æ°ã®åµåº
ãã4æ¡ã®æ°ãABCXããã£ãŠãAãBãCã¯åºå®ããŠãXã¯ãïŒïœïŒãŸã§ãå€åãããååæŒç®ãšãã£ãã§ãã©ã®Xã«å¯ŸããŠããåã€ã®æ°ã§10ãåµãããšãå¯èœãªãåæ¡ã®é£ç¶ããïŒïŒåã®æ°ã¯ããã§ããããïŒ
ã©ã®ãããªåæ¡ã®æ°ããããŸããïŒããããŸãããèšæ£ããŸããã
No.499ks2023幎1æ12æ¥ 09:21
ä»»æã®A,B,C(1âŠAâŠ9,0âŠBâŠ9,0âŠCâŠ9)ã«å¯ŸããŠ
0âŠXâŠ9ã®ãã¡ã§10ãäœãããšãã§ããXãååšãããã
ãšããæå³ã§ããããå¿
ãååšããŸãã
No.500ãããã2023幎1æ12æ¥ 12:04
èšæ£åŸã®è³ªåã«å¯Ÿããåçã§ãã
ãããããããŸããããããããããã®ãšããŠã¯äŸãã°1900ããããŸãã
1+9+0Ã0=10
1+9+0Ã1=10
1+9+0Ã2=10
ã»ã»ã»
1+9+0Ã9=10
ãšãªããŸããã
No.504ãããã2023幎1æ13æ¥ 17:58
ãåã€ã®æ°ã§10ãåµãããšã®ããšãªã®ã§ãæ°åã®é çªã¯åããªããšèããææŠããŠã¿ãŸããã
4610ãâã4+6+1Ã0ïŒ10
4621ãâãïŒ4+6ïŒÃïŒ2-1ïŒïŒ10
4622ãâã4+6+2-2ïŒ10
4623ãâãïŒ4+6ïŒÃïŒ3-2ïŒïŒ10
4624ãâãïŒ4Ã6-4ïŒÃ·2ïŒ10
4625ãâãïŒ4Ã2-6ïŒÃ5ïŒ10
4626ãâãïŒ6-4ïŒ+2+6ïŒ10
4627ãâã6÷ïŒ4-2ïŒïŒ7ïŒ10
4628ãâã4Ã2ïŒ8-6ïŒ10
4629ãâã4+ïŒ9-6ïŒÃ2ïŒ10
No.505HP管çè
2023幎1æ14æ¥ 10:09 (1)x,yã¯æŽæ°ã§
x^3 - 8*x^2*y - 2*x*y^2 + 7*y^3 = 2023
ãæºãããšããã
(x,y)ã®çµåããã¯äœã§ãããïŒ
åãã
(2)x^4 - 9*x^3*y - 9*x^2*y^2 - 4*x*y^3 - 7*y^4 = 2023
ã§ã¯ïŒ
No.501GAI2023幎1æ12æ¥ 15:48
(1)ã§è§£ãèŠã€ããŸããã
x^3-8x^2y-2xy^2+7y^3=2023
(x+y)(x^2-9xy+7y^2)=2023
x^2-9xy+7y^2=±1,±7,±17,±119,±289,±2023
4(x^2-9xy+7y^2)=±4,±28,±68,±476,±1156,±8092
(2x-9y)^2-53y^2=±4,±28,±68,±476,±1156,±8092
å
ã®åŒããx,yã®å¶å¥ã¯ç°ãªã
y=2mã®ãšã
(2x-18m)^2-4ã»53m^2=±4,±28,±68,±476,±1156,±8092
(x-9m)^2-53m^2=±1,±7,±17,±119,±289,±2023
m=1ã®ãšãå³èŸºã®å€ã«1,7,17,119,289,2023,-1,-7,-17,-119,-289,-2023ãè¶³ããš
ïŒãã ãè² ã«ãªããã®ãé€ãïŒ
54,60,70,172,242,2076,52,46,36
å¹³æ¹æ°ã¯36ã®ã¿ã§ãã®ãšã(x,y)=(-15,-2)ãšããã°
ãx+yã2023ã®çŽæ°ããäžåŒãæ£ããæºãããããã®ãšã(äžåŒ)=289ãšãªãäžé©
åæ§ã«m=2ã®ãšã213,219,229,331,501,2235,211,205,195,93ã ãå¹³æ¹æ°ããªãäžé©
m=3ã®ãšã478,484,494,596,766,2500,476,470,460,358,188ã§å¹³æ¹æ°ã¯2500
ãããç®åºããã(x,y)=(5,6),(49,6)ã¯ããããx+yã2023ã®çŽæ°ã«ãªããäžå¯
m=4ã®ãšã849,855,865,967,1137,2871,847,841,831,729,559ã§å¹³æ¹æ°ã¯841ãš729
841ã®ãšãã¯äžé©ã ã729ã®ãšã(x,y)=(9,8)ãªãã°x+y=17,x^2-9xy+7y^2=-119
