãç¹Bãéãæ§ã«ããŠãç¹Pãåãšç¹QãçŽç·ODãšéãªãæ§ã«èª¿æŽãããå®èŠã«ç·BEãåŒãã
ãã®æ¡ä»¶ãæºããå®èŠã®è§åºŠã¯å
šéšã§ 6 ã€ãããŸãã
2 ã€ã¯ç¹ Q ãç¹ O ã«ãããå®èŠãçŽç· AB ã«éããŠçœ®ãæ¹æ³ã
1 ã€ã¯ç¹ P ãç¹ B ã«éããç¹ Q ã¯ç¹ O ãšç°ãªããšããã«çœ®ãæ¹æ³ã
ãã® 3 ã€ã¯æããã«ç®çã®ç·ã§ã¯ãªãã®ã§é€å€ãããšããŠã
æ®ã 3 ã€ã®ãã¡ã©ã®ç·ã䜿ã£ãŠäœå³ããã°ããã®ã§ããããïŒ
éè§ã®å Žåã¯å
è§ã« 1 ã€ãšå€è§ã« 2 ã€ãªã®ã§å
è§ã«ãããã€ãéžæããã°ãããšããŠããéè§ã®å Žåã¯å
è§ã« 2 ã€ãããŸãã
No.346DD++2022幎10æ21æ¥ 23:06
éè§ã®å Žåã¯éè§ã§ããå€è§ãäžçåããã®ã¡ã«äžçåç·ããå€åŽã«60°ã®è§åºŠããšãã°
éè§ã®äžçåç·ãã§ããŸãã®ã§ãéè§ã ãäžçåã§ããã°ååãšãèšããŸããã
No.347ãããã2022幎10æ22æ¥ 15:50
https://ja.wikipedia.org/wiki/%E3%83%9F%E3%83%B3%E3%82%B3%E3%83%95%E3%82%B9%E3%82%AD%E3%83%BC%E3%81%AE%E7%96%91%E5%95%8F%E7%AC%A6%E9%96%A2%E6%95%B0
ã«ãã³ã³ãã¹ããŒã®çåç¬Šé¢æ°(?(x))ãšãããã®ãèããããŠããã
話ãéå®ããããã«ä»èããïœã®ç¯å²ã[0,1]åºéã®æçæ°åã³ïŒæ¬¡ç¡çæ°(a+b*sqrt(p))
(a,b;æçæ°,p;å¹³æ¹å åãå«ãŸã¬æŽæ°)ãšããã°
xãæçæ°ãªãé£åæ°è¡šç€ºã¯æéã§ãïŒæ¬¡ç¡çæ°ãªãããéšåãããµã€ã¯ã«ãç¹°ãè¿ãããã
ããããŠxã®é£åæ°è¡šç€ºã2ã®ææ°éšãžçšããããšã§ãããã«å®çŸ©ããã?(x)颿°ã¯åºé[0,1]
ããããèªèº«ãžã®å
šå°å¯Ÿå¿ã®å調å¢å ãªé£ç¶é¢æ°ãäžããã
ãã®é¢æ°ãå©çšããŠèšç®ããŠã¿ããš
?(1/2)=1/2
?(2/3)=3/4
?(3/5)=5/8
?(5/8)=11/16

?(10/19)=513/1024
çã
xãæçæ°ãªãèšç®çµæã¯å¿
ã忝ã¯å¶æ°(ããã2ã®åªã«éãã)
ããã§ãèšç®çµæã«çç®ã
1/2=?(1/2)
1/4=?(1/3)
3/4=?(2/3)
1/8=?(1/4)
3/8=?(2/5)
5/8=?(3/5)
7/8=?(3/4)
1/16=?(1/5)
3/16=?(2/7)
5/16=?(3/8)
7/16=?(3/7)
9/16=?(4/7)
11/16=?(5/8)
13/16=?(5/7)
15/16=?(4/5)

ãããšåæ¯ãïŒã®åªã§ã¯ãªãä»ã®å¶æ°ãããã³å¥æ°ã®ãã®ã¯2次ç¡çæ°ã䜿ãããšã®çµæãšããŠ
çºçããã
äŸãã°
2/3=?((sqrt(5)-1)/2)
1/5=?((2-sqrt(2))/2)
1/6=?((5-sqrt(5))/10)

ããã§
a[i]/7=?(x[i])
ããã«a[i]=i (i=1,2,3,,6)
ã®çµæãäžãã[0,1]åºéã«ãã2次ç¡çæ°x[i] ïŒi=1,2,3,,6)
ã®å
·äœçæç€ºåŒãæ±ããŠã»ããã
ã§ããã°
1/10,3/10,7/10,9/10ãäžãããã¯ã2次ç¡çæ°y[j] (j=1,2,3,4)ã
No.336GAI2022幎10æ17æ¥ 07:28
x[1]=2-â3
x[2]=(â3-1)/2
x[3]=(3-â3)/3
x[4]=â3/3
x[5]=(3-â3)/2
x[6]=â3-1
y[1]=(3-â2)/7
y[2]=(4-â2)/7
y[3]=(3+â2)/7
y[4]=(4+â2)/7
ã§ããããã
No.337ãããã2022幎10æ17æ¥ 14:55
ãŸãããå
šåæ£è§£ã§ãã
ïŒæ¬¡ç¡çæ°ãæçæ°ãžååããã¢ã€ãã¢ãããæãã€ããã®ã§ããã
ãšããããã§
[0,1]åºéã§
?(x)=x
ãæºããxã¯0,1/2,1以å€ã«ãååšããŠããŸããããã®å€ã¯ïŒ
çå±çã«ã¯ãã®å€ã¯ïŒæ¬¡ç¡çæ°ã®ã¯ãã§ãããã
No.338GAI2022幎10æ17æ¥ 15:55
0.42037233942322307564099300664622187394918986660061âŠ
ãšããå€ã«ãªããŸãããããã¯2次ç¡çæ°ã§ã¯ãªãã§ããã
ïŒããxã2次ç¡çæ°ãªã?(x)ã¯æçæ°ãªã®ã§?(x)=xã«ã¯ãªããŸããïŒ
No.339ãããã2022幎10æ17æ¥ 16:54
ãããïŒ
äŸã®äžåç¹ã®å°æ°ç¬¬37äœãŸã§ãäœãïŒæ¬¡ç¡çæ°ã§
gp > (sqrt(3219756132232550086641835218537)-1054710584836911)/(2*879764482467118)
%67 = 0.42037233942322307564099300664622187395
ãäœããã®ã§ãŠã£ããå¯èœã ãããšæã£ãŠããŸã£ãã
?(x)颿°ã¯é£ç¶ã§ã¯ãªããã§ãããPi/4ãâ2ãªã©ã®ç¹ã§ã¯ç¹ãããªãã
æ°ã£ãŠã©ãã ããããã ã£ãŠããšã§ããã
ã¡ãªã¿ã«
1-0.42037233942322307564099300664622187394918986660061âŠ
=0.57962766057677692435900699335377812605
ãäžåç¹ãšãªããŸããã
No.340GAI2022幎10æ17æ¥ 18:32
> ?(x)颿°ã¯é£ç¶ã§ã¯ãªããã§ããã
é£ç¶é¢æ°ãšæžãããŠããŸãã
