(1)1ãã15ãŸã§ã®æŽæ°ã®äžããåæã«6åãåãåºããæ
é£ç¶ããæ°åã衚ããªãã®ã¯äœéããããã
åãã
(2)1ãã39ãŸã§ã®æŽæ°ã®äžããåæã«19åãåãåºã
å Žåã¯äœéããããã
No.463GAI2022幎12æ11æ¥ 10:45
(1) 1ïœ10ãã6ååãåºããŠãå°ããé ã«+0,+1,+2,+3,+4,+5ããã°ãããã10C6=210éã
(2) åæ§ã«(39-19+1)C19=210éã
No.464ãããã2022幎12æ11æ¥ 12:39
éåžžã®é»åãããã§æ¬¡ã®åååŒã¯è§£ããŸããïŒ
(1)1234*x^567â¡89 (mod 101)
(2)98*x^76543â¡21 (mod 101)
No.458GAI2022幎12æ9æ¥ 07:48
å
šéšæèšç®ã§é»åã䜿ããŸããã§ããã
(mod 101)ã¯çç¥ããŸãã
(1)
xâ¡0ã¯è§£ã«ãªããªãã®ã§x^100â¡1
ãŸã1234â¡22ãªã®ã§1234*x^567â¡22*x^67
22yâ¡89ãšãããš
22y-101n=89
22(y-4)-101n=1
22(y-4-5n)+9n=1
9{2(y-4-5n)+n}+4(y-4-5n)=1
9(2y-8-9n)+4(y-4-5n)=1
2y-8-9n=1,y-4-5n=-2ãè§£ããšy=27,n=5
ãã£ãŠ22yâ¡89ã®è§£ã¯yâ¡27ãªã®ã§
x^67â¡27ãè§£ãã°ããã
x^201â¡27^3=19683â¡89
âŽxâ¡89
(2)
xâ¡0ã¯è§£ã«ãªããªãã®ã§x^100â¡1
ãŸã98â¡-3ãªã®ã§98*x^76543â¡-3*x^43
3*x^43â¡-21
x^43â¡-7
x^301â¡(-7)^7=-343*2401â¡-40*78â¡-3120â¡-90â¡11
âŽxâ¡11
No.459ãããã2022幎12æ9æ¥ 10:42
ïŒè¡ïŒåã®åäœè¡åã  ãšããŸãã
ãã ããæåãè€çŽ æ°ã§ãããšããã®
ïŒè¡ïŒåã®è¡åãšããŸãã
ïœãïœãïœ ã宿°ïŒã¹ã«ã©ãŒïŒãšããŸãã
ä»»æã® ïœãïœãïœ ã«ã€ããŠ
(ïœ^2 +ïœ^2 +ïœ^2)* = (ïœ* +ïœ* +ïœ*)^2
ãæãç«ã€ããã«
ãã ããã²ãšãã¿ãå®ããŠãã ããã
=======
ãããèããã®ã¯ãšããé«åãªç©çåŠè
ã§ãã
倩æã
ïœ^2 +ïœ^2 +ïœ^2 ãå æ°åè§£ããŠããŸã£ãŠããŸãã
No.445Dengan kesaktian Indukmu2022幎12æ6æ¥ 22:16
Ï^3=1ããæåã«ãã€ãè¡åããªïŒ
No.446ks2022幎12æ7æ¥ 00:43
ç§ãç䌌ãããŠããã£ãŠ
4è¡4åã®åäœè¡åã ãšããŸãã
V,W,X,Y,Zããæåãè€çŽ æ°ã§ãããšããã®
4è¡4åã®è¡åãšããŸãã
ïœãïœãïœãïœãe ã宿°ïŒã¹ã«ã©ãŒïŒãšããŸãã
ä»»æã® ïœãïœãïœãdã e ã«ã€ããŠ
(ïœ^2 )* = (ïœ*V )^2
(ïœ^2 +ïœ^2 )* = (ïœ*V +ïœ*W )^2
(ïœ^2 +ïœ^2 +ïœ^2 )* = (ïœ*V +ïœ*W +ïœ*X )^2
(ïœ^2 +ïœ^2 +ïœ^2 + d^2)* = (ïœ*V +ïœ*W +ïœ*X + d*Y)^2
(ïœ^2 +ïœ^2 +ïœ^2 + d^2 + e^2)* = (ïœ*V +ïœ*W +ïœ*X + d*Y + e*Z)^2
(ïœ^2 +ïœ^2 +ïœ^2 + d^2 + e^2)^k* = (ïœ*V +ïœ*W +ïœ*X + d*Y + e*Z)^(2*k) (k=2,3,4,)
ãæãç«ã€ããã«
V,W,X,Y,ZãäžçµèŠã€ããŠäžããã
No.447GAI2022幎12æ7æ¥ 08:16
æ²ç€ºæ¿ã«ãããè¡åã®è¡šèšæ³ãããããããŸããã§ããã®ã§ãOEISã®ç䌌ãããŸãã
ïŒè¡ïŒåã®åäœæ£æ¹è¡åã
[1,0; 0,1]
ãšæžããŸããè¡ããšã® delimiter ãšã㊠; ã§è¡šãã€ããã§ãã
 = [0, 1 ;1, 0]
 = [0,-i ;i, 0]
 = [1, 0 ;0,-1]
ãšããŠãããšãä»»æã®å®æ° a,b,c ã«ã€ããŠ
(ïœ^2 +ïœ^2 +ïœ^2)* = (ïœ* +ïœ* +ïœ*)^2
ãšãªããŸãã
ããŠãªè¡åãšããŠç¥ãããŠããããã§ãã
No.448Dengan kesaktian Indukmu2022幎12æ7æ¥ 13:51
åå
æ°ã®i,j,kãçšãããš
a^2+b^2+c^2= - (a*i + b*j + c*k)^2
ãšããŠããã®ããªïŒ
No.453GAI2022幎12æ8æ¥ 18:01
GAIããã«ããæ¬¡ã®ãé¡ã«ã€ããŸããŠã
(ïœ^2 +ïœ^2 +ïœ^2 +ïœ^2)* = (ïœ* +ïœ* +ïœ* +ïœ*)^2
 = [0,0,0,1; 0,0,1,0; 0,1,0,0; 1,0,0,0]
 = [0,0,0,-i; 0,0,i,0; 0,-i,0,0; i,0,0,0]
 = [0,0,1,0; 0,0,0,-1; 1,0,0,0; 0,-1,0,0]
 = [1,0,0,0; 0,1,0,0; 0,0,-1,0; 0,0,0,-1]
ãšãããšããããã§ããã
äžã¯ãç©çåŠè
ãã£ã©ãã¯ã瀺ãããã®ããGAIããã®è¡šçŸã«ãããããã®ã§ãã
ãã£ã©ãã¯ã¯å
è¿°ã®ããŠãªè¡åãæ¡åŒµããŸããã
No.456Dengan kesaktian Indukmu2022幎12æ8æ¥ 22:12
Z=[0,0,i,0;0,0,0,i;-i,0,0,0;0,-i,0,0]
ã§è¡ãããšæããŸãã
ããŠãªãšãã£ã©ãã¯ã¯ãããªåã§ç¹ãã£ãŠãããã§ããã
No.457GAI2022幎12æ9æ¥ 07:37
ãã¡ãã®ãç§ã®åå¿é²âæ°åŠãã®ä»âåæšäºå
¥ã®çå®ããèªãã§ããŠïŒæ¹ããŠJIS Z 8401ãèŠè¿ãããšGoogleæ€çŽ¢ãããšâŠ
JIS Z 8401: 2019 ãšïŒååã®æ¹å®ã倧åæè¿ã®ããšã§ã¯ãããŸãããïŒç§ãçãã ãâŠïŒãšããã®ã¯çœ®ããŠãããŠïŒïŒ
ãJISäžžãããšããã°ãã®èŠåAã®å¶æ°äžžãã®ããšïŒãšããå°è±¡ããšãŠã匷ãïŒããã¯ããšããšéé±ãªã©ã®ééç©ã®ååŒã®éïŒäžžãã«ãã誀差ã®åããäžå
¬å¹³ããããããªãããã«ææ¡ãããæ¹æ³ïŒãšèããŠãããŸãïŒãã®JIS Z 8401ã®æ¹èšå±¥æŽãæ°ã«ãªã調ã¹ãŠã¿ããšïŒèŠåBã®æ¹æ³ïŒãããããäžè¬çãªåæšäºå
¥ãã®åŸ
éã幎ã
è¯ããªã£ãŠããããšã«æ°ãä»ããŸããïŒ
JIS Z 8401: 1961ã§ã¯èŠåBã®æ¹æ³ã¯èšèŒãç¡ãïŒèŠåBã®äžå
¬å¹³æ§ã«å¯ŸããŠäœãããïŒãšããçµç·¯ããã¯èªç¶ãšèããïŒïŒ
JIS Z 8401: 1999ã§ã¯ååã¯èŠåAãšããããã§ïŒæ³šéãšããŠãèŠåB ã¯ïŒé»åèšç®æ©ã«ããåŠçã«ãããŠåºãçšããããŠãããããšèšèŒïŒ