ããã ãš-2023ã«ãªããã(x,y)=(-9,-8)ãšããã°2023ãåŸãããã
m=5ã®ãšã1326,1332,1342,1444,1614,3348,1324,1318,1308,1206,1036ã§å¹³æ¹æ°ã¯1444
ãã®ãšãé©è§£(x,y)=(7,10)ãèŠã€ããã
以äžã«ãã(x,y)=(-9,-8),(7,10)ã¯è§£ããã ãä»ã«è§£ããããã©ããäžæã
(远èš)
(2)ãè§£ãèŠã€ããŸããã
x^4-9x^3y-9x^2y^2-4xy^3-7y^4
=(x+y)(x^3-10x^2y+xy^2-5y^3)-2y^4=2023
yãå°ããå€ã§ããããšãæåŸ
ããŠé ã«ä»£å
¥ããŠèª¿ã¹ããš
y=1ã®ãšã (x+1)(x^3-10x^2+x-5)=2025=3^4Ã5^2
x+1ã¯2025ã®çŽæ°ãªã®ã§x=âŠ,-10,-6,-4,-2,2,4,8,14,âŠïŒâµx=0ã¯äžé©ïŒ
2âŠxâŠ8ã®ãšãx^3-10x^2+x-5=(x-2)(x-8)x-15(x-2)-35ïŒ0ãšãªãäžé©
xâ§14ã®ãšã(x+1)(x^3-10x^2+x-5)=15Ã{(x-10)(x^2+1)+5}â§15Ã(4Ã197+5)ïŒ2025ãšãª
ãäžé©
xâŠ-6ã®ãšã(x+1)(x^3-10x^2+x-5)â§5Ã(216+360+6+5)ïŒ2025ãšãªãäžé©
-4âŠxâŠ-2ã®ãšã(x+1)(x^3-10x^2+x-5)âŠ3Ã(64+160+4+5)ïŒ2025ãšãªãäžé©
y=2ã®ãšã (x+2)(x^3-20x^2+4x-40)=2055=3Ã5Ã137
x+2ã¯2055ã®çŽæ°ãªã®ã§x=-139,-17,-7,-5,-3,-1,1,3,13,135,âŠ
1âŠxâŠ13ã®ãšãx^3-20x^2+4x-40=(x-1)(x-19)x-15(x-1)-55ïŒ0ãšãªãäžé©
xâ§135ã®ãšã(x+2)(x^3-20x^2+4x-40)=137Ã{(x-135)(x^2+4)+115x^2+500}ïŒ2055ãšãªãäžé©
xâŠ-7ã®ãšã(x+2)(x^3-20x^2+4x-40)â§5Ã(343+980+28+40)ïŒ2055ãšãªãäžé©
x=-5ã®ãšã(x+2)(x^3-20x^2+4x-40)â§3Ã(125+500+20+40)=2055ãšãªã
(x,y)=(-5,2)ã¯è§£ã®äžã€
x,yã®ç¬Šå·ãå転ãããã®ãè§£ãšãªãã®ã§
(x,y)=(5,-2)ãè§£
以äžã«ãã(x,y)=(-5,2),(5,-2)ã¯è§£ããã ãä»ã«è§£ããããã©ããäžæã
No.502ãããã2023幎1æ12æ¥ 18:23
3次以äžã®ææ¬¡å€é
åŒãšãªã£ãŠããã®ã§ãPARIã®ã³ãã³ãã«Thue æ¹çšåŒã®è§£ãæ±ããã³ãã³ãã«
P(x,y)=x^3+a*x^2*y+b*x*y^2+c*y^3=t
ãæºããæŽæ°(x,y)ã
th=thueinit(x^3+a*x^2+b*x+c);
ãšæºåããŠ
thue(th,t)
ã§å°ããã°ããã®(x,y)ãè¿ããŠãããã
ããã§éã³ã§t=2023ã«å ãã§å€ãã®è§£ãæã¡åŸã3æ¬¡é¢æ°ãa,b,cã®ãã©ã¡ãŒã¿ãå€ããªãã
調æ»ããã(a,b,c)=(-8,-2,7)ã§ã6éãã®è§£ãååšããŠããã
ãããªãã®ãæäœæ¥ã§çºèŠã§ããããã®ããšèšããªããåºé¡ããæ¬¡ç¬¬ã§ããã
ãã®ãã¡ã®ïŒçµãèŠäºæäœæ¥ã§åºããŠãããé©ãã®äžèšã§ãã
ãã«æ¹çšåŒãªãè§£ã¯ç¡éåãªã®ã«å¯ŸããïŒæ¬¡ä»¥äžã®ææ¬¡æ¹çšåŒã¯æéåã«éãããã®ãé¢çœããã®ã§ãã
(2)ã®æ¹ã¯åŸ2çµïŒãã ã笊å·ã®å
¥ãæ¿ãã«ãããã®ã§ããïŒ<æ°å€ã¯10以å
>
No.503GAI2023幎1æ13æ¥ 07:24
幎æ«ããæ£æã§ã®ããããã·ã«ã©ããã
å
ïŒxïŒïŒã®ãã¹ããããŸãã
åãã¹ã«ã¯ãèµ€éé»ã®ïŒè²ããïŒè²éžãã§å¡ãã€ã¶ããŠé ããŸãã