Pi/4ãªã©ã®æ°ã§ããäžãšäžããæçæ°ã§æŒãããã°?(x)ããããã§ãè¿ãå€ã«ãªããŸãã®ã§ã
ãã®æçæ°ã®æ¥µéãšããŠè¡šãããPi/4ããã®éã®å€ãšããŠå®çŸ©ãããé£ç¶ã«ãªããŸããã
No.341ãããã2022幎10æ17æ¥ 19:04
äœ¿ãæ°åã6ãšçŽ ã§ãããã®
{1,5,7,11,13,17,19,23,25,29,31,35,}
ãé çªã«åæ¯ã«äœ¿ã£ãŠããïŒååã¯åžžã«1ïŒ
ç¹ãã§ãã笊å·ã
(1)+,-,+,-,+,-,ãšäº€äºã«ããŠãããå³ã¡
S1=1/1-1/5+1/7-1/11+1/13-1/17+
(2)+,+,+,+,-,-,-,-,+,+,+,+,ãš4åãã€ã§äº€äºã«ããŠããã
S2=1/1+1/5+1/7+1/11-1/13-1/17-1/19-1/23+1/25+
(3)+,+,-,-,+,+,-,-,ãš2åãã€ã§äº€äºã«ããŠããã
S3=1/1+1/5-1/7-1/11+1/13+1/17-1/19-1/23+
(4)+,-,-,+,+,-,-,+,+,-,-,+,ãš4åã®ãã¿ãŒã³ãç¹°ãè¿ããŠããã
S4=1/1-1/5-1/7+1/11+1/13-1/17-1/19+1/23+1/29-
ããŠããããŠéããŠè¡ããšããååS1,S2,S3,S4ã¯åŠäœãªãå€ã«ãªããã®ãïŒ
æç€ºåŒã§è¡šããŠäžããã
No.320GAI2022幎10æ4æ¥ 06:53
S1 = Ï/(2â3)
S2 = Ï/â6
S3 = Ï/3
S4 = log(2+â3)/â3
ããªïŒ
No.321ãããã2022幎10æ4æ¥ 15:19
å
šãŠæ£è§£ã§ãã
(4)ã¯asinh(â3)/â3ã(asinh(x)ã¯ãã€ãããªãã¯ã¢ãŒã¯ãµã€ã³)ã®åŒã§ãå¯ã§ãã
No.322GAI2022幎10æ4æ¥ 19:50
èª¿åæ°åããçºæ£ããããšããã
çå·®æ°åã®éæ°åãçºæ£ããã
å
¬å·®ãããã€ã§ããéã空ããŠããçºæ£ããã
No.323ks2022幎10æ5æ¥ 10:36
çå·®æ°åã®éæ°åãçºæ£ããã
ã ã笊å·ã亀äºã«ããäº€ä»£çŽæ°ã«ãããšåæã§ããŸãã
åé
ã1ãå
¬å·®ãdã«ãããš
d=1; S1=1-1/2+1/3-1/4+1/5-1/6+=log(2)
d=2; S2=1-1/3+1/5-1/7+1/9-1/11+=Ï/4
d=3; S3=1-1/4+1/7-1/10+1/13-1/16+=(Ï+â3*log(2))/(3*â3)
d=4; S4=1-1/5+1/9-1/13+1/17-1/21+=â2/8*(Ï+2*log(1+â2))
d=5; S5=1-1/6+1/11-1/16+1/21-1/26+=(2*log(2)+â(2+2/â5)*Ï+â5*log((3+â5)/2))/10
d=6; S6=1-1/7+1/13+1/19-1/25+1/31-1/37+=0.9037717737487720468
d=7; S7=0.91547952683
d=8; S8=0.92465170577
d=9; S9= 0.93203042415
No.324GAI2022幎10æ5æ¥ 11:41
S6ãšS8ã¯
S6=(Ï+(â3)log(2+â3))/6
S8=(â(4+2â2)Ï+â(2-â2)log(7-4â2+2â(20-14â2))+â(2+â2)log(7+4â2+2â(20+14â2)))/16
ãšæžããŸããã
No.325ãããã2022幎10æ5æ¥ 14:04
ã©ãããŠS7ãé£ã°ããŠS8ïŒãããçµæ§è€éïŒãåºãããã®ã ãããš
äœæ°ã«S7ãžææŠããŠãããããã£ã·ããšæéããšãããŠ
S7=1/7*(log(2)-2*sin(Ï/14)*log(2*sin(3*Ï/14))-2*cos(Ï/7)*log(2*sin(Ï/14))+2*sin(3*Ï/14)*log(2*cos(Ï/7)))+Ï/28*tan(Ï/14)+1/tan(Ï/14))
ãªã決ããŠçŸããã¯ãªãåŒã§ããã
ãªãã¹ãçµ±äžããŠ
t=sin(Ï/14)ãšçœ®ããŠ
S7=1/7*(log(2)-2*t*log(2*(3*t-4*t^3))-2*(1-2*t^2)*log(2*t)+2*(3*t-4*t^3)*log(2*(1-2*t^2)))+Ï/(28*t*sqrt(1-t^2))
ã§å°ãã¯ã·ã§ãŒãã«
No.326GAI2022幎10æ5æ¥ 18:06
S7ã®åŒãããããåããŠäœãšãããããªåœ¢ã«ãããšããã
S3,S5,S7,S9ã¯åãåœ¢ã§æžããããšãããããŸããã
S3=(2/3){Ï/(4sin(Ï/3))
-cos(Ï/3)log(sin(Ï/6))}
S5=(2/5){Ï/(4sin(Ï/5))
-cos(Ï/5)log(sin(Ï/10))
-cos(3Ï/5)log(sin(3Ï/10))}
S7=(2/7){Ï/(4sin(Ï/7))
-cos(Ï/7)log(sin(Ï/14))
-cos(3Ï/7)log(sin(3Ï/14))
-cos(5Ï/7)log(sin(5Ï/14))}
S9=(2/9){Ï/(4sin(Ï/9))
-cos(Ï/9)log(sin(Ï/18))
-cos(3Ï/9)log(sin(3Ï/18))
-cos(5Ï/9)log(sin(5Ï/18))
-cos(7Ï/9)log(sin(7Ï/18))}
n=2m+1ïŒmâ§1ïŒã®ãšã
Sn=(2/n){Ï/(4sin(Ï/n))-Σ[k=1ïœm]cos((2k-1)Ï/n)log(sin((2k-1)Ï/(2n)))}
ãæãç«ã¡ããã§ããã
(远èš)
å¶æ°ã
S2=(2/2){Ï/(4sin(Ï/2))
-cos(Ï/2)log(sin(Ï/4))}
S4=(2/4){Ï/(4sin(Ï/4))
-cos(Ï/4)log(sin(Ï/8))
-cos(3Ï/4)log(sin(3Ï/8))}
S6=(2/6){Ï/(4sin(Ï/6))
-cos(Ï/6)log(sin(Ï/12))
-cos(3Ï/6)log(sin(3Ï/12))