ãããŠJIS Z 8401:2019ã§ã¯ã次ã®ããããã®èŠåãçšãããããã ãïŒæšå¥šã¯èŠåAã§ïŒèŠåBã¯èšç®æ©ã«ããåŠçã«ãããŠçšããããããšãããïŒãšèšèŒãããŠããŸãïŒããã§ã¯ïŒãJISäžžãããšèšã£ãæã«ãããïŒèŠåBãJISã«æžããŠãããïŒèŠåAã ããJISäžžããšåŒã¶ã®ã¯ã¡ããã¡ãããããããããªããïŒããªã©ãšå±çå±ãã€ãããããããããŸããïŒ
ãã®èæ¯ã«æãã銳ãããšïŒæè¡ã®é²æ©ã«ãã£ãŠèšéã«çšããè£
眮ã®ç²ŸåºŠãååé«ããªãïŒäžå
¬å¹³ã ãšç®ãããç«ãŠãã»ã©ã®èª€å·®ãçãŸããªããªã£ãã®ã ããããšèãããïŒèšç®æ©ã®æ®åã«ãã£ãŠïŒèšç®æ©ã®éœåãåªå
ããèŠåBã®æ¹æ³ãïŒç€ŸäŒå
šäœã§èŠãã°èšç®å¹çã®é¢ãªã©ããå©çãšãªãããã«ãªã£ãã®ã ãããïŒç¹ã«è¿å¹Žã¯ïŒæ·±å±€åŠç¿çã®æè¡ãžã®æ³šç®ã«ãã£ãŠããã«èšå€§ãªæ°ã®èšç®ãè¡ãããããã«ãªãïŒããã§èµ·ããäžžãã®èª€å·®åé¡ãšããã®ã¯åŸæ¥ã®ãïŒã®æ±ãã«èµ·å ãã誀差ãã§ã¯ãªãïŒãéååããéã«ïŒ1ã€ã®å€æ°ã«å²ãåœãŠããããæ°ã®äžè¶³ã«ãã誀差ãã§ããïŒäžžãã®æ¹æ³ãšããŠã¯èŠåBã§åé¡ãªããšããããšã ãããïŒãªã©ãšå€¢æ³ããŠããŸããïŒ
ããé ããªãæªæ¥ïŒéåã³ã³ãã¥ãŒã¿ãŒãæ®åããéã«ã¯ïŒãããããèšç®ã®ã³ã¹ãããæ¿æžããŸãã®ã§ïŒããããããšäžžãã®èª€å·®åé¡ã®å€§å
ããéååããéã«ïŒ1ã€ã®å€æ°ã«å²ãåœãŠããããæ°ã®äžè¶³ã«ãã誀差ãããã5ã®æ±ãã«èµ·å ãã誀差ããžãšé転ããŠæ»ãæ¥ãæ¥ããããããŸããïŒãããªãã°ïŒJIS Z 8401: 2061ãããã§ã¯ïŒ100å¹Žã®æãè¶ããŠèŠåAãå床ãJISäžžããã®èŠæš©ãæ¡ãæ¥ãæ¥ããããããŸãããïŒ
ããã¯ãïŒå²ãšåè«ã§ã¯ãªãïŒå¶æ°äžžãã«ã¯åæšäºå
¥ã«èŠãããªããã¡ãªããããããŸãïŒããã¯ãå¶æ°+0.5ã®åºçŸçãšïŒå¥æ°+0.5ã®åºçŸçãç°ãªãããŒã¿ã®åŠçãã«ãããŠèª€å·®ãçãããšãããã®ã§ãïŒä»ãŸã§æ³šç®ããŠãããåã®æ°ããšãå€ã«èµ·å ããäžå
¬å¹³ãã§ã¯ãªãïŒãæ°ã®éå£ã®ãã€æ§è³ªã«èµ·å ããäžå
¬å¹³ããšèšããã§ãããïŒããã¯æ·±å±€åŠç¿ã®ããã«ïŒæ³åæ§ããã€ããŒã¿ã倧éã«æ±ãæã«å¯Ÿé¢ãããåé¡ãããããŸããïŒãããªãã°å¯ŸçãšããŠïŒèŠåA-2ãåæšäºå
¥ãšäºæšå
å
¥ãã©ã³ãã ã«åãæ¿ããŠé©çšããããªãããç»å Žããã§ããããïŒã©ã³ãã ã£ãŠäœã âŠãšèãããšå°åºæžããããªããªã£ãŠããŸãã®ã§ïŒãã®èŸºã§çµããããšæããŸãïŒäžžãã®ææ¥ã¯ã©ã£ã¡ã§ããããïŒ
No.440wakach2022幎12æ2æ¥ 07:00
å¶æ°äžžãã®ãã¡ãªããã«ã€ããŠæ¹ããŠæŽçããªããè£è¶³ãããšâŠ
ä»ãŸã§åãæ±ã£ãŠãããçã«åãã¹ãå€ã決ãŸã£ãŠããã®ã«ïŒäžžãã«ãã£ãŠçºçãã誀差ã«ãã£ãŠçã®å€ãšã®èª€å·®ãçãŸããïŒãããäžæ¹åã«çޝç©ããçµæãšããŠäžå
¬å¹³ãçããããšããåé¡ç¹ã«å¯Ÿæã§ããã®ãå¶æ°äžžãã§ããïŒäžæ¹ã§ãçã«åãã¹ãå€ããäžæãªïŒãããã¯ãããèšç®ããã«ã¯èšç®ã³ã¹ãã®é¢ã§åççã§ã¯ãªãïŒèšç®ãããå ŽåïŒæå
ã®çµæã«äžãã¬äžãã¬ã©ã£ã¡ãèµ·ããŠããã®ãåãããªãïŒå¶æ°+0.5ãšå¥æ°+0.5ã®æ¯çãäºåã«ç¥ãå¿
èŠãããïŒäžžãã®æ¹æ³ã ãã§ã¯å¯ŸåŠã§ããªã誀差ãçãããïŒãšããåé¡ãæ®ããŸããïŒ
ãããŸã§æžããŠïŒåæšäºå
¥ãšäºæšå
å
¥ã亀äºã«ããã°è¯ãããããªãããšæããŸãããïŒããã¯åäžžãæäœã®èª€å·®ã®éã¿ãæ¯ååãã§ãªããšäžå
¬å¹³ã¯è§£æ¶ãããªããªïŒãšã¬ãåã³ã§ããïŒïŒäžžããããŒã¿åã®å¥æ°åç®ã¯å€§ããïŒå¶æ°åç®ã¯å°ããèŠç©ããããŠããŸãã®ã§ïŒ
No.441wakach2022幎12æ2æ¥ 07:36
ãŠãŒãã¥ãŒãããã³ã®ãããã®è©±é¡ã§ãã
âïŒïŒŸâïŒïŒŸâïŒâŠïŒïŒããªããšããã
ç§çã«ã¯ãè¡æçãªçµæã§ãã
åŸã€ãã§ã«ãεïŒïŒïŒïŒÎµã¯ïŒã§ãªãã
âïŒã¯ãïŒïŒé²æ³ã®è¡šçŸã§ã¯äžèŠåãªãå°æ°ãç¶ããŸããã
é£åæ°ã§ã¯ãïŒã®ç¹°ãè¿ãã§æãããŠããããšãè¡æã§ããã
ãã ããäºæ¬¡äœã®æ°ã«é¢ããŠã ãã
3乿 ¹ãªã©ã®ç¡çæ°ãšã¯ãéããããããã§ãã
è¶
è¶æ°ãªã©ãäœãããã®è¡šçŸããÏãeãªã©ã®ããã«ã¿ã€ããã°ãšæããŸãã
挞ååŒçãªäžè§é¢æ°çãªè¡šçŸã«ãªãã®ã§ããããïŒ
No.439ïœïœ2022幎11æ30æ¥ 14:37
å®å
šæ°ïŒããèªèº«ãé€ããçŽæ°ã®ç·åãããèªèº«ã«çãããªã
äŸãã°ãïŒïŒ28ïŒ496ïŒ8128ãâŠ
ïœïŒ2ïœãŒïŒããçŽ æ°ãªãã°ã
2^(n-1)ïŒ2^n-ïŒïŒã¯å®å
šæ°ããŠãŒã¯ãªãã
å¶æ°ã®å®å
šæ°ã¯ã2^(n-1)ïŒ2^n-ïŒïŒã«éãããªã€ã©ãŒ
奿°ã®å®å
šæ°ãããããæªè§£æ±º
åææ°ïŒïŒ¡ã®ããèªèº«ãé€ããçŽæ°ã®ç·åBãšãªããBã®ããèªèº«ãé€ãçŽæ°ã®ç·åãAãšãªãäºæ°ã220ãš284
ããã®ã¿ã§ãã£ããããã§ã«ããŒãã17296ãš18416ãçºèŠ
äžçªç®ãã©ã€ãã«ã®ãã«ã«ããã9363584ãš9427056ãçºèŠ
ãªã€ã©ãŒã¯ãïŒïŒåãçºèŠãå¶å¶ãå¥å¥ïŒïŒïŒïŒïŒãšïŒïŒïŒïŒïŒ
ããã¿ã€ã¶ãã«èŠã€ããã®ããšæã£ãããïŒïŒæ³ã®ãã³ãã
1184ãš1210ãçºèŠãé»åãç¡ãæä»£ã«ïŒïŒçŸåšïŒïŒå以äž
瀟亀æ°ïŒäžãšåãã§ãAâBâCâAãšãµã€ã¯ã«ã«ãªãäžã€ä»¥äžã®æ°
é·ãã«ãŒãã¯ã28åã§ãïŒïŒïŒïŒïŒããå§ãŸãã
å©çŽæ°ïŒç°ãªãäºã€ã®çµã§1ãšããèªèº«ãé€ãçŽæ°ã®ç·åãããããã«ãªãæ°ãäŸãã48ãšïŒïŒãå¶ïŒå¥³ïŒãšå¥ïŒç·ïŒããã
140ãš195ïŒ1050ãš1925âŠ
ãããããæ¥œããã®ã¯ãæ°æ¥œããªïŒ
No.425ks2022幎11æ26æ¥ 10:51
ïŒæ°ã®ããèªèº«ãé€ãç·åããå®éã«ãã£ãŠã¿ãŸããã
çŽ æ°ã®å Žåã¯ãïŒã«ãªãããã以äžã¯é£éãç¶ããŸããã