äœãã
以äžã®ãããªå¡ãã€ã¶ãã¯çŠæ¢ãšããŸãã
ããã§ã¯ããã¹ç®ã®XY座æšã¯ãïŒããå§ãŸãæ£ã®æŽæ°ãšããŸãã
a,bãæ£ã®æŽæ°ãšããŸãã
aïŒb
AïŒB
1âŠaâŠ9
1âŠbâŠ9
1âŠAâŠ12
1âŠBâŠ12
ãšããŸãã
座æšã以äžã®ããã«ãªãä»»æã®ïŒãã¹ã«ã€ããŠãå
±éã®ã²ãšã€ã®è²ã§å¡ãããŠããªãããã«ããŠãã ããã
(a,A)
(a,B)
(b,A)
(b,B)
èšç®éã¯ã©ãããNPã£ãœãã
No.482Dengan kesaktian Indukmu2022幎12æ28æ¥ 23:34
ïŒè²ã§ãïŒïŒxïŒïŒã®ãã¹ç®ã ãšã
以äžã®ãããªå¡ãåãããããŸãã
https://www.nemokennislink.nl/publicaties/17-x-17-probleem-opgelost/
No.483Dengan kesaktian Indukmu2022幎12æ29æ¥ 00:14
ãŸãç¹å®ã®1è²ã§æ¡ä»¶ãæºããé
眮ãäœã
âââââââââ
âââââââââ
âââââââââ
âââââââââ
âââââââââ
âââââââââ
âââââââââ
âââââââââ
âââââââââ
âââââââââ
âââââââââ
âââââââââ
äœçœ®ããã¶ããªãããã«é©åœã«è¡ãäžŠã³æ¿ããŠ
âââââââââ
âââââââââ
âââââââââ
âââââââââ
âââââââââ
âââââââââ
âââââââââ
âââââââââ
âââââââââ
âââââââââ
âââââââââ
âââââââââ
æ®ãã®äœçœ®ãæåã®ãã¿ãŒã³ããè¡ãäžŠã³æ¿ãããã®ã«ãªãããšã確èªã
âââââââââ
âââââââââ
âââââââââ
âââââââââ
âââââââââ
âââââââââ
âââââââââ
âââââââââ
âââââââââ
âââââââââ
âââââââââ
âââââââââ
éãåãããã°
ââââ»ââ»ââ»â
ââ»ââââ»âââ»
âââ»â»âââââ»
ââ»ââ»âââ»ââ
âââ»ââ»â»âââ
â»âââââ»â»ââ
âââ»ââââ»â»â
ââ»âââ»âââ»â
â»âââââââ»â»
â»âââ»â»ââââ
âââââ»ââ»ââ»
â»â»â»ââââââ
宿ïŒ
â»æŒ¢åã ãšãšãŠãèŠã«ããã®ã§ã3çš®é¡ã®èšå·ã«ããŸããã
No.484ãããã2022幎12æ29æ¥ 11:08
äœã§ããããã1ã€äœããšããã ããªããã»ã©é£ãããªãã§ããã
ã«ã©ã¯ãªãèŠãããããã«ã¹ããŒã¹ãå
¥ããŠãããŸãã
èµ€ãèµ€é»é»éèµ€ééé»
èµ€ãé»èµ€é»é»éèµ€éé
èµ€ãéé»èµ€é»é»éèµ€é
èµ€ãééé»èµ€é»é»éèµ€
é»ãé»ééèµ€é»èµ€èµ€é
é»ãéé»ééèµ€é»èµ€èµ€
é»ãèµ€éé»ééèµ€é»èµ€
é»ã赀赀éé»ééèµ€é»
éãé赀赀é»éé»é»èµ€
éãèµ€é赀赀é»éé»é»
éãé»èµ€é赀赀é»éé»
éãé»é»èµ€é赀赀é»é
No.485DD++2022幎12æ30æ¥ 05:22
æããŸããŠããã§ãšãããããŸãã
ãããããããDD++ ãããçŽ æŽãããã§ãïŒïŒïŒ
ç¥äººããæãã£ããªãã«ã
以äžã®ãããªãã®ãããã
â»âââââââ»â»
ç®ãäžžãããŠãããŸãã
âââ âââ âââ
âââ âââ âââ
âââ âââ âââ
âââ âââ âââ
âââ âââ âââ
âââ âââ âââ
âââ âââ âââ
âââ âââ âââ
âââ âââ âââ
âââ âââ âââ
âââ âââ âââ
âââ âââ âââ
ãã£ããããããã©ã®ããã«ããŠ
ãããªåœ¢ã«ããã£ãã®ãã
çç®èŠåœãã€ããŸããã
远䌞ã
管ç人ããã«ãããããããããã®è§£ãžã®è²ä»ãããŠããã ããŸãããã