-cos(5Ï/6)log(sin(5Ï/12))}
S8=(2/8){Ï/(4sin(Ï/8))
-cos(Ï/8)log(sin(Ï/16))
-cos(3Ï/8)log(sin(3Ï/16))
-cos(5Ï/8)log(sin(5Ï/16))
-cos(7Ï/8)log(sin(7Ï/16))}
ã®ããã«æžããããã§ãã
å¶å¥åãããŠ
Sn=(2/n){Ï/(4sin(Ï/n))-Σ[k=1ïœ[n/2]]cos((2k-1)Ï/n)log(sin((2k-1)Ï/(2n)))}
ã§OKã§ããã
ïŒå¥æ°ã®åŒã®Î£ã®çµå€ã®mã[n/2]ã«å€ããã ãã§ãïŒ
No.328ãããã2022幎10æ5æ¥ 21:55
æãã®æ¥µéå€ã¯ã¬ã³ã颿°ïŒgamma(x))ãçæ°ã«ãšã£ã察æ°(log(gamma(x)))ã®
å°é¢æ°ããšã£ãd(log(gamma(x))/dxãpsi(x)颿°ãšè¡šç€ºã
psi(x)=gamma'(x)/gamma(x)
ã®æ§è³ªãå©çšããããšã§ããã®å
¬å·®dïŒåé
ã¯1)ã®çå·®æ°åã®éæ°ã§ã®äº€ä»£çŽæ°ã®
極éåT(d)ã
T(d)=(psi((d+1)/(2*d))-psi(1/(2*d)))/(2*d)
ã§ç®åºã§ãããšãããããæ°å€ãç®åºããŠããŸããã
ä»åããããããã®åŒ
S(n)=(2/n)*(Pi/(4*sin(Pi/n))-sum(k=1,floor(n/2),
cos((2*k-1)*Pi/n)*log(sin((2*k-1)*Pi/(2*n)))))
ã§2ã€ã®æ°éãèŠèŒã¹ãŸããããã¿ãªïŒã€ã¯äžèŽããŸããã(n=1ã¯é€å€ïŒ
ãŸã以åãããªèšç®ãããŠããŠäžæè°ã«æã£ãããšã«
zeta(3) =1+1/2^3+1/3^3+1/4^3+1/5^3+
3/4*zeta(3)=1-1/2^3+1/3^3-1/4^3+1/5^3-
ã«ã¯ååšçãçŸããªãã®ã«(zeta(5)ã«ã)
1-1/3^3+1/5^3-1/7^3+1/9^3-1/11^3+ïŒÏ^3/32
äžã®å¿çšã§(psi''(3/4)-psi''(1/4))/128 ããèšç®å¯èœ('èšå·ã¯åŸ®åã瀺ãã)
1-1/3^5+1/5^5-1/7^5+1/9^5-1/11^5+ïŒ5*Ï^5/1536
(psi''''(3/4)-psi''''(1/4))/24576ãããèšç®å¯èœ
ãšå
¬å·®2ã§äº€ä»£çŽæ°ããšãã°ååšçãå§¿ãçŸããïŒä»ã®å
¬å·®dã§ã¯çŸããªããïŒ
ãã£ãªã¯ã¬ææš[1,-1,0]ã®L颿°ã§ã
1-1/2^3+1/4^3-1/5^3+1/7^3-1/8^3+1/10^3-1/11^3+=4*Ï^3/(81*sqrt(3))
1-1/2^5+1/4^5-1/5^5+1/7^5-1/8^5+1/10^5-1/11^5+=4*Ï^5/(729*sqrt(3))
ãã¯ãååšçãé¡ãã®ããããã
ããšãäº€ä»£çŽæ°çã§ããªã,ïŒç¬Šå·ã ãã®çå·®æ°åæ°ã®ãã®ã§ã
1/3^3+1/7^3+1/11^3+1/15^3++1/(4*n-1)^3+=7/16*zeta(3)-Ï^3/64
ãã¯ãååšçãé¡ãã®ããããã
ã»ãããšã«ç¡éã¯äžæè°ã§ãã
No.329GAI2022幎10æ6æ¥ 07:54
ç¡éçŽæ°ã§ãΣïŒ/N(æ°åã®ïŒã®è¡šç€ºãããæ°ãé€ã)
ããåæããããšãç¥ãããŠããŸããã
åæå€ããïŒïŒãããã ã£ãããã§ããã埡åç¥ã®æ¹ãããããé¡ãããŸããä»ã®æ°åãé€ããå Žåã調ã¹ãŠããŸãã
No.330ks2022幎10æ6æ¥ 14:02
0ãé€ã oeis.org/A082839 23.103447909420541616034054043325598138302800005282141886723094772âŠ
1ãé€ã oeis.org/A082830 16.176969528123444266579603880364009305567219790763133864516906490âŠ
2ãé€ã oeis.org/A082831 19.257356532808072224532776770194454115526053831154870149868362949âŠ
3ãé€ã oeis.org/A082832 20.569877950961230371075217419053111414153869674730783489508528500âŠ
4ãé€ã oeis.org/A082833 21.327465799590036686639401486939512843750951703270021817251189541âŠ
5ãé€ã oeis.org/A082834 21.834600812296918163407235040609182717846567515013918291679359184âŠ
6ãé€ã oeis.org/A082835 22.205598159556091884167380480007527105193856106668463270276938233âŠ
7ãé€ã oeis.org/A082836 22.493475311705945398176226915339775974005915541672512361791460444âŠ
8ãé€ã oeis.org/A082837 22.726365402679370602833644156742557889210702616360219843536376162âŠ
9ãé€ã oeis.org/A082838 22.920676619264150348163657094375931914944762436998481568541998356âŠ
åè
http://shochandas.xsrv.jp/series/harmonicseries.htm
No.331ãããã2022幎10æ6æ¥ 15:43
ããããããããã€ããããããšãããããŸãã
以åã«ããåæ§ã®å
容ããããŸãããã
ïŒã®æ°åãé€ããæ¥µéå€ãäžçªå€§ãããŠã