ïŒïŒâïŒïŒâïŒïŒâïŒïŒâïŒïŒâïŒïŒâïŒïŒïŒâïŒïŒïŒâïŒïŒ
ãšãªããïŒåã€ãªãããŸãããå
ã®æ°ã«ãªãã°ã瀟亀æ°ã§ããã
ãããã£ãé£éã¯ããã£ãããããã€ãŸã§ç¶ããŠããã®ã§ããããïŒ
詳ããæ¹ããææé¡ããŸãã
No.429ks2022幎11æ27æ¥ 14:44
ç§ã¯è©³ãããªãã§ãã
âãã¡ãã«è©³ããæžãããŠããŸãã
https://ja.wikipedia.org/wiki/%E7%A4%BE%E4%BA%A4%E6%95%B0
ä»ã®ãšããèŠã€ãã£ãŠããæé·ã¯28åã®çµãããã§ãã
No.431ãããã2022幎11æ27æ¥ 19:38
gp > S(n)=sigma(n)-n;ã®èšç®ã§èµ·ããçµéãèŠãŠã¿ããš
n=14316ããå§ããŠç¹°ãè¿ããŠã¿ãŸããã
gp > S(14316)
%53 = 19116
gp > S(19116)
%54 = 31704
gp > S(31704)
%55 = 47616
gp > S(47616)
%56 = 83328
gp > S(83328)
%57 = 177792
gp > S(177792)
%58 = 295488
gp > S(295488)
%59 = 629072
gp > S(629072)
%60 = 589786
gp > S(589786)
%61 = 294896
gp > S(294896)
%62 = 358336
gp > S(358336)
%63 = 418904
gp > S(418904)
%64 = 366556
gp > S(366556)
%65 = 274924
gp > S(274924)
%66 = 275444
gp > S(275444)
%68 = 243760
gp > S(243760)
%69 = 376736
gp > S(376736)
%70 = 381028
gp > S(381028)
%71 = 285778
gp > S(285778)
%72 = 152990
gp > S(152990)
%77 = 122410
gp > S(122410)
%78 = 97946
gp > S(97946)
%79 = 48976
gp > S(48976)
%80 = 45946
gp > S(45946)
%81 = 22976
gp > S(22976)
%82 = 22744
gp > S(22744)
%83 = 19916
gp > S(19916)
%84 = 17716
gp > S(17716)
%85 = 14316
以äž28åã§å
ã«æ»ã£ãŠããŸããã
ãªã14316ãèµ·ããäºåã®æ°ã¯
S(7524)=14316
ã®æ§ã§ãã
No.435GAI2022幎11æ29æ¥ 03:40
> ïŒïŒâïŒïŒâïŒïŒâïŒïŒâïŒïŒâïŒïŒâïŒïŒïŒâïŒïŒïŒâïŒïŒ
> ãšãªããïŒåã€ãªãããŸããã
144ã®æ¬¡ã¯259ã ãšæããŸãã
No.436ãããã2022幎11æ29æ¥ 10:10
ãããããããããããšãããããŸãã
30âïŒïŒâïŒïŒâïŒïŒâïŒïŒâïŒïŒâïŒïŒïŒâïŒïŒïŒâ45â
33â15â9â4â3â1
No.438ks2022幎11æ29æ¥ 17:07
ãããåŸåŸäžã«ã¿ã€ããŸããã
蚌æã¯ã©ããªãã®ã§ãããã
Ï/4=22arctan(1/28)+arctan(1/275807)+2{arctan(1/142057)-arctan(1/99368343)-arctan(1/54838715017299308)-arctan(1/88942800178226109582168404411725)+arctan(1/61775097240445660329693394511093237957733203657982660526882)}
No.433Dengan kesaktian Indukmu2022幎11æ28æ¥ 23:00
tanã®å æ³å®çã§èšç®ããŠããã ãã§ãããããªãé·ãã§ãã
x=-arctan(1/88942800178226109582168404411725)
+arctan(1/61775097240445660329693394511093237957733203657982660526882)
ãšãããš
tan(x)={tan(-arctan(1/88942800178226109582168404411725))
+tan(arctan(1/61775097240445660329693394511093237957733203657982660526882))}
/{1-tan(-arctan(1/88942800178226109582168404411725))
*tan(arctan(1/61775097240445660329693394511093237957733203657982660526882))}
=(-1/88942800178226109582168404411725
+1/61775097240445660329693394511093237957733203657982660526882)
/(1+1/88942800178226109582168404411725
*1/61775097240445660329693394511093237957733203657982660526882)
=-9489/843978230891187553825195990678004927
ãªã®ã§
-arctan(1/88942800178226109582168404411725)
+arctan(1/61775097240445660329693394511093237957733203657982660526882)
=-arctan(9489/843978230891187553825195990678004927)
x=-arctan(1/54838715017299308)-arctan(9489/843978230891187553825195990678004927)
ãšãããš
tan(x)={tan(-arctan(1/54838715017299308))
+tan(-arctan(9489/843978230891187553825195990678004927))}
/{1-tan(-arctan(1/54838715017299308))
*tan(-arctan(9489/843978230891187553825195990678004927))}
=(-1/54838715017299308-9489/843978230891187553825195990678004927)
/(1-1/54838715017299308*9489/843978230891187553825195990678004927)
=-377467/20699805241434905130131
ãªã®ã§
-arctan(1/54838715017299308)-arctan(9489/843978230891187553825195990678004927)
=-arctan(377467/20699805241434905130131)
x=-arctan(1/99368343)-arctan(377467/20699805241434905130131)
ãšãããš
tan(x)={tan(-arctan(1/99368343))+tan(-arctan(377467/20699805241434905130131))}
/{1-tan(-arctan(1/99368343))*tan(-arctan(377467/20699805241434905130131))}