å·Šæäžã®ã»ãã§å¡ãééãããããŸãã
No.497Dengan kesaktian Indukmu2023幎1æ2æ¥ 15:21
>>497
ãããã ãçŽåŸã§ããçå±ããã£ãŠæ¹é ããŸããã
èµ€é»éã®ãµã€ã¯ãªãã¯ãâŠâŠ
No.498Dengan kesaktian Indukmu2023幎1æ7æ¥ 22:59
ãããŸããŠããã§ãšãããããŸãã
æ¬å¹Žãã©ãããããããé¡ãããããŸãã
管ç人ããã®ãšãã¿ããã¶ããŸãããçããããšãã§ãã幎ãªã®ã§âŠâŠ
åé¡ã
7 ã€ã® 5 ã䜿ã£ãŠã2023 ãäœã£ãŠãã ããã
䜿ããèšå·ã¯ãååæŒç®ãæ¬åŒ§ã环ä¹ãå°æ°ç¹ãšããŸãã
No.488DD++2023幎1æ1æ¥ 17:21
ããããã®ã¯ããã§ããïŒ
(.5)^(-5.5-5.5)-5Ã5
No.491ãããã2023幎1æ2æ¥ 01:23
ããŒãããããã° .5 ã§ 0.5 ã衚ãã«ãŒã«ãæ¡çšããå ŽåããããŸãããã
å¥è§£ã§ã®æ£è§£ãšããäžã§ãå°æ°ç¹ã 5.5 ãšããŠã®ã¿äœ¿çšããæ³å®è§£ããã²æ¢ããŠã¿ãŠãã ããã
No.492DD++2023幎1æ2æ¥ 02:38
ãªãã°æ³å®è§£ã¯ãããã
2023 = (5-5/5)^5.5-5Ã5
ã ãšæããŸãã
No.493ãããã2023幎1æ2æ¥ 03:51
ã¯ãããã®éãã§ãã
éæŽæ°ä¹ããŸãšãã«äœ¿ããã®ã¯ããããåå
å·5幎ã®ã¿ãããããããçãåŒãäœãã®ã«æå¹ãšããã®ã¯éåžžã«çããã¯ãã
No.496DD++2023幎1æ2æ¥ 15:17
äœæ¹ã匷åãªèšç®ææ®µããæã¡ã®æ¹
2023^6=A^6+B^6+C^6+D^6+E^6+F^6+G^6
ãã ã
2023>A>B>C>D>E>F>G>0
ãæºããæŽæ°(A,B,C,D,E,F,G)ãçºèŠé¡ãã
No.494GAI2023幎1æ2æ¥ 08:57
2023^6=1902^6+1548^6+1320^6+1136^6+345^6+240^6+30^6
ãèŠã€ãããŸãã(2023^6ã®å
šè§£æ¢çŽ¢æé45ç§)ã
(远èš)
2024,2025,2026,âŠã«ã€ããŠãåæ§ã®åè§£ãããã®ããšæã£ãŠæ¢ãããã
2023ã¯ããŸããŸååšããã ãã§æ®éã¯ååšããªãã®ã§ããã
åŸã«ãªã£ãŠæ€çŽ¢ããŠâãã®ããŒãžãèŠã€ããŸããã
https://sites.google.com/site/sevensixthpowers/
No.495ãããã2023幎1æ2æ¥ 10:03
æ°å¹ŽãããŸããŠ
ä»å¹Žããããããé¡ãããŸãã
ãã10幎éãæºåããŸããã
2023 = (((((1+2)+3)Ã4+5)+6)Ã8+9)Ã7
2024 = ((((1÷2+3)+4)Ã5Ã6Ã9+7)-8)
2025 = (((((1-2)+3)+4)Ã5+6)Ã7Ã8+9)
2026 = ((((1÷2+3)+4)Ã5Ã6Ã9-7)+8)
2027 = (((1÷2Ã3+4)Ã5Ã8+6)Ã9-7)
2028 = (((1Ã2+3)÷4+5)Ã6Ã7-9)Ã8
2029 = (((((1+2)+3)+4)Ã5Ã6-9)Ã7-8)
2030 = (((1-2)÷3÷4+5)Ã8+9)Ã6Ã7
2031 = ((((1+2)Ã3Ã4-5)Ã7+8)Ã9+6)
2032 = (((((1+2)+3)Ã4+5)+6)Ã7+9)Ã8
2033 = ((((1+2)Ã3Ã4+5)Ã6+7)Ã8+9)
No.489GAI2023幎1æ1æ¥ 19:25
ãããŸããŠããã§ãšãããããŸãã
ä»å¹Žããããããé¡ãããããŸãã
å³èŸºã®æ°åã1,2,3,4,5,6,7,8,9ã®é ã«ãªã£ãŠããåŒã§ãã
2023 = (1-2+3+4+5+6)Ã7Ã(8+9)
2024 = 1+(2+3Ã(4-5+6))Ã7Ã(8+9)
2025 = 1+2-3+(4+5+6)Ã(7+8)Ã9
2026 = 1+2+(3+4Ã5-6)Ã7Ã(8+9)