ïŒã®æ°åãé€ããæ¥µéå€ãäžçªå°ããã
極éå€ã®æ¯èŒã¯ã容æã«ç€ºãããããŸããïŒ
ææ§ãªè³ªåã§ãããç¥ãããã§ãã
ä»ãæ°åïŒã®ã¿ã§è¡šãããïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒâŠïŒã®éæ°åãSãšããŠãæ°åïŒã®ã¿ã§è¡šãããïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒâŠïŒã®æ¥µéå€ã¯ïŒSã
å€åãåæãããšããŠã§ããã調æ»äžã§ãã
No.332ks2022幎10æ7æ¥ 09:52
1+1/11+1/111+âŠã®æ¥µéå€ã¯
âãã¡ãã«ãããŸãã
http://oeis.org/A065444
ãããåæããããšã¯
1+1/11+1/111+âŠïŒ1+1/10+1/100+âŠ=10/9ããèšããŸããã
1/2+1/22+1/222+âŠã®æ¥µéå€ã¯äžèšã®ååã§ãã
No.333ãããã2022幎10æ7æ¥ 12:59
æ©éãããããšãããããŸãã
ïŒ/9=1/10+1/100ïŒâŠ
ãããïŒ1/(10-1)+1/(100-1)+âŠ
ïŒ1/9+1/99+1/999+
=1/9(1+1/11+1/111+âŠ)ïŒïœ/9
1<s=
ãŸã§
No.334ks2022幎10æ7æ¥ 21:26
s=1+1/11+1/111+âŠãªã®ã§sïŒ1ã¯èªæã§ãããNo.334ã®æå³ã¯äœã§ããããïŒ
ãšããã§
1,1/11,1/111,âŠã1/9ãã1/9,1/99,1/999,âŠã®å°æ°ã䞊ã¹ãŠæžããš
0.11111111111111111111âŠ
0.01010101010101010101âŠ
0.00100100100100100100âŠ
0.00010001000100010001âŠ
0.00001000010000100001âŠ
ããã瞊ã«è¶³ããš
å°æ°ç¬¬1äœã¯ 1ã®(æ£ã®)çŽæ°ã®åæ°
å°æ°ç¬¬2äœã¯ 2ã®çŽæ°ã®åæ°
å°æ°ç¬¬3äœã¯ 3ã®çŽæ°ã®åæ°
å°æ°ç¬¬4äœã¯ 4ã®çŽæ°ã®åæ°
å°æ°ç¬¬5äœã¯ 5ã®çŽæ°ã®åæ°
å°æ°ç¬¬6äœã¯ 6ã®çŽæ°ã®åæ°
ã»ã»ã»
ã®ããã«ãªãã1,2,3,âŠã®çŽæ°ã®åæ°ã¯
1,2,2,4,2,4,2,4,3,4,2,6,2,4,4,5,2,6,2,6,âŠ
ã§ãããã
0.12242424342624452626âŠ
ã9åããã°1+1/11+1/111+âŠã®åæå€ã«ãªããŸããã
ïŒãã ãçŽæ°ã®åæ°ã10以äžã®ãšãã¯äžã®æ¡ã«ç¹°ãäžããïŒ
No.335ãããã2022幎10æ8æ¥ 05:51
ç¡éãšãããã®ã®åããæãããããã®ã«
S1=1+1/2+1/3+1/4++1/n+
ã¯S1ââ
ã§ãã
S2=1-1/2+1/3-1/4+1/5-+(-1)^(n+1)*1/n+
ã¯S2âlog(2)(=0.693147)
S3=1-1/3+1/5-1/7+1/9-1/11+1/13-1/15+(2ãšçŽ ã§ãããã®ã®äº€ä»£çŽæ°)
ã¯S3âÏ/4(=0.785398)
S4=1+1/3-1/5-1/7+1/9+1/11-1/13-1/15+1/17+1/19-1/21-1/23+
=â[n=1,â]kronecker(n,8)/nã
ã¯S4âsqrt(2)*Ï/4(=1.110720)
S5=1-1/3-1/5+1/7+1/9-1/11-1/13+1/15+1/17-1/19-1/21+1/23+
=â[n=1,â]kronecker(n,2)/n
ã¯S5âlog(1+sqrt(2))/sqrt(2)(=0.623225)
S6=1-/1/2+1/4-1/5+1/7-1/8+1/10-1/11+(3ãšçŽ ã§ãããã®ã®äº€ä»£çŽæ°ïŒ
ã¯S6âÏ/(3*sqrt(3))(=0.604599)
S7=1+1/2-1/4-1/5+1/7+1/8-1/10-1/11+1/13+1/14-1/16-1/17+(äžèšã®ç¬Šå·ã倿Žãããã®ïŒ
=â[n=1,â]kronecker(n,3)/n
ã¯S7â2*Ï/(3*sqrt(3))(=1.209199)
S8=1-1/2-1/3+1/4+1/6-1/7-1/8+1/9+1/11-1/12-1/13+1/14+1/16-(5ãšçŽ ãªãã®ã§æ§æïŒ
=â[n=1,â]kronecker(n,5)/n
ã¯S8âlog((3+sqrt(5))/2)/sqrt(5)(=0.43041)
S9=1-1/5+1/7-1/11+1/13-1/17+1/19-1/23+(6ãšçŽ ã§ãããã®ã®äº€ä»£çŽæ°ïŒ
=â[n=1,â]kronecker(n,12)/n
ã¯S9âÏ/(2*sqrt(3))(= 0.906899)
S10=1 +1/2 -1/3 +1/4 -1/5 -1/6
+1/8 +1/9 -1/10+1/11-1/12-1/13
+1/15+1/16-1/17+1/18-1/19-1/20
+1/22+ããããããããããããã(7ãšçŽ ãªãã®ã§æ§æïŒ
ã =â[n=1,â]kronecker(n,7)/n
ã¯S10âÏ/sqrt(7)(=1.187410)

ãªã©ãªã©äœ¿ãæ°åãšç¬Šå·ã埮åŠã«å€ãããšãç¡éã«ç¹°ãè¿ãæäœã§ãããªã«ãå€åã«å¯ã
äžçãšéããŠè¡ãããšãèŠã€ãåºãããªã€ã©ãŒãã©ã€ããããããã£ãªã¯ã¬ãªã©ã®å
人ã
åŠäœã«ç¡éãšããäžçã®æãããéããŠããã®ãã驿ããã£ãŠæããããŸãã
ïŒåãæ¥ããŸãšãããã®ãªã®ã§ãã©ããããäŸã«ããåéãéšåãããããšæããŸããã
ãã®æã¯ãææå®ãããé¡ãèŽããŸãã
No.304GAI2022幎9æ30æ¥ 10:36
GAIæ§ãããã°ãã¯ã
ã¯ãããŸããŠã
ãã®æ§é ã¯ãããŒãŒã«åé¡ãšåãã§ããã
æçæ°ã®ç¡éåããç¡çæ°ã«ãªãã
No.310ããããã¯ã¡ã¹ã2022幎9æ30æ¥ 17:05