=(-1/99368343-377467/20699805241434905130131)
/(1-1/99368343*377467/20699805241434905130131)
=-1519876048/151027564181484889
ãªã®ã§
-arctan(1/99368343)-arctan(377467/20699805241434905130131)
=-arctan(1519876048/151027564181484889)
x=arctan(1/142057)-arctan(1519876048/151027564181484889)
ãšãããš
tan(x)={tan(arctan(1/142057))+tan(-arctan(1519876048/151027564181484889))}
/{1-tan(arctan(1/142057))*tan(-arctan(1519876048/151027564181484889))}
=(1/142057-1519876048/151027564181484889)/(1+1/142057*1519876048/151027564181484889)
=1466625710157/208642724182192949
ãªã®ã§
arctan(1/142057)-arctan(1519876048/151027564181484889)
=arctan(1466625710157/208642724182192949)
x=arctan(1466625710157/208642724182192949)
ãšãããš
tan(2x)=2tan(arctan(1466625710157/208642724182192949))
/{1-(tan(arctan(1466625710157/208642724182192949)))^2}
=(2*1466625710157/208642724182192949)/{1-(1466625710157/208642724182192949)^2}
=306000783522799810880723082993/21765893176007825702703449046175976
ãªã®ã§
2arctan(1466625710157/208642724182192949)
=arctan(306000783522799810880723082993/21765893176007825702703449046175976)
x=arctan(1/275807)
+arctan(306000783522799810880723082993/21765893176007825702703449046175976)
ãšãããš
tan(x)={tan(arctan(1/275807))
+tan(arctan(306000783522799810880723082993/21765893176007825702703449046175976))}/{1-tan(arctan(1/275807))
*tan(arctan(306000783522799810880723082993/21765893176007825702703449046175976))}
=(1/275807+306000783522799810880723082993/21765893176007825702703449046175976)
/(1-1/275807*306000783522799810880723082993/21765893176007825702703449046175976)=1744507482180328366854565127/98646395734210062276153190241239
ãªã®ã§
arctan(1/275807)
+arctan(306000783522799810880723082993/21765893176007825702703449046175976)
=arctan(1744507482180328366854565127/98646395734210062276153190241239)
x=arctan(1/28)
ãšãããš
2x=arctan(2(1/28)/(1-(1/28)^2))=arctan(56/783)
4x=arctan(2(56/783)/(1-(56/783)^2))=arctan(87696/609953)
5x=arctan((87696/609953+1/28)/(1-87696/609953*1/28))=arctan(3065441/16990988)
10x=arctan(2(3065441/16990988)/(1-(3065441/16990988)^2))
=arctan(104169742491416/279296744691663)
11x=arctan((104169742491416/279296744691663+1/28)/(1-104169742491416/279296744691663*1/28))
=arctan(3196049534451311/7716139108875148)
22x=arctan(2(3196049534451311/7716139108875148)/(1-(3196049534451311/7716139108875148)^2))
=arctan(49322325613363940973893167838056/49324070120846121302260022403183)
ãã£ãŠ
22arctan(1/28)=arctan(49322325613363940973893167838056/49324070120846121302260022403183)
ãããŠ
x=arctan(49322325613363940973893167838056/49324070120846121302260022403183)
+arctan(1744507482180328366854565127/98646395734210062276153190241239)
ãšãããš
tan(x)={tan(arctan(49322325613363940973893167838056/49324070120846121302260022403183))
+tan(arctan(1744507482180328366854565127/98646395734210062276153190241239))}
/{1-tan(arctan(49322325613363940973893167838056/49324070120846121302260022403183))
*tan(arctan(1744507482180328366854565127/98646395734210062276153190241239))}
=(49322325613363940973893167838056/49324070120846121302260022403183
+1744507482180328366854565127/98646395734210062276153190241239)
/(1-49322325613363940973893167838056/49324070120846121302260022403183
*1744507482180328366854565127/98646395734210062276153190241239)
=1
ãªã®ã§
arctan(49322325613363940973893167838056/49324070120846121302260022403183)
+arctan(1744507482180328366854565127/98646395734210062276153190241239)
=arctan(1)
=Ï/4
No.434ãããã2022幎11æ28æ¥ 23:48
ããããããã倧å€ããããšãããããŸããã