2027 = 1-2+3+(4+5+6)Ã(7+8)Ã9
2028 = 1+2+(3+4+5Ã6Ã7+8)Ã9
2029 = (1+2+3+4)Ã(5Ã6Ã7-8)+9
2030 = 1Ã2+3+(4+5+6)Ã(7+8)Ã9
2031 = 1+2+3+(4+5+6)Ã(7+8)Ã9
2032 = 1+2Ã3+(4+5+6)Ã(7+8)Ã9
2033 = (1+2Ã(3+4)Ã(5+6+7))Ã8+9
No.490ãããã2023幎1æ2æ¥ 01:03
æ£å
é¢äœã§ãµã€ã³ããäœãå Žåã転ãããŠãåãã«ãªããªããã®ã¯ã
åããåãé¢ãåãïŒã«äœã£ãå Žåäºéãã
ïŒïŒïŒïŒïŒãå³åããšå·Šåãããããæ£åŒã«ã¯å·Šåãã
å¶éããªãããå ŽåïŒïŒéããšçè§£ããŠãŸãã
ç¹ã§èšããå ŽåãïŒïŒïŒïŒïŒã¯äžäžå·Šå³å¯Ÿç§°ã§ããã
ïŒïŒïŒïŒïŒã®å Žå蟺ã«å¹³è¡ãªãã®ãäºéãããã
ïŒïŒÃïŒÃïŒÃïŒïŒïŒïŒïŒéãã§ããã
æ°åã§è¡šããå ŽåãïŒä»¥å€ã¯ã察称ã§ã¯ãªãã®ã§ã
ïŒïŒÃïŒïŒŸïŒéãã§ããã倧äžå€«ããªãšïŒ
No.476ks2022幎12æ20æ¥ 16:26
> ç¹ã§èšããå ŽåãïŒïŒïŒïŒïŒã¯äžäžå·Šå³å¯Ÿç§°ã§ããã
> ïŒïŒïŒïŒïŒã®å Žå蟺ã«å¹³è¡ãªãã®ãäºéãããã
> ïŒïŒÃïŒÃïŒÃïŒïŒïŒïŒïŒéãã§ããã
30Ã2Ã2Ã2=240ã§ãã
> æ°åã§è¡šããå ŽåãïŒä»¥å€ã¯ã察称ã§ã¯ãªãã®ã§ã
> ïŒïŒÃïŒïŒŸïŒéãã§ããã倧äžå€«ããªãšïŒ
1以å€ã®åãã¯4éãã§ãã1ã®åããïŒåãªãæ£ãšããŠïŒ2éããããŸãã®ã§
30Ã2Ã4^5éãã§ããã
No.477ãããã2022幎12æ20æ¥ 17:05
æ£åé¢äœã®å Žå
äžè²ã§å¡ããïŒéã
äºè²ã§å¡ããïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒïŒã®3éã
äžè²ã§å¡ããïŒ1ïŒ3ïŒ3éã
åè²ã§å¡ãã1éãã
空éçã§ééããããããç¥ããŸãã
å
é¢äœã«ææŠäž
No.478ks2022幎12æ21æ¥ 10:11
äºè²ã3éããäžè²ã3éããšããããšã¯è²é ãåºå¥ããŠãããšããããšã§ããã
åè²ã®å Žåã¯2éãã«ãªããŸããäŸãã°è²ãa,b,c,dãšãããšãaã®é¢ãäžã«ããŠ
äžããã¿ããšãæèšåãã«b,c,dã«ãªããd,c,bã«ãªããã®2éãã§ãã
No.479ãããã2022幎12æ21æ¥ 14:23
ç§ã®å¥œããªå®çã«ãã¶ã«ã°ã®å®çããããŸãããã®å®çã¯å®èŠã ãã§å³ãæãããšãã§ããŸãã
ãŸãããããã¹ã®å
è§åœ¢å®çããã®å察å®çãå®èŠã ãã§å³ãæããŸãã
åãããã«å®èŠã ãã§å³ãæããå®çã«åºäŒã£ãã®ã§ç޹ä»ããããšæããŸãã
(å°åœ±)å¹³é¢äžã«äžè§åœ¢ABCãããã
çŽç·BCäžã«ç°ãªã2ç¹D1,D2ããçŽç·CAäžã«ç°ãªã2ç¹E1,E2ããçŽç·ABäžã«ç°ãªã2ç¹F1,F2ããšãã
ãã ãã3ç¹D1,E1,F1ã¯äžçŽç·äžã«ãªãã3ç¹D2,E2,F2ãäžçŽç·äžã«ãªãããã«ããã
çŽç·E1F1ãšE2F2ã®äº€ç¹ãPãçŽç·F1D1ãšF2D2ã®äº€ç¹ãQãçŽç·D1E1ãšD2E2ã®äº€ç¹ãRãšããã
ãã®ãšããæ¬¡ã®äºã€ã®åœé¡ãæãç«ã€ã
â 3çŽç·AD1,BE1,CF1ãå
±ç¹ â 3çŽç·PD2,QE2,RF2ãå
±ç¹
â¡ 3çŽç·AD2,BE2,CF2ãå
±ç¹ â 3çŽç·PD1,QE1,RF1ãå
±ç¹
ãã®å®çã®å察å®çãå®èŠã ãã§å³ãæããŸãã
No.475ããã²ã2022幎12æ17æ¥ 02:01