ããããã¯ã¡ã¹ãããã¯ãããŒãŒã«åé¡ã«ã€ããŠèª€è§£ããŠããŸãããïŒ
æçæ°ã®ç¡éåãæçæ°ã«ãªãå Žåãããã®ã§ã¯ïŒ
äŸãã°ããïŒ/ïŒïŒã»ïŒïŒïŒïŒ/ïŒïŒã»ïŒïŒïŒïŒ/ïŒïŒã»ïŒïŒïŒã»ã»ã»ïŒïŒãã§ãããïŒïŒïŒã
No.311HP管çè
2022幎9æ30æ¥ 18:18 管ç人æ§ãããã°ãã¯ã
ããããããªãã§ããïŒ
ãªã€ã©ãŒãã©ããã£ããã¯ã詳ãããªããšã
https://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1583-12.pdf
ã«æžããŠãããŸãããããçè§£ã§ããŠãŸããã
No.312ããããã¯ã¡ã¹ã2022幎9æ30æ¥ 18:31
管ç人æ§ã
ïŒæçæ°ã®ç¡éåãæçæ°ã«ãªãå Žåãããã®ã§ã¯ïŒ
ïŒäŸãã°ããïŒ/ïŒïŒã»ïŒïŒïŒïŒ/ïŒïŒã»ïŒïŒïŒïŒ/ïŒïŒã»ïŒïŒïŒã»ã»ã»ïŒïŒãã§ãããïŒïŒïŒã
管ç人æ§ã®ãããã§ãæçæ°ã¯ååæŒç®ã§æçæ°ã§éããŠããããšãšç¡éåãç¡çæ°ã«ãªããšããççŸã®æããããèŠããŠæ¥ãŸããã
ããããšãããããŸãã
ããã§ãæ°åŠã«å¯Ÿããäžä¿¡æã幟ååããã ã®ã§ãã
No.317ããããã¯ã¡ã¹ã2022幎9æ30æ¥ 21:26
調åçŽæ°
ΣïŒïœïŒŸïœã®éæ°ïŒïŒïœ/(s-1)âŠãïŒ
sïŒïŒã®ãšããåæããïœïŒïŒã®ãšããçºæ£ããããšãããç¥ãããŠããŸãã
ãšããããçŽ æ°ã®éæ°åãçºæ£ããã®ã«ã¯ãã³ã£ããã§ãã
æµç³ã«ãååçŽ æ°ã®éæ°åã§ã¯ãåæããã
åæãšçºæ£ã®å¢ç®ã¯ãé£ããã§ããã
No.319ks2022幎10æ1æ¥ 18:43
Dengan kesaktian Indukmuæ§ããã¯ããããããŸãã
Dengan kesaktian Indukmuæ§ã®æçš¿ã§ããããã¯ãçŽåŸããŸããã
å¿ åã«åŸã£ãŠãç§ãšããŠã¯ãçµããã«ããããšæããŸãã
ããããããšã§ãDD++æ§ãç¡åçããèš±ããã ããã
No.318ããããã¯ã¡ã¹ã2022幎10æ1æ¥ 07:10
ããããã¯ã¡ã¹ãããã®ä»°ã
ã0.999ã»ã»ã»=9/10+9/10^2+9/10^3+9/10^4+ã»ã»ã»ã»ã¯ãç¡çæ°ã§ããã
ãçŽæ¥èšŒæããŠããã ããŸãããïŒ
No.288HP管çè
2022幎9æ29æ¥ 11:11 管ç人æ§ããã¯ããããããŸãã
ãã€ãããè¿·æãããããŸãã
ããã¯ãæçæ°ã¯ãååæŒç®ã§æçæ°ã§éããŠãããšããäºå®ã§ãããªããããã®ç¡éåãç¡çæ°ã«ãªããšããããŒãŒã«åé¡ãæ£ãããšããçµè«ãããå°ãåºããããã®ã§ãç§ãããã蚌æã§ããæéã»ãã³ãã¯ãçŸåšæã¡åãããŠãããŸããã
ããããå°æ¥ããããããã£ã³ã¹ã«æµãŸãããšããŸã§ããåŸ
ã¡ãã ããã
ãŸããæçš¿ã®äœèšãªäžæã管ç人æ§ã®ãæ©å«ãæããããšããèš±ããã ããã
No.289ããããã¯ã¡ã¹ã2022幎9æ29æ¥ 11:29
ãããšããã¹ãŠã®ç¡éå°æ°ã¯ãç¡çæ°ã«ãªãã®ã§ã¯ãªãããšããçåããçãããšæããŸãã
ãã®çåãçãã¯ã
ã§ã¯ã1/3ã¯ãç¡çæ°ã«ãªããªãã®ããšãããšã1/3ã¯1÷3ã§ãããŸãã埪ç°ããããã埪 ç°ããã®ã§ãã〠ãŸããïŒÃ·3=0.333ã»ã»ã»ïŒïŒïŒïŒïŒã»ã»ã»ã»ïŒã§ãïŒïŒïŒïŒã»ã»ã»ã»ïŒã¯ãããŸãã§ãã
ã€ãŸããæŒç®ãå¯èœãªç¯å²ã§0.333ã»ã»ã»ã䞊ãã§ããã®ã§ãç¡éã§ã¯ãæŒç®ãã§ããªãã®ã§ã1÷ïŒã¯ãæéå°æ°ã«ãªãå¯èœæ§ããããŸãããããã£ãŠãæçæ°ã§ãã
ãã®èª¬æã§ã¯ãâïŒã¯ãç¡çæ°ã§ãããç¡éã«èšç®ããŠããã®ã§ãç¡éã§ã¯ãæŒç®ãã§ããªããªããæéå°æ°ã«ãªãå¯èœæ§ããããŸãããããã£ãŠãæçæ°ã§ããšãªã£ãŠããŸãã§ã¯ãªããïŒ
ããã«ã¯ã埪ç°ããç¡éå°æ°ã¯ãæçæ°ã«å«ãŸããŸããã埪ç°ããªãç¡éå°æ°ã¯ç¡çæ°ã§ããããçãã«ãªããªãã§ããããïŒ
ã€ãŸãã埪ç°ããŠãªããšãããªãã®ã§ãã
ïŒïŒïŒïŒïŒã»ã»ã»ã¯ãæ ¹æ ããªãã«ãã ãïŒã䞊ã¹å€æ°ã§ããããæŒç®ã¯ã©ãã«ããããŸããã
埪ç°å°æ°ã¯æçæ°ãªã®ã§ãåæ°ã«ã§ããŸãããïŒïŒïŒïŒïŒã»ã»ã»ã¯ãåæ°ã«ã§ããŸãããç§ããx=aãšããŠãïŒïŒåããŠåŒããŠãx=aã§ããã
0.333ã»ã»ã»ãšãã埪ç°å°æ°ãåæ°ã«ããæ¹æ³ã§ã¯ã1/3ã«ãªããŸããã1/3ã¯ãïŒïŒïŒïŒïŒã»ã»ã»ãããïŒïŒïŒïŒïŒã»ã»ã»ã»ïŒã§ãïŒïŒïŒïŒã»ã»ã»ã»ïŒã¯ãããŸãã§ããã€ãŸããïŒïŒïŒïŒïŒã»ã»ã»ãã倧ãããªã£ãŠããã®ã§ãããã埪ç°å°æ°ãåæ°ã«ããæ¹æ³ã¯ãééãã§ãã
No.290ããããã¯ã¡ã¹ã2022幎9æ29æ¥ 11:55
ããããã¯ã¡ã¹ããããè«çãç Žç¶»ããŠããŸãããïŒ
No.291HP管çè
2022幎9æ29æ¥ 14:00
è«çãç Žç¶»ããŠãŸããïŒã©ã®ãžãã§ããããïŒããã¯ãããŠãããŠãå€åã
ïŒããã¯ãæçæ°ã¯ãååæŒç®ã§æçæ°ã§éããŠãããšããäºå®ã§ãããªããããã®ç¡éåãç¡çæ°ã«ãªããšããããŒãŒã«åé¡ãæ£ãããšããçµè«ãããå°ãåºããããã®ã