No.437Dengan kesaktian Indukmu2022幎11æ29æ¥ 16:07
åé¡
xyå¹³é¢äžã®æ£äžè§åœ¢ã§ãå
éšïŒèŸºäžãå«ãŸãªãïŒã«ã¡ããã©äžã€æ Œåç¹ïŒåº§æšãæŽæ°ã®ç¹ïŒãå«ããã®ã®æå€§é¢ç©ã¯ïŒ
No.406ãããã2022幎11æ24æ¥ 05:56
èããããè²ã
ãªãã¿ãŒã³ã§
(12+13*â3)/15=2.3011106998930
ãæå€§ããªãšæããŸããã絶察ã§ããïŒ
ãšèšãããã°èªä¿¡ã¯ãããŸããã
No.407GAI2022幎11æ24æ¥ 08:42
æ®å¿µãªããããã¯æå€§ã§ã¯ãããŸããã
äŸãã°äžã€ã®é ç¹ã(0,2)ãšããŠæ®ãã®2é ç¹ãx軞äžã«çœ®ãã ãã§
ãã®å€ãã倧ãããªããŸããã
No.408ãããã2022幎11æ24æ¥ 12:26
ããïœ
åºæ¬çãªåœ¢ç¶ãããã®å€ã軜ãè¶
ããŠããŸããšã¯ïœ¥ïœ¥ïœ¥
ã§ã¯æ¬¡ã®èšé²ãšããŠ
3*â3/2(=2.5980762113533)
ã¯åºæ¥ãŸããããæå€§å€ãšèšããã®ãïŒ
No.409GAI2022幎11æ24æ¥ 15:11
ãããã倧ãããã®ããããŸãã
ãã®äžè§åœ¢ã¯ã¡ãã£ãšã¹ã©ã€ããããã°å€§ããã§ããŸããã
No.410ãããã2022幎11æ24æ¥ 16:28
åææŠ
(15+14*â3)/12(=3.270725942163690)
æèšç®ãªã®ã§èšç®ãã¹ãèµ·ãã£ãŠãããã
No.411GAI2022幎11æ24æ¥ 17:43
倧äžå€«ã§ããèšç®ã«ãã¹ã¯ãããŸããã
ç§ã¯æåããã®å€ãæå€§ã ãšæã£ãŠããŸããã
ãããããã«èšç®ããŠãããšãããã¯æå€§ã§ã¯ãªãããšãããããŸããã
ããããå
ã®èšç®ã倧å€ã§ããã
# äœãããŸãæ¹æ³ãããã°ã²ãã£ãšãããšç°¡åã«ãªãã®ããç¥ããŸãããã
# å°ãªããšãåçŽã«èããŠèšç®ããŠãããšçµæ§é¢åã§ãã
No.412ãããã2022幎11æ24æ¥ 18:47
ãã以äžã®äžè§åœ¢ãååšã§ããã®ãïŒ
ä¿¡ããããªãã§ããïœ
倧ããã§ã¯å°æ°ç¹ä»¥äžã®å€åäœãªãã®ã§ããïŒããããšãæŽæ°éšã®ãªãŒããŒãå€åããŠããŸãäœãªã®ã§ããïŒ
No.413GAI2022幎11æ24æ¥ 20:45
å°æ°ç¹ä»¥äžã§ããæå€§ã¯3.3ã¡ããã
No.416ãããã2022幎11æ24æ¥ 22:55
3.30020486367181
äœã§ããïŒ
No.417GAI2022幎11æ25æ¥ 09:43
ããå°ã倧ããã§ãã3.309âŠ
No.418ãããã2022幎11æ25æ¥ 09:56
ã³ã³ãã¥ãŒã¿ã®æ°å€èšç®ã®ç¹°ãè¿ãã§æå€§å€ã«ãªããã®ãçµãåºãæ¹æ³ãªã®ã§ãæéããããå²ã«ã¯ãã®çšåºŠã®ç²ŸåºŠã§ãã
3.30940107
蟺ãã§ããããïŒ
No.419GAI2022幎11æ25æ¥ 13:01
蚌æã¯ããŠããŸãããã3.3ã¡ããã®å€ã¯åºãŸããã
çµæã ãèŠããšã·ã³ãã«ã«æžããŸããã
ãã®çããæ£ãããã°ãæ®éã®é»åã§ããŒã7åå©ãã°æ°å€ãåºãŸãã
æå€§ã®èšŒæã¯ã©ãããã°ãããã ããã
No.420ããã²ã2022幎11æ25æ¥ 16:01
> 3.30940107蟺ã
æ£è§£ã§ããå³å¯å€ã¯(4â3+3)/3=3.3094010767585âŠã§ãã
å³ã§æ£äžè§åœ¢ã®å
éšã®ç¹ãåç¹ãšãããš
çŽç·AB: y=(2+â3)x/3+1
çŽç·BC: y=(3-2â3)(x-1)/3-1
çŽç·CA: y=-(6+â3)(x-1)/3
ç¹A: ((9+â3)/26,11(9+â3)/78)
ç¹B: ((9-25â3)/26,(21-41â3)/78)
ç¹C: ((35+â3)/26,-(19+5â3)/26)
äžèŸºã®é·ã: (2/3)â(12+3â3)=2.764549âŠ
é¢ç©: (4â3+3)/3=3.309401âŠ
ã®ããã«ãªããŸãã
æ®éã®å³åœ¢åé¡ã®ãã¿ãŒã³ã ãšäžè§åœ¢ããã£ãšå®å®ããåãã§
æå€§ã«ãªããããªæ°ãããŸããããã®åé¡ã§ã¯ãªããšãäžéå端ãª
åãã§æå€§ã«ãªããŸãã®ã§ãçããã§ããã
ãã®è§åºŠã§æå€§ã«ãªãããšã®èšŒæã¯ã以äžã®ããã«ã§ããŸãã
ãŸãåç¹ã ããå«ãããã«æ£äžè§åœ¢ãå転ããããšãèããŸãã
察称æ§ãããåãè§åºŠã¯15°ã ãã§ååã§ããããšãããããŸãã
å³ã§ãçŽç·ABãy=x+1ã§ããåãããçŽç·BCãy=-1ã§ããåããŸã§ã®
15°ãèããŸãã
ïŒABäžã«(0,1)ãBCäžã«(1,-1)ãCAäžã«(1,0)ãããããã«åããŸãïŒ
確ãçŽç·ABãy=x+1ã®ãšãã®å€ãGAIãããNo.411ã§æžãããå€ã®
(15+14â3)/12=3.27âŠã§ãããã
ãããŠçŽç·BCãy=-1ã§ããåãã®ãšã㯠(3+2â3)/2=3.23âŠã§
äžã®äžéå端ãªè§åºŠã§3.30âŠã§ããããå°ãªããšããã®15°ã®éäžã«
æå€§å€ãããããšãããããŸããã
次ã«äžèšã®è§åºŠã§æå€§å€ããšãããšã®èšŒæã®èã®éšåã§ããã
ãŸã(1,0)ã»Aã»(0,1)ã®ãªãè§ã60°ã§ããããšãã
Aã¯å¿
ãç¹((3+â3)/6,(3+â3/6))ãéãååŸãâ6/3ã§ããåäžã«ããããšã
ããããŸãïŒãã®åã¯(1,0)ãš(0,1)ãéããŸãïŒã
åæ§ã«ãCã¯å¿
ãç¹((6+â3)/6,-1/2)ãéãååŸãâ3/3ã§ããåäžã«ããããšã
ããããŸãïŒãã®åã¯(1,0)ãš(1,-1)ãéããŸãïŒã
ïŒãããã®åããå³ã®9ç¹ã®æ Œåç¹ã䜿ã£ãŠå®¹æã«äœå³ã§ããŸããäœå³æ¹æ³ã¯â»1â»2ïŒ
ãããŠ(1,0)ãéãçŽç·ãš2åãšã®(1,0)ã§ãªãæ¹ã®äº€ç¹ãçµãã ç·åã®é·ãã
æå€§ã«ãªãåããçãã«ãªãããã§ãããå®ã¯ããã¯2åã®äžå¿ãçµãã çŽç·ãš
å¹³è¡ã«ãªããšããæå€§ã§ããããšãããããŸã(â»3)ã
ããã«ãããäžèšã®(4â3+3)/3ãæå€§ãšãªããŸãã
â»1
ç¹Aã®è»è·¡ãšãªãåã®äœå³
ã(-1,0)ãäžå¿ãšããŠ(0,1)ãéãåãš(0,1)ãäžå¿ãšããŠ(-1,0)ãéãåã®
亀ç¹ã®ãã¡yã倧ããæ¹(-(1+â3)/2,(1+â3)/2)ãš(0,1)ãçµãã çŽç·ããš
ã(0,-1)ãäžå¿ãšããŠ(1,0)ãéãåãš(1,0)ãäžå¿ãšããŠ(0,-1)ãéãåã®
亀ç¹ã®ãã¡yãå°ããæ¹((1+â3)/2,-(1+â3)/2)ãš(1,0)ãçµãã çŽç·ããšã®
亀ç¹ãäžå¿ãšãã(1,0)ãéãåãæãã°ããã
â»2
ç¹Cã®è»è·¡ãšãªãåã®äœå³
ã(0,0)ãäžå¿ãšããŠ(1,0)ãéãåãš(1,0)ãäžå¿ãšããŠ(0,0)ãéãåã®