ïœïŒŸïŒïŒïœïŒŸïŒïŒïœïŒŸïŒãæŽæ°è§£ã®åæ°ãïŒå
ïœïŒŸïŒïŒïœïŒŸïŒïŒïœïŒŸïŒãæŽæ°è§£ã®åæ°ãç¡é
ïœïŒïŒïŒïŒïŒïŒâŠæéåãæã€ãªã©
æ¹çšåŒããæããŠãã ããã
No.442ks2022幎12æ6æ¥ 16:00
(x,y,z)=(0,0,0)
ã®è§£ããããŸãã®ã§ã1åã§ããã
No.443ks2022幎12æ6æ¥ 17:13
x^3+y^3=z^3ã«ã¯(0,t,t)ãšããè§£ããããŸãã®ã§ç¡éåã§ãã
ä»ã«ã¯
x^2+y^2=5^2, 0ïŒxïŒy : æŽæ°è§£1å
x^2+y^2=(5^2)^2, 0ïŒxïŒy : æŽæ°è§£2å
x^2+y^2=(5^3)^2, 0ïŒxïŒy : æŽæ°è§£3å
x^2+y^2=(5^4)^2, 0ïŒxïŒy : æŽæ°è§£4å
x^2+y^2=(5^5)^2, 0ïŒxïŒy : æŽæ°è§£5å
ã»ã»ã»
x^2+y^2=(5^n)^2, 0ïŒxïŒy : æŽæ°è§£nå
ã»ã»ã»
No.444ãããã2022幎12æ6æ¥ 20:19
x^2+y^2=(5^n)^2, 0ïŒxïŒy : æŽæ°è§£nå
ã¯
x^2+y^2=(5*n)^2, 0ïŒxïŒy : æŽæ°è§£nå
ã§ã¯ãªãã§ããããïŒ
No.449GAI2022幎12æ7æ¥ 14:22
éããŸãã
x^2+y^2=5^2, 0ïŒxïŒyïŒæŽæ°è§£1å (3,4)ã®ã¿
x^2+y^2=10^2, 0ïŒxïŒyïŒæŽæ°è§£1å (6,8)ã®ã¿
x^2+y^2=15^2, 0ïŒxïŒyïŒæŽæ°è§£1å (9,12)ã®ã¿
x^2+y^2=20^2, 0ïŒxïŒyïŒæŽæ°è§£1å (12,16)ã®ã¿
x^2+y^2=25^2, 0ïŒxïŒyïŒæŽæ°è§£2å (7,24)ãš(15,20)
x^2+y^2=30^2, 0ïŒxïŒyïŒæŽæ°è§£1å (18,24)ã®ã¿
ã®ããã«ãªããŸãã®ã§æããã«ã(5*n)^2ãã§ã¯åããŸãããã(5^n)^2ããªãã°
x^2+y^2=5^2, 0ïŒxïŒyïŒæŽæ°è§£1å (3,4)ã®ã¿
x^2+y^2=25^2, 0ïŒxïŒyïŒæŽæ°è§£2å (7,24)ãš(15,20)
x^2+y^2=125^2, 0ïŒxïŒyïŒæŽæ°è§£3å (35,120)ãš(44,117)ãš(75,100)
x^2+y^2=625^2, 0ïŒxïŒyïŒæŽæ°è§£4å (175,600)ãš(220,585)ãš(336,527)ãš(375,500)
ã®ããã«ç¢ºãã«åããŸãã
No.450ãããã2022幎12æ7æ¥ 14:41
ãïœããã ïŒ
å®å
šã«åéãããŠããã
ã§ããããããªäŸãæãã€ããŸããã
No.451GAI2022幎12æ8æ¥ 15:03
æ¡ä»¶ãå
¥ãããšãããé£ãããªãå°è±¡ã§ãããã
äžåŸã«ãæ±ããŠããããã§ããã
ãã§ã«ããŒã®å
æ¥ã®åé¡ã¯ãèªç¶æ°è§£ã¯ååšããªãã§ããã
ãã£ããããŠãŸããã
æŽæ°è§£ã®æ¡ä»¶ã ãšã奿°ã®å ŽåãïŒïœãïŒïœãïŒïŒããã
ç¡éåãããŸããã
æŽæ°è§£ã®ãªãåŒã¯ãïŒïŒïœïŒŸïŒïŒïŒïŒïœïŒïŒãé¢çœããªãåŒã§ããã
ïœïŒŸïŒïŒïœïŒŸïŒïŒïŒãïŒïŒïŒïŒïŒäžåã®ã¿
ïœïŒŸïŒïŒïœïŒŸïŒïŒïŒïŒïŒïŒïŒïŒïŒãŒïŒïŒïŒïŒäºåã®ã¿ïœãïœã®é
ïœïŒŸïŒïŒïœïŒŸïŒãïŒïŒïŒïŒïŒïŒãŒïŒïŒïŒïŒã§ããããïŒ
ïœïŒŸïŒïŒïœïŒŸïŒïŒïŒãã¯ç¡ã
ïœïŒŸïŒïŒïœïŒŸïŒïŒïŒïŒ2ãïŒïŒïŒïŒïŒãŒïŒïŒ
äžè¬ã«ãè§£ã®åæ°ã¯ç¢ºå®ããã®ããé£ãããããªã®ã§ã
ç¥ãããŠããéãã§ã©ãã§ããããïŒ
No.452ks2022幎12æ8æ¥ 17:38
y^2=x^3 ã®è§£ã¯ (x,y)=(t^2,±t^3) ã§ç¡éå