ããšããšãæçæ°ã¯ãååæŒç®ã§æçæ°ã§éããŠãããšããäºå®ã§ãããªããããã®ç¡éåãç¡çæ°ã«ãªããšããããŒãŒã«åé¡ãæªããã®ã§ãã
ãããšããã¹ãŠã®ç¡éå°æ°ã¯ãæçæ°ã«ãªã£ãŠããŸããŸããããŒãŒã«åé¡ãæ£ãããã°ããã¹ãŠã®ç¡éå°æ°ã¯ãç¡çæ°ã«ãªã£ãŠããŸããŸãã
ïŒåŸªç°ããç¡éå°æ°ã¯ãæçæ°ã«å«ãŸããŸããã埪ç°ããªãç¡éå°æ°ã¯ç¡çæ°ã§ããã
ãããççŸããŸãã
ããšããšãæçæ°ã¯ãååæŒç®ã§æçæ°ã§éããŠãããšããäºå®ã§ãããªããããã®ç¡éåãç¡çæ°ã«ãªããšããããŒãŒã«åé¡ã¯ãäžé©åãªåœé¡ãªãã§ããããã
No.292ããããã¯ã¡ã¹ã2022幎9æ29æ¥ 14:51
ããã§çµããã«ããŸãããã
é·ãéããè¿·æãããããŸããã
No.293ããããã¯ã¡ã¹ã2022幎9æ29æ¥ 15:19
âŠâŠé¢ä¿ãããã®ãããããªããšæããŸããŠæçš¿ããããŸãã
ãŸãã¯åèæç®ã®ãæ¡å
ããã
â ã髿 ¡çã«ããããç¡çæ°ãã®æŠå¿µãïŒå€§å±±æ£ä¿¡ã»ç±³æ²¢å
æŽïŒ
( https://core.ac.uk/download/pdf/144571306.pdf )
ãã®åèæç®ã® p.10 ããåŒçšããŸãã
-----
圌ã®ãã®èª€è§£ã¯,圌ãã1ãã«ãããŠ,ãç¡çæ°ãšã¯ç¢ºå®ããæ°ãååšããªããã®ããšããŠãããšããããçããŠãããšèãããã
-----
åŒçšéšåã«ããçåŸã®èª€è§£ã¯ããç¡éåã®æäœãå¿
èŠãšããã®ã§ãã€ãŸã§ãã£ãŠã確å®ããå€ãåããªãããšãã£ãæ°æã¡ãããããã®ãªã®ã§ããããšæšå¯ãããŸãã
èªåèªèº«ãæ¯ãè¿ããŸããšãå°åŠçãããã®é ãŸã§ã¯åããããªæ°æã¡ã匷ãã£ããšæããŸãã
ç§ã®å Žåã«ã¯äžåŠäžå¹Žã®é ã«åºäŒã£ã颿 ¹å
çã®æãæ¹ãäžæã ã£ãã®ãããããŸããããã©ããªããšãªãã§ããããããçåã¯æ¶ããŠããŸããŸããã
颿 ¹å
ç㯠確ãã
ãå
šãŠã®æéå°æ°ã¯ç¡éå°æ°ãšããŠãæžãããšãã§ãããæžãæ¹ãéãã ãã§å€ã¯åãã ããšãã€ãã宣èšããŠããã£ããããŸããã
ãããã宣èšã念ä»ãããã¯åŸ¡é¡ç®ã®ããã«ããšããããšã«ããªãã³ã®å£°ã§ç¹°ãè¿ããŠããã£ããããŸããã
颿 ¹å
çã奜ããªäŸé¡ã¯ïŒ/ïŒã§ããã
黿¿ã«æžãã®ã¯ãã€ã
ïŒ.ïŒïŒïŒïŒ.ïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒâŠâŠâŠâŠâŠâŠâŠâŠâŠ
ã§ããããã§ãŒã¯ã§âŠâŠãçŽ æ©ã黿¿ã®ç«¯ãã端ãŸã§äžæ°ã«æžãå¿
殺æããæã¡ã§ããŠãäžéšã®çåŸãã¡ãç䌌ããããšå¥®éããŠããããšãæãããæãåºãããŸãã ããããªããªãé£ããã®ã§ãããã©ã
å°»åããã³ãã§ãããã©ããä»åã®æçš¿ã¯ä»¥äžã§ãã
远èšïŒå
çšã®åèæç®ã§ãåæãé¢é£ã®åããããè¡ãªã£ããšãã®çåŸãã¡ã®åå¿ã«ã€ããŠã®ã¢ã³ã±ãŒãçµæãåºãŠããŸããŠå€§å€ã«è峿·±ããã®ã§ããã
以äžã§ãã
ãããŠãããããã¯ã¡ã¹ãããã¯ããããããïŒäººã§è¡ãã°ãŒãã§ãããŒã§è¡ããžã£ã³ã±ã³ã¯ïŒåççã«ã¯ïŒå
¬å¹³ã§ãããšãèãã®çã§ãã
ã
ãžã£ã³ã±ã³ãœãã£ã
ãããã§ããã£ã
ãããã§ããã£ã
ãããã§ããã£ã
åã£ããŒïŒè² ãããŒïŒ
ã
ãšããäŸã®ãã€ã§ãã
ã
ããã®ãžã£ã³ã±ã³ã®ã«ãŒã«ã¯å
¬å¹³ã§ãããããšãš
ãïŒé²æ³ã§èšããšãã« ïŒ/ïŒ ïŒ ïŒ.ïŒïŒïŒïŒïŒïŒâŠâŠâŠïŒç¡éå°æ°ïŒã®çåŒãæç«ããã
ããšãšã¯åå€ã§ããããšãææããŠããããæããŸãã
No.294Dengan kesaktian Indukmu2022幎9æ29æ¥ 16:43
Dengan kesaktian Indukmuæ§ãããã°ãã¯ã
ããããšãããããŸãã
No.295ããããã¯ã¡ã¹ã2022幎9æ29æ¥ 17:03
> ãã®ããšããã
> 0.999ã»ã»ã»=9/10+9/10^2+9/10^3+9/10^4+ã»ã»ã»ã»
> ã¯ãç¡çæ°ã§ãããšãªããŸããã
ãªããããªããããªãã§ããã
ç§ã®äž»åŒµãåæã«æ»ãæ²ããªãã§ãã ããã
No.297DD++2022幎9æ29æ¥ 19:03
ç¶ã2ã«å
¥ã£ãŠããã®æçš¿ãèŠãŸããããã¯ã¡ã¹ãããããã£ãŠããããšã¯æ°åŠãšåŒã¹ãªãããã«æããŸãã
ã¯ã¡ã¹ãããã¯ãæ ¹æ ãããããšãªããããšèªåã®äºæ³ãééã£ãŠããããããªããšããåæã«ç«ã£ãŠããããã«æããŸãã
ãã®ãããªèãæ¹ã¯ãè¯ãèšã£ãŠå®æãæªãèšãã°åŠæ³ãšåŒã°ããã¹ããã®ã§ãã
ããã¯æ°åŠã®å Žã§ãã
蚌æãçšæã§ããªãã®ãªãã°ïŒå
¬çãšå®çŸ©ãé€ãïŒã©ããªèšè¿°ãçå®ãã©ããããããªãããšããæ°åŠçç«å Žã§çºèšããŠãã ããã
No.298DD++2022幎9æ29æ¥ 20:15
DD++æ§ããã¯ããããããŸãã
ãææããããšãããããŸãã
ããŠãhttps://ja.wikipedia.org/wiki/0.999...ã«ããã°ã0.999ã»ã»ã»=1ãšããäœç³»ãããã°ã0.999ã»ã»ã»<1ãšããäœç³»ãããããã§ããããã¯ãç¡éå°ã0ãšãããããªããã®éãã ããã§ãã