亀ç¹ã®ãã¡yã倧ããæ¹(1/2,â3/2)ãš(1,0)ãçµãã çŽç·ããš
ã(0,-1)ãäžå¿ãšããŠ(1,-1)ãéãåãš(1,-1)ãäžå¿ãšããŠ(0,-1)ãéãåã®
亀ç¹ã®ãã¡yãå°ããæ¹(1/2,-1-â3/2)ãš(1,-1)ãçµãã çŽç·ããšã®
亀ç¹ãäžå¿ãšãã(1,0)ãéãåãæãã°ããã
â»3
ãåPãšåQã2ç¹A,Bã§äº€ãããç¹AãéãçŽç·ãšåP,Qãšã®A以å€ã®äº€ç¹ã
B,Cãšãããšããç·åBCãæé·ã«ãªãã®ã¯BC//PQã®ãšãã§ããã
ãšããåœé¡ã¯ãäžè§é¢æ°ã䜿ã£ãŠåŒ·åŒã«èšŒæããããšã¯ã§ããŸãããã
ãããã幟äœåŠçãªèšŒæãã§ããã°ãããªã«é·ãã¯ãªããªãæ°ãããŸãã
ã©ãªãã蚌æã§ããã°ãé¡ãããŸãã
ïŒæ¢ç¥ã®å®çã®å Žåã¯ååã ãã§ãçµæ§ã§ãïŒ
![]()
No.421ãããã2022幎11æ25æ¥ 17:10
ãããããã
> ïŒABäžã«(0,1)ãBCäžã«(1,-1)ãCAäžã«(1,0)ãããããã«åããŸãïŒ
ãããã®ç¹ïŒãããã¯ãã®å¯Ÿç§°ç§»åïŒãéããªãæ£äžè§åœ¢ãæå€§ã«ãªãããšããªãã®ã¯ã©ã®ããã«èšãã°ããã®ã§ãããã
ãããã蚌æããŠããªããšãã£ãã®ã¯ããã®é
眮以å€ã®æ£äžè§åœ¢ãæ€èšããŠããªãããã§ãã
å³ãçºããŠããã°æèŠçã«ã¯ãããã®ã§ãããèšèã«ããã®ãé£ãããªãšæã£ãŠã
No.422ããã²ã2022幎11æ25æ¥ 19:13
ã§ã¯ãã¡ããšæŽçããŸãã
åæã¯ãåç¹ã®ã¿ãå
éšã«å«ãæ£äžè§åœ¢ãã§ãã
ã»å蟺äžïŒç«¯ç¹ãé€ãïŒã«å°ãªããšã1ç¹ãªããšæå€§ã«ãªããªã
ïŒæ Œåç¹ãéããªãèŸºã®æ¹åã«æ¡å€§ã§ããããïŒ
ã»å蟺äžã«ããæ Œåç¹ã¯åç¹ã®ãŸããã®8ç¹ã«éããã
ïŒããããå€åŽã®ç¹ãéããšåç¹ä»¥å€ã®æ Œåç¹ãå
éšã«å«ãã§ããŸãïŒ
4ç¹(±1,±1)ã«ã€ããŠ
ã»å¯Ÿè§ã®2ç¹ãéããšåç¹ä»¥å€ã®ç¹ãå«ãã§ããŸãã®ã§äžé©
ã»é£æ¥2ç¹ãéãå Žåã®é¢ç©ã®æå€§å€ã¯(3+2â3)/2=3.23âŠãªã®ã§æå€§ã§ã¯ãªã
ïŒé£æ¥2ç¹ãç°ãªã蟺äžã«ãããšåç¹ä»¥å€ãå«ãã§ããŸãã®ã§åäžèŸºäžã®å¿
èŠãããïŒ
ã»åŸã£ãŠé¢ç©ãæå€§ãšãªããšããè§ã®4ç¹ã¯éã£ãŠãæå€§1ã€
ã»è§ã®4ç¹ãäžã€ãéãããæ®ãã®4ç¹äž3ç¹ã(1蟺ã«1ç¹ãšããŠ)éãå Žåã¯ã
äžå¿ãã®ãããªæ£äžè§åœ¢ã¯ååšããããé¢ç©ã3(17889+10694â3)/34810=3.138âŠ
æªæºã«ãªãã®ã§æå€§ã«ã¯ãªããªã
ïŒABã(0,1)ãéãBCã(0,-1)ãéãCAã(1,0)ãéããšããŠèšç®ããŸããïŒ
åŸã£ãŠé¢ç©ãæå€§ãšãªããšããè§ã®4ç¹ã®ãã¡ã¡ããã©1ç¹ãéã
ããã(1,-1)ãšããŠããããŸãBCããã®ç¹ãéããšããŠããã
ãã®ãšãèãããããã¿ãŒã³ã¯
(1)ABã(-1,0)ãéãCAã(0,1)ãéã
(2)ABã(-1,0)ãéãCAã(1,0)ãéã
(3)ABã(0,1)ãéãCAã(1,0)ãéãBãy=x+1ããäž
(4)ABã(0,1)ãéãCAã(1,0)ãéãBãy=x+1ããäž
ã®4éã
(1)ã®å Žå
çŽç·BCãy=-1ã«äžèŽãABã(-1,0)ãéãCAã(0,1)ãéã圢ïŒãã®ãšãé¢ç©ã¯
(3+2â3)/2=3.23âŠïŒãã(-1,0)ãš(0,1)ãš(1,-1)ãéãããšãå€ããã«
äžè§åœ¢ãå³å転ããŠããïŒCã(1,-1)ã«äžèŽãããŸã§ïŒãšãBãš(1,-1)ã®è·é¢ãš
Cãš(1,-1)ã®è·é¢ã¯ã©ã¡ããçããªã£ãŠããã®ã§ãé¢ç©ã¯æå€§ã«ãªããªãã
ïŒBCãçããªã£ãŠããã®ã¯ãBãšCã®è»è·¡ã®åãæãã°èªæã§ãïŒ
(2)ã®å Žå
ABã(-1,0)ãš(0,1)ãéããCAã(1,0)ãéããBCã(1,-1)ãéã圢
ïŒãã®ãšãé¢ç©ã¯(15+14â3)/12=3.27âŠïŒãã
(-1,0)ãš(1,0)ãš(1,-1)ãéãããšãå€ããã«äžè§åœ¢ãå³å転ããŠãã
ïŒCã(1,-1)ã«äžèŽãããŸã§ïŒãšãAãš(1,0)ã®è·é¢åã³Cãš(1,0)ã®è·é¢ã¯ã©ã¡ãã
çããªã£ãŠããã®ã§ãé¢ç©ã¯æå€§ã«ãªããªãã
ïŒCAãçããªã£ãŠããã®ã¯ãAãšCã®è»è·¡ã®åãæãã°èªæã§ãïŒ
(3)ã®å Žå
BCã(-1,0)ãš(1,-1)ãéããCAã(1,0)ãéããABã(0,1)ãéã圢
ïŒãã®ãšãé¢ç©ã¯äžã«æžãã3(17889+10694â3)/34810=3.138âŠïŒãã
(0,1)ãš(1,0)ãš(1,-1)ãéãããšãå€ããã«äžè§åœ¢ãå³å転ããŠãã
ïŒCã(1,-1)ã«äžèŽãããŸã§ïŒãšãäžãšåæ§ã«CAã¯çããªã£ãŠããã®ã§ã
é¢ç©ã¯æå€§ã«ãªããªãã
(4)ã®å Žå
åã¬ã¹ã«æžãããšããã§ããã®å Žåã«æå€§å€ããšããŸãã
åŸã£ãŠ(4â3+3)/3ãæå€§å€ã§ãã
No.423ãããã2022幎11æ25æ¥ 21:39
ææ¢ãã§æå€§é¢ç©ã埮åŠã«æ°å€ãå€åãããªããããšãŠãæ¢ããŠããã®ã«
æéãæãã£ãŠããã®ã§äœãšãäžçºã§èŸ¿ãçããªããã®ããšææŠããŠã¿ãŸããã
æ£äžè§åœ¢ã®å
éšã«å¯äžå«ãŸããæ Œåç¹ã®åšãã®8åã®æ Œåç¹ã®
ã©ããéãããïŒã€ã®çŽç·ãæå¹ã§ããããæ±ºå®ãããŸã§ã®
åæ®µéãé·ãéã®ãããããããããå
éšã®æ Œåç¹ã(1,0)
ãšæå®ããŠããã°ïŒããããããã¯(0,0)ãšãããŠãããïŒ
å²ãïŒã€ã®çŽç·ãæ Œåç¹
P(0,0),Q(0,-1),R(1,1)ã§æå®ããŠããã°è¯ããããããã®
ç¹ãéãçŽç·ã®åŸããm1,m2,m3ã§è¡šãã°
PãéãçŽç·ã¯y=m1*xâ
QãéãçŽç·ã¯y=m2*x-1â¡
RãéãçŽç·ã¯y=m3*x+1-m3â·
â ,â¡ã®äº€ç¹ãA
â¡,â¢ã®äº€ç¹ãB
â¢,â ã®äº€ç¹ãC
ã§è¡šããš
A(1/(m2-m1),m1/(m2-m1))
B((2-m3)/(m2-m3),(m2+m3-m2*m3)/(m2-m3))
C((1-m3)/(m1-m3),m1*(1-m3)/(m1-m3))
ãšãªãã(1,0)ãåãå²ãäžè§åœ¢ã®åé ç¹ã«çžåœããã
ããã«â³ABCãæ£äžè§åœ¢ããªãããšãã
m1,m2ã«ã¯
(m1-m2)/(1+m1*m2)=tan(Pi/3)=â3
ãã£ãŠ
m2=(m1-â3)/(â3*m1+1)
åãã
m1,m3ã«ã¯
(m3-m1)/(1+m3*m1)=â3
ãã£ãŠ
m3=(â3+m1)/(1-â3*m1)
ã®é¢ä¿åŒãæç«ããã