y^3=x^2+1 ã®è§£ã¯ (x,y)=(0,1)
y^2=x^3+1 ã®è§£ã¯ (x,y)=(-1,0),(0,±1),(2,±3)
No.454ãããã2022幎12æ8æ¥ 19:28
ã¡ãªã¿ã«
x^2+y^2=(5^n)^2, 0ïŒxïŒy : æŽæ°è§£nå
ã®ã5ãã¯4n+1åã®çŽ æ°(5,13,17,29,37,âŠ)ãªãäœã§ãOKã ãšæããŸãã
No.455ãããã2022幎12æ8æ¥ 20:05
ããããããããã€ããããããšãããããŸãã
è§£4åã®å ŽåãïœïŒŸïŒïŒïœïŒŸ2ïŒïŒãïŒÂ±1ïŒ0ïŒïŒ0ïŒÂ±ïŒïŒ
è§£ïŒåã®å ŽåãïœïŒŸïŒïŒïœïŒŸïŒïŒïŒïŒãïŒÂ±ïŒïŒÂ±ïŒïŒïŒÂ±ïŒã±ïŒïŒ
ïœã®äžæåã ãã§ã
ïŒïœïŒïŒïŒïŒïœïŒïŒïŒâŠïŒïœïŒïœïŒïŒïŒ
No.460ks2022幎12æ9æ¥ 11:28
æŽæ°è§£ã3åãã®å Žå
ïœïŒŸ2ïŒïœïŒŸ3ïŒïœãïŒãŒ1ïŒ0ïŒïŒ0ïŒ0ïŒïŒ1ïŒ0ïŒ
æŽæ°è§£ãïŒåãå Žå
ïœïŒïœïŒ1ïŒïŒïœïŒŸïŒãŒïœ
ïŒãŒ1ïŒ0ïŒïŒ0ïŒ0ïŒïŒ1ïŒ0ïŒ
ïŒãŒ1ïŒ1ïŒïŒ0ïŒ1ïŒïŒ1ïŒ1ïŒ
No.461ks2022幎12æ11æ¥ 09:04
y(y-1)=x^3-xã®è§£ã¯ä»ã«ããããŸãã®ã§6åã§ã¯ãããŸããã
(x,y)=(2,3),(2,-2),(6,15),(6,-14)
No.462ãããã2022幎12æ11æ¥ 09:38
å³èŸºã®å€ããïŒã«ãªãå ŽåãçŽãã«æ°ã¥ãããã¿ããã§ããã
ããã ãšãïŒïŒåã®è§£ãšããããšã«ãªããŸããïŒ
ïŒïŒïŒïŒïŒåã«ææŠããŸãã
No.465ks2022幎12æ11æ¥ 17:18
> ããã ãšãïŒïŒåã®è§£ãšããããšã«ãªããŸããïŒ
ããã§ãããã§ããã®10å以å€ã«è§£ããªããã©ããã¯ããããŸããã
No.466ãããã2022幎12æ11æ¥ 22:48
ïŒåã®æŽæ°è§£ãæã€æ¹çšåŒ
ïŒïœïŒïœïŒïŒïŒïŒïŒŸïŒïŒïœïŒïœïŒïŒïŒïŒïœïŒïŒïŒ
ïŒ0ïŒ0ïŒïŒ0ïŒ1ïŒïŒ1ïŒ0ïŒïŒ1ïŒ1ïŒ
ïŒãŒ1ïŒ0ïŒïŒãŒ1ïŒ1ïŒ
No.467ks2022幎12æ12æ¥ 17:29
x^2+y^2=(5^n)^2,0ïŒxïŒyã®æŽæ°è§£ã¯nåã§ããã
倿°ã®å€§å°é¢ä¿ã®æ¡ä»¶ããªã2倿°ã®æ¹çšåŒã§
æŽæ°è§£ãä»»æã®åæ°ã«ãªããã®ãèãããšã
(4x+1)^2+y^2=25^n ã®æŽæ°è§£ã¯ 2n+1åïŒnâ§0ïŒ
4x^2+y^2=5^n ã®æŽæ°è§£ã¯ 2n+2åïŒnâ§0ïŒ
ã®ãããªäŸããããä»»æã®èªç¶æ°nã«å¯ŸããŠ
æŽæ°è§£ãnåã§ãã2倿°æ¹çšåŒãååšããããšãããããŸãã
è§£ã®å
·äœå€
è§£1å: (4x+1)^2+y^2=25^0
(0,0)
è§£2å: 4x^2+y^2=5^0
(0,±1)
è§£3å: (4x+1)^2+y^2=25^1
(-1,±4),(1,0)
è§£4å: 4x^2+y^2=5^1
(±1,±1)
è§£5å: (4x+1)^2+y^2=25^2
(-4,±20),(-2,±24),(6,0)
è§£6å: 4x^2+y^2=5^2
(0,±5),(±2,±3)
è§£7å: (4x+1)^2+y^2=25^3
(-19,±100),(-9,±120),(29,±44),(31,0)
è§£8å: 4x^2+y^2=5^3
(±1,±11),(±5,±5)
è§£9å: (4x+1)^2+y^2=25^4
(-132,±336),(-94,±500),(-44,±600),(146,±220),(156,0)
è§£10å: 4x^2+y^2=5^4
(0,±25),(±10,±15),(±12,±7)
è§£11å: (4x+1)^2+y^2=25^5
(-659,±1680),(-469,±2500),(-219,±3000),(59,±3116),(731,±1100),(781,0)