æšæ¥ã¯ã2æ¥ãæŽæ°ããããããã¯ãDD++æ§ãžã®è¿ä¿¡ããå¿
èŠã§ãããšæ°ã¥ããŠãæçš¿ããã®ã§ããããã®è¡ã¯ãDD++æ§ã®çºèšã®åçã«ã¯ãäžèŠã§ãããšæ°ã¥ããŠããã®è¡ãæ¶ãããšæã£ãæã«ã管ç人æ§ã®æçš¿ããã£ãã®ã§ããããã§ãäžèŠãªäºæ
ãæããŠããŸããŸããã
çæ§ã倧å€ããè¿·æãããããŸããã
No.302ããããã¯ã¡ã¹ã2022幎9æ30æ¥ 08:56
ããããã¯ã¡ã¹ãããã¯ã
ãã0.999ã»ã»ã»=1ãšããäœç³»ãããã°ã0.999ã»ã»ã»<1ãšããäœç³»ãããã
ãšããããšãç¥ã£ãäžã§ãã0.999ã»ã»ã»=1ãšããäœç³»ãã¯èª€ãã ãšããç«å Žãªãã§ãããïŒ
No.303HP管çè
2022幎9æ30æ¥ 09:40 管ç人æ§ããã¯ããããããŸãã
ç¡éå°ãâ¿ãšããŸãã
ïŒïŒïŒïŒïŒã»ã»ã»=1ã®èãã§ã¯ãâ¿ïŒïŒã§ãã
äžæ¹ïŒïŒïŒïŒïŒã»ã»ã»ïŒ1ã®èãã§ã¯ãâ¿ïŒïŒã§ãã
ããã§ãååæŒç®ããç¡éã§ãé©çšã§ãããšããŸãã
ïŒïŒããŠã宿°ã¯é£ç¶ãªã®ã§ãaïŒâ¿=bãšãããšãa,bã¯é£ãåãã¯ãã§ããã
ãšããããâ¿=0ãªããa=bã§ãåããã®ã§ãã宿°ã¯ãé£ã³é£ã³ã§ãé£ãåããã®ãã§ããªããé£ç¶ã§ãªããšãªããŸãããïŒ
ïŒïŒæçæ°ã®çš 坿§ã§ãa<bãªããa<(a+b)/2<bã§ããã(a+b)/2=cãšãããšã
a<(a+c)/2<c<bã§çš å¯ãªãã§ãããã
ããã§ãïœïŒïŒâ¿+aãšãããšãa<(a+b)/2<bã¯
a<(a+â¿)<a+2â¿
ãšãªããŸãããâ¿=0ã§ã¯ããã®äžçåŒã¯æãç«ã¡ãŸãããã
ãããšãæçæ°ã®çš 坿§ãæãç«ã¡ãŸãããšãªããŸãããïŒ
ç§ã¯ãæ®éã®äžè¬äººãªã®ã§ããããªåæ©çãªçåã§ãã
No.305ããããã¯ã¡ã¹ã2022幎9æ30æ¥ 11:31
> ããŠã宿°ã¯é£ç¶ãªã®ã§ãaïŒâ¿=bãšãããšãa,bã¯é£ãåãã¯ãã§ããã
ãé£ãåãããšã¯äœãæå³ããŠããŸããïŒ
ãããŠããã®æå³ã®äžã§ãaïŒâ¿=bãšãããšãa,bã¯é£ãåããã®èšŒæã¯ïŒ
No.306DD++2022幎9æ30æ¥ 12:49
DD++æ§ãããã«ã¡ã¯ã
aâ bãšãªãb>a>0ãšããŸããc=(b-a)ãšãããšãcã®æå°å€ã¯ãâ¿ã«ãªããŸãããã
aãšbã®è·é¢ã¯ãæå°å€â¿ã§ããããé£ãåããšãªããšæããŸãã
äžæ¬¡å
ã®ã°ã©ãäžã®a,bãšãªããšã話ãéã£ãŠããŸãããæ°çŽç·ã§èãããšãšããããšã§ãã
cã®æå°å€ã¯â¿ãããªãããã§ãããã
ãªãã以äžã®è©±ã¯ããªããã®ãšããŠãããŸãã
ïŒïŒé£ç¶ãªããa<(a+b)/2<bãååšããããæå°å€ã¯â¿/2ã ãïŒç¡éå°ã¯â¿ãªã®ã§ãïŒãšã¯ãªããŸããããã
ïŒïŒåŸ®åã®â¿ïŒâ¿^2>0ããããã§ã¯ãæ±ããªããšããŸãã
No.307ããããã¯ã¡ã¹ã2022幎9æ30æ¥ 13:16
(1) ãé£ãåãããšããèšèãæ£ç¢ºã«å®çŸ©ããŠãã ããã
(2) ãã® c=
b-a ã«æå°å€ã¯ååšããŸããã
No.308DD++2022幎9æ30æ¥ 13:49
ãé£ãåããšã¯ã
æå°ç®çãå¹
ãâ¿ã®æ°çŽç·ã§ãç®çãäžã®aã®é£ã®ç®çãäžãbãšããŠãé£ãåãa,bãšèšã£ãŠãŸãã
ãã¹ãŠã®ç¹ã¯ãæå°ç®çãå¹
ã®èªç¶æ°åã«ãããšããŸãã
ãã ããa,bã3ç®çãé¢ããŠãããšãäžç¹cã¯1ïŒ5ç®çããªã®ã§ãç®çãäžãããããŠããŸããŸãã
ãŸããç¹éã¯ãç¡éå°ä»¥äžãå®ããªããšãããªãã®ã§ãé£ç¶ããã«ã¯ããã¹ãŠã®ç¹ã¯ãæå°ç®çãå¹
ã§ãªããã°ãªããªããšæããŸãã
ããžã¿ã«çã ãšæããããããŸããããç¡éå°ééã§ããç®çãã¯å¯ä»çªã§ãã©ãäžã€åããã®ã¯ãããŸããã
ã€ãŸããâ¿=0ã ãšããã¹ãŠã®ç¹ãã座æšã§æ±ºããããŠããã°ãäžç¹ã«éãªããŸãã座æšãšã¯ç¡é¢ä¿ãªãã°ã座æšãïŒç¹ã«ãªãã®ã§ãå€ãã®ç¹ãæ¶ããŠããŸããŸããããã¯ãå
ã«ãâ¿ïŒïŒã§åº§æšã決ãŸã£ãŠãããã®ããâ¿ïŒïŒã«ãããšããåéãã§ããã
No.309ããããã¯ã¡ã¹ã2022幎9æ30æ¥ 15:10
c ãç®çãäžãããããŠããŸããšããã®ã¯ã
ã»c=(a+b)/2 ã¯å®æ°ãšã¯èªããªã
ã»ãã®ç¹ã®éåã¯å
šãŠã®å®æ°ã衚ããŠããªã
ã®ã©ã¡ãã§ããïŒ
No.313DD++2022幎9æ30æ¥ 19:09
ïœã¯ã宿°ã§ãã
ç®çãäžã§ããªããšãããªããšããã®ã§ã¯ãªããŠãç¹ãšç¹ã®å¹
ãâ¿ä»¥äžããã°ããã®ã§ã¯ãªãã§ããããïŒ
æåã«æžããb=a+â¿ã§ãããããç®çãä»ãã®æ°çŽç·ã§ã説æããã»ãããé£ãåããšããããšã説æããããã£ããã®ã§ã»ã»ã»ã»
ã ãããé£ç¶ããç¹ãšç¹ã®å¹
ãâ¿ã§ããã°ãç®çãäžã§ããå¿
èŠã¯ãªããšæžããã€ããã§ãã
No.314ããããã¯ã¡ã¹ã2022幎9æ30æ¥ 19:21
ã§ã¯ãa ãš b ã®éã 3 ç®çãã ãšããŠã
c=(a+b)/2 ãš d=(a+2b)/3 ã®è¡šãç¹ã®å¹
ã¯ããã€ã§ããïŒ
No.315DD++2022幎9æ30æ¥ 20:02
ããããã¯ã¡ã¹ããããÎãæã¡åºããŠããããã®ã§ã暪å