ããã䜿ãã°ãç¹A,Cã®åº§æšã¯
A(-(â3*m1+1)/(â3*(m1^2+1)),-m1*(â3*m1+1)/(â3*(m1^2+1)))
C((â3-1+(â3+1)*m1)/(â3*(m1^2+1)),m1*(â3-1+(â3+1)*m1)/(â3*(m1^2+1)))
ãšm1ã®ãã©ã¡ãŒã¿ã®ã¿ã§è¡šã,
ïŒç¹A,Cã®è·é¢Lã¯
L^2=AC^2=((2*â3+1)*m1+â3)^2/(3*(m1^2+1))
ããã§m1ã®éšåã倿°xã«ããŠ
f(x)=((2*â3+1)*x+â3)^2/(3*(x^2+1))
ãªã忰颿°ã®å¢æžã調ã¹ãã
äŸã«ãã埮åãããš(èšç®ãçµæ§å€§å€ïŒ
f'(x)=-2*(6+â3)*(x^2-2/33*(24+7*â3)*x-1)/(3*(x^2+1)^2)
=-2*(6+â3)*(x-(6+â3)/3)*(x+(6-â3)/11)/(3*(x^2+1)^2)
f'(x)=0ããã
x=(6+â3)/3,-(6-â3)/11
墿žã調ã¹ãŠx=(6+â3)/3ã§f(x)ã¯æ¥µå€§ã§æå€§å€ãäžããã
ãããã£ãŠæ±ããæå€§ã®äžè§åœ¢ã®é¢èSã¯
S=1/2*L^2*sin(Pi/3)=1/2*f((6+â3)/3)*â3/2=(3+4*â3)/3(=3.309401076758503)
ãšæ±ããããŸããã
ã¡ãªã¿ã«A,B,Cã®å亀ç¹ãè€çŽ å¹³é¢äžã§ãZ1,Z2,Z3
Z1 = 1/(m2 - m1) + m1/(m2 - m1)*I
Z2 = ((-m3 + 2)/(m2 - m3)) + (((-m3 + 1)*m2 + m3)/(m2 - m3))*I
Z3 = ((-m3 + 1)/(m1 - m3)) + (-m3 + 1)*m1/(m1 - m3)*I
ã«çœ®ãæã
æ£äžè§åœ¢ããªãã§ããã
m1=(6+sqrt(3))/3
%946 = 2.5773502691896257645091487805019574557
m2=(m1-sqrt(3))/(sqrt(3)*m1+1)
%947 = 0.15470053837925152901829756100391491130
m3=(sqrt(3)+m1)/(1-sqrt(3)*m1)
%948 = -1.2440169358562924311758154471686241223
ã®æ°å€ã
FR(m1,m2,m3)=real(Z1^2+Z2^2+Z3^2-Z1*Z2-Z2*Z3-Z3*Z1)
FI(m1,m2,m3)=imag(Z1^2+Z2^2+Z3^2-Z1*Z2-Z2*Z3-Z3*Z1)
ãžä»£å
¥ãããš
gp > FR(m1,m2,m3)
%949 = 6.281303159995074080 E-38
gp > FI(m1,m2,m3)
%950 = -3.589316091425756617 E-38
ã€ãŸã管ç人ããã仿ŽçãããŠããè€çŽ æ°ã®åºåã«ããèšäº
ã¬ãŠã¹å¹³é¢äžã®ç°ãªãïŒç¹ αãβãγ ã«ã€ããŠãâ³Î±Î²Î³ ãæ£äžè§åœ¢ã§ããããã®
å¿
èŠå忡件ã¯ã
ããããããããα^2ïŒÎ²^2ïŒÎ³^2ïŒÎ±Î²ïŒÎ²Î³ïŒÎ³Î±ïŒïŒ
ã«åèŽããŸããã
å®ã¯ãã®ããšãå©çšããŠæ°å€çã«æå€§å€ã®é¢ç©ãæ¢ãã«ãã£ãŠããŸããã
No.424GAI2022幎11æ26æ¥ 06:28
ããããããã詳ãã説æãããããšãããããŸãã
ãŸã ãã£ãšèªãã ã ããªã®ã§ãåŸã§ãã£ããèªã¿èŸŒãããšæããŸãã
æã£ãéãããšãããããæã£ã以äžã«å€§å€ããã§ãã
No.421 ã® â»3 ã®èšŒæ
äºã€ã®åã®äžå¿P,QããçŽç·BCã«äžãããåç·ã®è¶³ãããããD,EãšãããšãBC=AB+AC=2*AD+2*AE=2*DEã
ç¹PããçŽç·QEã«äžãããåç·ã®è¶³ãFãšãããšåè§åœ¢PDEFã¯é·æ¹åœ¢ãªã®ã§ãDE=PFã
çŽè§äžè§åœ¢PQFã§äžå¹³æ¹ã®å®çãããPF=â(PQ^2-QF^2)ã
以äžãããBCãæå€§ãšãªãã®ã¯QãšFãäžèŽãããšãã§ããã®ãšãBC//PQã
æãã€ããŠã¿ãã°åçŽã§ããã
No.426ããã²ã2022幎11æ26æ¥ 11:48
> No.421 ã® â»3 ã®èšŒæ
ããïŒãããªã«åçŽã ã£ããã§ããã
ããããšãããããŸãããšãŠããã£ããããŸããã
æé·ã®ãšãBC=2PQãšããã®ãç¥ããŠããã£ãã§ãã
> æã£ãéãããšãããããæã£ã以äžã«å€§å€ããã§ãã
ããã§ãããããã§ã现éšã¯èª¬æã倧å€ã§çç¥ããŠããŸã£ãŠããŸãã®ã§ã
ãã¹ãŠã®è©³çŽ°ãæžãããããã«æ°å倧ãããªãããã§ãã
ãã£ãšããç§ã®èšŒæãäžæã§ãã£ãšç°¡æœã«ç€ºãæ¹æ³ãããæ°ãããŸããã
No.427ãããã2022幎11æ26æ¥ 12:28
ãã£ãããªã®ã§ãç§ã
ãABäžã«(0,1)ãBCäžã«(1,-1)ãCAäžã«(1,0)ã
ãšç䟡ãªé
眮ã«ãããæå€§é¢ç©ãæ±ããæã®èšç®éçšãèŒããŠãããŸãã
ãšãã£ãŠãã座æšã§äžèŸºã®é·ããåºããŠåŸ®åã§åçç¹ãæ±ãããšããé¢çœã¿ã®ãªãæ¹æ³ã§ããã
ããã§ãéãã(?)äºéæ ¹å·ãå€ãããçŽåãã§ãããããŠæ¥œããã£ãã®ã§ã
å³ã®ããã«æ£äžè§åœ¢ã®äžèŸºABãx軞äžã«ãšããæ Œåç¹ãå転ãããã
ABäžã®æ Œåç¹ã(0,0)ãšããã
x軞æ£ã®åãããæž¬ã£ãæ£äžè§åœ¢å
éšã®æ Œåç¹æ¹åã®è§åºŠãΞãšããã
Ξã®ç¯å²ã¯ 30°âŠÎžâŠ45°ã«ãªãã
蟺BCäžã®æ Œåç¹ã®åº§æšã¯ (â5*cos(Ξ+α),â5*sin(Ξ+α)) ã
蟺CAäžã®æ Œåç¹ã®åº§æšã¯ (â2*cos(Ξ+β),â2*sin(Ξ+β)) ãšãªãã
ããã§ãcosα=2/â5ãsinα=1/â5ãcosβ=1/â2ãsinβ=1/â2 ã§ããã
蟺BCã®åŸãã¯-â3ãªã®ã§ãçŽç·BC㯠y-â5*sin(Ξ+α)=-â3*(x-â5*cos(Ξ+α)) ã
蟺CAã®åŸãã¯â3ãªã®ã§ãçŽç·CA㯠y-â2*sin(Ξ+β)=â3*(x-â2*cos(Ξ+β)) ãšãªãã
ç¹B,Aã¯ããããã®çŽç·ã®xåçãªã®ã§ãy=0ã代å
¥ããã°ã
B(â5*cos(Ξ+α)+â5/â3*sin(Ξ+α),0)ãA(â2*cos(Ξ+β)-â2/â3*sin(Ξ+β),0) ãšãªãã
ãã£ãŠæ£äžè§åœ¢ã®äžèŸºã®é·ãf(Ξ)ã¯ã
f(Ξ)
=(ç¹Bã®x座æš)-(ç¹Aã®x座æš)
=â5*cos(Ξ+α)+â5/â3*sin(Ξ+α)-â2*cos(Ξ+β)+â2/â3*sin(Ξ+β)
=â5*(cosΞ*cosα-sinΞ*sinα)+â5/â3*(sinΞ*cosα+cosΞ*sinα)-â2*(cosΞ*cosβ-sinΞ*sinβ)+â2/â3*(sinΞ*cosβ+cosΞ*sinβ)
=â5*(cosΞ*2/â5-sinΞ*1/â5)+â5/â3*(sinΞ*2/â5+cosΞ*1/â5)-â2*(cosΞ*1/â2-sinΞ*1/â2)+â2/â3*(sinΞ*1/â2+cosΞ*1/â2)