è§£12å: 4x^2+y^2=5^5
(±5,±55),(±19,±41),(±25,±25)
è§£13å: (4x+1)^2+y^2=25^6
(-3294,±8400),(-2344,±12500),(-1094,±15000),(296,±15580),(2938,±10296),(3656,±5500),(3906,0)
è§£14å: 4x^2+y^2=5^6
(0,±125),(±22,±117),(±50,±75),(±60,±35)
è§£15å: (4x+1)^2+y^2=25^7
(-19111,±16124),(-16469,±42000),(-11719,±62500),(-5469,±75000),(1481,±77900),
(14691,±51480),(18281,±27500),(19531,0)
è§£16å: 4x^2+y^2=5^7
(±25,±275),(±95,±205),(±125,±125),(±139,±29)
è§£17å: (4x+1)^2+y^2=25^8
(-95554,±80620),(-82344,±210000),(-58594,±312500),(-27344,±375000),(7406,±389500),
(41208,±354144),(73456,±257400),(91406,±137500),(97656,0)
è§£18å: 4x^2+y^2=5^8
(0,±625),(±110,±585),(±168,±527),(±250,±375),(±300,±175)
è§£19å: (4x+1)^2+y^2=25^9
(-477769,±403100),(-411719,±1050000),(-292969,±1562500),(-136719,±1875000),(37031,±1947500),
(206041,±1770720),(230519,±1721764),(367281,±1287000),(457031,±687500),(488281,0)
è§£20å: 4x^2+y^2=5^9
(±125,±1375),(±359,±1199),(±475,±1025),(±625,±625),(±695,±145)
No.468ãããã2022幎12æ13æ¥ 11:58
å§åçãªèšç®åã§ããã
ïœïŒŸïŒïŒïŒïœïŒïŒïŒïŒïœïŒïŒïŒâŠïŒïœïŒïœïŒ
ïŒãŒ1ïŒ0ïŒïŒãŒ2ïŒ0ïŒâŠïŒãŒïœã0ïŒ
å³èŸºã«ãäžã€ã§ããçŽ æ°ãããã°ããã®æå€§å€ãPãšãã
ïŒPïŒNãã§ã¯ãªãããªããªããPïŒïŒPã®éã«ãæ°ããªçŽ æ°ã
å¿
ãååšããæå€§ã«åããããã§ãããããããšPã«ã€ããŠã
å¹³æ¹ã§ãªããªããå³èŸºãå¹³æ¹æ°ã«ãªããšãã¯ãïŒã®ãšãã§ãã
çŽ æ°ããªããšããäŸãã°
N!ïŒïŒïŒâŠN!ïŒNãã®ãšãã¯ãåãããŸããã
ã®ã§ãä»ã«ãè§£ãããããç¥ããŸãããã
No.469ks2022幎12æ14æ¥ 15:17
> N!ïŒïŒïŒâŠN!ïŒNãã®ãšãã¯ãåãããŸããã
> ã®ã§ãä»ã«ãè§£ãããããç¥ããŸãããã
ãšã«ãã·ã¥ã»ã»ã«ããªããžã®å®çã«ãã
ãé£ç¶ãã2ã€ä»¥äžã®èªç¶æ°ã®ç©ã¯çޝ乿°ã«ãªããªãã
ãšã®ããšã§ãã®ã§ã0以å€ã®è§£ã¯ãªãããã§ãã
No.470ãããã2022幎12æ14æ¥ 16:44
ããããããããããšãããããŸãã
å
人ã®è©ã«ä¹ããŠè²°ããŸãããé£åãããšããã§ããã
ïœã¯ãå¹³æ¹ã环ä¹ã§ããããã§ããïŒ
No.471ks2022幎12æ14æ¥ 17:38
远䌞ãããããã°
èªç¶æ°ã®é£ç¶æ°ã®åããïŒã®å·Ÿä¹ã§è¡šããªãããšã
è峿·±ãâïž
No.472ks2022幎12æ14æ¥ 23:38
éã«ãïŒã®ã¹ãä¹ã§ãªããã°ãé£ç¶æ°ã®åã§ã衚ãããšãå¯èœã
äžæçã§ã¯ããªãã®ããæ®å¿µã§ãããçŽ æ°ã¯ãäžæçãªã®ããªïŒ
No.474ks2022幎12æ15æ¥ 10:29