¥ãã§ãããã©ãã²ãšããšãã
ããããã¯ã¡ã¹ããããçŸåšå±éãªããããšããŠããç¡éå°ã«ã€ããŠã®ã話ãã®çç«ãŠã«ã¯æªæ¥ããããŸãããæ©æ©ãççŸããã¡ãã¡ããå¹ãåºããŠè¡ãè©°ãŸããŸãããããŠãããã»ããããã§ãã
ããããã¯ã¡ã¹ããããããªãªãžãã«ãªæ¹æ³ã§ãçå£ã«ç¡éå°ã宿°ã«çµã¿èŸŒãããšæã£ãŠããã£ãããã®ã§ããã°ã
æ°åŠåºç€è«ãã²ãšãšããå匷ãããªãã§ãã¢ãã«çè«ã«ã€ããŠèªä¿¡ãæãŠãã»ã©ã«ãã£ãããšèº«ã«ã€ãã
ããããæŠåšãé§äœ¿ããäžã§ãªãªãžãã«ã®è¶
宿°ã«ã€ããŠäœç³»ãæ§æããŠããã¹ãã§ãã
ç§ãã¡ã¯ãéåžžãæšæºçãªã¢ãã«ã®äžã§æ°åŠã«ã€ããŠèªãåã£ãŠããŸãã
ããŸãããããã¯ã¡ã¹ãããã¯ãæšæºçãªã¢ãã«ã®äžã§ãÎãæã¡åºããŠããã£ããããŸãããããã¯äžæ¯ã§ããæšæºçãªã¢ãã«ã«ã¯ãã£ããããããªæŠå¿µã®ã€ãããéã¯ãããŸããã
ã§ãã®ã§ããç§ã¯ãã®ããã«ç¡éå°ãæãããããšããã®ã§ããã°ã
å
šãæ°ããéæšæºçãªã¢ãã«ã®äžã§ã®æ°ã®äœç³»ãåµé ããªããã°ãªããŸããã
ããã¯ãçŽ äººã«ã¯ç¡çãªè©±ã§ãã
ããããŒã«ããããšãããšå€±æããã®ã§ãå³å¯ãªããæ¹ããŸãã¯åŠã¶å¿
èŠãããã®ã§ãããã¶ãã倧åŠé¢ã¬ãã«ã
ãªããæ°ããã¢ãã«ã®äžã§ç¡éå°ãå®åŒåã宿°ã®äœç³»ãè£å®ãæ°ããæ°ã®äœç³»ãçã¿åºããäºäŸã¯æ¢ã«ã*è€æ°*ããååšããŠããŸããã
ãããããªãã«ã¯ã1ïŒïŒ.ïŒïŒïŒâŠãæ¯ãšããäœç³»ãã1ïŒïŒ.ïŒïŒïŒâŠãæ¯ãšããäœç³»ãããšãã«ããã®ã ããã§ããã
ã©ããæ£è§£ã ããšããåãã¯ååšããããããããããããã®ææ³ã§æ°ã®äœç³»ãæ§ç¯ãããããããªã£ããããããããã§ãããªãã®ã§ãã
éããŠç³ãäžããŸãããæšæºçãªã¢ãã«ã§ã®äžã§ã®å®æ°äœãåæãšããŠããã倧æŠã®æ°åŠæ²ç€ºæ¿ã§ã¯ãïŒïŒïŒ.ïŒïŒïŒâŠâŠãçã§ãã
ãããåœã ãšããã¯ããããšãããããäŒè©±ãããŸããããŸããã
ãã ã£ããæ°ããäœç³»ã建èšããŠãã£ãŠããŠããæ°åŠåºç€è«ã®èšèã§åçš®ã®è¿°èªãå®çŸ©ããŠãå
¬çã»å®çã®é£éã§ãã£ãŠã宿°äœã®æ¡åŒµãããŠã¿ãŠãã ãããããšãããåå¿ã§ããŸããããã
â»ããããããã³ãœã³æµã®è¶
æºè§£æã§ããïŒïŒïŒ.ïŒïŒïŒâŠâŠã ã£ãæ°ãããŸãããäžå匷ã®ç§ã§ãããçåŸã§ããã
No.316Dengan kesaktian Indukmu2022幎9æ30æ¥ 20:50
ååšçÏ(3.141592)
ã«çŸããæ°å0ïœ9ãäœååºçŸããã®ãã調æ»ããŠããŠ(å
é ã®3ãå«ãã)
å
šéšã§10^nåäžã®ç¹ã«"6"ã®æ°åã«ã€ããŠã®èª¿æ»çµæã§
n=1->1
n=2->9
n=3->94
n=4->1021
n=5->10028
n=6->99548
n=7->999337

n=12->99999807503
ãŸã§ã®çµæãOEISã®A099297ã«èŒããŠããã
ä»ã«ãæ°å"0","1",,"9"
ãªã©ã®ããŒã¿ãä»ã®é
ç®ã§èŒã£ãŠããã®ã ãããã®"6"ã®n=5ã§ã®æ°åã ãã
èªåã®èª¿æ»ã§ã¯10028ã¯10029ãšãªã£ãŠããŸããããšäžèŽããªãã£ãã
ïŒä»ã®æ°åã¯ãã¿ãªãªã®ã§ããæ¹ã¯ééã£ãŠããªããšæãã®ã§ãã
äœæ¹ãããã®æ°åã確èªããŠé ããŸããã§ããããïŒ)
No.296GAI2022幎9æ29æ¥ 17:27
GAIããã«ãã埡ææã®çåœãå€å®ããã«ã¯è³ããŸããã§ããããã©ããå°ãªããšã OEIS ã«èª€æ€ããããããšã¯ç¢ºå®ãšæãããŸãã
å®éã«æ€ç®ããããŸããšã
A099291[5]+A099292[5]+A099293[5]+A099294[5]+A099295[5]+A099296[5]+A099297[5]+A099298[5]+A099299[5]+A099300[5]=
9999 +10137 +9908 +10025 +9971 +10026 +10028 +10025 +9978 +9902
=99999
ãšãªããŸããŠ
OEISãç¡ççŸã§ãããšãã«æåŸ
ãããå€ã§ãã100000ã«1è¶³ããŸããã
GAIããã«ãã埡æèµ·ã«ç¶æ³èšŒæ ãšãªããããããŸããã
No.299Dengan kesaktian Indukmu2022幎9æ29æ¥ 22:55
âãã¡ãã§è§£æ±ºæžã¿ã ãšæããŸãã
http://shochandas.xsrv.jp/mathbun/mathbun1309.html
No.300ãããã2022幎9æ30æ¥ 03:33
ããïŒ
è¿ããèšæ¶é害ãèµ·ãåºããŠããã®ããã
éååã«èšé²ããŠããããŒãã®ã¡ã¢ãèªã¿è¿ããŠãããããã®éšåã«ã€ããŠã®ãâã©ãããŠéãã®ã ããïŒâ
ãšããã³ã¡ã³ããæ®ããŠå±
ã£ãã®ã§ãã€ã以åæçš¿ããŠããããšãå
šãå¿ããŠããåã³æçš¿ããŠããŸã£ã次第ã§ãã
ãæ¥ããããã(å
é ã®3ã¯ã«ãŠã³ãã«å
¥ããã®ééããç¯ããŠããŸããã3ã¯å
¥ããªããæ£ããã§ããïŒ
ããŒãã«æçš¿æžã¿ãšã¡ã¢ã远å ããŠãããŸããã
No.301GAI2022幎9æ30æ¥ 06:11
åèš2635ä»¶ (æçš¿458, è¿ä¿¡2177)