=(2*cosΞ-sinΞ)+1/â3*(2*sinΞ+cosΞ)-(cosΞ-sinΞ)+1/â3*(sinΞ+cosΞ)
=(1+2/â3)*cosΞ+â3*sinΞ
埮å f'(Ξ)=-(1+2/â3)*sinΞ+â3*cosΞ ã0ã«ãªãã®ã¯ã
tanΞ=â3/(1+2/â3)=3*(2-â3) ã®ãšãã§ããããã㯠30°âŠÎžâŠ45°ã®ç¯å²ã«ããã
f'(30°)=1-1/â3>0 ãf'(45°)=-1/â2*(1-1/â3)<0 ãªã®ã§ããã®éã¯äžã«åžã§æ¥µå€§ç¹ãšãªãã
â» f''(arctan(3*(2-â3))=-f(arctan(3*(2-â3))<0 (âµfã¯é·ãã§æ£ã ãã) ãªã®ã§æ¥µå€§ãšããæ¹ããã£ãããã£ãããã
Ξm=arctan(3*(2-â3)) ãšãããšã
cos(Ξm)^2=1/(1+tan(Ξm)^2)=(16+9*â3)/52
sin(Ξm)^2=1-cos(Ξm)^2=(36-9*â3)/52=9*(4-â3)/52
cos(Ξm)>0, sin(Ξm)>0 ããã
cos(Ξm)*sin(Ξm)=3/52*â((16+9*â3)*(4-â3))=3/52*â(37+20*â3)=3*(5+2*â3)/52
ãã£ãŠããã®ã¿ã€ãã®é¢ç©æå€§ã®æ£äžè§åœ¢ã®é¢ç©ã¯ã
â3/4*f(Ξm)^2
=â3/4*((1+2/â3)*cos(Ξm)+â3*sin(Ξm))^2
=â3/4*((1+2/â3)^2*cos(Ξm)^2+2*(1+2/â3)*â3*cos(Ξm)*sin(Ξm)+(â3)^2*sin(Ξm)^2)
=â3/4*((7+4*â3)/3*(16+9*â3)/52+(4+2*â3)*3*(5+2*â3)/52+3*9*(4-â3)/52)
=â3/(4*52*3)*((7+4*â3)*(16+9*â3)+9*(4+2*â3)*(5+2*â3)+81*(4-â3))
=â3/(4*52*3)*(832+208*â3)
=â3*/3*(4+â3)
=(3+4*â3)/3
![]()
No.428ããã²ã2022幎11æ27æ¥ 02:58
[çŸè±¡]
52æã®èµ€ãé»ã®ã«ãŒããäžèŠãã©ãã©ã§ããç¶æ
ããªãã³ã¹ãã¬ããã客ã«
ã©ã®äœçœ®ã§ãæ§ããªããèµ€ãšé»ã®ã«ãŒãããã£ããå
¥ãæ¿ããŠããã
ãã®ïŒã€ã®ã«ãŒãã®åããã£ããèŠããŠãããã
ïŒèµ€ã«ãŒãããã£ãäœçœ®ã«é»ã«ãŒããå
¥ããé»ã«ãŒãããã£ãäœçœ®ã«èµ€ã«ãŒããå
¥ããããšãïŒ
ã«ãŒããéããŠãè£åãã§ç©ã¿éããŠãããã
ãã®ããã¯ãåãåãäœæ°ã«ãããã®3æã®é çªãéã«ãããã®ãŸãŸ3æãããã ã«åãã
ãããŠããŒãã«ã«
1 2 3 4
5 6 7 8
ã®äœçœ®ã«ãã®é çªã§ã«ãŒããäžæãã€è£åãã§çœ®ããŠããã
åãããšã次ã®8æãç¹°ãè¿ããåå±±ãïŒæãã€ã«ããã
次ã¯çœ®ããŠããã«ãŒãã®3æç®ã3ã®å±±ã«çœ®ãããšããå®ãã°ã1,2,4æç®ã¯
1,2,4ã®å±±ã®ã©ãã«èŒããŠããããïŒäœãåå±±1ïœ4ã¯3æãã€ã®ã«ãŒãã眮ãããããšã«ãªããïŒ
åããäžã®æ®µã,ããããé
ã4æã®ã«ãŒãã®3æç®ã ãã7ã®å±±ã«èŒããã°ãä»ã®3æã¯èªç±ã
ãã®3æç®ã ãã«ãã ããäžæ®µãäžæ®µãžã®é
ãæ¹ãææã¡ã®ã«ãŒãã4æã«ãªããŸã§ç¹°ãè¿ãã
æ®ã£ã4æã®1,3çªç®ãå·Šæã2,4çªç®ã峿ã«ãšãã峿ã¯3ã®å±±ãå·Šæã¯7ã®å±±ã«èŒããã
(=æåŸã®4æã¯7,3,7,3ã®å±±ã«é çªã«é
ãã)
é
ãçµããã3ãš7ã«åºæ¥ãå±±ããã£ããå
¥ãæ¿ããã
äžæ®µã®4åã®å±±ãåãããŠäžã€ã®å±±ãšãå®¢ã«æž¡ãã
äžã®æ®µ4åã®å±±ãåãããŠæŒè
ãæã€ã
ãããããæã£ããã±ãããæãååã·ã£ããã«ããã
客ã®ãã±ãããåãåããåãããããã¯ãæŒè
ã¯èªåã ããèŠããããã«ããŠåºããŠã¿ãã
ïŒäœãèµ·ãã£ãŠãããã¯ãã£ãŠã¿ãã°èªãããçè§£ã§ããŸããïŒ
ãã®ïŒæãéŠãåŸããªããããŒãã«ãžåºãã
客ã«èŠããã«ãŒãã®åãèšã£ãŠããã£ãŠãããããŒãã«ã®2æã衚ã«ããŠããã
ãã®äœæ¥ã§å®¢ãéžãã§å
¥ãæ¿ããèµ€ãšé»ã®ã«ãŒãããã¿ãªãšåœããæ°åŠçæ§é ãæ§ç¯ã§ããŸãã
客ããã¯æ°ççããªãã¯ã§åœãŠãŠãããšã¯ããšãŠãèããããªãæé ãªã®ã§ïŒç¹ã«å®¢ã«ã·ã£ããã«ãããããšãå«ããïŒããªãé©ãããäºãå¯èœã§ãã
ãã®ããã«ã¯ã¹ã¿ãŒãã§ã®ãã©ã³ãã®é
åãæ±ºãæã«ãªããŸãã
ãã®ããªãã¯ãèŠç Žã£ãŠäžããã
No.405GAI2022幎11æ23æ¥ 15:38
ãŸã€ããã®åœãŠãã£ãœãã§ãã
ãã£ããããæ°åãšé¢ä¿ãããŸããïŒ
ãã³ããããã ãããåããŸãã
No.414Dengan kesaktian Indukmu2022幎11æ24æ¥ 22:07
ãè©«ã³ãšèšæ£
æãã£ãŠããèšæ¶ã§æé ãèšè¿°ããŠããŸãããã調ã¹çŽããŠã¿ããèšæ¶ã«ééãããã
æ¹ããŠä¿®æ£ãããã®ããèŒããŠãããŸãã
ç³ãèš³ãããŸããã§ããã
ãã£ããããæ°åãšã¯å
šãé¢ä¿ããŸããã
ãã èµ€ãé»ãã©ã®æ§ãªé
åã«ããŠããã°è¯ãããèããŠäžããã
ãã³ãã¯
äžèŠãã©ãã©ã§ããç¶æ
ã®èšèã«ãããŸãã
No.415GAI2022幎11æ24æ¥ 22:21
ãå°ãããŸãã
Y=X/(1-X)
0ïŒïŒXïŒ1
ãã®æ²ç·ã«ååã¯ä»ããŠããã§ããããïŒ
ãæç€ºé ããã°å¹žãã§ãã
No.398T.S.2022幎11æ19æ¥ 07:01
y=x/(1-x) ã®å
šäœã§ãçŽè§åæ²ç·ãã§ãã
0âŠxïŒ1ã®ç¯å²ã«éå®ããæã®ååã¯ãããããªããšæããŸãã®ã§ã
ãããŠèšããšããããçŽè§åæ²ç·ã®äžéšããããã§ãããã
No.399ãããã2022幎11æ19æ¥ 08:38
åºçŸ©ã«ã¯ãä»£æ°æ²ç·ã®äºæ¬¡æ²ç·ã
ãŸãã¯ãåéæ²ç·ïŒæ¥åãæŸç©ç·ã®ä»²éïŒ
ïœïŒx/(1-x)=-x/(x-1)=-x/(x-1)+1-1=-x/(x-1)+(x-1)/(x-1)-1
=-1/(x=1)-1 ãã
挞è¿ç·ããy=-1ãïœïŒïŒã§ãçŽè§
No.400ks2022幎11æ20æ¥ 07:55
ãããšã¯çŽç·é¢ä¿ãããŸãããã䌌ãŠããŠ
Aã宿°å®æ°ãšãåAâ[0,4]ã«å¯ŸããŠ
åºé[0,1]ã¯F(X)=A*X*(1-X)ã«ãã£ãŠ[0,1]èªèº«ã®äžã«ååãããã
Aãšãããã©ã¡ãŒã¿ããã€ãããã®é¢æ°ã®æã¯ãã®å€ã®å€åãã«ãªã¹çæ§è³ªãæã¡
Aã®å€ã«ããããšãŠãæ°åŠçã«é¢çœãæ§è³ªãçºçããããšã§ããããã詳ãã調ã¹ãããŠããæ§ã§ãã
ãã®ãšããã®ååãããžã¹ãã£ãã¯ååãšåŒãã§ããã¿ããã§ãã
No.401GAI2022幎11æ20æ¥ 08:06